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ABSTRACT
Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded
linear rankwidth are MSO-transductions of paths – a result that shows a strong link between the
properties of these graph classes considered from the point of view of structural graph theory and
from the point of view of finite model theory. We take both views on classes with bounded linear
rankwidth and prove structural and model theoretic properties of these classes. The structural
results we obtain are the following. 1) The number of unlabeled graphs of order n with linear
rank-width at most r is at most [(2r + 1)(r + 1)! 2(r2)3r+1]n 2) Graphs with linear rankwidth at
most r are linearly �-bounded. Actually, they have bounded c-chromatic number, meaning that
they can be colored with f (r) colors, each color inducing a cograph. 3) To the contrary, based on
a Ramsey-like argument, we prove for every proper hereditary family F of graphs (like cographs)
that there is a class with bounded rankwidth that does not have the property that graphs in it can
be colored by a bounded number of colors, each inducing a subgraph in F .

From the model theoretical side we obtain the following results: 1) A direct short proof that
graphs with linear rankwidth at most r are first-order transductions of linear orders. This result
could also be derived from Colcombet’s theorem on first-order transduction of linear orders and
the equivalence of linear rankwidth with linear cliquewidth. 2) For a class C with bounded linear
rankwidth the following conditions are equivalent: a) C is stable, b) C excludes some half-graph
as a semi-induced subgraph, c) C is a first-order transduction of a class with bounded pathwidth.
These results open the perspective to study classes admitting low linear rankwidth covers.
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Classes of graphs with low complexity

On devient jeune à soixante ans.
Malheureusement, c’est trop tard.
You become young when you’re sixty.
Unfortunately, it’s too late.

到60岁，我们才开始变得年轻。
不幸的是，为时晚矣。

Pablo Picasso
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1. Introduction
A primary concern in many areas of mathematics is to classify structures (or classes of structures) according to their
intrinsic complexity. In this paper we consider three approaches and their interplay to the notion of structural complexity:
the model theoretic approach based on the standard dividing lines that are stability and dependence, the algebraic
approach founding the notion of rankwidth and linear rankwidth, and a more classical graph theoretical approach based
on colorings and decompositions of graphs.
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A theory of sparse structures was initiated in [39], which mainly fits to the classification of monotone classes
(i.e., classes that are closed under taking subgraphs). The theory has led to the nowhere dense/somewhere dense
dichotomy that can be observed in several areas of graph theory, theoretical computer science, model theory, analysis,
category theory and probability theory. Motivated by the connection with model theory – nowhere dense classes are
monadically stable [1] and even have low VC-density [42] – and by a possible extension of first-order model-checking
algorithms for bounded expansion classes [17, 18] and for nowhere dense classes [24], these notions were extended
to classes that are obtained as first-order transductions of sparse classes, the structurally sparse classes [40, 19]. The
central tool used in our approach is the transduction machinery, which establishes a fruitful bridge between graph theory
and finite model theory. Informally, a first-order transduction is a way to interpret a structure in another structure, where
the new structure is defined by means of first-order formulas with set parameters. Indeed, a standard approach of both
model theory and computability theory is to determine the relative complexity of two structures by showing that the
first interprets in the second, and is therefore not more complex than the second. In this context, important classes
of structures are the class of finite linear orders and the class of element to finite set membership graphs (powerset
graphs), as they define the two most important model theoretical dividing lines: stability, which corresponds to the
impossibility to interpret arbitrarily large linear orders, and dependence (or NIP, for “Non-Independence Property”),
which corresponds to the the impossibility to interpret arbitrarily large membership graphs. The versions of these
properties where we allow set parameters are monadic stability and monadic dependence.

The use of first-order transductions naturally fits the study of hereditary classes (i.e., classes that are closed under
taking induced subgraphs). If we consider classes that are obtained as first-order transductions of other classes, the
natural tractability limit is the realm of monadically NIP structures, as non monadically NIP classes allow to interpret
the whole class of finite graphs. In this world, typical well behaved monadically NIP but monadically unstable classes
of graphs are classes with bounded rankwidth (like cographs) and classes with bounded linear rankwidth (like half-
graphs). This justifies a specific study of these classes, as well as the classes that admit finite p-covers with bounded
rankwidth [33] or classes that admit finite p-covers with bounded linear rankwidth (like unit interval graphs), as they
naturally extend structurally bounded expansion classes, which admit finite p-covers with bounded shrubdepth [19].
However we do not know whether classes with such covers are monadically NIP. The whole framework is schematically
pictured in Figure 1.

This paper consists of two parts. The first part sets the scene and builds the framework that supports our study. The
second part roots our study in concrete problems. In particular, we consider classes with bounded linear rankwidth
and show how model theoretic and structural properties of classes with bounded linear rankwidth allow to prove new
properties of these classes. In particular we prove the following theorems (formal definitions will be given in Section 2).
Theorem 4.6. Let C be a class of graphs with bounded linear rankwidth. Then the following are equivalent:

1. C is stable,

2. C is monadically stable,

3. C has 2-covers with bounded shrubdepth,

4. C is sparsifiable,

5. C excludes some semi-induced half-graph,

6. C is a first-order transduction of a class with
bounded expansion (i.e. has structurally bounded
expansion),

7. C is a first-order transduction of a class with
bounded pathwidth (i.e. has structurally bounded
pathwidth).

And we deduce
Theorem 6.2. Let C be a class with low linear rankwidth covers. Then the following are equivalent:

1. C is monadically stable,

2. C is stable,

3. C excludes a semi-induced half-graph,

4. C has structurally bounded expansion.

From the graph theoretic point of view, we briefly discuss how classes with bounded rankwidth differ from classes
with bounded linear rankwidth and give some lower bounds for �-boundedness of graphs with bounded rankwidth and
for graphs with bounded linear rankwidth. Then we prove upper bounds for graphs with bounded linear rankwidth.
J. Nešetřil et al.: Preprint submitted to Elsevier Page 3 of 27
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Figure 1: Inclusion map of graph classes. Some examples of classes are given in brackets.

Theorem 5.17. Let f (r) = 2(2r + 1)(r + 1)! 2(
r+1
2 ). The c-chromatic number of every graph G (that is the minimum

order of a partition of V (G) where each part induces a cograph) is bounded by f (lrw(G)), where lrw(G) denotes the
linear rank-width of G. Hence

�(G) ≤ f (lrw(G))!(G).

Theorem 4.6 and a weaker form of Theorem 5.17 (Theorem 4.3) are proved in Section 4 by using the notion of
linear NLC-width expression and Simon’s factorization forest theorem.

The strong form of Theorem 5.17 is proved in Section 5 by a fine analysis of linear rankwidth decompositions.
Along the way we also obtain an upper bound for the number of graphs with linear rankwidth at most r.
Theorem 5.15. Unlabeled graphs with linear rankwidth at most r can be encoded using at most

(r
2

)

+ r log2 r +
log2(12∕e)r + O(log2 r) bits per vertex. Precisely, the number of unlabelled graphs of order n with linear rankwidth at
most r is at most

[

(2r + 1)(r + 1)! 2(
r
2)3r+1

]n

.

2. Classes with low complexity
2.1. Structures and logic
A signature Σ is a finite set of relation and function symbols, each with a prescribed arity. In this paper we consider only
signatures with relation symbols. A Σ-structure A consists of a finite universe (or domain) V (A) and interpretations of
the symbols in the signature: each relation symbol R ∈ Σ, say of arity k, is interpreted as a k-ary relation RA ⊆ V (A)k.
For a signature Σ, we consider standard first-order logic over Σ. If A is a structure and X ⊆ V (A) then we denote
by A[X] the substructure of A induced by X. The Gaifman graph of a structure A is the graph with vertex set V (A)
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where two distinct elements u, v ∈ A are adjacent if and only if u and v appear together in some tuple in some relation
of A. For a formula '(x1,… , xk) with k free variables and a structure A, we define

'(A) = {(v1,… , vk) ∈ V (A)k ∶ A ⊧ '(v1,… , vk)}.

We usually write x̄ for a tuple (x1,… , xk) of variables and leave it to the context to determine the length of the tuple.
The above equality then rewrites as '(A) = {v̄ ∈ V (A)|x̄| ∶ A ⊧ '(v̄)}. Also, for a formula '(x̄, ȳ) and b̄ ∈ V (A)|ȳ|
we define

'(b̄,A) = {v̄ ∈ V (A)|x̄| ∶ A ⊧ '(v̄, b̄)}.
For signatures Σ,Σ+ with Σ ⊂ Σ+, the Σ-reduct of a Σ+-structure A is the structure obtained from A by “forgetting”

the relations in Σ+ ⧵ Σ. For a signature Σ, a monadic lift of a Σ-structure A is a Σ+-structure Λ(A) such that Σ+ is the
union of Σ and a set of unary relation symbols and A is the Σ-reduct of Λ(A). Note that in the case of graphs, a monadic
lift corresponds to a coloring of the vertices.
2.2. Graphs, colored graphs and trees.
Graphs can be viewed as finite structures over the signature consisting of a binary relation symbol E, interpreted as
the edge relation, in the usual way. For graphs we follow the notations of [39]. In particular, for a graph G we denote
by |G| the order of G, that is the number of vertices of G, and by ‖G‖ the size of G, that is the number of edges of G.
A graphH is a subgraph of G, denotedH ⊆ G ifH can be obtained from G by deleting some vertices and edges. For
a subset A of vertices of a graph G we denote by G[A] the subgraph of G induced by G, that is the subgraph of G with
vertex set A and same adjacencies as in G and we say that a graphH is an induced subgraph of G if it is isomorphic to
some G[A]. We writeH ⊆i G ifH is an induced subgraph of G. A class of graphs C is monotone if every subgraph
of a graph in C also belongs to C ; it is hereditary if every induced subgraph of a graph in C also belongs to C .

For a non-negative integer r, a ≤ r-subdivision of a graphH is a graph obtained fromH by subdividing each of its
edges by at most k vertices (not necessarily the same number on each edge). An r-subdivision ofH is a ≤ r-subdivision
ofH where each edge is subdivided by exactly r vertices.

For a finite label set Γ, by a Γ-colored graph we mean a graph enriched by a unary predicate U
 for each 
 ∈ Γ. Arooted forest is an acyclic graph F together with a unary predicate R ⊆ V (F ) selecting one root in each connected
component of F . A tree is a connected forest. The depth of a node x in a rooted forest F is the number of vertices in
the unique path between x and the root of the connected component of x in F . In particular, x is a root of F if and
only if F has depth 1 in F . The depth of a forest is the largest depth of any of its nodes. The least common ancestor of
nodes x and y in a rooted tree is the common ancestor of x and y that has the largest depth.
2.3. Sparse graph classes
Treewidth, pathwidth and treedepth. Treewidth is an important width parameter of graphs that was introduced
in [45] as part of the graph minors project. Pathwidth is a more restricted width measure that was introduced in [44].
The notion of treedepth was introduced in [35].

For our purposes it will be convenient to define these width measures in terms of intersection graphs. Let S1,… , Snbe a family of sets. The intersection graph defined by this family is the graph with vertex set {v1,… , vn} and edge set
{{vi, vj} ∶ Si ∩ Sj ≠ ∅}.A chordal graph is the intersection graph of a family of subtrees of a tree. An interval graph is the intersection graph
of a family of intervals. A trivially perfect graph is the intersection graph of a family of nested intervals. Alternatively,
a trivially perfect graph is the comparability graph of a bounded-depth tree order.

The treewidth of a graph G is one less than the minimum clique number !(H) of a chordal supergraphH of G [45],
the pathwidth of a graph G is one less than the minimum clique number of an interval supergraph of G [6], and the
treedepth of a graph G is the minimum clique number of a trivially perfect supergraph of G (direct from the definition):

tw(G) = min{!(H) − 1 ∶ H chordal andH ⊇ G},
pw(G) = min{!(H) − 1 ∶ H interval graph andH ⊇ G},
td(G) = min{!(H) ∶ H trivially perfect andH ⊇ G}.

A class C of graphs has bounded treewidth, bounded pathwidth, or bounded treedepth, respectively, if there is a
bound k ∈ ℕ such that every graph in C has treewidth, pathwidth, or treedepth, respectively, at most k.
J. Nešetřil et al.: Preprint submitted to Elsevier Page 5 of 27
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a1 a2 a3 ak

b1 b2 b3 bk

Figure 2: The half-graph Hk

Classes with bounded expansion. A graphH is a depth-r topological minor of a graph G if G contains a subgraph
isomorphic to a ≤ 2r-subdivision ofH . A class C of graphs has bounded expansion if there is a function f ∶ ℕ → ℕ
such that ‖H‖

|H|

≤ f (r) for every r ∈ ℕ and every depth-r topological minorH of a graph from C . Examples of classes
with bounded expansion include the class of planar graphs, any class of graphs with bounded maximum degree, or
more generally, any class of graphs that excludes a fixed topological minor. We lift the notion with bounded expansion
to classes of structures over an arbitrary fixed signature, by requiring that their class of Gaifman graphs has bounded
expansion. In particular, a class of colored graphs has bounded expansion if and only if the class of underlying uncolored
graphs has bounded expansion. For an in-depth study of classes with bounded expansion we refer the reader to the
monograph [39].
Nowhere dense classes. A class C is nowhere dense if there is a function f ∶ ℕ → ℕ such that !(H) ≤ f (r) for
every r ∈ ℕ and every depth-r topological minorH of a graph from C [37, 38].
2.4. Monadic stability, monadic dependence, and low VC-density
The model theoretic approach of complexity is based on the study of properties rather than on the study of objects. This
is witnessed by the fact that the central subjects of study in model theory are theories and that the actual structures are
only considered as models of theories. Nevertheless, most notions defined on theories have their counterpart on models
or on classes of models. One of the main goals of stability theory (also known as classification theory) is to classify the
models of a given first-order theory according to some simple system of cardinal invariants. In this respect, elementary
theories are stable theories and still reasonably well behaved theories are NIP theories (also called dependent theories).
These notions can be translated to classes of structures as follows:
Definition 2.1. A class C of structures is stable if for every first-order formula '(x̄, ȳ) there exists an integer k such
that for every structure A ∈ C and for all tuples ā1,… , āl , b̄1,… , b̄l of elements of A, if

A ⊧ '(āi, b̄j) ⟺ i ≤ j (1)
for all i, j ∈ [l], then l ≤ k.

The graphHk on vertices a1,… , ak, b1,… bk with edges {ai, bj} for 1 ≤ i ≤ j ≤ k is called a half-graph or ladder
of length k, see Figure 2.
Definition 2.2. A class C of structures is dependent (or NIP) if for every first-order formula '(x̄, ȳ) there exists an
integer k such that for every structure A ∈ C and for all tuples āi (i ∈ [l]) and, b̄I (I ⊆ [l]) of elements of A, if

A ⊧ '(āi, b̄I ) ⟺ i ∈ I (2)
for all i ∈ [l] and all I ⊆ [l], then l ≤ k.

Note that every stable class is dependent.
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A stronger notion of stability and of dependence arises when one allows to apply arbitrary monadic lifts to the
structures in C before using the formula '. These variants are called monadic stability and monadic dependence. The
expressive power gained by the monadic lift is so strong that tuples of free variables can be replaced by single free
variables in the above definitions [4].
Definition 2.3. A class C of Σ-structures is monadically stable if for every expansion Σ+ of Σ by unary predicate
symbols and every first-order Σ+-formula '(x, y) there exists an integer k such that for every monadic lift A+ of any
structure A ∈ C and for all elements a1,… , al , b1,… , bl of A, if

A+ ⊧ '(ai, bj) ⟺ i < j (3)
for all i, j ∈ [l], then l ≤ k.
Definition 2.4. A class C of Σ-structures is monadically dependent (or monadically NIP) if for every expansion Σ+
of Σ by unary predicate symbols and every first-order Σ+-formula '(x, y) there exists an integer k such that for every
monadic lift A+ of any structure A ∈ C and for all elements ai (i ∈ [l]) and bI (I ⊆ [l]) of A, if

A+ ⊧ '(ai, bI ) ⟺ i ∈ I (4)
for all i ∈ [l] and all I ⊆ [l], then l ≤ k.

Note that every monadically stable class is monadically dependent.
For a formula '(x̄, ȳ), the VC-density vcC (') of a formula ' in a class C (containing arbitrarily large structures) is

defined as
vcC (') = lim

t→∞
sup
A∈C

sup
B⊆V (A)
|B|=t

log |{'(v̄,A) ∩ B|x̄| ∶ v̄ ∈ V (A)|ȳ|}|
log |B|

The VC-density vcC of the class C is
vcC (n) = sup{vcC (') ∶ '(x̄; ȳ) is a formula with |ȳ| = n}.

According to the Sauer-Shelah Lemma [46, 47], a class C is NIP if and only if vcC (') < ∞ for every formula '.
However, it is possible for a NIP class (and even for a stable class) to have vcC (1) = ∞. On the other hand, it is easily
checked that (unless structures in C have bounded size) for every positive integer n we have vcC (n) ≥ n. A class C has
low VC-density if vcC (n) = n for all integers n [25]. In particular, if a class C has low VC-density we have vcC (') < ∞
for every formula ' thus C is NIP. We say that C has monadically low VC-density if the class {A+ ∶ A+ monadic lift
of A ∈ C } has low VC-density. Note that every class with monadically low VC-density is monadically NIP.
Theorem 2.5. Let C be a class of graphs.

1. If C is nowhere dense, then C is monadically stable ([Adler, Adler [1]; Podewski, Ziegler [43]).

2. If C is nowhere dense, then C has monadicallly low VC-density (Pilipczuk, Siebertz, and Toruńczyk [42]]).

Theorem 2.6 ([Adler, Adler [1]; Podewski, Ziegler [43]). Let C be a monotone class of graphs. If C is NIP, then C is
nowhere dense.

Corollary 2.1. Let C be a monotone class of graphs. Then the following are equivalent.

1. C is nowhere dense,

2. C is stable,

3. C is monadically stable,

4. C is NIP,

5. C is monadically NIP,

6. C has low VC-density,

7. C has monadically low VC-density.
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2.5. Interpretations and transductions
In this paper, by an interpretation of Σ′-structures in Σ-structures we mean a transformation I defined by means of
formulas 'R(x̄) (for each R ∈ Σ′ of arity |x̄|) and a formula �(x). For every Σ-structure A, the Σ′-structure I(A)
has domain �(A) and the interpretation of each relation R ∈ Σ′ is given by RI(A) = 'R(A) ∩ �(A)|x̄|. For some fixed
interpretation I we often say that a structure B is an interpretation of A (it would be more precise to say that B is an
interpretation in A) if B = I(A).

A transduction T is the composition I◦Λ of a monadic lift Λ and an interpretation I. It is easily checked that the
composition of two transductions is again a transduction. Again, for some fixed transduction T we often say that a
structure B is a transduction of A if B = I(A).

Let C and D be classes of ΣC -structures and ΣD -structures, respectively. Let I be an interpretation of ΣD -structures
in Σ+

C
-structures, where Σ+

C
⧵ ΣC is a finite set of unary relation symbols. If, for every B in D there exists a lift A+ of

some structure A ∈ C such that B = I(A+) we write

C
I // // D ,

and we write
C // // D

if there exists I such that C
I // // D . In this case we call the class D a transduction of C . The classes C and D are

called transduction-equivalent if C // // D and D // // C .
The definitions of interpretations and transductions given above naturally extend to any logic . We speak of

an -interpretation if the formulas 'R and � in the above definition are -formulas, and of an -transduction if we
combine a monadic lift with an -interpretation. If the logic  is not mentioned explicitly, we mean first-order logic FO.
Another commonly considered logic is monadic second-order logic (MSO).

We want to emphasize that in this paper our focus is not the study of what graph classD is produced by a transduction
from a class C , it is rather the study of how to encode D in C . In particular when we say that a class D is a transduction
of a class C , we do not need to use all the graphs in C , nor to verify properties of the monadic lifts. For example,
when D is a transduction of C , then every subclass of D is also a transduction of C .

The definition of monadic stability and monadic dependence can naturally be given in terms of transductions.
Let H denote the class of half-graphs, that is the class of the bipartite graphsHk with vertex set {a1,… , ak, b1,… , bk}and edges {ai, bj} for every 1 ≤ i ≤ j ≤ k (see Figure 2). Let G denote the class of all finite graphs. We have

C is monadically stable ⟺ C ∕ // // H .

C is monadically NIP ⟺ C ∕ // // G .

Lemma 2.7 ([3]). A stable class C is monadically unstable if and only if C has a transduction to the class of all
1-subdivisions of complete bipartite graphs.

In particular, if a stable class is not monadically stable it is not monadically NIP as there is an easy transduction
from the class of all 1-subdivisions of complete bipartite graphs to the class of all finite graphs. As monadically stable
classes are monadically NIP we deduce the following corollary.
Corollary 2.2. A class C is monadically stable if and only if it is both stable and monadically NIP.

We use the term of structurally xxx for classes that are transductions of classes that are xxx. For instance, a class
has structurally bounded treewidth if it is the transduction of a class with bounded treewidth.

The following characterizations of classes with bounded treewidth, pathwidth, rankwidth, linear rankwidth, and
shrubdepth show the deep connections between these width measures and logical transductions (and at this point will
serve as a definition of the notions of rankwidth, linear rankwidth and shrubdepth).

1. A class C of graphs has bounded treewidth (pathwidth, respectively) if and only if there exists an MSO-
transduction T such that the incidence graph of every G ∈ C is the result of applying T to some tree (path,
respectively) ([10] (see also [11], Theorem 7.47)).

J. Nešetřil et al.: Preprint submitted to Elsevier Page 8 of 27



Classes of graphs with low complexity

2. A class C of graphs has bounded rankwidth (linear rankwidth, respectively) if and only if there exists an MSO-
transduction T such that every G ∈ C is the result of applying T to some tree (path, respectively). ([10] (see
also [11], Theorem 7.47)).

3. A class C of graphs has bounded rankwidth (linear rankwidth, respectively) if and only if there exists an FO-
transduction T such that everyG ∈ C is the result of applying T to some tree order (linear order, respectively) ([9]).

4. A class C of graphs has bounded shrubdepth if and only if there exist an FO-transduction T and a height ℎ such
that every G ∈ C is the result of applying T to some tree of depth at most ℎ ([21, 20]).

We can rewrite properties (3) and (4) as follows:

C has bounded rankwidth ⟺ Y ≤ // // C ,

C has bounded linear rankwidth ⟺ L ≤ // // C ,

C has bounded shrubdepth ⟺ ∃n Yn
// // C ,

where Y ≤ denotes the class of all finite tree orders, L ≤ denotes the class of all linear orders, and Yn denotes the classof trees with depth at most n.
Note that in the characterizations above Y ≤ can be replaced by the class of trivially perfect graphs (or by the larger

class of cographs) and L ≤ can be replaced by the class of transitive tournaments or by the class of half-graphs.
Remark 2.8. Since the class of all graphs does not have bounded rankwidth, we deduce that if C has bounded rankwidth
we have C ∕ // // G . Hence every class with bounded rankwidth is monadically NIP.

In particular, Corollary 2.2 implies the following:
Remark 2.9. A class with bounded rankwidth is monadically stable if and only if it is stable.
2.6. Weakly sparse classes
It appears that a basic property that makes a graph class dense is that graphs in it contain arbitrarily large complete
bipartite graphsKt,t with partitions of equal size (bicliques). Indeed, forbidding a biclique as a subgraph (or, equivalently,forbidding a clique and a biclique as induced subgraphs) is known to have a strong consequence on classes with low
complexity. We call a class C weakly sparse if it excludes some biclique Kt,t as a subgraph.
Theorem 2.10. Let C be a weakly sparse class of graphs.

1. If C has bounded shrubdepth, then C has bounded treedepth [19].

2. If C has bounded linear rankwidth, then C has bounded pathwidth [27].

3. If C has bounded rankwidth, then C has bounded treewidth [27].

We call a class sparsifiable if it is transduction-equivalent to a weakly sparse class.
The assumption that a class is weakly sparse allows frequently to work with induced subgraph instead of subgraphs.

For instance:
Theorem 2.11 (Dvořák [15]). Let C be a hereditary weakly sparse graph class. Then

1. C has bounded expansion if and only if there exists a function f ∶ ℕ → ℕ such that for every graphH , if the
≤ k-subdivision ofH belongs to C then the average degree ofH is at most f (k) (for all non-negative integers k).

2. C is nowhere dense if and only if there exists a function f ∶ ℕ → ℕ such that the class C contains no ≤ k-
subdivision of a complete graphs of order greater than f (k) (for all non-negative integers k).
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Structurally
nowhere dense

Monadically stable

Monadically NIP

Structurally
weakly sparse
Structurally
weakly sparse

Stable

Figure 3: A class is monadically stable if and only if it is both monadically NIP and stable; it is structurally nowhere dense
if and only if it is both monadically NIP and structurally weakly sparse. No class is currently known, which is monadically
stable but not structurally nowhere dense.

Corollary 2.3. Let C be a monadically NIP class. Then C is nowhere dense if and only if it is weakly sparse.

Proof. If C is nowhere dense, then there exists a number t such that no graph in C contains a ≤ 1-subdivision of a
complete graph Kt as a subgraph. In particular, no graph in C contains Kt,(t2) as a subgraph, hence C is weakly sparse.

Conversely, assume towards a contradiction that the class C is weakly sparse and not nowhere dense. According to
Theorem 2.11 we can find arbitrarily large induced q-subdivisions of complete graphs for some integer q. It is then easy
to interpret (in a monadic lift) arbitrary graphs, contradicting the hypothesis that C is monadically NIP.
Corollary 2.4. Every sparsifiable monadically NIP class of graphs is structurally nowhere dense.

2.7. Decompositions and covers
For p ∈ ℕ, a p-cover of a structure A is a family A of subsets of V (A) such that every set of at most p elements
of A is contained in some U ∈ A. If C is a class of structures, then a p-cover of C is a family  = (A)A∈C ,
where A is a p-cover of A. A 1-cover is simply called a cover. A p-cover  is finite if sup{|A| ∶ A ∈ C } is finite.
Let C [ ] denote the class structures {A[U ] ∶ A ∈ C , U ∈ A}. For a class W we say that a cover  is a W -cover
if C [ ] ⊆ W . If W is a class of bounded treedepth, bounded shrubdepth, etc., we call a W -cover a bounded treedepth
cover, bounded shrubdepth cover, etc. The class C admits low treedepth covers, low shrubdepth covers, etc. if and only
if for every p ∈ ℕ there is a finite p-cover p of C with bounded treedepth, shrubdepth, etc.
Theorem 2.12 ([36, 19]). A class of graphs has bounded expansion if and only if it has low treedepth covers.

The following notion of shrubdepth has been proposed in [21] as a dense analogue of treedepth. Originally,
shrubdepth was defined using the notion of tree-models. We present an equivalent definition based on the notion of
connection models, introduced in [21] under the name of m-partite cographs with bounded depth.

A connection model with labels from Γ is a rooted labeled tree T where each leaf u is labeled by a label 
(u) ∈ Γ,
and each non-leaf node x is labeled by a binary relation C(x) ⊂ Γ × Γ. If C(x) is symmetric for all non-leaf nodes x,
then such a model defines a graph G on the leaves of T , in which two distinct leaves u and v are connected by an edge if
and only if (
(u), 
(v)) ∈ C(x), where x is the least common ancestor of u and v. We say that T is a connection model
of the resulting graph G. A class of graphs C has bounded shrubdepth if there are a number ℎ ∈ ℕ and a finite set of
labels Γ such that every graph G ∈ C has a connection model of depth at most ℎ using labels from Γ.
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A cograph is a graph that has a connection model (called a cotree) with a labels set Γ containing only a single label.
Cographs are perfect graphs, that is, graphs in which the chromatic number of every induced subgraph equals the clique
number of that subgraph.
Theorem 2.13 ([19]). A class of graphs has structurally bounded expansion if and only if it has low shrubdepth covers.

Lemma 2.14 ([19]). Every class that admits 2-covers of bounded shrubdepth is sparsifiable.

2.8. �-boundedness
Recall that a class of graphs C is �-bounded if there exists a function f ∶ ℕ → ℕ such that for every graph G in C we
have �(G) ≤ f (!(G)) [29]. If f is polynomial (resp. linear) then the class is said to be polynomially �-bounded (resp.
linearly �-bounded). A prototypical example of �-bounded class is the class of perfect graphs, which is the class of
graphs G, such that all induced subgraphs of G have their chromatic number equal to their clique number.

The c-chromatic number of a graph G is the minimum size of a partition V1,… , Vk of the vertex set of G such
that G[Vi] is a cograph for each i ∈ {1,… , k} [23]. We denote by c(G) the c-chromatic number of G. As cographs are
perfect [5] we have the following general inequality for every graph G:

�(G) ≤ c(G)!(G).

Lemma 2.15. Every class with bounded shrubdepth has bounded c-chromatic number.

Proof. Let ℎ ∈ ℕ and let Γ be a finite set such that every graph G ∈ C has a connection model of depth at most ℎ
using labels from Γ, and let 
 ∈ Γ. It is easily checked that the subgraph of G induced by the vertices with label 
 has
a connection model using only the label 
 . It follows that this induced subgraph is a cograph, hence the c-chromatic
number of G is at most |Γ|.
Corollary 2.5. Every class C that admits 1-covers of bounded shrubdepth has bounded c-chromatic number, and
hence is linearly �-bounded.

Proof. Indeed, if C admits a 1-cover of bounded shrubdepth then C has bounded c-chromatic number, thus is linearly
�-bounded.

3. Rankwidth and linear rankwidth
We now turn to the study of classes of bounded rankwidth and linear rankwidth. After recalling several equivalent
definitions of these width measures, we prove that for every proper hereditary family F of graphs (like cographs), there
is a class C with bounded rankwidth such that for every integer k there is a graph G ∈ C such that all vertex colorings
with k colors contain a monochromatic induced subgraph not in F .
3.1. Definitions
Classes with bounded rankwidth and classes with bounded linear rankwidth enjoy several characterizations. In particular,
for a class C the following are equivalent:

1. C has bounded rankwidth,
2. C has bounded cliquewidth,
3. C has bounded NLC-width,
4. Y ≤ // // C ,

as well as the following:
1. C has bounded linear rankwidth,
2. C has bounded linear cliquewidth,
3. C has bounded linear NLC-width,
4. C has bounded neighborhood-width,
5. L ≤ // // C .

J. Nešetřil et al.: Preprint submitted to Elsevier Page 11 of 27



Classes of graphs with low complexity

Cliquewidth and linear cliquewidth. Graphs of bounded treewidth have bounded average degree and therefore the
application of treewidth is (mostly) limited to sparse graph classes. Cliquewidth was introduced in [12] with the aim to
extend hierarchical decompositions also to dense graphs. However, there is no known polynomial-time algorithm to
determine whether the cliquewidth of an input graph is at most k for fixed k ≥ 4. A notable application of cliquewidth is
the extension of Courcelle’s Theorem for testing MSO properties in cubic time (or linear time if a clique decomposition
is given) on graph classes of bounded cliquewidth [13]. The notion of linear cliquewidth has been introduced in [28].
We denote by cw(G) the cliquewidth of a graph G and by lcw(G) the linear cliquewidth of G.
NLC-width and linear NCL-width. The notions of NLC-width and linear NLC-width were introduced in [49]
and [28]. Before giving the definition of linear NLC-width we recall some terminology of formal language theory.
An alphabet is a finite set Ω, whose members are called letters (or symbols). A word (or string) of length n over the
alphabetΩ is a sequence of n letters fromΩ, and we denote byΩ∗ (resp. Ω+) the set of all words (resp. of all non-empty
words) over Ω.
Definition 3.1. For k ∈ ℕ, let V be a finite set, and let Ωk(V ) be the alphabet whose letters are quadruples (v, c, e, r),where

• v ∈ V ,
• c ∈ [k],
• e ⊆ [k], and
• r∶ [k]→ [k].
For a letter a = (v, c, e, r) ∈ Ωk(V ) we write va, ca, ea and ra for v, c, e and r, respectively.
Let k be a positive integer. We say that a word � ∈ Ωk(V )+ is admissible if no two letters a and b of � have the

same v-value. We denote by Lk(V ) the set of all admissible words in Ω+k .
Definition 3.2. A linear NLC-expression of width k over V is a word in Lk(V ). With linear NLC-expressions � of
width k over V we recursively associate a colored graph Ξ(�) whose vertices are the v-values of the letters of �, colored
by colors from [k] as follows.

• If |�| = 1, then Ξ(�) is the single vertex graph, with vertex v� colored c� .
• If � = �′a, where |a| = 1, then Ξ(�) is the graph obtained from Ξ(�′) by adding the vertex va with color ca,connecting va to all vertices w of Ξ(�′) that have a color in ea, and finally, changing the color of each vertex withcolor i to color ra(i).

The linear NLC-width of a graph G is the minimum integer k such that G is identical to the graph Ξ(�) for some
� ∈ Lk(V (G)).

It is clear that the vertex set of Ξ(�) can be identified with the letters of �. and that for every subword � of � the
graph Ξ(�) is the subgraph of Ξ(�) induced by the v-values of the letters of �.

We have [28]:
linear NLC-width(G) ≤ lcw(G) ≤ linear NLC-width(G) + 1. (5)

Neighborhood-width. The neighborhood-width of a graph is the smallest integer k, such that there is a linear order
v1,… , vn on the vertex set of G such that for every vertex vj the vertices vi with i ≤ j can be divided into at most k
subsets, each members having the same neighborhood with respect to the vertices vk with k > j. The neighbourhood-width of a graph differs from its linear clique-width or linear NLC-width at most by one [26].
Rankwidth and linear rankwidth. The notion of rankwidth was introduced in [41] as an efficient approximation to
cliquewidth. For a graph G and a subset X ⊆ V (G) we define the cut-rank of X in G, denoted �G(X), as the rank ofthe |X| × |V (G) ⧵X| 0-1 matrix AX over the binary field F2, where the entry of AX on the i-th row and j-th column
is 1 if and only if the i-th vertex in X is adjacent to the j-th vertex in V (G) ⧵ X. If X = ∅ or X = V (G), then we
define �G(X) to be zero.
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A subcubic tree is a tree where every node has degree 1 or 3. A rank decomposition of a graph G is a pair (T , L),
where T is a subcubic tree with at least two nodes and L is a bijection from V (G) to the set of leaves of T . For an edge
e ∈ E(T ), the connected components of T − e induce a partition (X, Y ) of the set of leaves of T . The width of an
edge e of (T , L) is �G(L−1(X)). The width of (T , L) is the maximum width over all edges of T (and at least 0). The
rankwidth rw(G) of G is the minimum width over all rank decompositions of G. When the graph has at most one vertex
then there is no rank decomposition and the rankwidth is defined to be 0.

Cliquewidth and rankwidth are functionally related [41]: For every graph G we have
rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1. (6)

Hence, a class C of graphs has bounded cliquewidth if and only if C has bounded rankwidth.
The linear rankwidth of a graph is a linearized variant of rankwidth, similarly as pathwidth is a linearized vari-

ant of treewidth. Let G be an n-vertex graph and let v1,… , vn be an order of V (G). The width of this order is
max1≤i≤n−1 �G({v1,… , vi}). The linear rankwidth of G, denoted lrw(G), is the minimum width over all linear orders
of G. If G has less than 2 vertices we define the linear rankwidth of G to be zero. An alternative way to define the
linear rankwidth is to define a linear rank decomposition (T , L) to be a rank decomposition such that T is a caterpillar
and then define linear rankwidth as the minimum width over all linear rank decompositions. Recall that a caterpillar is
a tree in which all the vertices are within distance 1 of a central path.

It was proved in [26] that the linear cliquewidth and the linear rankwidth of a graph are bound to each other:
Precisely, for every graph G we have

lrw(G) ≤ linear NLC-width(G) ≤ lcw(G) ≤ 2lrw(G). (7)
A linear ordering witnessing lrw(G) ≤ k (or deciding lrw(G) > k) for fixed k can be computed in time O(n3) [30].

3.2. Lexicographic product
We denote by G ∙H the lexicographic product of G andH , that is the graph with vertex set V (G) × V (H) where (u, v)
is adjacent to (u′, v′) is u is adjacent to u′ in G or u = u′ and v is adjacent to v′ inH . Note that this operation, though
non-commutative, is associative. By G ⊕H we denote the operation of forming the disjoint union of G andH and
connecting all vertices of the copy of G to all vertices of the copy ofH .
Lemma 3.3. For all graphs G,H we have

rw((G ∙H)⊕K1) = max(rw(G ⊕K1), rw(H ⊕K1)).

Proof. Let (YG, LG) and (YH , LH ) be rank decompositions of G ⊕K1 andH ⊕K1, respectively, of minimum width.
Assume the leaves of YG are V (G) ∪ {�} and the leaves of YH are V (H) ∪ {�}. Consider |G| copies of YH and glue
these copies on YG by identifying each leaf of YG that is a vertex of G with the vertex � of the associated copy. The
obtained tree Y together with the naturally inherited mapping L from the vertices of (G ∙H)⊕K1 to the leaves of Y is
a rank decomposition of (G ∙H)⊕K1 (see Figure 4).Now consider any edge of this rank decomposition of (G ∙H)⊕K1. There are two cases:

• Assume the edge is within the rank decomposition YG of G ⊕ K1. Let A,B be the induced partition of the
vertices of (G ∙H)⊕K1. This partition corresponds to a partition A′, B′ of G ⊕ K1. Let p∶ A → A′ be the
natural projection. We may assume that the vertex � belongs to B in (G ∙H)⊕K1 (hence to B′ in G ⊕ K1).For every vertex v ∈ B we haveN(G∙H)⊕K1 (v) ∩ A = (NG⊕K1 (p(v)) ∩ A

′) × V (H). Hence the cut-rank of A in
(G ∙H)⊕K1 equals the cut-rank of A′ in G ⊕K1.

• Otherwise, the edge is within the rank decomposition of a copy ofH ⊕K1. Let A,B be the induced partition of
the vertices of (G ∙H)⊕K1, where B ⊆ {v0}×B′ for some v0 ∈ V (G) and some B′ ⊆ V (H). Then all vertices
v ∈ ({v0}×V (H))⧵B have the neighborhood ({v0}×NH (v))∩B onB, while the vertices v ∈ A⧵({v0}×V (H))have the same neighborhood in B, which is {v0} ×NH⊕K1 (�). It follows that the cut-rank of A in (G ∙H)⊕K1
equals the cut-rank of B′ inH ⊕K1.

It follows that rw((G ∙H)⊕K1) ≤ max(rw(G ⊕K1), rw(H ⊕K1)). The reverse inequality follows from the fact that
G ⊕K1 andH ⊕K1 are both induced subgraphs of (G ∙H)⊕K1.
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G⊕K1

H ⊕K1
(G •H)⊕K1

Figure 4: Rank decomposition of (G ∙H)⊕K1 from the rank decompositions of G ⊕K1 and H ⊕K1.

Remark 3.4. The substitution operation as defined in [2, 8] can be expressed as the composition of lexicographic
products and extraction of induced subgraphs. As taking induced subgraphs preserves rankwidth, one obtains as a
corollary that closing a class by substitution increases the rankwidth by at most one.

For a class C , let C ⊕ K1 denote the class {G ⊕ K1 ∶ G ∈ C }, and let C ∙ denote the closure of C under
lexicographic product. As a direct consequence of the previous lemma we have
Corollary 3.1. For every class of graphs C with bounded rankwidth we have

rw(C ) ≤ rw(C ∙) = rw(C ⊕K1) ≤ rw(C ) + 1. (8)
(Indeed, G ⊕K1 ⊆i G ∙H ifH contains at least one edge.)
We remark that a stronger version of Corollary 3.1 holds for cliquewidth (the cliquewidth does not increase when

going to the closure under lexicographic product), which follows from Lemma 3.4 of [14].
By substituting each vertex of V (G) in the linear order witnessing lrw(G) by the linear order of V (H) witnessing

lrw(H) we similarly obtain the following results.
Lemma 3.5. For all graphs G,H we have

lrw(G ∙H) ≤ lrw(G) + lrw(H).

Proof. Let <1 be a linear order of V (G) witnessing lrw(G) and let <2 be a linear order of V (H) witnessing lrw(H).Let < be the lexicographic order on V = V (G) × V (H) defined by <1, <2, i.e., (u, v) < (u′, v′) if u < u′ or (u = u′ and
v < v′). Let t = (ut, vt) ∈ V and let (u, v) ≤ t. We have

NG∙H ((u, v)) ∩ V >t =
(

(NG(u) ∩ V (G)>ut ) × V (H)
)

∪
(

{ut} × (NH (v) ∩ V (H)>vt )
)

.

It follows that the vector space spanned by the setsNG∙H ((u, v)) ∩ V >t is in the sum of the vector space spanned by the
sets (NG(u) ∩ V (G)>ut ) × V (H) (which has dimension at most lrw(G)) and of the vector space spanned by the sets
{ut} × (NH (v) ∩ V (H)>vt ) (which has dimension at most lrw(H)). Hence the claim follows.
3.3. Ramsey properties of rankwidth
In this section we prove that the class of all graphs with rankwidth at most r + 1 is “Ramsey” for the class of all graphs
with rankwidth at most r, in the following sense.
Theorem 3.6. For all integers r, m and every graph G with rankwidth at most r there exists a graph G′ = G∙m with
rankwidth r + 1 and with the property that every m-coloring of G′ contains an induced monochromatic copy of G.
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Proof. We define inductively graphsG∙i for i ≥ 1: G∙1 = G and, for i ≥ 1 we letG∙(i+1) = G∙i ∙G = G ∙G∙i. According
to Corollary 3.1 we have rw({G∙i ∶ i ∈ ℕ}) ≤ r + 1.

We prove by induction on m that in every m-partition of G′ = G∙m one class induces a subgraph with a copy of G.
If m = 1 the result is straightforward. Let m > 1. Consider a partition V1,… , Vm of the vertex set of G∙m. If all the
copies of G∙(m−1) forming G∙m contain a vertex in Vm, then G∙m[Vm] contains an induced copy of G. Otherwise, there
is a copy of G∙(m−1) in G∙m whose vertex set is covered by V1,… , Vm−1. By induction hypothesis G∙(m−1)[Vi] containsan induced copy of G for some i.
Corollary 3.2. Let F be a proper hereditary class of graphs. Then there exists a class C with bounded rankwidth
such that for every integer m there is G ∈ C with the property that for every partition of V (G) into m classes, one class
induces a graph not in F .

Corollary 3.3. The class of graphs with rankwidth at most 2 does not have the property that its graphs can be vertex
partitioned into a bounded number of cographs, the class of graphs with rankwidth at most 3 does not have the property
that its graphs can be vertex partitioned into a bounded number of circle graphs, etc.

Proof. This follows from Theorem 3.6 by noticing that rw(P4) = 1 (where P4 denotes the path on 4 vertices) and P4is a forbidden induced subgraph for cographs , and that rw(W5) = 2 (whereW5 = C5 ⊕K1 denotes the wheel on 6vertices) andW5 is not a circle graph.
3.4. Lower bounds for �-boundedness
Dvořák and Kráľ [16] proved that classes with bounded rankwidth are �-bounded. This result has been strengthened by
Bonamy and Pilipczuk [7] who proved that classes with bounded rankwidth are polynomially �-bounded. We give here
a lower bound on the degrees of the involved polynomials. We write �f (G) for the fractional chromatic number of a
graph G, which is defined as �f (G) = inf

{�(G∙Kn)
n ∶ n ∈ ℕ

}.
Theorem 3.7. For r ∈ ℕ, let Pr be a polynomial such that for every graph G with rankwidth at most r we have
�(G) ≤ Pr(!(G)). Then degPr ∈ Ω(log r).

Proof. As shown in [22] for all graphsG andH we have �(G∙H) = �(G∙K�(H)). Furthermore we have �(G∙K�(H)) ≥
�(H)�f (G). We deduce that �(G ∙ H) ≥ �f (G)�(H). Hence for every integer n we have �(G∙n) ≥ �f (G)n. As
!(G∙n) = !(G)n we have �(G∙n) ≥ !(G∙n)

log�f (G)
log!(G) and hence

degPr ≥ sup
rw(G⊕K1)≤r

log�f (G)
log!(G)

.

For a sufficiently large integer n there exists a triangle-free graph Gn of order n with �f (Gn) ≥ 1
9

√

n
log n (see [31]).

As the rankwidth of a graph of order n is at most ⌈n∕3⌉ we have n > rw(Gn ⊕K1) thus

degPr ≥
(

1
2 log 2

− o(1)
)

log r.

Linear rankwidth. We give a short proof in Section 4 (Corollary 4.1) that classes with bounded linear rankwidth are
linearly �-bounded using the equivalence between classes with bounded linear rankwidth and classes with bounded
linear NLC-width. We improve the obtained upper bound of the �∕! ratio in Section 5 using a more technical analysis
of linear rank-width (Theorem 5.17), leading to an order of magnitude of 2O(r2). We now prove that the ratio �∕! can
be as large as �r for some constant � > 1 and for graphs with arbitrarily large linear rankwidth r and clique number !.

From Lemma 3.5 we deduce lrw(C ∙n5 ) ≤ 2n. As !(C ∙n5 ) = 2n and as �(C ∙n5 ) ≥ �(C5)�f (C5)n−1 = 3(5∕2)n−1 wededuce
�(C ∙n5 )
!(C ∙n5 )

≥ (6∕5)(5∕4)n ≥ (6∕5)(5∕4)lrw(C
∙n
5 )∕2.
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As 6∕5 >√

5∕2, for every integer r we have:

lim
t→∞

sup
lrw(G)≤r
!(G)≥t

�(G)
!(G)

≥
(

√

5
2

)r
. (9)

4. Linear NLC-width
In this section we prove that classes with bounded linear NLC-width (and hence classes of bounded linear rankwdith)
are linearly �-bounded, and if they are stable, then they are transduction equivalent to classes of bounded pathwidth.
We prove the result using Simon’s factorization forest theorem.
4.1. Simon’s factorization forest theorem
A semigroup is an algebra with one associative binary operation, usually denoted as multiplication. An idempotent in a
semigroup is an element e with ee = e. Given an alphabet Ω we denote by Ω+ the semigroup of all non-empty finite
words over Ω, with concatenation as product.

Fix an alphabet Ω and a semigroup morphism ℎ∶ Ω+ → T , where T is a finite semigroup. A factorization tree is
an ordered rooted tree (that is: a rooted plane tree) in which each node is either a leaf labeled by a letter, or an internal
node. The value of a node is the word obtained by reading the descendant leaves below from left to right. The value of
a factorization tree is the value of the root of the tree. A factorization tree of a word � ∈ Ω+ is a factorization tree of
value �. The depth of the tree is defined as usual, with the convention that the depth of a single leaf is 1. A factorization
tree is Ramseyan (for ℎ) if every node 1) is a leaf, or 2) has two children, or, 3) the values of its children are all mapped
by ℎ to the same idempotent of T .
Theorem 4.1 (Simon’s Factorization Forest Theorem [32, 48]). For every alphabet Ω, every finite semigroup T , and
every semigroup morphism ℎ∶ Ω+ → T , every word � ∈ Ω+ has a Ramseyan factorization tree of depth at most 3|T |.

The existence of an upper bound expressed only in terms of |T | was first proved by Simon [48]. The improved
upper bound of 3|T | is due to Kufleitner [32].
4.2. Application to classes with bounded linear NLC-width
In the following we consider the semigroup Γk on functions r∶ [k]→ [k]. Obviously, ℎ∶ Ωk(V )+ → Γk induced by
ℎ(a) = ra for a ∈ Ωk(V ) is a semigroup homomorphism (recall Definition 3.1). An idempotent of Γk is a function rthat satisfies that if r(i) = j, then r(j) = j. We call � ∈ Ωk(V )+ an idempotent if ℎ(�) is an idempotent in Γk.For � ∈ Lk(V ) (recall Definition 3.2) and for a letter a of � and v = va define col�(v) as the color of the vertex vin Ξ(�). Note that if �� ∈ Lk(V ) then col��(v) = ℎ(�)(col�(v)).Fix � ∈ Lk(V ). According to Theorem 4.1, there exists an ordered rooted tree Y that is a Ramseyan factorization
tree of � for ℎ with depth at most 3|Γk|. For the rest of this section fix such a tree Y.

For a node x of Y we denote by x̄ the value of x, which is a subword of �. Note that the leaves of Y are naturally
identified with the letters of �. If x, y are two nodes of Y, note that:

• x is an ancestor of y in Y if and only if ȳ is a subword of x̄,
• x is to the left of y in Y if and only if x̄ and ȳ are disjoint and x̄ appears before ȳ in �,
• x is immediately to the left of y in Y (meaning that they are consecutive children of a same node, with x at the left

of y) if and only if x̄ȳ is a subword of �.
For a word � = b1⋯ bn (where the bi’s are letters), for a leaf z of Y with z̄ = bp, and for 1 ≤ p ≤ n we define

recol�,z = rbp−1◦⋯◦rb1 = ℎ(b1⋯ bp−1),

eset�(z) = recol
−1
�,z(ebp ).

Lemma 4.2. Let z1, z2 be two leaves of Y such that the letters of z̄1 and z̄2 appear in this order in �, let x = z1 ∧ z2 be
their least common ancestor in Y, and let y1 (resp. y2) be the children of x that are ancestors of z1 and z2, respectively.
Then vz1 and vz2 are adjacent in Ξ(�) if
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• y1 is not immediately to the left of y2 in Y and colȳ1 (vz1 ) ∈ eset x̄(z2),

• or y1 is immediately to the left of y2 in Y and colȳ1 (vz1 ) ∈ eset ȳ2 (z2).

Proof. Assume that y1 is immediately to the left of y2 in Y, and let x̄ = �ȳ1ȳ2�′. Let ȳ2 = b1… bp with bp = z̄2.The color of vz1 in Ξ(�ȳ1) is the same as in Ξ(ȳ1) — that is colȳ1 (vz1 ) — as z̄1 is in ȳ1. The color of vz1 at thepoint where vz2 is created is thus ℎ(b1⋯ bp−1)(colȳ1 (vz1 )) = recolȳ2,z2 (colȳ1 (vz1 )). Thus vz1 and vz2 are adjacent if
colȳ1 (vz1 ) ∈ eset ȳ2 (z2).Now assume that y1 is not immediately to the left of y2 in Y, and let x̄ = �ȳ1�′ȳ2�′′. In this case x has more than
two children, hence, all its children have the same ℎ-value, which is an idempotent. In particular, ℎ(�′) = ℎ(�ȳ1�′).The color of vz1 at the point where vz2 is created is

ℎ(�′b1⋯ bp−1)(colȳ1 (vz1 )) = ℎ(b1⋯ bp−1)
(

ℎ(�′)(colȳ1 (vy2 ))
)

= ℎ(b1⋯ bp−1)
(

ℎ(�ȳ1�′)(colȳ1 (vz1 ))
)

= ℎ(�ȳ1�′b1⋯ bp−1)(colȳ1 (vz1 )).

Thus vz1 and vz2 are adjacent if colȳ1 (vz1 ) ∈ eset x̄(z2).
We can now prove our first main theorem.

Theorem 4.3. Let f (k) = (k2k+1)3kk and g(k) = 3kk. Every graph with linear NLC-width at most k can be vertex
partitioned into f (k) cographs with a cotree of depth at most g(k).

Proof. Let � be a coloring of the nodes x of Y with color in {1, 2} such that two consecutive children of a node have a
different color. For a letter z of �, color vz by the vector of values (�(x), colx̄(vz), eset x̄(z)) for x ancestor of z (orderedin increasing distance to the root). (This gives a vector of at most 3|Γk| triples.) Consider a monochromatic subset
of vertices A. Let vz1 , vz2 be distinct vertices of A, let x = z1 ∧ z2, and let y1 and y2 be the children of x that are
ancestors of z1 and z2, respectively. As A is monochromatic and as y1 and y2 are at the same height in Y we have
in particular �(y1) = �(y2) hence y1 and y2 are not consecutive children of x. As A is monochromatic we also have
colȳ1 (vz1 ) = colȳ2 (vz2 ) and eset x̄(z1) = eset x̄(z2). Hence, we can label the internal nodes of Y with 0 and 1 in such a
way that two vertices in A are adjacent if and only if the label at their least common ancestor in Y is 1. In particular,
A induces a cograph with cotree height at most g(k) = 3|Γk| = 3kk.The colors we used are vectors of at most g(k) triples. Each triple consists of �(x) (2 possible values), colx̄(vz)(k possible values) and eset x̄(z) (2k possible values). Altogether, this gives at most (2k2k)g(k) = f (k) colors.
Corollary 4.1. Classes with bounded linear NLC-width are linearly �-bounded.

Towards the goal of characterizing stable classes of bounded linear NLC-width, we observe that the following
configuration leads to semi-induced half-graphs. We callHk semi-induced in G if we can find in G vertices a1,… , akand b1,… , bk such that {ai, bj} ∈ E(G) if and only if 1 ≤ i ≤ j ≤ k. Observe that we make no statement about edges
between the ai or between the bi.
Lemma 4.4. Assume there exist a node z and leaves x1, y1, x2, y2,… , xl , yl of Y (in left-right order) such that x
is the least common ancestor of each pair of these leaves, and that there exist cx, cy ∈ [k] and ex, ey ⊆ [k] with
cx ∈ ey, cy ∉ ex, and, for each 1 ≤ i ≤ l, colz̄(vxi ) = cx, eset z̄(xi) = ex, colz̄(vyi ) = cy, and eset z̄(vyi ) = ey. Then Ξ(�)
contains a semi-induced half-graph of order at least ⌊l∕3⌋.

Proof. By taking at least a third of the indices we can assume that no two letters appear in consecutive children of �.
Then it follows directly from Lemma 4.2 that these vertices semi-induce a half-graph.
Theorem 4.5. Let C be a class with bounded linear NLC-width. If the graphs in C exclude some semi-induced
half-graph, then C is a transduction of a class with bounded pathwidth.

Proof. We first construct an interval graphH , where each node � of Y corresponds to an interval I� . The descendentrelation of Y is the containment relation in the set of intervals.
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Now consider an internal node � of Y and a 4-tuple (c1, e1, c2, e2) ∈ [k] × 2[k] × [k] × 2[k] with c1 ∈ e2 and c2 ∉ e1,such that at least one descendent z1 of � is such that col�̄(z1) = c1 and eset �̄(z1) = e1 and at least one descendent z2of � is such that col�̄(z2) = c2 and eset �̄(z2) = e2. We consider new intervals coming from the split of the I� intosubintervals (we keep the interval I� , as well as the new intervals arising from the split): These subintervals are obtained
by considering the children of � in order. The subintervals are of three types:

• type (1) intervals subsume the intervals of consecutive children of � with at least one descendant z with
col�̄(z) = c1 and eset �̄(z) = e1, but no descendant z with col�̄(z) = c2 and eset �̄(z) = e2;

• type (2) intervals subsume the intervals of consecutive children of � with at least one descendant z with
col�̄(z) = c2 and eset �̄(z) = e2, but no descendant z with col�̄(z) = c1 and eset �̄(z) = e1;

• type (1 + 2) intervals contain the interval of a single child of � with both a descendent z1 with col�̄(z1) = c1 and
eset �̄(z1) = e1 and a descendent z2 with col�̄(z2) = c2 and eset �̄(z2) = e2.

The division of I� into subintervals is done in such a way that no two consecutive subintervals are both of type (1) orboth of type (2). Note that such a division into subintervals exists. Furthermore, for all new subintervals I
 and I
′(obtained from the split of I
 ) that are direct neighbors, we add a new interval I
,
′ subsuming the two intervals I
 and
I
′ . This finishes the construction of the graphH .

Assume that the number of subintervals into which we divided I� isN . Then we can select, among the descendants
of the distinct children of � some vertices �1, �1,… , �n, �n (with n ≥ N∕4) such that col�̄(�i) = c1, eset �̄(�i) = e1,
col�̄(�i) = c2, and eset �̄(�i) = e2. We deduce from Lemma 4.4 applied to � and �1, �1,… , �n, �n and the assumption
that C excludes some semi-induced half-graph, that I� is divided into a bounded number of subintervals. Now, it is
immediate from the definition of pathwidth as one less than the minimum clique number of an interval supergraph
ofH thatH has bounded pathwidth (depending on the NLC-width of G and the bound on the length of the largest
semi-induced half-graph in G) as desired.

We now add colors to the vertices ofH (that will be used by the transduction to reconstruct the graph G). First,
we assign each vertex representing an interval I� all associated 4-tuples (c1, e1, c2, e2). For each vertex u we add theinformation col�̄(u) and e1 = eset �̄(u) for each predecessor � of u. Finally, recall that each split of I
 into subintervals
is into at mostN parts. We add additional colors to number these intervals (in their left-to-right order) as 1,… , N .

Let us show how to reconstruct the edges of G from the colored graphH . Let u, v be vertices, let � be their least
common ancestor in Y and let �u and �v be the children of � such that u is a descendant of �u and such that v is a
descendant of �v. We aim to apply Lemma 4.2 to decode whether u and v are adjacent. The problem is that we do not
know in what order u and v appear below �. Assume first that �u and �v are not direct neighbors (this can be checkedusing the vertex representing the interval I�u,�v ). Let c1 = col�̄(u), e1 = eset �̄(u), c2 = col�̄(v), and e2 = eset �̄(v). Thevalues of col�̄ and eset �̄ for u and v are available from the predicates at these vertices. If c1 ∈ e2 and c2 ∈ e1, then the
order of �u and �v does not matter, and we can conclude that u and v are adjacent. Similarly, if c1 ∉ e2 and c2 ∉ e1then u and v are non-adjacent.

In the last case, without loss of generality, we can assume c1 ∈ e2 and c2 ∉ e1. Observe that in this case the
two vertices u and v cannot belong to a same subinterval of I� . Then from the numbering marks associated to the
subintervals that contain u and v we deduce which of u and v is smaller than the other and hence the we can derive the
adjacency between u and v.

If �u and �v are direct neighbors we argue analogously, referring to the values of col�̄u , col�̄v , eset �̄u and eset �̄v ,which are also known from the predicates at these vertices.
To conclude, observe that the above reconstruction can easily be done by a first-order formula.
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From this we deduce.
Theorem 4.6. Let C be a class of graphs with linear rankwidth at most r. Then the following are equivalent:

1. C is stable,

2. C is monadically stable,

3. C is sparsifiable,

4. C has 2-covers with bounded shrubdepth,

5. C has structurally bounded expansion,

6. C is a transduction of a class with bounded pathwidth,

7. C excludes some semi-induced half-graph.

5. Linear rankwidth
In this section we present a second proof for the result that classes with bounded linear rankwidth are linearly �-bounded
and thereby provide improved constants.
5.1. Notation
For setsM,N ⊆ V (G) we defineM ⊕N as the symmetric difference ofM andN , that is, v ∈M ⊕N if and only if
v ∈M ∪N but v ∉M ∩N . For t ∈ V , we define V >t ∶= {v ∶ v > t}, V <t ∶= {v ∶ v < t} and V ≤t ∶= {v ∶ v ≤ t}.
For v ∈ V we denote byN(v) the neighborhood of v ∈ G (where v not included). We letN<t(v) ∶= N(v) ∩ V <t and
define similarlyN>t andN≤t. ForM ⊆ V (G) we defineN⊕(M) ∶=

⨁

v∈M N(v) andN>t
⊕ (M) ∶= N⊕(M) ∩ V >t.

Remark 5.1. If t < t′, thenN>t
⊕ (M) = N>t

⊕ (N) impliesN>t′
⊕ (M) = N>t′

⊕ (N).
For t ∈ V the closure of {N>t(v) ∶ v ≤ t} under⊕ is a vector space over⊕ and scalar multiplication with 0 and 1,

where 0 ⋅M = ∅ and 1 ⋅M =M .
For t ∈ V , we call an inclusion-minimal subset B ⊆ V≤t a neighbor basis for V >t if for every v ≤ t there exists

B′ ⊆ B such that N>t(v) = N>t
⊕ (B

′). In other words, B is a neighbor basis for V >t if {N>t(v) ∶ v ∈ B} forms a
basis for the space spanned by {N>t(v) ∶ v ≤ t}.

The following is immediate by the definition of linear rankwidth.
Remark 5.2. As G has linear rankwidth at most r, for every t ∈ V every neighbor basis for V >t has at most r vertices.
5.2. Activity intervals and active basis
For t ∈ V we define the active basis Bt at t as the set of all vertices smaller or equal to t, whose neighborhood in V >t is
not in the vector space generated by the neighborhoods in V >t of smaller vertices, that is:

Bt = {v ≤ t ∶ (∄B ⊆ V <v)N>t(v) = N>t
⊕ (B)}. (10)

Note that this is the lexicographically least neighborhood basis of V >t.
Remark 5.3. If the linear order of V (G) is given, the set of all neighborhood basis Bt for t ∈ V (G) can be computed
in quadratic time, by iteratively considering t in increasing order and maintaining the set of at most 2r neighborhoods
in V >t.

To each v ∈ V we associate its activity interval Iv defined as the interval [v, �(v)] starting at v and ending at theminimum vertex �(v) ≥ v such that v ∉ B�(v). Note that �(v) is well defined as we have BmaxV = ∅.We extend the definitions of the activity intervals and of the � function to all non-empty subsetsM of V (G) by
IM ∶=

⋂

v∈M
Iv and �(M) = min

v∈M
�(v). (11)
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Note that either IM = ∅ or IM = [maxM, �(M)]. We call a setM active if |IM | > 1, that is, if maxM < �(M).
We call a vertex v active if the singleton set {v} is active.

For every v ∈ V , as v ∉ B�(v), there exists a unique F0(v) ⊆ B�(v) with

N>�(v)(v) = N>�(v)
⊕ (F0(v)). (12)

According to (10) and as v ∉ B�(v) we have F0(v) ⊆ V <v hence maxF0(v) < v. Moreover, �(v) ≥ v by definition
and, if F0(v) is a non-empty subset of B�(v) then every vertex x in F0(v) is such that �(x) > �(v) hence �(F0(v)) > �(v).Altogether we have that if F0(v) ≠ ∅ then we have:

maxF0(v) < v ≤ �(v) < �(F0(v)). (13)
Hence, in this case, the set F0(v) is active.

Remark 5.4. Assume thatM is an active set and let v ∈M .
1. If �(v) > �(M), then v ∈ B�(M).
2. If �(v) = �(M), then F0(v) ⊆ B�(M).

Proof. As M is active we have IM = [maxM, �(M)]. In particular, if �(v) > �(M) we have �(M) ∈ Iv (since
v ≤ maxM) thus v ∈ B�(M). If �(v) = �(M), then by definition of F0 we have F0(v) ⊆ B�(v) = B�(M).
5.3. The F-tree
We define a mapping F extending F0, that will define a rooted tree on the setZ consisting of all active sets, all singleton
sets {v} for v ∈ V (G), and ∅ (which will be the root of the tree and the unique fixed point of F ). Before we define F
we make one more observation.
Lemma 5.5. Let u, v ∈ V (G) be active. If �(u) = �(v), then u = v.

Proof. Let t = �(u) = �(v) and let t′ be the predecessor of t in the linear order. Assume for contradiction that u ≠ v.
By definition of F0 we have N>t(u) = N>t(F0(u)) and N>t(v) = N>t(F0(v)). We have N>t′ (u) ≠ N>t′ (F0(u)) asotherwise �(u) ≤ t′. As N>t′ (u) ⊕ N>t(u) ⊆ {t} and N>t′ (F0(u)) ⊕ N>t(F0(u)) ⊆ {t}, we have N>t′ (F0(u)) =
N>t′ (u)⊕ {t}. Similarly, we haveN>t′ (F0(v)) = N>t′ (v)⊕ {t}. Assume without loss of generality that u < v. Then
N>t′ (v) = N>t′ ({u}) ⊕ N>t′ (F0(u)) ⊕ N>t′ (F0(v)). As max({u} ∪ F0(u) ∪ F0(v)) < v we deduce that �(v) ≤ t′,
contradicting �(v) = t.
Corollary 5.1. For each active setM ⊆ V (G) there exists exactly one vM ∈M with �(vM ) = �(M).

The mapping F ∶ Z → Z is defined as

F (M) =

⎧

⎪

⎨

⎪

⎩

∅ ifM = ∅,
M ⊕ {vM}⊕ F0(vM ) for the unique vM ∈M

with �(vM ) = �(M), otherwise.
(14)

Remark 5.6. If the linear order on V (G) is given then F -mapping on Z can be computed in quadratic time. Indeed,
the computation of all the active basis can be done in quadratic time, and each time a vertex v leaves the current active
basis Bt one can compute F0(v) by checking the space of the 2r neighborhoods in V >t generated by Bt. (Note that
|Z| ≤ 2r|V (G)|.)

The following lemma shows for every active setM , either F (M) = ∅ or F (M) is active, and thus F (M) ∈ Z
and F is well defined. Furthermore, the lemma shows that IF (M) ⊃ IM .
Lemma 5.7. Let M ∈ Z. Then F (M) ⊆ B�(M) and furthermore, either F (M) = ∅, or maxF (M) ≤ maxM <
�(M) < �(F (M)) and hence F (M) is active.
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Proof. The statement is obvious if M = ∅. For M = {v}, the statement is immediate from the definition of
F0(v) and (13). For all other M ∈ Z, according to remark 5.4 we have for each v ∈ M either v ∈ B�(M) if
�(v) > �(M), or F0(v) ⊆ B�(M) if �(v) = �(M). This implies F (M) ⊆ B�(M). Finally, if F (M) ≠ ∅, then
maxF (M) ≤ maxM < �(M) < �(F (M)) follows from the fact that these inequalities hold for all v ∈ M with
�(v) > �(M) and for F0(v) for the unique v ∈M with �(v) = �(M) according to (13).

The mapping F guides the process of iterative referencing and ensures that, for an active setM , if t ≥ �(M), then
the setN>t

⊕ (M) can be rewritten asN>t
⊕ (F (M)). This property is stated in the next lemma.

Lemma 5.8. LetM ∈ Z ⧵ {∅} and let w ∈ V (G). If w > �(M), then

w ∈ N⊕(M)⇔ w ∈ N⊕(F (M)).

Proof. IfM = {v} for v ∈ V (G), then this follows from (12). Otherwise,M is an active set. Let t = �(M) and let
v ∈M be the unique element with �(v) = t. Then we haveN>t

⊕ (F0(v)) = N
>t
⊕ (v), and hence

N>t
⊕ (F (M)) = N>t

⊕ ({v})⊕N>t
⊕ (F (M)⊕ {v})

= N>t
⊕ (F0(v))⊕N>t

⊕ (F (M)⊕ {v})

= N>t
⊕ (M).

This lemma can be applied repeatedly toM,F (M), etc. until F k(M) = ∅, or until for some given w ∈ V (G) we
have �(F k(M)) ≥ w. This justifies to introduce, for distinct vertices u and v the value

�(u, v) ∶= min{k ≥ 0 ∶ F k({u}) = ∅ or F k({u}) ≠ ∅ and v ∈ IF k({u})}, (15)
where we let F 0(M) =M by convention.

As a direct consequence of the previous lemma we have
Corollary 5.2. For u < v in V (G) we have

{u, v} ∈ E(G)⟺ v ∈ N⊕(F �(u,v)({u})).

Proof. We claim that for all 0 ≤ k ≤ �(u, v) and u < v, u and v are adjacent if and only if v ∈ N⊕(F k({u})). We
proceed by induction on k.

If k = 0, then the statement is {u, v} ∈ E(G) ⇔ v ∈ N⊕(u), which trivially holds. Assume k ≥ 1. By
Lemma 5.7 we have v > �(F k−1({u})). Moreover, F k−1({u}) ∈ Z ⧵ {∅}. Hence by Lemma 5.8 we have v ∈
F k−1({u}) ⟺ v ∈ F k({u}). As {u, v} ∈ E(G) ⟺ v ∈ N⊕(F k−1({u})) by induction hypothesis, we deduce
{u, v} ∈ E(G) ⟺ v ∈ N⊕(F k({u})).

The monotonicity property of F (i.e. the property �(F (M)) > �(M) if F (M) ≠ ∅) implies that F defines a rooted
tree, the F -tree, with vertex set Z, root ∅ and edges {M,F (M)}. Here the monotonicity guarantees that the graph
is acyclic and it is connected because ∅ is the only fixed point of F . The following lemma shows that the F -tree has
bounded height. Recall that r denotes the linear rankwidth of G.
Lemma 5.9. For everyM ∈ Z we have F r+1(M) = ∅.

Proof. IfM = ∅, the statement is obvious, so assumeM ≠ ∅. It is sufficient to prove that for every active setM we
have F r(M) = ∅, as this implies F r+1({v}) = ∅ also for all v ∈ V (G). LetM be an active set and let t ∈ IM . Then
every v ∈M is in Bt, soM ⊆ Bt.Assume i ≥ 1 is such that F i(M) ≠ ∅. As maxF (M) ≤ maxM and �(F (M)) > �(M) by Lemma 5.7, we get

maxF i(M) ≤ maxM ≤ t < �(M) ≤ �(F i−1(M)) < �(F i(M)).

As �(F i(M)) = minv∈F i(M) �(v), we have F i(M) ⊆ Bt. Hence, considering the sequenceM,F (M),… , F i(M), each
iteration of F removes the unique element with minimum � value. It follows that the union of the sets has cardinality at
least i + 1. As |Bt| ≤ r, we have i < r and hence F r(M) = ∅.
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For distinct vertices u, v, let u ∧ v denote the greatest common ancestor of u and v in the F -tree, i.e. the first
common vertex on the paths to the root. If u ∧ v is not the root of the F -tree then there exist lu and lv such that
u ∧ v = F lu ({u}) = F lv ({v}) ≠ ∅, hence both u and v belong to Iu∧v. Thus we have �(u ∧ v) > u and �(u ∧ v) > v. Inother words, we have �(u, v) ≤ lu and �(v, u) ≤ lv.
5.4. The activity interval graph
Let H be the intersection graph of the intervals Iv for v ∈ V (G). Note that we may identify V (H) with V (G) as
min Iv = v for all v V (G).
Lemma 5.10. In the intersection graph H of the intervals Iu at most r + 2 intervals intersect in each point (hence
!(H) ≤ r + 2).

Proof. Consider any vertex t with t ∈ Iu for some u. The case u ∈ Bt gives a maximum of r intervals intersecting in t.
Otherwise t = �(u), which gives at most two possibilities for u: either u is inactive (and u = t), or u is active (and u is
uniquely determined, according to Lemma 5.5). Thus at most r + 2 intervals intersect at point t.

As mentioned in the proof of the above lemma, every clique ofH contains at most one inactive vertex. It follows
that there is a coloring 
 ∶ V (G)→ [r + 2] with the following properties:
(1) for every u ∈ V (G) we have 
(u) = r + 2 if and only if u is inactive;
(2) for all distinct u, v ∈ V (G) we have

Iu ∩ Iv ≠ ∅ ⟹ 
(u) ≠ 
(v). (16)
We extend this coloring to sets as follows: forM ⊆ V (G) we let

Γ(M) ∶= {
(v) ∶ v ∈M}. (17)
This coloring allows to define, for each v ∈ V (G)

Class(v) ∶=
(


(v),Γ(F ({v})),… ,Γ(F r({v}))
)

,
NCol(v) ∶= {
(u) ∶ u ∈ N(v) and v ∈ Iu}

Note that all u with v ∈ Iu define a clique ofH (because all Iu contain v) and hence have distinct 
-colors.
Lemma 5.11. Let v ∈ V (G). Every u ∈ Bv can be defined as the maximum vertex x ≤ v with 
(x) = 
(u).

Proof. By assumption we have u ≤ v. Assume towards a contradiction that there exists x ∈ V (G) with u < x ≤ v and

(x) = 
(u). As u ∈ Bv we have �(u) > v, hence x ∈ Iu. It follows that Ix∩Iu ≠ ∅, in contradiction to 
(x) = 
(u).

Towards the aim of bounding the number of graphs of linear rankwidth at most r, we give a bound on the number of
colors that can appear.
Lemma 5.12. Let f (r) ∶= 2(2r + 1)(r + 1)! 2(

r+1
2 ). The number of Class(v) for v ∈ V (G) can be bounded by

(2r + 1)(r + 1)! 2(
r
2) and the number of pairs (Class(v),NCol(v)) for v ∈ V (G) can be bounded by f (r).

Proof. Let v ∈ V (G). From the fact that 
(v) = r + 2 if and only if v is inactive, that images by F only contain active
vertices, as well as from Lemma 5.7 we deduce:

• If 
(v) = r + 2, then there exists a linear order on [r + 1] colors such that for 1 ≤ i ≤ r, the set Γ(F i(v)) is a
subset of the first r + 1 − i colors of [r + 1].

• If 
(v) ≤ r + 1, then there exists a linear order on [r + 1] ⧵ {
(v)} such that for 1 ≤ i ≤ r, the set Γ(F i(v)) is a
subset of the first r − i colors of [r + 1] ⧵ {
(v)}.

Thus the number of distinct Class(v) for v ∈ V (G) is bounded by
(r + 1)! 2r2r−1…2 + (r + 1)r! 2r−1…2 = (2r + 1)(r + 1)! 2(

r
2).

Furthermore, the number of distinct NCol(v) for v ∈ V (G) is at most 2r+1.
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5.5. Encoding the graph in the linear order
We first make use of Corollary 5.2 to encode G by a first-order formula using only the newly added colors and the
order < on V (G). More precisely, for v ∈ V (G), let

ICol(v) ∶= {
(u) ∶ v ∈ Iu}.

Let  be the structure over signature Λ ∪ {<}, where Λ is the set of all colors of the form (Class(v),NCol(v), ICol(v)),
with the same elements as G and < interpreted as in G. Every element v of  is equipped with the color (Class(v),
NCol(v), ICol(v)). The following lemma gives a new proof of the result of [9].
Lemma 5.13. There exists an ∃∀-first-order formula '(x, y) over the vocabulary Λ∪{<} such that for all u, v ∈ V (G)
we have

 ⊧ '(u, v)⟺ {u, v} ∈ E(G).

Proof. By symmetry, we can assume that u < v. According to Corollary 5.2 for distinct u, v ∈ V (G) we have

{u, v} ∈ E(G)⟺

{

v ∈ N⊕(F �(u,v)(u)) if u < v
u ∈ N⊕(F �(v,u)(v)) if u > v.

Note that we can extract any color from Λ, i.e. we can define 
(x) ∈ Γ(F i(y)) and 
(x) ∈ ICol(y). For example,

(x) ∈ Γ(F i({y})) is a big disjunction over all possible colorings Λ(x) = (Class(x),NCol(x), ICol(x)) and Λ(y) =
(Class(y),NCol(y), ICol(y)) satisfying that Class(x) has in its first component an element from the ith component of
Class(y).

We first define formulas  i(x, y) such that for all u, v ∈ V (G)
 ⊧  i(u, v)⇔ v ∈ F i({u}).

Let C = Γ(F i({u})). According to Lemma 5.11, for a ∈ C , the element of F i({u}) ⊆ Bu with color a is the
maximal element w < u such that 
(w) = a. The formula can express that y < x is maximal with 
(y) = a by
(y < x) ∧ (
(y) = a) ∧∀z ((z > y) ∧ (z < x) → 
(z) ≠ a). Here, for convenience, we use 
(z) = a as an atom. Note
that  i(x, y) is a ∀-formula.

We now define formulas �k(x, y) such that for all u, v ∈ V (G) with u < v we have
 ⊧ �k(u, v)⇔ k = �(u, v).

Observe that v ∈ IF k({u}) if and only if for every x ∈ F k({u}) we have x ≤ v, a ∈ ICol(v) (i.e. there exists some y
with 
(y) = a and v ∈ Iy) and there exists no z with x < z ≤ v with 
(z) = a (hence min Iy ≤ x, which implies that Iyand Ix intersects thus x = y as 
(x) = 
(y)). We restrict ourselves to the case u < v and obtain

u < v ∧ v ∈ IF k({u}) ⟺ u < v ∧ Γ(F k({u})) ⊆ ICol(v)

∧∀x (x ∈ F k({u})→ x ≤ v ∧ 
(x) ∉ ICol(v)) .

Then �(u, v) for u < v is the minimum integer k such that F k({u}) = ∅, or v ∈ IF k({u}) and this is easy to state as a ∀-formula. Finally, if we have determined �(u, v), with the help of the formulas i we can determine whether {u, v} ∈ E(G)
as in the proof of Corollary 5.2 by existentially quantifying the elements of F ({u}), F 2({u}),… , F �(u,v)({u}) and
expressing whether v ∈ N⊕(F �(u,v)({u})). Indeed, for every x ∈ F �(u,v)({u}) we have v ∈ IF �(u,v)({u}) ⊆ Ix, hence theadjacency of x and y is encoded in NCol(v).

This information can hence be retrieved by an ∃∀-formula, as claimed.
Lemma 5.14. Let f ′(r) ∶= (2r + 1)(r + 1)! 2(

r
2)3r+1. The number of triples (Class(v),NCol(v), ICol(v)) for v ∈ V (G)

can be bounded by f ′(r).

Proof. By Lemma 5.12, the number of distinct Class(v) for v ∈ V (G) is bounded by (2r + 1)(r + 1)! 2(r2). The number
of pairs (NCol(v), ICol(v)) is at most 3r+1 (for each color a in [r + 1] either a ∉ ICol(v) or a ∈ ICol(v) ⧵ NCol(v) or
a ∈ NCol(v)).
J. Nešetřil et al.: Preprint submitted to Elsevier Page 23 of 27



Classes of graphs with low complexity

As a corollary we conclude an upper bound on the number of graphs of bounded linear rankwidth.
Theorem 5.15. Unlabeled graphs with linear rankwidth at most r can be encoded using at most

(r
2

)

+ r log2 r +
r log2(12∕e) +O(log2 r) bits per vertex. Precisely, the number of unlabelled graphs of order n with linear rankwidth at
most r is at most

[

(2r + 1)(r + 1)! 2(
r
2)3r+1

]n
.

Proof. According to Stirling’s approximation formula we have
log2(r!) = r + 1 + r log2 r − r log2 e + O(log2 r).

As log2[(r + 1)!] = log2(r + 1) + log2(r!) we have log2
[

(2r + 1)(r + 1)! 2(
r
2)3r+1

]

=
(r
2

)

+ r log2 r + r log2(12∕e) +
O(log2 r).
Remark 5.16. The encoding can be computed in linear time if the linear order on G is given.
5.6. Partition into cographs
Theorem 5.17. Let f (r) = 2(2r + 1)(r + 1)! 2(

r+1
2 ). The c-chromatic number of every graph G (that is the minimum

order of a partition of V (G) where each part induces a cograph) is bounded by f (lrw(G)). Hence

�(G) ≤ f (lrw(G))!(G). (18)
Proof. Let u ∼ v hold if and only if Class(u) = Class(v) and NCol(u) = NCol(v). As proved in Lemma 5.12 there are
at most f (r) equivalence classes for the relation ∼.

Let X be an equivalence class for ∼, and let u, v be distinct elements in X. Let k = �(u, v) and let l = �(v, u).
If F k(u) = ∅, then F k(v) = ∅ as Class(v) = Class(u). Otherwise, F k({u}) ≠ ∅, thus F k({v}) ≠ ∅. As v ∈ IF k({u})

and v ∈ IF k({v}) we deduce that F k({u}) and F k({v}) are both included in Bv. As the vertices of a given color in Bv
are uniquely determined we deduce F k({u}) = F k({v}). Similarly, we argue that F l({u}) = F l({v}). It follows that
F k({u}) = F l({u}) = u ∧ v.

Hence, if x∧ y = u∧ v for x, y ∈ X, then we have x∧ y = F k({x}) = F k({u}). As NCol(u) = NCol(v), we deduce
that for all x, y ∈ X with x ∧ y = u ∧ v we have y ∈ N⊕(F k({x})) or for all x, y ∈ X with x ∧ y = u ∧ v we have
y ∉ N⊕(F k({x})). Then it follows from Corollary 5.2 that at each inner vertex of F on X we either define a join or a
union. Hence, G[X] is a cograph with cotree F restricted to X of height at most r + 2.
Remark 5.18. The partition can be computed in quadratic time if the ordering of the vertex set is given.

The function f (r) is most probably far from being optimal. This naturally leads to the following question.
Problem 5.19. Estimate the growth rate of function g ∶ ℕ → ℝ defined by

g(r) = sup
{

�(G)
!(G)

∶ lrw(G) ≤ r
}

. (19)

Remark 5.20. One may wonder whether bounding �(G) by an affine function of !(G) could decrease the coefficient
of !(G). In other words, is the ratio �∕! be asymptotically much smaller (as ! → ∞) than its supremum? Note
that if lrw(G) = r and n ∈ ℕ, then the graph Gn obtained as the join of n copies of G satisfies lrw(Gn) ≤ r + 1,
!(Gn) = n!(G) and �(Gn) = n�(G). Thus

g(r − 1) ≤ lim sup
!→∞

{

�(G)
!(G)

|

|

|

|

lrw(G) ≤ r and !(G) ≥ !
}

≤ g(r).

Problem 5.21. Is the ratio �(G)∕!(G) bounded by a polynomial function of the neighborhood-width ofG (equivalently,
of the linear cliquewidth or of the linear NLC-width of G)?
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6. Conclusion, further works, and open problems
In this paper, several aspects of classes with bounded linear-rankwidth have been studied, both from (structural) graph
theoretical and the model theoretical points of view.

On the one hand, it appeared that graphs with bounded linear rankwidth do not form a “prime” class, in the sense that
they can be further decomposed/covered using pieces in classes with bounded embedded shrubdepth. As an immediate
corollary we obtained that classes with bounded linear rankwidth are linearly �-bounded. Of course, the �∕! bound
obtained in Theorem 5.17 is most probably very far from being optimal.

On the other hand, considering how graphs with linear rank-width at most r are encoded in a linear order or in a graph
with bounded pathwidth with marginal “quantifier-free” use of a compatible linear order improved our understanding of
this class in the first-order transduction framework.

Classes with bounded rankwidth seem to be much more complex than expected and no simple extension of the
results obtained from classes with bounded linear rankwidth seems to hold. In particular, these classes seem to be
“prime” in the sense that you cannot even partition the vertex set into a bounded number of parts, each inducing a graph
is a simple hereditary class like the class of cographs (see Corollary 3.2). However, the following conjecture seems
reasonable to us.
Conjecture 6.1. Let C be a class of graphs of bounded rankwidth. Then C has structurally bounded treewidth if and
only if C is stable.

We believe that our study of classes with bounded linear rankwidth might open the perspective to study classes
admitting low linear rankwidth covers. Let us elaborate on this. As a consequence of Theorem 4.6 we have the following:
Theorem 6.2. Let C be a class with low linear rankwidth covers. Then the following are equivalent:

1. C is monadically stable,

2. C is stable,

3. C excludes a semi-induced half-graph,

4. C has structurally bounded expansion.

Proof. Clearly 1 ⇒ 2 ⇒ 3. For 3 ⇒ 4, let p be an integer and consider a depth-p cover  of G ∈ C with linear
rankwidth at most r. If C excludes some semi-induced half-graph we deduce by Theorem 4.6 that each U ∈  induces
a subgraph that is a fixed transduction of a graph with pathwidth at most C(r), hence, of a class that has depth-p
covers with bounded shrubdepth. Considering the intersection of the two covers, we get that C has depth-p covers
with bounded shrubdepth, hence, has structurally bounded expansion. Thus 3 ⇒ 4. Finally, 4 ⇒ 1 is implied by
Theorem 2.5.

The next example illustrates again the concept of simple transductions and as a side product will provide us with
some examples of classes of graphs admitting low linear rankwidth covers.
Example 6.3. We consider the following graph classes, introduced in [34]. Let n, m be integers. The graphHn,m has
vertex set V = {vi,j ∶ (i, j) ∈ [n] × [m]}. In this graph, two vertices vi,j and vi′,j′ with i ≤ i′ are adjacent if i′ = i + 1
and j′ ≤ j. The graph H̃n,m is obtained fromHn,m by adding all the edges between vertices having same first index
(that is between vi,j and vi,j′ for every i ∈ [n] and all distinct j, j′ ∈ [m].

First note that for fixed a ∈ ℕ the classes Ha = {Ha,m ∶ m ∈ ℕ} and H̃a = {H̃a,m ∶ m ∈ ℕ} have bounded
linear rank-width as they can be obtained as interpretations of a-colored linear orders: we consider the linear order on
{vi,j ∶ (i, j) ∈ [a] × [m]} defined by vi,j < vi′,j′ if j < j′ or (j = j′) and (i < i′). We color vi,j by color i. Then thegraphs in Ha are obtained by the interpretation stating that x < y are adjacent if the color of x is one less than the color
of y, and if there is no z between x and y with the same color as x. The graphs in H̃a are obtained by further adding allthe edges between vertices with same color.

Following the lines of [33, Theorem 9] we deduce from Example 6.3:
Proposition 6.4. The class of unit interval graphs and the class of bipartite permutation graphs admit low linear
rank-width colorings.
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As we have shown above, classes with low linear rankwidth covers generalize structurally bounded expansion
classes. Among the first problems to be solved on these class, two arise very naturally:
Problem 6.5. Is it true that every first-order transduction of a class with low linear rankwidth covers has again low
linear rankwidth covers?

As a stronger form of this problem, one can also wonder whether classes with low linear rankwidth covers enjoy a
form of quantifier elimination, as structurally bounded expansion class do.
Problem 6.6. Is it true that every class with low linear-rankwidth covers is monadically NIP?

Note that it is easily checked that a positive answer to Problem 6.5 would imply a positive answer to Problem 6.6.
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