Stabilization of the fluidic pinball and control of the open cavity with gradient-enriched machine learning control

by **Guy Y. Cornejo Maceda**¹, Yiqing Li², François Lusseyran¹, Marek Morzynski³ and Bernd R. Noack²

¹ Paris-Saclay University, LIMSI, CNRS, France ² Harbin Institute of Technology, China ³ Poznan University of Technology, Poland

Acknowlegement : ANR-17-ASTR-0022, FLOwCON project : Contrôle d'écoulements turbulents en boucle fermée par apprentissage automatique

GDR 2502, Virtual Meeting, 12-13 Nov. 2020

A methodology for MIMO control

Truck model @TU-B with 18 pressure sensors and 5 actuators (from Pfeiffer & King 2018 *Exp. Fluids*)

The fluidic pinball with 3 actuators and 9 sensors.

An optimization problem—a model-free approachb(t) = K(h(t), s(t))h : periodic functions $K^* = \underset{K \in \mathcal{K}}{\operatorname{arg\,min}} J(K)$ s : sensors \mathcal{K} : control law space

The fluidic pinball - a nonlinear system for control benchmark

Reynolds number $\text{Re} = \frac{U_{\infty}D}{\nu} = 100$

Fluidic pinball community

- Deep reinforcement learning control Thibaut Guégan & Laurent Cordier (Institut Pprime)
- Experiment in University of Calgary Robert Martinuzzi (Raibaudo 2020 Physics of Fluids)
- Myriad of regimes (Chen 2020 JFM)

Bifurcation diagram of the fluidic pinball (from Deng 2020 JFM)

The fluidic pinball - a hierarchy of stabilization mechanisms

Explorative gradient method (EGM)

A parametric optimization algorithm balancing wide exploration and quick convergence of gradient methods.

The gradient-enriched machine learning control (gMLC) algorithm

An automated self-learning algorithm for feedback control law optimization.

Stabilization of the fluidic pinball with aMLC

Control landscape

- $\bullet h(t) = \mathbf{0}$
- **s**(t) : 9 sensors + delays = 36 sensor signals

gMLC performance

gMLC = asymmetric steady forcing + phasor control

- -80.0% J_a/J₀ !
- Only 0.02 actuation power!

Comparison with genetic programming

- Genetic programming: 100 × 10 → -67% J_a/J₀
- gMLC: after 250 evaluations -74% J_a/J₀

gMLC and GPC comparison

gMLC applied to an experiment: the open cavity @LIMSI

Open cavity control set-up and control with gMLC

Hot-wire velocity and PSD of the unforced natural flow.

Cost function : $J(b) = J_a(b) + \gamma_b J_b(b)$

amplitude :
$$J_a(b) = \frac{\langle a_d(u_{hw})^2 \rangle_T}{\langle a_d(u_0)^2 \rangle_T}$$

actuation : $J_b(b) = \frac{\langle (E-E_0)^2 \rangle_T}{\langle E_{max} - E_0 \rangle^2}$

Hot-wire velocity and PSD of the unforced natural flow.

Open cavity control— GP control versus gMLC

Cost function : $J = J_a + J_b$ **Genetic programming control**: after **1500** evaluations STD \uparrow 32% J_a/J_0 \downarrow **73**% $J_b/J_{b,\max} \approx 3\%$ $I_0^{-5} \int_{0}^{-5} \int_{50}^{50} \int_{100}^{10} I_0$ f(Hz)

gMLC: after ≈ 250 evaluations

gMLC outperforms genetic programming control in an experiment!

Summary and perspectives

Summary

- gMLC: A new model-free self-learning algorithm capable of broad exploration and exploitation of local gradients in the control landscape
- Outperformed genetic programming in terms of speed (4× faster) and final solution (+20% better).
- Fluidic pinball: revealed a feedback control law combining asymmetric forcing and phasor control

 \rightarrow Cornejo Maceda 2020 *J. Fluid Mech.* (submitted and soon on arXiv)

Open cavity @LIMSI : gMLC outperformed genetic programming (6× faster and 3× reduction of the PSD peak)

$\textbf{Perspectives} \rightarrow \textbf{MIMO experiments}$

- Drag reduction on a MIMO truck model (@TU-BS with Philipp Oswald & Richard Semaan)
- Robustness of the control laws for varying conditions (Re, yaw angle, variability of the actuators)

Stabilization of the fluidic pinball and control of the open cavity with gradient-enriched machine learning control

by **Guy Y. Cornejo Maceda**¹, Yiqing Li², François Lusseyran¹, Marek Morzynski³ and Bernd R. Noack²

¹ Paris-Saclay University, LIMSI, CNRS, France ² Harbin Institute of Technology, China ³ Poznan University of Technology, Poland

Thank you for your attention Questions?

Acknowlegement : ANR-17-ASTR-0022, FLOwCON project : Contrôle d'écoulements turbulents en boucle fermée par apprentissage automatique

GDR 2502, Virtual Meeting, 12-13 Nov. 2020

