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Isometries of the hypercube: a tool for boolean

regulatory networks analysis

Jean Fabre-Monplaisir, Brigitte Mossé and Élisabeth Remy

Abstract Boolean finite dynamical systems (FDS) are commonly used in
systems biology to model the dynamics of intracellular regulatory networks
and interpret the emergence of cellular behaviors. Given a boolean FDS,
we can compute the corresponding regulatory network, that is a directed
signed graph representing all the interactions between components (genes),
endowed with logical rules explaining the dynamical behaviour of the system.
We consider the asynchronous trajectories generated by this boolean FDS
and represent them on the hypercube. The exploration and analysis of this
dynamics is a challenging task because of the combinatorial explosion that
we face. A way to approach this problem is to exploit the links between the
regulatory graph and the dynamics (FDS).

The set of isometries of the hypercube defines classes of boolean FDS
gathering all the isometric FDS. Thus, we classify the set of boolean FDS on
the basis of those isometries, and emphasize their common features through
regulatory graphs and logical rules. We can then restrict the dynamical
analysis of all the boolean FDS to one representative per class, and thereby
considerably improve the efficiency of analysis of all the boolean FDS. Rely-
ing on invariants properties, we propose a constructive method to provide,
given a FDS, a representative regulatory graph of its class.

We illustrate the efficiency of the method in concrete situations. For
instance, the motif analysis [12, 13, 3] is strongly improved thanks to the
reduction of the space to explore. We also revisit the negative Thomas’rule
[14, 15] by establishing a new demonstration.
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1 Introduction

Finite dynamical systems are commonly used for the modelling of biological
systems such as developmental, differentiation or homeostasis phenomena.
The main objective is to explain and understand how and by whom these
complex systems are controlled. Following a systems biology approach, we
tackle this problem by studying the regulatory networks underlying the dy-
namical process.

Modelling of regulatory networks usually consists of gathering and syn-
thetising the biological knowledge and data in two steps: first the con-
struction of an interaction network representing the genes (nodes) and their
regulations, activations or inhibitions (edges), and then its parameterisation
coding the evolution of the systems induced by these interactions, that is
called the dynamics. The panel of formalisms available to express the dy-
namics is wide, from quantitative to qualitative equations. Pioneer works
in modelling of gene regulatory networks using boolean, and more generally
discrete dynamical systems, go back to the 60s with the works of S. Kauf-
man [7] and R. Thomas [20]. One of the strength of the discrete modelling
is its ability to represent a wide range of dynamical behaviours while rely-
ing on a simple and easily handled mathematical formalism, not requiring
quantitative parameters usually difficult to obtain with precision. What-
ever the formalism used, the construction of a regulatory network and its
parameterisation is a difficult task, with many unknowns and uncertainties
on the processes and their mechanisms. Clearly, a priori good knowledge on
the families of mathematical tools used to model the system may help and
guide the modeller to overcome these difficulties. That is the aim of this
theoretical work: improving the analysis of genetic regulatory networks, and
making it more efficient.

This work focuses on the study of finite discrete systems (FDS) in the
boolean case, a FDS representing the evolution of the system that has been
modelised within the logical formalism. We aim to gather FDS displaying
the same dynamical properties, and select a favorite class representative. For
this purpose, we consider the hypercube, which supports the asynchronous
boolean dynamics, and its symmetries; clearly, all the resulting FDS con-
serve the same properties. The study of this class of FDS allows to extract
invariants relatively to their corresponding interaction graphs, and hence to
have a deeper understanding of the links between the boolean dynamics and
the structure of the underlying interaction graph. We adopt a geometrical
point of view that has already been used to study this classifying approach
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by the theoretical biologist and dynamicist Leon Glass in the 70’s [5, 6].

An efficient application of this classification, together with a practical
result allowing one to modify a regulatory graph while remaining in the
class of symmetries, is emphasized through the analysis of regulatory motifs,
which are known to biologists to play a major role in the structure of the
trajectories space.

Sections summary

Notice Proofs and results presented in this paper go deeply into math-
ematical details, with geometrical and combinatorics arguments and tools
developed in a series of propositions and remarks, allowing a fine under-
standing of some dynamical features. The reader may choose the level of
reading; it is possible to capture the main results stated in the propositions
and theorems without going into all details.

In Section 3, we give basics on boolean networks and logical formalism
[17, 20].

Starting from a boolean finite dynamical system (FDS), that is a map S
from X = {0, 1}n to itself (n is a fixed integer), we associate to it dynam-
ics. The set X of boolean vectors is the set of states, and trajectories are
represented through state transition graphs (STG). The function S encodes
the dynamics, and updating rules are precised to describe the trajectories.
The usual rules considered are the synchronous one, with trajectories given
by the iteration of S, and the asynchronous one, which is non determinis-
tic since only one component can update at a time and thus a state may
have several successors. Two types of attractors may be obtained in these
dynamics, complex attractors or stable states. Given S, we derive the corre-
sponding regulatory graph (RG), consisting in all activations and inhibitions
between components g1, . . . , gn (usually genes in biological applications).

The logical formalism provides an other way to determine S, starting
from a regulatory graph with n vertices g1, ..., gn and logical rules giving
a complete description of the action of the regulators of each component;
these rules allow enable the reconstitution of S.

In Section 4, we introduce the symmetry group Γn of the hypercube
of the n dimensional space Rn. From a geometrical point of view, Γn acts
naturally on boolean asynchronous STG, when they are embedded in Rn.
We precise how an element f of Γn acts on a boolean FDS and on its
synchronous and asynchronous STG.
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The action of Γn on boolean FDS was first introduced by L.Glass [5]
for the classification of asynchronous STG.In [22, 2], this action is studied
with symbolical considerations, and the authors note that isometric STG
are also isomorphic (in the sense of graph theory, renumbering of the nodes
preserving adjacency). In Proposition 2 we emphasize a class of dynamics
for which isomorphic STG are also isometric.
We also detail the transformation of the RG under a given symmetry (the
topology and the signs of the circuits are conserved, but signs in paths may
change), and precise the effect on logical rules.

We end this section with Proposition 7, a key tool to use these results
in applications. It provides a way to transform a boolean STG S in new
ones, representatives of interest of the class of S under the action of Γn (by
identifying subgraphs of the RG, on which it is possible to choose the signs
of the interactions after the action of some symmetry).

In Section 5, we focus on the study of boolean FDS whose RG are
usual regulatory motifs in biological applications: isolated circuits, chorded
circuits, flower-graphs, and more generally hub-graphs. All these motifs are
connected graphs containing at most one component with more than one
regulator (the ”hub”). The aim is to describe the dynamical behaviours
that can be generated by a given regulatory motif, and eventually associate
dynamical properties to this motif. Due to the large set of motif-compatible
dynamics, this exhaustive and general study is difficult to carry out, and
we show that the results of Section 4 greatly facilitate the study. For each
motif, we adopt the same strategy: using Proposition 7, we transform any
boolean FDS whose RG is the motif into an isometric one, whose RG has
only activations all along a chosen sub-graph (activations are mathemati-
cally easier to study in the boolean dynamics, as they propagate coordinates
along trajectories). Relying on invariants observed in Section 4, we deduce
the dynamics associated to the motif through the analysis of the chosen
isometrical dynamics. In particular, we provide a description of the attrac-
tors of the asynchronous dynamics. We find results already described in
[13, 11] for the isolated and chorded circuits, and provide new ones related
to flower-graphs and hub-graphs (Theorems 1, 2 and 3). This analysis al-
lows us to precise the number of classes of isometric FDS determined by
the simplest motifs (isolated circuits, chorded circuits, flower-graphs with
two petals). In the large family of hub-graphs, this analysis shows that only
three asymptotic asynchronous behaviors may occur, depending on the way
the regulators ”cooperate” to regulate the hub (see Propositions 12 and 15,
and Remarks 6 and 10), improving results of [3].
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Finally, in Section 6, we use Proposition 7 to propose a new proof
of the so-called ”negative Thomas’s rule” : Given S : X → X a boolean
FDS such that its asynchronous dynamics displays a cyclic attractor, then
the associated regulatory graph RG(S) contains a negative circuit [14, 15].
Indeed, Theorem 4 states that if RG(S) contains only positive circuits, then
the asynchronous dynamics cannot display any cyclic attractors.

2 Boolean finite dynamical systems and regula-
tory graphs

In the following, we consider a n dimensions hypercubeHn, that is the convex
polyhedra of the space Rn whose set of vertices is equal to X = {0, 1}n; the
elements x = (x1, . . . , xn) of X will also be called states.

Notations 1. • For a ∈ {0, 1}, a = 1− a.

• For a ∈ {0, 1} and α ∈ {±1}, aα =

{
a , if α = +1
a , if α = −1

.

• For x ∈ X, x = (x1, . . . , xn) and xj = (x1, . . . , xj−1, xj , xj+1, . . . , xn).

• For x ∈ X, and J ⊂ {1, . . . , n}, xJ = (y1, . . . , yn),

where yi =

{
xi , if i ∈ J
xi , if i /∈ J .

Notations 2. Thereafter, we will consider different directed graphs, and if
n and n′ are nodes of a considered graph, we will write n  n′ to indicate
that there is a path from n towards n′ in this graph.

2.1 Boolean finite dynamical systems

We proceed from a boolean finite dynamical system S (FDS, [17]), that is a
transformation S : X → X . Given the transformation S = (S1, . . . , Sn), to
any state x is associated its updating set

UpdS(x) = {i ∈ {1, . . . n} ;Si(x) 6= xi}.

This brings to consider two usual dynamics associated to S [4]:
- The synchronous dynamics, with a simultaneous change of all the coor-

dinates of the state x specified by UpdS(x). Any state has exactly one suc-
cessor, its image under S, and this dynamics is deterministic. The graph of

6



S, denoted Gs(S), is called synchronous state transition graph (synchronous
STG) or synchronous graph. This graph gives the iteration of S and thus
the trajectories of the dynamics.

- The asynchronous dynamics, where at most one coordinate changes at
a time. Hence, a state x has as many successors as the cardinal of UpdS(x),
and this dynamics is non-deterministic. We represent the asynchronous
dynamics by a directed graph Ga(S), called asynchronous state transition
graph (asynchronous STG) or asynchronous graph; the set of nodes of Ga(S)
is the set X of the states, and the edges, linking two consecutive states in the
dynamics, are located on the edges of the hypercube Hn. The trajectories
are the paths of Ga(S), along edges of Hn.

Let us remark that Ga(S) can be directly constructed from Gs(S), and
conversely.

Our attention turns to attractors of these dynamics, which can be of two
kinds: stable states (fixed points), and ”cyclic” attractors (terminal strongly
connected components of the considered STG). Let us remark that the stable
states are the same in the synchronous and the asynchronous dynamics.

2.2 Associated regulatory graphs

A regulatory graph (RG) is classically associated to the FDS. Let us denote
this graph by RG(S). The n vertices g1, ... , gn of RG(S) are components
whose levels are given by the xi along the dynamics. There is an edge in
RG(S) from gi to gj , called interaction from gi to gj , if there exists two
states x and y = xi such that Sj(x) 6= Sj(y). This condition means that gi
is a regulator of gj , in the sense that the level xi of gi has an influence on
the next level xj of gj under the action of S, expressed on at least one pair
of states {x, xi} of the space X.

It is therefore possible to build the graph RG(S) by superposing for
all the states x the local graphs, denoted by RGx(S), whose vertices are
the gi and edges are the edges of RG(S) expressed at the pairs of states
{x, xi}, for i = 1, . . . , n. Given a state x, it is natural to provide a sign
to each interaction from gi to gj of RGx(S): this sign is +1 (activation) if
(xi − xii)(Sj(x) − Sj(xi)) > 0 and −1 (inhibition) otherwise. Then we will
give a sign to an interaction of RG(S) in those cases where its sign is the
same in all the local graphs where it is expressed. Considering a path in a
RG or in some union of local RG, the sign of the path is the product of the
signs of its interactions, when these signs are determined (in other words
the same in the local graphs where expressed).

Without the loss of generality, we work with transformations S such that

7



RG(S) is connected; otherwise, the study of the dynamics returns to the
study of the dynamics associated to each connected component of RG(S).

As an illustration, we give a first proposition that we will use in several
applications (cf. Section 4):

Proposition 1. Let S be a boolean FDS on X, and g1, ... , gn the related
components. If a component gj has a unique regulator gi, then for each state
x, the interaction from gi to gj is expressed in the local graph RGx(S), and
always with the same sign.

Proof. Let x be a state such that xi = 0 and the interaction from gi to gj is
expressed in the local graphRGx(S) with the sign α (and thus also expressed
in RGxi(S) with the same sign), that is Sj(x) = 0α and S(xi)j = 1α.
For k ∈ {1, . . . , n} \ {i}, let us consider the state y = xk. We must have
Sj(y) = 0α and Sj(y

i) = 1α, for otherwise there is an interaction from gk to
gj . Therefore, the interaction from gi to gj is expressed in the local graphs
RGy(S) and RGyi(S) with the sign α.
The iteration of the move from a state x to a state y, and the different
possible choices of k in {1, . . . , n} \ {i} allow to cover all the space X, and
this gives the conclusion.

2.3 Logical framework

Another way to determine S is to use the so called logical formalism [20],
starting from a RG with n vertices g1, ... , gn and ”logical rules” or ”formu-
las”: for each gi, conditions on the levels of its regulators are assigned in a
disjunctive normal form, that determine the states for which the level of gi
becomes equal to 1 under S, that is the set S−1i (1).

More precisely, we call radical any gi (meaning that the level of gi is
equal to 1) or ¬gi (meaning that the level of gi is equal to 0), and conjunctive
clause any conjunction of radicals; a disjunctive normal form is a disjunction
of such clauses. The truth table of a clause (resp. a logical rule) is evaluated
on the set X of states, and a particular state x makes it true if its value on
x is equal to 1. In the sequel, we consider that clauses (resp. logical rules)
having the same truth table are equal.

The following remarks, although immediate or classical, should be able
to familiarize the reader to logical rules.

Remark 1. 1. To compute disjunctive logical rules from S, one can con-
sider brutally for each i ∈ {1, . . . , n} all the states x that lead to
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Si(x) = 1. Then, ν standing for the empty word, a correct logical
rule for gi is

C(gi) =
∨

x∈S−1
i (1)

c(x) ,

where, for x = (x1, . . . , xn) ∈ X, the conjunctive clause c(x) is defined

by c(x) =
∧

k∈{1,...,n}
wk gk and wk =

{
ν , if xk = 1
¬ , if xk = 0

.

2. A shortest logical rule for gi does not include any component that is not
a regulator of gi, and any logical rule for gi includes all its regulators.

3. For instance, in the particular case where a component gi has only
activators, it admits a logical rule of the form

C(gi) =
∨

j∈{1,...,s}

∧
k∈{1,...,rj}

gij,k ,

where the components gij,k are activators of gi.

3 Action of the symmetry group of the hypercube
on boolean finite dynamical systems

In order to give a structural classification of the boolean asynchronous STG
for a fixed value of n, we are going to consider these graphs embedded in
the n dimensional euclidian space Rn: the set X = {0, 1}n of their vertices
is naturally included in Rn, and is also the set of the vertices of the n
dimensional hypercube Hn = [0, 1]n.

Given S a boolean FDS on X, we locate the edges of the asynchronous
STG of S on the edges of Hn. More precisely, let (~ei)1≤i≤n be the usual
basis of Rn, given by ~ei = (0, . . . , 0, 1, 0, . . . , 0) with ”1” at the ith place.
We represent at each point x ∈ X on edges of Hn the non zero components

of
−−−→
xS(x) with respect to this basis (loops are not represented).
Let us remark that the synchronous STG of S may also be embedded

in Rn, on diagonals of Hn, by representing at each point x ∈ X the vector−−−→
xS(x) when it is non zero.

In this geometrical perspective, two asynchronous STG have the same
structure if they can be superimposed under the action of an isometry of
Hn = [0, 1]n. This point of view is not new and was first introduced by
L.Glass [6]. It has been taken up in recent works [22, 2].
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3.1 The symmetry group of the hypercube

The set of the isometries of Rn that fixHn (or, in an equivalent manner, that
fix X) is a well-known group called symmetry group of Hn [18]; let Γ(Hn) de-
note this group. From a purely algebraic point of view, Γ(Hn) is isomorphic
to the semidirect product of the group Z/2Zn and the symmetric group Sn of
permutations of a set with n elements [9]. The geometrical interpretation is
that these isometries are one-to-one transformations composed of a permu-
tation of the axis and of hyperplane symmetries exchanging parallel hyper-
faces of Hn. The effect of the permutation on a state x = (x1, . . . , xn) is the
corresponding permutation of its coordinates, whereas each hyperplane sym-
metry transforms x = (x1, . . . , xn) into xj = (x1, . . . , xj−1, xj , xj+1, . . . , xn)
for some fixed element j of {1, . . . , n}. Let us remark that it is classical to
call the elements f of Γ(Hn) ”symmetries”, even if f is not a symmetry in
the usual sense (that is even if f ◦ f(M) 6= M for some points M).

In the following, we are opting for a geometrical point of view, since
isometries of Hn will act naturally on various geometrical objects that we
will consider. To this end, let us recall that to any isometry f of the space Rn
is associated a linear transformation ~f preserving orthogonality, such that
the equality f(M + ~u) = f(M) + ~f(~u) holds for any point M and vector ~u
of the space. If f belongs to Γ(Hn), it is completely determined by ~f , due
to the fact that the center of Hn is a fixed point of f .

The previous description of Γ(Hn) shows that there exists a permutation
σ of {1, . . . , n} and (ε1, . . . , εn) ∈ {−1,+1}n such that ~f(~ei) = εσ(i)

−−→eσ(i), and
for x = (x1, . . . , xn) ∈ X, the equality f(x) = (xε1

σ−1(1)
, . . . , xεn

σ−1(n)
) holds.

3.2 Action on boolean FDS and STG

Given S : X → X a boolean FDS and f in the group Γ(Hn), we define a new
”conjugated” FDS, φf (S) = f ◦ S ◦ f−1, where, for simplicity of notation,
we continue to write f for the restriction of f to X. This defines an action
of the group Γ(Hn) on the set of all the boolean FDS on X (see [9] for more
details) and gives a way of classification of these FDS: two boolean FDS
are in the same class if there exists an element of Γ(Hn) sending one to
the other. In this way we obtain what we call isometric boolean FDS, and
isometric STG. Combinatorial tools related to group actions on finite sets
and configurations have already been used to study this classifying approach
[5, 6].

Once given S and f , it is natural to compare the synchronous and asyn-
chronous STG of S and φf (S). Let us recall that two directed graphs are
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Figure 1: Two isomorphic but not isometric STG

isomorphic if there exists a one-to-one correspondence between their sets of
nodes preserving adjacency (here in a directed meaning).

It is clear that the asynchronous graph Ga(φf (S)) of φf (S) is the image
of Ga(S) under f , from the fact that the nodes and the edges of Ga(S))
are located on the vertices and some edges of Hn. Therefore the isometric
STG Ga(φf (S)) and Ga(S)) are isomorphic, the isometry f carrying out the
isomorphism. Consequently, the isometric synchronous STG Gs(φf (S)) and
Gs(S)), easily geometrically constructed from the asynchronous ones, are
also isomorphic.

Figure 1 represents a very simple example in dimension 2 of isomorphic
but non isometric asynchronous graphs proposed in [21] (page 19).

Conversely, let us mention a current situation where isomorphic asyn-
chronous graphs are necessarily isometric.

Proposition 2. Let S1 and S2 be two boolean FDS such that the asyn-
chronous graph Ga(S1) involves all the edges of Hn. If Ga(S1) and Ga(S2)
are isomorphic, then they are isometric.

Proof. We consider n ≥ 2, the proposition being trivial for n = 1, and we
suppose the existence of an isomorphism from Ga(S1) to Ga(S2), i.e. of a
one-to-one correspondence φ : X → X associating nodes of Ga(S1) to nodes
of Ga(S2) and preserving directed adjacency. Then the hypothesis on S1 is
also true for S2. To get the desired conclusion, it is clear that we just have
to prove that φ coincides on X with some symmetry f of Hn.

- Then, let us remark that an elementary undirected cycle of length 4
on the edges of Hn is necessarily built on the 4 edges of a 2-dimensional
face of Hn. Thus φ associates to the 4 nodes of a 2-dimensional face of Hn
the 4 nodes of a 2-dimensional face of Hn; the same for any symmetry f of
Hn. This proves that if φ and f coincide on 3 nodes of a 2-dimensional face
of Hn, then they coincide on the fourth one, since a 2-dimensional face is
entirely determined by three of its nodes.
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- Let the ~ei be the vectors of the canonical basis of Rn, A = (0, . . . , 0),
A′ = φ(A) and Ai = A+ ~ei. By the hypothesis, there exists a permutation σ
of {1, . . . , n} and (ε1, . . . , εn) ∈ {−1,+1}n such that φ(Ai) = A′+ εσ(i)

−−→eσ(i),
for i = 1, . . . , n. It is easily seen that there exists a unique symmetry f of
Hn such that f(A) = A′ and ~f(~ei) = εσ(i)

−−→eσ(i). Hence φ and f coincide on
A and on the n points Ai, which are the n nodes of Hn with exactly one
coordinate equal to 1.

- For k ≥ 1 and a subset {i1, . . . , ik} of {1, . . . , n} with k elements, let
us denote by Ai1,...,ik the point A + ~ei1 + · · · + ~eik . Suppose that φ and f
coincide on the nodes of Hn with at most k coordinates equal to 1, and let
us consider a point Ai1,...,ik+1

. Then Ai1,...,ik−1
, Ai1,...,ik−1,ik , Ai1,...,ik−1,ik+1

and Ai1,...,ik+1
are the 4 nodes of a 2-dimensional face of Hn. The initial

remark proves that φ and f coincide on Ai1,...,ik+1
, and a finite iteration

thus completes the proves.

Remark 2. In terms of regulations, the hypothesis on Ga(S1) means the
absence of self-activation of the components.

3.3 Effect of a symmetry of the hypercube on regulatory
graphs and logical rules

From a boolean FDS, one can compute the RG and the logical rules. Now,
given two isometric boolean FDS, we want to understand how their relative
RG and logical rules look like.

Let us consider a boolean FDS S : X → X and an element f of the
group Γ(Hn). We aim to describe the effect of the action of f on RG(S),
including local graphs, paths and circuits, and the effect on logical rules.

As mentioned above, f is the composition of a permutation f1 of the
axis and a product f2 of hyperplane symmetries. In other words, f = f2 ◦f1
where

f1(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)) and ~f1(~ei) = −−→eσ(i),
f2(x1, . . . , xn) = (xε11 , . . . , x

εn
n ) and ~f2(~ei) = εi

−→ei ,
which leads to f(x) = (xε1

σ−1(1)
, . . . , xεn

σ−1(n)
) and ~f(~ei) = εσ(i)

−−→eσ(i).
Let us remark that the effect of f1 just makes a renumbering of the axis,

that will provide in the following a renumbering of the components gi.
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3.3.1 Effect on local and global regulatory graphs

Given a state x, we are going to see that each interaction of the local graph
RGx(S) will turn under the isometry into an interaction between the corre-
sponding renumbered components. The sign of this interaction is changed
according to the hyperplane symmetries on the components involved, in a
way that we precise below.

Proposition 3. In the previous notation, let y be a state and x = f−1(y).
The interactions of the local graph RGy(φf (S)) are obtained from the in-
teractions of the local graph RGx(S) in the following way: each interaction
from gi to gj of sign α in RGx(S) provides an interaction from gσ(i) to gσ(j)
of sign α εσ(i) εσ(j) in RGy(φf (S)).

Proof. There is an interaction from gi to gj of sign α in RGx(S) for each
couple (i, j) such that

S(xi) = S(x+ (−1)xi−→ei ) = S(x) + (−1)xiα−→ej +−→u (∗) ,

where −→u ⊥ −→ej .
Considering the fact that f(x) = y gives f(xi) = y + (−1)xiεσ(i)

−−→eσ(i),
and applying f to (*), we get

φf (S)(y + (−1)xiεσ(i)
−−→eσ(i)) = φf (S)(y) + (−1)xiα εσ(j)

−−→eσ(j) +−→v ,

where −→v ⊥ −−→eσ(j).
Thus there is an interaction from gσ(i) to gσ(j) of sign αεσ(i)εσ(j) in

RGy(φf (S)), and conversely considering f−1.

This gives the important following corollary.

Proposition 4. The regulatory graphs RG(S) and RG(φf (S)) are isomor-
phic directed graphs.

3.3.2 Effect on paths and circuits

The following proposition states that any path in the RG of S is transported
in the RG under the action of f .
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Proposition 5. Let gi1 , . . . , gir be a path of RG(S), and for each k ∈
{1, . . . , r − 1} a pair of states {x(k), x(k)

ik} where the interaction from gik
to gik+1

is expressed with sign αk. Under the action of f , this path provides
a path gσ(i1), . . . , gσ(ir) in RG(φf (S)), and for each k ∈ {1, . . . , r − 1} a

pair of states {y(k), y(k)
σ(ik)} where the interaction from gσ(ik) to gσ(ik+1) is

expressed with sign αk εσ(ik) εσ(ik+1).

Proof. This proposition is an immediate consequence of Proposition 3, con-
sidering the local graphs RGxk(S) and y(k) = f(x(k)).

The following corollary states that the action of a hypercube symmetry
does not change the signs of the circuits (see also [21], with more symbolic
arguments).

Corollary 1. Let gi1 , . . . , gir be a circuit of RG(S), and for each k ∈
{1, . . . , r} a pair of states {x(k), x(k)

ik} where the interaction from gik to
gik+1

is expressed with sign αk (with the notation ir+1 = i1). Let α denote∏r
k=1 αk. Under the action of f , the circuit gi1 , . . . , gir provides a circuit

gσ(i1), . . . , gσ(ir) in RG(φf (S)), and for each k ∈ {1, . . . , r} a pair of states

{y(k), y(k)
σ(ik)} where the interaction from gσ(ik) to gσ(ik+1) is expressed with

sign βk such that
∏r
k=1 βk = α.

Proof. From Proposition 5 we get βk = αkεσ(ik)εσ(ik+1), and thus
∏r
k=1 βk =∏r

k=1 αk (
∏r
k=1 εσ(ik))

2 = α.

3.3.3 Effect on logical rules

We are going to consider a component gi0 , and C(gi0) a logical rule for gi0
with respect to S. Let us recall that in this logical rule the components
are allowed to be in the restricted subset of the regulators of gi0 , which we
assume in the sequel. We deal with how to compute a logical rule Cf (gσ(i0))
for gσ(i0) with respect to φf (S).

With the convention ¬¬ = ν, where ν is the empty word, we have the
following proposition.

Proposition 6. Let gi0 be a component, and C(gi0) a logical rule for gi0
with respect to S in the following normal disjunctive form:

C(gi0) =
∨

j∈{1,...,s}

∧
k∈{1,...,rj}

wj,k gij,k ,

14



where the gij,k are regulators of gi0 and the wj,k are equal to the empty word
ν or to ¬ .

1. If εσ(i0) = +1,

Cf (gσ(i0)) =
∨

j∈{1,...,s}

∧
k∈{1,...rj}

wj,k λj,k gσ(ij,k) ,

where λj,k =

{
ν , if εσ(ij,k) = +1

¬ , if εσ(ij,k) = −1
, is a logical rule for gσ(i0) with

respect to φf (S).

2. If εσ(i0) = −1,

Cf (gσ(i0)) =
∧

j∈{1,...,s}

∨
k∈{1,...rj}

wj,k µj,k gσ(ij,k) ,

where µj,k =

{
¬ , if εσ(ij,k) = +1

ν , if εσ(ij,k) = −1
, is a logical rule for gσ(i0) with

respect to φf (S) in a conjunctive normal form.

Proof. Let the logical rule C(gi0) be expressed as

C(gi0) =
∨

j∈{1,...,s}

∧
k∈{1,...,rj}

wj,k gij,k .

In terms of subsets of X, this means that we have the following equality:

{x ∈ X ; S(x)i0 = 1} =
⋃
j≤s
{x ∈ X ; (xij,1 , . . . , xij,rj ) = (aj,1, . . . , aj,rj )} ,

where aj,k = 1 if wj,k = ν and aj,k = 0 if wj,k = ¬ .

Applying f to both members of these equalities, and considering the fact
that f(x1, . . . , xn) = (x

εσ(1)
σ(1) , . . . , x

εσ(n)
σ(n) ), we obtain:

{y ∈ X ; φf (S)(y)σ(i0) = 1εσ(i0)}

=
⋃
j≤s
{y ∈ X ; (yσ(ij,1), . . . , yσ(ij,rj )) = (a

εσ(ij,1)

j,1 , . . . , a
εσ(ij,rj )

j,rj
)} (∗).

15



1. Suppose that εσ(i0) = +1.

Then the equality (∗) can be reconverted right away in a logical rule
Cf (gσ(i0)) for gσ(i0):

Cf (gσ(i0)) =
∨

j∈{1,...,s}

∧
k∈{1,...rj}

Wj,k gσ(ij,k) ,

where Wj,k = ν if a
εσ(ij,k)

j,k = 1 and Wj,k = ¬ if a
εσ(ij,k)

j,k = 0.

In other words,

Wj,k = wj,k λj,k, where λj,k =

{
ν , if εσ(ij,k) = +1

¬ , if εσ(ij,k) = −1
.

2. Suppose that εσ(i0) = −1.

Like in the first case, the equality (∗) makes it possible to obtain a
logical rule Cf (gσ(i0)) for gσ(i0):

Cf (gσ(i0)) = ¬[
∨

j∈{1,...,s}

∧
k∈{1,...rj}

wj,k λj,k gσ(ij,k)] ,

where λj,k =

{
ν , if εσ(ij,k) = +1

¬ , if εσ(ij,k) = −1
.

Hence, it turns out that we obtain Cf (gσ(i0)) as the conjunction of
disjunctive clauses

Cf (gσ(i0)) =
∧

j∈{1,...,s}

∨
k∈{1,...rj}

¬wj,k λj,k gσ(ij,k) ,

that is

Cf (gσ(i0)) =
∧

j∈{1,...,s}

∨
k∈{1,...rj}

wj,k µj,k gσ(ij,k) ,

where µj,k =

{
¬ , if εσ(ij,k) = +1

ν , if εσ(ij,k) = −1
.
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Remark 3. Let us suppose that a logical formula for the negation of C(gi0)
is available in a disjunctive normal form

¬C(gi0) =
∨

j∈{1,...,s′}

∧
k∈{1,...,r′j}

w′j,k gi′j,k ,

where the gi′j,k are regulators of gi0 and the w′j,k are equal to the empty word

ν or to ¬ . In a similar way to the above proof, it can be shown that if
εσ(i0) = −1,

Cf (gσ(i0)) =
∨

j∈{1,...,s′}

∧
k∈{1,...r′j}

w′j,k µ
′
j,k gσ(ij,k) ,

where µ′j,k =

{
ν if εσ(i′j,k) = +1

¬ if εσ(i′j,k) = −1
,

is a logical rule for gσ(i0) with respect to φf (S) in a disjunctive normal
form.

Example 1. 1. Let us place in the case where f is the hyperplane sym-
metry transforming (x1, . . . , xn) into (x1, . . . , xj0−1, xj0 , xj0+1, . . . , xn).
That is σ(i) = i for all i ∈ {1, . . . , n}, εj0 = −1 and εi = +1 if i 6= j0.

Then, for a component gi0 with logical formula

C(gi0) =
∨

j∈{1,...,s}

∧
k∈{1,...,rj}

wj,k gij,k ,

if i0 6= j0, the logical formula Cf (gi0) is obtained from C(gi0) switch-
ing wj,k into ¬ wj,k when ij,k = j0. In particular C(gi0) remains
unchanged if gj0 is not a regulator of gi0.

Moreover, if i0 = j0, the logical formula Cf (gj0) is obtained from
C(gj0) switching wj,k into ¬ wj,k when ij,k 6= j0 and exchanging

∧
and

∨
. In particular, Cf (gj0) is the negation of C(gj0) if gj0 is not

self-regulated.

2. Let us now consider the case where f is the symmetry with respect
to the center of Hn. That means that for all i ∈ {1, . . . , n} we have
~f(~ei) = −~ei, or equivalently σ(i) = i and εi = −1.

Then, for each component gi0, given a logical formula

C(gi0) =
∨

j∈{1,...,s}

∧
k∈{1,...,rj}

wj,k gij,k ,
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we have
Cf (gi0) =

∧
j∈{1,...,s}

∨
k∈{1,...,rj}

wj,k gij,k .

For example, the action of f exchanges chorded circuits ”and” and
”or” from one to the other (see 4.2 for more details).

3.4 A useful working tool

We aim at classify the set of all the boolean FDS on the basis of the symme-
tries of the hypercube, defining classes gathering isometric FDS. We have
emphasized the common features of the conjugates φf (S) of a given boolean
FDS S under these symmetries, through regulatory graphs and logical rules
; we can then restrict the dynamical analysis of all the boolean FDS to one
representative per class. The following property is a key ingredient to guide
the choice of an appropriate representative.

In the proof, we will consider directed graphs T = (V,E) such that the
undirected graph T̃ = (V, {{a, b} ; (a, b) ∈ E and a 6= b}) is a tree, that is
an undirected acyclic connected graph. We will say that T is tree-supported
if T̃ is a tree and if T does not include both an edge (a, b) and its reverse
(b, a) (in particular nor any loop (a, a)), and we will call leaves of T the
leaves of T̃ .

Proposition 7. Let S a boolean FDS, and RG(S) its corresponding reg-
ulatory graph. Consider a subgraph T = (V,E) of RG(S) which is tree-
supported. Given any family of signs (αe)e∈E and gi ∈ V , there exists a sym-
metry f of the hypercube such that every interaction e in E can be expressed
in RG(φf (S)) with sign αe and such that i /∈ {k ∈ {1, . . . , n} ; ~f(~ek) = −~ek}.

Proof. We use an induction argument on #V . If T has zero or one vertex,
E is empty and we can take f as the identity function. We suppose that the
result holds for any tree-supported subgraph T of RG(S) with m vertices,
m > 0. If T has m+ 1 vertices, it has at least two vertices and thus at least
two leaves. Let gj be one of them which is not gi; the vertex gj is involved
in exactly one edge e′ of T . Let (αe)e∈E be a family of signs. The tree-
supported subgraph T ′ = (V \ {gj}, E \ {e′}) of RG(S) has m vertices, thus
there exists f ∈ Γ(Hn), product of hyperplane symmetries, such that every
interaction e in E\{e′} can be expressed in RG(φf (S)) with the sign αe, and

i, j /∈ {k ∈ {1, . . . , n} ; ~f(~ek) = −~ek}. If the interaction e′ can be expressed
in RG(φf (S)) with the sign αe′ , the symmetry f fulfills our expectations. If
not, it means that e′ is expressed in RG(φf (S)) with the sign −αe′ . In this
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Figure 2: Proposition 7 can be applied on the colored subgraph.

case, the (commutative) composition f ′ of f and the hyperplane symmetry
x 7→ xj works, according to Proposition 3.

4 Application to regulatory motifs analysis

As mentioned in the introduction, boolean FDS are used for the modeling
of gene regulatory networks. The analysis of the model is difficult, mainly
because of combinatorial explosions to generate the STG. Motifs analysis is a
way to capture local properties of the dynamics without generating the STG.
Indeed, it is well-known that some specific motifs, i.e. specific topological
components embedded in the RG, play a major role allowing the presence
and/or the maintain of complex dynamical properties (as multistationnarity,
or sustained oscillations). Several studies of well-known motifs have been
undertaken in the context of boolean logical modeling: isolated circuits [12],
chorded circuits [11], flower-graphs, and more generally hub-graphs [3].

As an illustration, it is possible to study boolean dynamics of well-known
motifs - isolated circuits, chorded circuits, flower-graphs, and more generally
hub-graphs - through the choice of favorite representatives.

Let us recall that for a ∈ {0, 1}, the notation aα means a when α = 1
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Figure 3: Isolated circuit (up, left), chorded circuit (up, right), flower-graph
(down, left), hub-graph (down, right).

and 1− a when α = −1.

4.1 Isolated circuits

We consider boolean FDS whose associated RG are isolated circuits on n
components g1, ... , gn, with n ≥ 2 (see Figure 3).

In this particular case, the signs of the interactions do not depend on
the states where they are expressed (cf. Proposition 1). If αk denotes the
sign of the interaction from gk to gk+1, for k = 1, . . . , n (where gn+1 = g1),
we will denote by Cn(α1, . . . , αn) the isolated circuit associated to the FDS

(x1, . . . , xn) 7→ (xαnn , xα1
1 , . . . , x

αn−1

n−1 ) .

In other words, C(gk+1) = wk gk, where wk = ν if αk = +1, and wk = ¬
if αk = −1, is a logical rule for the component gk+1.
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Proposition 8. Given an integer n ≥ 1, there exists exactly two classes
of isometric boolean FDS whose RG are respectively positive and negative
isolated circuits of length n.

Proof. First of all, the symmetries of Γ(Hn) transform isolated circuits of
length n into isolated circuits of length n (cf. Proposition 4). Let us consider
the path T from g1 towards gn obtained from Cn(α1, . . . , αn) by removing
the interaction of gn on g1 (see Figure 4). Following Proposition 7, T is
tree-supported, and there exists a symmetry f ∈ Γ(Hn) which transforms
Cn(α1, . . . , αn) into Cn(+1, . . . ,+1,

∏n
k=1 αk), the action of f preserving

signs of circuits (cf. Corollary 1). Hence we have two favorite representatives
for the isolated circuits of length n, the boolean dynamics of Cn(+1, . . . ,+1)
and the one of Cn(+1, . . . ,+1,−1), which are not isometric, due to the in-
variance of the sign in a class; thus they represent exactly two classes.

Let us recall that the attractors of the synchronous and the asynchronous
dynamics of isolated circuits are well-known; in particular the asynchronous
dynamics involves two stable states in the case of positive circuits, and one
cyclic attractor in the case of negative circuits [11].

4.2 Chorded circuits

Remark 4. In this paragraph, the RG will involve a component with exactly
two regulators. This brings us to precise in a preliminary examination the
boolean functions B : {0, 1}2 → {0, 1} whose truth tables are the ones of
the logical rules of components with two regulators. Among the 16 functions
B : {0, 1}2 → {0, 1}, (a, b) 7→ B(a, b), two are constant and four depend on
a single argument a or b. Hence there are 10 possible values for B, given
by:

- a∧ b, a∧ ¬b, ¬a∧ b, ¬a∧ ¬b,
- a∨ b, a∨ ¬b, ¬a∨ b, ¬a∨ ¬b,
- a⊕ b = ¬a⊕ ¬b, a⊕ ¬b = ¬a⊕ b
(where a⊕ b = (a∧ ¬b)∨ (¬a∧ b)).

In the following, the presence or absence of negations will be carried by

parameters αk and α
(s)
k , and therefore we will fix B in {∧,∨,⊕}.

We consider now boolean FDS whose RG are chorded circuits on n com-
ponents g1, ... , gn, the component g1 being the target of a shortcut (see
Figure 3).
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More precisely, let us denote by CCBn,q(α1, . . . , αn;α
(s)
n−q) the chorded cir-

cuit associated to the FDS

(x1, . . . , xn−q, . . . , xn) 7→ (B(xαnn , x
α
(s)
n−q
n−q ), xα1

1 , . . . , x
αn−1

n−1 ) ,

with q ≥ 1 and n ≥ q + 1, αi ∈ {±1} for i ∈ {1, . . . n}, α(s)
n−q ∈ {±1},

and B ∈ {and, or, xor} = {∧,∨,⊕} (following Remark 4).

In terms of logical rules:
- C(gk+1) = wk gk, where wk = ν if αk = +1, and wk = ¬ if αk = −1, is a
logical rule for the component gk+1, for k ∈ {1, . . . , n− 1},
- C(g1) = B(wn gn, w

(s)
n−q gn−q), where wn = ν if αn = +1, wn = ¬ if

αn = −1, w
(s)
n−q = ν if α

(s)
n−q = +1, and wn−q = ¬ if α

(s)
n−q = −1, is a logical

rule for the component g1.

For k 6= 1, the sign of the interaction towards gk does not depend on the
states where it is expressed, due to the fact that gk has only one regulator,
and this sign is equal to αk−1 (cf. Proposition 1). Moreover, it is easy to
check that if B ∈ {and, or} the signs of the interaction from gn to g1 and

from gn−q to g1 are respectively equal to αn and α
(s)
n−q, and that, at the

contrary, these signs depend on the local graphs if B = xor.

The chorded circuit CCBn,q(α1, . . . , αn;α
(s)
n−q) is built of two embedded

circuits, Cn(α1, . . . , αn) and Cn−q(α1, . . . , αn−q−1, α
(s)
n−q), in the notation of

4.1. Let ς =
∏n
k=1 αk and ς(s) =

∏
k<n−q αk α

(s)
n−q be the signs of these two

isolated circuits; they play a significant role in the case B ∈ {and, or}.

Proposition 9. Given integers q ≥ 1 and n ≥ q + 1, there exists exactly
five classes of isometric boolean FDS whose RG are the chorded circuits

CCBn,q(α1, . . . , αn;α
(s)
n−q), with B ∈ {and, or, xor}:

• four classes gather the boolean FDS related to the chorded circuits

CCBn,q(α1, . . . , αn;α
(s)
n−q) with B ∈ {and, or}, according to the value

of (ς, ς(s)) in {±1}2;

• one class gathers the boolean FDS related to the chorded circuits

CCxorn,q (α1, . . . , αn;α
(s)
n−q).

Proof. The Proposition 4 shows that the symmetries of Γ(Hn) transform
chorded circuits into chorded circuits with same values of n and q.

Let us consider CCBn,q(α1, . . . , αn;α
(s)
n−q). The path T from g1 towards

gn obtained by removing the two interactions on g1 is tree-supported (see
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Figure 4). Following Proposition 7 and Remark 4, there exists a symmetry

f ∈ Γ(Hn) changing CCBn,q(α1, . . . , αn;α
(s)
n−q) into CCB′n,q(+1, . . . ,+1,±1;±1),

with B′ ∈ {and, or, xor}.

• If B ∈ {and, or}, the fact that the signs of the two embedded circuits
are determined and the Proposition 3 show that B′ ∈ {and, or}.
Given this and the invariance of (ς, ς(s)) under the action of f (cf.

Corollary 1), the symmetry f transforms CCBn,q(α1, . . . , αn;α
(s)
n−q) into

CCB′n,q(+1, . . . ,+1, ς; ς(s)). Moreover, the Remark 3 shows that

CCandn,q (+1, . . . ,+1, ς; ς(s)) and CCorn,q(+1, . . . ,+1, ς; ς(s)) are isometric.

Hence, for example, CCandn,q (+1, . . . ,+1, ς; ς(s)) gives, according to the

four possible values of (ς, ς(s)), four favorite representatives ”and”.
They are not isometric because of the invariance of (ς, ς(s)) in a class,
and thus represent exactly four classes.

• If B = xor, the previous study shows that the resultant classes will be
disjoined from the case B ∈ {and, or}, and therefore B′ = B. More-
over the equalities a⊕ b = ¬a⊕ ¬b and a⊕ ¬b = ¬a⊕ b show that
CCxorn,q (+1, . . . ,+1,+1; +1) and CCxorn,q (+1, . . . ,+1,−1;−1) are related
to the same FDS, and it is the same for CCxorn,q (+1, . . . ,+1,−1; +1)
and CCxorn,q (+1, . . . ,+1,+1;−1). Finally, the Remark 3 shows that
CCxorn,q (+1, . . . ,+1,+1; +1) and CCxorn,q (+1, . . . ,+1,+1;−1) are isomet-
ric, since a⊕ b = (a∧¬b)∨ (¬a∧ b), and a⊕¬b = (a∨¬b)∧ (¬a∨ b).
Thus CCxorn,q (+1, . . . ,+1,+1; +1) represent the single class.

A study of the synchronous and the asynchronous dynamics of chorded
circuits can be found in [13, 11].

If B ∈ {and, or}, a chorded circuit is said coherent if ς = ς(s), and
incoherent otherwise. It is shown for example that in the asynchronous
dynamics a coherent chorded circuit and its corresponding long circuit have
the same number and type of attractors, and that an incoherent chorded
circuit has a unique attractor, which is a stable state. If B = xor, the
asynchronous dynamics involves a unique attractor, which is a stable state.

4.3 Flower-graphs

In this section, we study boolean FDS whose RG are specific motives, called
flower-graphs. A flower-graph with n petals is a directed graph (V,E) such
that V has n+ 1 elements, and there exists a particular node g0 ∈ V called
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Figure 4: Proposition 7 is applied on the colored subgraphs.
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hub for which E = {(g0, g) ∪ (g, g0) ; g ∈ V \ {g0}} (see Figure 3). We
suppose moreover that n ≥ 2 (otherwise (V,E) is a circuit).

Let S be a boolean FDS whose associated regulatory graph RG(S) is
a flower-graph, with hub g0 and V = {g0, . . . , gn} (see Figure 3). The
state space is {0, 1}n+1 = {(x0, . . . , xn) ; ∀i ∈ {0, . . . , n}, xi ∈ {0, 1} }. The
subgraph T = (V,ET ) of RG(S) with ET = {(g0, g) ; g ∈ V \ {g0}} is
tree-supported (see Figure 4). From Proposition 1 and Proposition 7, there
exists a symmetry of the hypercube f such that RG(φf (S)) is a flower-graph
whose all regulations from the hub g0 are activations.

4.3.1 Flower-graphs: study of φf (S)

From now, we consider the FDS φf (S) and its associated flower-graph.

LetB(x1, . . . , xn) denote the logical rule governing g0. We have φf (S)(x) =
(B(x1, . . . , xn), x0, . . . , x0)), hence φf (S)2(x) = (B(x0, . . . , x0), a, . . . , a) with
a = B(x1, . . . , xn), and all the other iterates of x will be of this form. This
leads us to consider four cases, depending on the values of B(0, . . . , 0) and
B(1, . . . , 1). For the sake of convenience, we introduce the boolean function
B̃ : {0, 1} → {0, 1} defined by B̃(0) = B(0, . . . , 0) and B̃(1) = B(1, . . . , 1).

The following proposition describes asymptotical properties of the syn-
chronous dynamics of φf (S).

Proposition 10. The attractors of the synchronous STG of φf (S) are the
following:

1. If B̃(0) = 0 and B̃(1) = 1, then there are two stable states (0, . . . , 0)
and (1, . . . , 1) and one cyclic attractor constituted of the states (0, 1, . . . , 1)
and (1, 0, . . . , 0).

2. If B̃(0) = B̃(1) = 0, then there is a unique stable state (0, . . . , 0) and
no cyclic attractor.

3. If B̃(0) = B̃(1) = 1, then there is a unique stable state (1, . . . , 1) and
no cyclic attractor.

4. If B̃(0) = 1 and B̃(1) = 0, then there is a unique cyclic attractor con-
stituted by the states (0, . . . , 0), (1, . . . , 1), (1, 0, . . . , 0) and (0, 1, . . . , 1).

Proof. This is an easy consequence of the expression of the iterates of φf (S).
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Remark 5. Case 2 and 3 are symmetrical, by switching 0 and 1. In other
words, the action of the symmetry with respect to the center of Hn switches
the second and the third cases.

We now study the asynchronous dynamics of flower-graphs, afresh using
the conjugated FDS φf (S). Lemma 1 will emphasize the major role of the
hub on the dynamics.

Lemma 1. Let x be a state and

Zx = {xJ ; J ⊂ {i ∈ {1, . . . , n} ; xi 6= x0}} .

We have x y for any y ∈ Zx. In particular, x (x0, . . . , x0).

Proof. Consider a state x and J = {i1, . . . , ip} a subset of {i ∈ {1, . . . , n} ; xi 6=
x0} of cardinal p.

Let x(0), . . . , x(p) be the finite sequence of states defined by x(0) = x
and, for k ∈ {1, . . . , p}, x(k) = x{i1...ik} .

By Proposition 1, we know that the interaction from g0 to gik belongs
to the local graph RGx(k)(φf (S)) for any k ∈ {0, . . . , p − 1}. Thus x(k)  
x(k + 1), and finally x(0) xJ = x(p).

The following proposition describes asymptotical properties of the asyn-
chronous dynamics of φf (S), according to the cases described in Proposition
10.

Proposition 11. The attractors of the asynchronous STG of φf (S) are the
following:

1. If B̃(0) = 0 and B̃(1) = 1, then there are two stable states (0, . . . , 0)
and (1, . . . , 1) and no cyclic attractor.

2. If B̃(0) = B̃(1) = 0, then there is a unique stable state (0, . . . , 0) and
no cyclic attractor.

3. If B̃(0) = B̃(1) = 1, then there is a unique stable state (1, . . . , 1) and
no cyclic attractor.

4. If B̃(0) = 1 and B̃(1) = 0, then there is a unique attractor, which is
cyclic and involves all the states.

Proof. We recall that the stable states are the same in the synchronous and
asynchronous dynamics.
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1. If B̃(0) = 0 and B̃(1) = 1, the stable states are (0, . . . , 0) and (1, . . . , 1).
The Lemma 1 shows that for any state x, we have x  (x0, . . . , x0),
which is a stable state, and this implies that no state is in a cyclic
attractor.

2. If B̃(0) = B̃(1) = 0, then (0, . . . , 0) is the unique stable state. By
Lemma 1, for any state x such that x0 = 0, we have x  (0, . . . , 0).
By the same lemma and the condition on B̃, if x0 = 1, we have
x  (1, . . . , 1)  (0, 1, . . . , 1)  (0, . . . , 0), and no state is in a cyclic
attractor.

3. The case B̃(0) = B̃(1) = 1 is the same as the previous one, switching
0 and 1.

4. If B̃(0) = 1 and B̃(1) = 0, let x be a state. By Lemma 1 and the
condition on B̃, if x0 = 0 we have x  (0, . . . , 0)  (1, 0, . . . , 0)  
(1, . . . , 1) (0, 1, . . . , 1) x ; if x0 = 1 we have the same switching 0
and 1. Therefore the lonely attractor is cyclic, involving all the states.

Example 2. We consider particular cases, in which all the signs of the
interactions of RG(S), and thus of RG(φf (S)), are determined. Let us recall
that n ≥ 2.

1. If all the petals are positive circuits, that is all the interactions of
RG(φf (S)) are activations, then B̃(0) = 0 and B̃(1) = 1 (and thus two
stable states and no cyclic attractor in the asynchronous dynamics).

2. If all the petals are negative circuits, that is all the interactions of
RG(φf (S)) towards g0 are inhibitions, then B̃(0) = 1 and B̃(1) =
0 (and thus a unique cyclic attractor involving all the states in the
asynchronous dynamics).

3. If one petal is positive and the others negative, that is for example
g1 activates g0 and g2, . . . , gn inhibit g0 in RG(φf (S)), we have the
following alternatives:

- if g0 admits a logical rule including the conjunctive clause g1, then
B̃(1) = 1; otherwise B̃(1) = 0;

- if g0 admits a logical rule with at least one conjunctive clause in-
cluding only radicals of {¬g2, . . . ,¬gn}, then B̃(0) = 1; otherwise
B̃(0) = 0.
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Let us then remark that B̃(1) = 1 implies B̃(0) = 1, leaving the three
effective possible cases B̃(0) = B̃(1) = 1, B̃(0) = B̃(1) = 0, B̃(0) = 1
and B̃(1) = 0:

• the case B̃(0) = B̃(1) = 1 (and thus one stable state and no cyclic
attractor in the asynchronous dynamics) is the case where g1 does not
need to cooperate with other regulators to regulate the hub and where
g2, . . . , gn do not need to cooperate with g1 to regulate the hub;

• the case B̃(0) = B̃(1) = 0 (and thus one stable state and no cyclic
attractor in the asynchronous dynamics) is the case where g1 and com-
ponents among g2, . . . , gn need always to cooperate to regulate the hub;

• the case B̃(0) = 1 and B̃(1) = 0 (and thus one cyclic attractor
involving all the states in the asynchronous dynamics) is the case where
g1 needs to cooperate with other regulators to regulate the hub and
where some components among g2, . . . , gn do not need to cooperate
with g1 to regulate the hub.

4. If one petal is negative and the others positive, that is for example
g1 inhibits g0 and g2, . . . , gn activ g0 in RG(φf (S)), we have the two
following alternatives:

- if g0 admits a logical rule including the conjunctive clause ¬g1, then
B̃(0) = 1; otherwise B̃(0) = 0;

- if g0 admits a logical rule with at least one conjunctive clause includ-
ing only radicals of {g2, . . . , gn}, then B̃(1) = 1; otherwise B̃(1) = 0.

Let us then remark that B̃(0) = 1 implies B̃(1) = 1, leaving the three
effective possible cases B̃(0) = B̃(1) = 1, B̃(0) = B̃(1) = 0, B̃(0) = 0
and B̃(1) = 1:

• the case B̃(0) = B̃(1) = 1 (and thus one stable state and no cyclic
attractor in the asynchronous dynamics) is the case where g1 does not
need to cooperate with other regulators to regulate the hub and where
g2, . . . , gn do not need to cooperate with g1 to regulate the hub;

• the case B̃(0) = B̃(1) = 0 (and thus one stable state and no cyclic
attractor in the asynchronous dynamics) is the case where g1 and com-
ponents among g2, . . . , gn need always to cooperate to regulate the hub;

• the case B̃(0) = 0 and B̃(1) = 1 (and thus two stable states and no
cyclic attractor in the asynchronous dynamics) is the case where g1
needs to cooperate with other regulators to regulate the hub and where
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some components among g2, . . . , gn do not need to cooperate with g1 to
regulate the hub.

4.3.2 Flower-graphs: general case

We have the following theorems as immediate corollary of the study of φf (S).

Theorem 1. Let S be a FDS whose associated regulatory graph RG(S) is a
flower-graph. Then S has zero, one or two stable state(s), and the attractors
of the synchronous dynamics are the following:

1. If S has two stable states, then the attractors are these states and one
cyclic attractor including two states.

2. If S has one stable state, it is the unique attractor.

3. If S has no stable state, then there is a unique cyclic attractor including
four states.

Theorem 2. Let S be a FDS whose associated regulatory graph RG(S) is a
flower-graph.

1. If S has one or two stable state(s), then they are the lonely attractors
of the asynchronous dynamics.

2. If S has no stable state, then the lonely attractor of the asynchronous
dynamics is cyclic and involves all the states.

Moreover the following proposition derived from Example 2 precises a
result of [3].

Proposition 12. Let S be a FDS whose associated regulatory graph RG(S)
is a flower-graph whose signs of interactions are determined.

1. If all the petals are positive circuits, then S has two stable states which
are the lonely attractors of the asynchronous dynamics.

2. If all the petals are negative circuits, then the lonely attractor of the
asynchronous dynamics is cyclic and involves all the states.

3. If one petal is positive and the others negative, then either S has one
stable state which is the lonely attractor of the asynchronous dynamics,
or the lonely attractor is cyclic and involves all the states.
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4. If one petal is negative and the others positive, then S has one or
two stable state(s), that are the lonely attractors of the asynchronous
dynamics.

Remark 6. Example 2 allows to precise Items 3 and 4:
- In Item 3, if the positive petal is related to the component g1, then one

has a cyclic attractor if and only if the hub admits a logical rule without
the conjunctive clauses g1 and ¬g1, and at least one conjunctive clause with
neither the radical g1 nor ¬g1. In other words, one has a cyclic attractor
if and only if g1 needs to cooperate with other regulators to regulate the hub
and where some components among g2, . . . , gn do not need to cooperate with
g1 to regulate the hub.

- In Item 4, if the negative petal is related to a component g1, then one
has two stable states if and only if the hub admits a logical rule without
the conjunctive clauses g1 and ¬g1, and at least one conjunctive clause with
neither the radical g1 nor ¬g1. In other words, one has two stable states if
and only if g1 needs to cooperate with other regulators to regulate the hub
and where some components among g2, . . . , gn do not need to cooperate with
g1 to regulate the hub.

Remark 7. In the case of the flower-graphs, it is not simple to enumerate
the classes of isometric FDS; indeed the previous study focuses on four val-
ues taken by B, letting a lot of degrees of freedom for other values. We can
assert that the classes of FDS whose associated RG are flower-graphs spread
into three families of classes: classes of FDS with zero stable state, with one
stable state, with two stable states. Moreover we have seen that each class
contains elements on the form (x0, . . . xn) 7→ (B(x1, . . . , xn), x0, . . . , x0), and
therefore the number of classes is less than the number of functions B de-
pending actually on each coordinate x1, ... , xn.

Example 3. As an illustration of the above, we detail the case n = 2.
Each class contains elements on the form SB : (x0, x1, x2) 7→ (B(x1, x2), x0, x0),

where B(x1, x2) is given by one of the 10 possibilities B(x1, x2) = x1 ∧ x2,
x1 ∧ ¬x2, ¬x1 ∧ x2, ¬x1 ∧ ¬x2, x1 ∨ x2, x1 ∨ ¬x2, ¬x1 ∨ x2, ¬x1 ∨ ¬x2,
x1⊕ x2, x1⊕ ¬x2 (see Remark 4).

Given B and an isometry f of the cube, it is easy to verificate that
φf (S) is on the form SB′(x0, x1, x2) = (B′(x1, x2), x0, x0) if and only if
f(x0, x1, x2) = (x0, x1, x2) or (x0, x1, x2) or (x0, x2, x1) or (x0, x2, x1).

In other words, SB and SB′ are isometric if and only B′(x1, x2) =
B(x1, x2), or ¬B(¬x1,¬x2), or B(x2, x1), or ¬B(¬x2,¬x1).
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Hence, there exists four classes of isometric boolean FDS whose RG are
flower-graphs with two petals:

- a class containing SB for B(x1, x2) = x1∧x2 and B(x1, x2) = x1∨x2,
- a class containing SB for B(x1, x2) = x1∧¬x2, B(x1, x2) = ¬x1∧ x2,
B(x1, x2) = x1 ∨ ¬x2 and B(x1, x2) = ¬x1 ∨ x2,
- a class containing SB for B(x1, x2) = ¬x1 ∧ ¬x2 and B(x1, x2) =
¬x1 ∨ ¬x2,
- a class containing SB for B(x1, x2) = x1⊕x2 and B(x1, x2) = x1⊕¬x2.

4.4 Extensions to hub-graphs

We now study boolean FDS whose RG are hub-graphs, that are directed
graphs (V,E) such that there exists a particular node g0 ∈ V called hub
satisfying the following properties: the hub g0 is the only vertex possibly
submitted to more than one regulations, (g0, g0) /∈ E, and for any vertex g,
one has g0  g in the graph (see Figure 3).

Remark that isolated circuits, chorded circuits without loops and flower-
graphs are hub-graphs.

Let S be a boolean FDS whose associated regulatory graph RG(S) is a
hub-graph, with hub g0 and V = {g0, . . . , gn}. The state space is {0, 1}n+1 =
{(x0, . . . , xn) ; ∀i ∈ {0, . . . , n}, xi ∈ {0, 1} }.

Remark 8. The definition of a hub-graph implies that no component is
self-regulated in RG(S): it is provided for the hub in the definition, and if
g 6= g0, a self-regulation on g would make it regulated by itself and by another
component in a path from g0 to g.

Lemma 2. The subgraph T = (V,ET ) of RG(S) with ET = E\{(g, g0) ∈ E}
is tree-supported.

Proof. First of all, the undirected graph T̃ = (V, {{a, b} ; (a, b) ∈ ET and a 6=
b}) is connected, since for any component g 6= g0, we have g0  g in RG(S).
In addition, if there exists a cycle in T̃ , the hub is not a vertex of this cycle
by definition of T . Moreover this cycle corresponds to a circuit in T , since
otherwise one component of the cycle, different of the hub, would have at
least two regulators, vertices of the cycle; the existence of a cycle in T̃ is
thus impossible and T̃ is connected and acyclic: T̃ is a tree.

In a similar way, T does not include both an edge (a, b) and its reverse
(b, a) (same argument as Remark 8). In conclusion, T is tree-supported.
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Accordingly, from Proposition 1 and Proposition 7, there exists a sym-
metry of the hypercube f such that RG(φf (S)) is a hub-graph whose all
regulations which are not towards the hub g0 are activations (see Figure 4).

4.4.1 Hub-graphs: study of φf (S)

In the following, we denote by Tf the image in RG(φf (S)) of the subgraph
T of RG(S).

The set of vertices of RG(S) (components) can be partitioned accord-
ing to the graph distance to the hub in Tf , and we order the components
according to this distance. For the sake of convenience, we renumber the
components

g0; g1,1, . . . , g1,r1 ; . . . ; gd,1, . . . , gd,rd ,

where d is the maximal distance to the hub in Tf (hence, the distance of
g1,1, . . . , g1,r1 to g0 is equal to 1, and so on),

and the coordinates of a state

x = (x0; x1,1, . . . , x1,r1 ; . . . ; xd,1, . . . , xd,rd) .

Then there exists a boolean function B : {0, 1}n−1 → {0, 1} such that

φf (S)(x) = (B(x1,1, . . . , x1,r1 ; . . . ;xd,1, . . . , xd,rd);x0, . . . , x0;x1,1, . . . , x1,r1 ; . . . ;xd−1,1, . . . , xd−1,rd−1
) .

due to the fact that there are only activations on Tf . Of course, the function
B depends effectively only on the xj related to regulators of g0.

The result is that for k ≥ d+ 1 the iterates φf (S)k(x) of a state x are of
the form

φf (S)k(x) = (a0; a1, . . . , a1; . . . ; ad, . . . , ad) ,

and the boolean function B̃ : {0, 1}d → {0, 1} defined by B̃(a1, . . . , ad) =
B(a1, . . . , a1; . . . ; ad, . . . , ad) gives

φf (S)k+1(x) = (B̃(a1, . . . , ad); a0, . . . , a0; . . . ; ad−1, . . . , ad−1) .

This allows to determine the stable states of φf (S).

Proposition 13. The stable states of φf (S) are the following:

1. If B̃(0, . . . , 0) = 0 and B̃(1, . . . , 1) = 1, then there are two stable states
(0, . . . , 0) and (1, . . . , 1).
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2. If B̃(0, . . . , 0) = B̃(1, . . . , 1) = 0, then there is a unique stable state
(0, . . . , 0).

3. If B̃(0, . . . , 0) = B̃(1, . . . , 1) = 1, then there is a unique stable state
(1, . . . , 1).

4. If B̃(0, . . . , 0) = 1 and B̃(1, . . . , 1) = 0, then there is no stable state.

Proof. This is an immediate consequence of the expression of the iterates of
φf (S).

The following lemma generalizes a part of Lemma 1 on the asynchronous
dynamics of flower-graphs to hub-graphs.

Lemma 3. Let x be a state. In Ga(φf (S)), one has x (x0, . . . , x0).

Proof. Consider a state x = (x0; x1,1, . . . , x1,r1 ; . . . ; xd,1, . . . , xd,rd) =
(x0, . . . , xn). All regulations which are not towards the hub g0 being ac-
tivations, the ordering of the coordinates of x shows that we have x  
(x0, x0, x2, . . . , xn) (x0, x0, x0, x3, . . . , xn), and so on until x (x0, . . . , x0).

It is now easy to describe the asymptotic asynchronous dynamics of
φf (S).

Proposition 14. The attractors of the asynchronous STG of φf (S) are the
following:

1. If B̃(0, . . . , 0) = 0 and B̃(1, . . . , 1) = 1, then there are two stable states
(0, . . . , 0) and (1, . . . , 1) and no cyclic attractor.

2. If B̃(0, . . . , 0) = B̃(1, . . . , 1) = 0, then there is a unique stable state
(0, . . . , 0) and no cyclic attractor.

3. If B̃(0, . . . , 0) = B̃(1, . . . , 1) = 1, then there is a unique stable state
(1, . . . , 1) and no cyclic attractor.

4. If B̃(0, . . . , 0) = 1 and B̃(1, . . . , 1) = 0, then there is a unique cyclic
attractor and no stable state.

Proof. The proofs of the cases 1, 2 and 3 are exactely the same as in Propo-
sition 11.

If B̃(0, . . . , 0) = 1 and B̃(1, . . . , 1) = 0, let x be a state. By Lemma 3
and the condition on B̃, if x0 = 0 we have x (0, . . . , 0) (1, 0, . . . , 0) 
(1, . . . , 1); if x0 = 1 we have the same switching 0 and 1. Therefore the
lonely attractor is cyclic.
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Example 4. Extending Example 2, we consider particular cases in which all
the signs of the circuits of RG(S), and thus of RG(φf (S)), are determined.

1. If all the circuits are positive, that is all the interactions of RG(φf (S))
towards g0 are activations, then B̃(0, . . . , 0) = 0 and B̃(1, . . . , 1) = 1
(and thus two stable states and no cyclic attractor in the asynchronous
dynamics).

2. If all the circuits are negative circuits, that is all the interactions
of RG(φf (S)) towards g0 are inhibitions, then B̃(0, . . . , 0) = 1 and
B̃(1, . . . , 1) = 0 (and thus a unique cyclic attractor and no stable state
in the asynchronous dynamics).

3. If there is at least two circuits, one positive and the others negative,
that is some component g activs g0 and the other regulators of g0 are
inhibitors in RG(φf (S)), we have the two following alternatives:

- if g0 admits a logical rule including the conjunctive clause g, then
B̃(1, . . . , 1) = 1; otherwise B̃(1, . . . , 1) = 0;

- if g0 admits a logical rule with at least one conjunctive clause includ-
ing only regulators 6= g, then B̃(0, . . . , 0) = 1; otherwise B̃(0, . . . , 0) =
0.

Let us then remark that B̃(1, . . . , 1) = 1 implies B̃(0, . . . , 0) = 1, leav-
ing the three effective possible cases B̃(0, . . . , 0) = B̃(1, . . . , 1) = 1,
B̃(0, . . . , 0) = B̃(1, . . . , 1) = 0, B̃(0, . . . , 0) = 1 and B̃(1, . . . , 1) = 0:

• the case B̃(0, . . . , 0) = B̃(1, . . . , 1) = 1 (and thus one stable state and
no cyclic attractor in the asynchronous dynamics) is the case where g
does not need to cooperate with other regulators to regulate the hub and
where the other regulators do not need to cooperate with g to regulate
the hub;

• the case B̃(0, . . . , 0) = B̃(1, . . . , 1) = 0 (and thus one stable state and
no cyclic attractor in the asynchronous dynamics) is the case where g
and other regulators need always to cooperate to regulate the hub;

• the case B̃(0, . . . , 0) = 1 and B̃(1, . . . , 1) = 0 (and thus a unique
cyclic attractor and no stable state in the asynchronous dynamics) is
the case where g needs to cooperate with other regulators to regulate
the hub and where some other regulators do not need to cooperate with
g to regulate the hub.
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4. If there is at least two circuits, one negative and the others positive,
that is some component g inhibits g0 and the other regulators of g0 are
activators in RG(φf (S)), we have the following alternatives:

- if g0 admits a logical rule including the conjunctive clause ¬g, then
B̃(0, . . . , 0) = 1; otherwise B̃(0, . . . , 0) = 0;

- if g0 admits a logical rule with at least one conjunctive clause includ-
ing only regulators 6= g, then B̃(1, . . . , 1) = 1; otherwise B̃(1, . . . , 1) =
0.

Let us then remark that B̃(0, . . . , 0) = 1 implies B̃(1, . . . , 1) = 1, leav-
ing the three effective possible cases B̃(0, . . . , 0) = B̃(1, . . . , 1) = 1,
B̃(0, . . . , 0) = B̃(1, . . . , 1) = 0, B̃(0, . . . , 0) = 0 and B̃(1, . . . , 1) = 1:

• the case B(̃0, . . . , 0) = B(̃1, . . . , 1) = 1 (and thus one stable state and
no cyclic attractor in the asynchronous dynamics) is the case where g
does not need to cooperate with other regulators to regulate the hub and
where the other regulators do not need to cooperate with g to regulate
the hub;

• the case B̃(0, . . . , 0) = (̃1, . . . , 1) = 0 (and thus one stable state and
no cyclic attractor in the asynchronous dynamics) is the case where g
and other regulators need always to cooperate to regulate the hub;

• the case B̃(0, . . . , 0) = 0 and B̃(1, . . . , 1) = 1 (and thus two stable
states and no cyclic attractor in the asynchronous dynamics) is the
case where g needs to cooperate with other regulators to regulate the
hub and where some other regulators do not need to cooperate with g
to regulate the hub.

4.4.2 Hub-graphs: general case

In the general case of hub-graphs, it is not possible to get a simple descrip-
tion of the cyclic attractors of the synchronous dynamics: there is a large
number of possibilities, related to the degrees of freedom on the function
B̃ introduced in the previous paragraph. This is illustrated by the cases of
isolated circuits, chorded circuits and flower-graphs ([11] and Example 3).

The following theorem is an immediate consequence of the study of
φf (S).

Theorem 3. Let S be a FDS whose associated regulatory graph RG(S) is a
hub-graph. Then S has zero, one or two stable state(s).
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1. If S has one or two stable state(s), then they are the lonely attractors
of the asynchronous dynamics.

2. If S has no stable state, then the lonely attractor of the asynchronous
dynamics is cyclic.

Remark 9. - The study of φf (S) has proved that the computation of two
values of the logical rule of the hub allows to determine the type of asymptotic
behavior of the asynchronous dynamics of S, among the three possibilities
given by the theorem. Indeed, if, in practice, going through φf (S) and com-
puting B̃(0, . . . , 0) = 1 and B̃(1, . . . , 1) = 0 is the easiest way to conclude,
this can be considered as the computation of two values of the logical formula
of the hub, coming back to S via f−1.

- Moreover this may be interpreted in depth in terms of cooperation or
non cooperation between the regulators of the hub, as it is detailed in partic-
ular cases below.

The following proposition derived from Example 4 is an extension of
Proposition 12 precises a result of [3].

Proposition 15. Let S be a FDS whose associated regulatory graph RG(S)
is a hub-graph whose signs of the circuits are determined.

1. If all the circuits are positive circuits, then S has two stable states
which are the lonely attractors of the asynchronous dynamics.

2. If all the circuits are negative circuits, then the lonely attractor of the
asynchronous dynamics is cyclic.

3. If there is at least two circuits, one positive and the others negative,
then either S has one stable state which is the lonely attractor of the
asynchronous dynamics, or the lonely attractor is cyclic.

4. If there is at least two circuits, one negative and the others positive,
then S has one or two stable state(s), that are the lonely attractors of
the asynchronous dynamics.

Remark 10. Example 4 allows to precise Items 3 and 4:
- In Item 3, if the positive circuit is related to a regulator g of g0, then one
has a cyclic attractor if and only if the hub admits a logical rule without the
conjunctive clauses g and ¬g, and at least one conjunctive clause without
the radicals g and ¬g. In other words, one has a cyclic attractor if and only
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if g needs to cooperate with other regulators to regulate the hub and where
some other regulators do not need to cooperate with g to regulate the hub.
- In Item 4, if the negative circuit is related to a regulator g of g0, then one
has two stable states if and only if the hub admits a logical rule without the
conjunctive clauses g and ¬g and at least one conjunctive clause without the
radicals g and ¬g. In other words, one has two stable states if and only if g
needs to cooperate with other regulators to regulate the hub and where some
other regulators do not need to cooperate with g to regulate the hub.

5 Application to the negative Thomas’s rule

In the boolean context, the negative Thomas’s rule can be written in the
following terms:

”Given S : X → X a boolean FDS such that the asynchronous dynamics
of S displays a cyclic attractor, then the regulatory graph of S contains a
negative circuit.”

Furthermore in case of the existence of a cyclic attractor, several exam-
ples show that it is possible that no local graph RGx(S) including a negative
circuit can be found [16]. This stresses the fact that a fine understanding of
the interpretation of this rule in terms of local and hence functional inter-
actions has to be specified.

”Given S : X → X a boolean FDS such that the asynchronous dynamics
of S contains a cyclic attractor, there exists a circuit of RG(S), and for
each interaction of this circuit a pair of states on the form {x, xi} where
this interaction is expressed, such that the product of the related signs is
negative.”

We are going to give a new proof of this rule in the light of the action of
the symmetries of the hypercube.

Remark 11. If RG(S) contains a circuit such that at least one of its in-
teraction has an indeterminated sign (i.e. sign depending on the pairs of
states where it is expressed), this implies the presence of a negative circuit.
For this reason, we will suppose that all the signs of the interactions of the
circuits of RG(S) are determined.

Notations 3. Let x a state and a ∈ {0, 1},

UpdS(x, a) = {i ∈ UpdS(x) ;xi = a} .
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Lemma 4. Let S : X → X be a boolean FDS such that all the interactions
of RG(S) are activations. Then for any state x, there exists a stable state
y such that x y in Ga(S).

Proof. Let x be a state such that S(x) 6= x.

- If UpdS(x, 0) = ∅, then set z = x. Otherwise, suppose that UpdS(x, 0) 6=
∅. There exists a path (x = x(0), . . . , x(r) = z) in Ga(S) such that, for

0 ≤ k ≤ r − 1, x(k+1) = x(k)
ik

, with ik ∈ UpdS(x(k), 0) and UpdS(z, 0) = ∅.
Indeed, at every step of building x(k+1) from x(k) one coordinate is switched
from 0 to 1, so that the process is required to end at a state z.

- If UpdS(z, 1) = ∅, then set y = z. The state y is a stable state and
x y in Ga(S).

- If UpdS(z, 1) 6= ∅, there exists a path (z = z(0), . . . , z(s) = y) in Ga(S)

such that, for 0 ≤ k ≤ s − 1, z(k+1) = z(k)
jk

, with jk ∈ UpdS(z(k), 1) and
UpdS(y, 1) = ∅. Such a path exists since at every step of building z(k+1)

from z(k) one coordinate is switched from 1 to 0. Moreover, the hypothesis
on S (all interactions are activations) implies that UpdS(z(0), 0) = · · · =
UpdS(z(s), 0) = ∅. Thus x  y in Ga(S), and the equalities UpdS(y, 1) =
UpdS(y, 0) = ∅ mean that y is a stable state.

Lemma 5. Let S : X → X be a boolean FDS such that RG(S) is strongly
connected, all the signs of the interactions are determined, and all the cir-
cuits are positive. There exists a symmetry f ∈ Γ(Hn) such that all the
interactions of RG(S) become activations under the conjugation by f .

Proof. The graph RG(S) being strongly connected, let us consider a circuit
in this graph involving all the components, that we can write after their
potential renumbering

C = (g1 g2X2 g3X3 . . . gnXn) ,

where Xk is a sequence of components either empty, or of the form Ykgik
with Yk possibly empty and all the components of Xk having indices < k.

Let us consider the subgraph T = (V,E) of RG(S), where the set V is
the set of all the components, and E is composed by

- the interactions of C of the form (gk, gk+1), with k ≤ n− 1, for which
Xk is empty,

- the interactions (gik, gk+1), with k ≤ n− 1, for which Xk is not empty.
The subgraph T is tree-supported (see section 3.4, and an example in

Figure 5). By Proposition 7 and the hypothesis on the determination of
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Figure 5: Illustration of Lemma 5’s proof with

C = (g1 g2 g3 g2 g4 g5 g6 g5 g4 g7 g8 g1 g5 g9 g10 g11 g2 g7 g9) .

the signs, there exists a symmetry f ∈ Γ(Hn) such that all the interactions
of T become activations under the conjugation by f . Let us consider the
interactions of C in order of appearance: the action of f preserving signs of
circuits (cf. Corollary 1), and by the hypothesis on the signs of the circuits
of RG(S), it turns out that these interactions become activations under
the conjugation by f . It is the same for the loops of RG(S), and for the
remaining interactions ofRG(S), that we can include in a circuit whose other
interactions are in C: all the interactions of Ga(φf (S)) are activations.

Corollary 2. Let S : X → X be a boolean FDS such that RG(S) is strongly
connected, all the signs of the interactions are determined, and all the cir-
cuits are positive. Then for any state x, there exists a stable state y such
that x y in Ga(S).

Proof. Lemmas 4 and 5 give that for any state x, there exists a stable state
y such that x y in Ga(φf (S)), and hence the same for Ga(S).

It is well-known that the strongly connected components of a directed
graph G are the vertices of an acyclic directed graph GSCC . Therefore,
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there exists a numbering of these components C1, . . . , Cm giving a topological
sorting: if there is a path from Ck to Ch in GSCC , then k < h [19, 1].

Theorem 4. - equivalent to the negative Thomas’rule -
Let S : X → X be a boolean FDS such that all the signs of the interactions

of the circuits of RG(S) are determined, and all these circuits are positive.
Then Ga(S) does not include any cyclic attractor.

Proof. Let C1, . . . , Cm be the strongly connected components ofRG(S), num-
bered by a topological sorting of their acyclic graph, and, for i ∈ {1, . . . ,m},
let Vi be the set of indices of the vertices of Ci.

Using the ingredients of Lemma 5 and Proposition 7, for each i ∈
{1, . . . ,m}, there exists a symmetry fi ∈ Γ(Hn), product of hyperplane
symmetries, such that all the interactions of Ci become activations under
the conjugation by fi, and such that {k ∈ {1, . . . , n} ; ~fi(~ek) = −~ek} ⊂ Vi.
Let f be the commutative product of the fi. Then the strongly connected
components of the conjugated regulatory graph RG(φf (S)) are C1, . . . , Cm,
all the signs of the interactions of the circuits of RG(φf (S)) are determined,
and all these interactions are activations.

Let x be a state. Lemma 4 allows to update the coordinates xi of x
related to the gi which are components of C1, in other words such that
i ∈ V1; this is achieved through a path x  xj1 of Ga(φf (S)) such that if
xj1  z in Ga(φf (S)), then Updφf (S)(z) does not contain any integer of V1,
because of the way the Ci were numbered.

If m > 1, we have now to consider the interactions of components of C1
on components of C2. The coordinates of x related to V1 being definitively
stabilized, we consider that they are inputs for C2, and we can rewrite the
logical formulas for the components of C2, taking into account these inputs.
Some interactions of C2 may disappear, but all the remaining ones will be
activations.

Then Lemma 4 allows to update the coordinates xi of x such that i ∈ V2;
this is achieved through a path x  xj1  xj2 of Ga(φf ((S)) such that if
xj2  z in Ga(φf ((S)), then Updφf (S)(z) does not contain any integer of
V1 ∪ V2.

If m > 2, we consider the interactions of components of C1 and C2 on
components of C3, and so on.

At the end of the process, we obtain a path

x xj1  · · · xjm = y
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in Ga(φf ((S)) such that if k ∈ {1, . . . ,m} and xjk  z in Ga(φf ((S)), then
Updφf (S)(z) does not contain any integer of V1 ∪ · · · ∪ Vk. This means in
particular that y is a stable state.

Hence, for any state x, there exists a stable state y such that x  y in
Ga(φf ((S)), and this is the same for S. In conclusion, Ga(S) as no cyclic
attractor.

Remark 12. In [8], the negative Thomas’rule is enunciated in the following
form:

The presence of a negative circuit of length at least two (somewhere in
phase space) is a necessary condition for stable periodicity.

According to this formulation, an alternative boolean statement of this
rule should be as follows: ”Given S : X → X a boolean FDS such that the
asynchronous dynamics of S displays a cyclic attractor, then the RG of S
contains a negative circuit of length at least two.” We avoid ”somewhere in
phase space” since, as mentioned above, counterexamples show that the ex-
istence of a local graph RGx(S) including a negative circuit is not necessary.

In our approach, the statement becomes then: ”Let S : X → X be
a boolean FDS such that all the signs of the interactions of the circuits
of RG(S) of length at least two are determined, and all these circuits are
positive. Then Ga(S) does not include any cyclic attractor.” But in the
logical formalism, a self-inhibition creates a flip-flop effect that produces
cycles of length two in the asynchronous STG. Moreover, such a cycle can
be an attractor, like for instance with three components and the logical rules
(g1 : ¬g1, g2 : ¬g1 ∧ g3, g3 : g2), and this is in contradiction with the
alternative statement.

6 Conclusion

This work explored links between topological features of regulatory graphs
and their issued dynamics in the boolean framework. Remark that the
framework we use is very general: we made no assumption on the logical
functions, and worked within the non-deterministic asynchronous dynam-
ics (although most of the papers consider monotonous functions and syn-
chronous dynamics).

The characterisation of classes of isometric FDS through their common
interaction graph features helped in deciphering necessary conditions to gen-
erate given dynamical properties. Moreover, it greatly assisted the analytical
analysis of generic regulatory motifs. This raised the question of the choice
of a representative regulatory graph of a class that gathers dynamics sharing
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same properties. We chose as representative a regulatory graph containing
the most positive edges as possible. Indeed, from a mathematical point
of view, activations are easier to handle. However, this criteria could be
discussed, as it seems that in many biological models, such as in bacteria,
inhibitions play a major role in the regulatory mechanisms [10].

Finally, we chose to define classes based on isometries of asynchronous
dynamics. This is the maximal requirement of similarity between dynamical
properties. We could relax it, for instance considering classes of isomorphic
dynamics. We could then address the question of invariants of their regula-
tory graphs.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms. MIT Press, 2009.

[2] F. Delaplace. Analogous Dynamics of Boolean Network.
arXiv:1411.6135v1, nov 2014.
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