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Preface

The International Conference Zaragoza-Pau on Mathematics and its Applications was orga-
nized by the Departamento de Matemática Aplicada, the Departamento de Métodos Estadís-
ticos and the Departamento de Matemáticas, all of them from the Universidad de Zaragoza
(Spain), and the Laboratoire de Mathématiques et de leurs Applications, from the Université
de Pau et des Pays de l’Adour (France). This conference has been held every two years since
1989. The aim of this conference is to present recent advances in Applied Mathematics,
Statistics and Pure Mathematics, putting special emphasis on subjects linked to petroleum
engineering and environmental problems.

The Fifteenth Conference took place in Jaca (Spain) from 10th to 12nd September 2018.
The official opening ceremony was graced by the presence of the Chancellor of the Univer-
sity of Zaragoza, Rector Mgfco. D. José Antonio Mayoral Murillo, and the Chancellor of the
University of Pau, M. le Président Mohamed Amara. During those three days, 99 mathemati-
cians, coming from different universities, research institutes or the industrial sector, attended
9 plenary lectures, 63 contributed talks and a poster session with 7 posters. We note that in
this edition there were 10 mini-symposia, two of them co-organized by colleagues from the
Universidad de Zaragoza and the Université de Pau et des Pays de l’Adour.

The principal talks were about theoretical and numerical analysis of deterministic models
described by partial differential equations, statistics and stochastics processes, surface ap-
proximation and image analysis. At the same time, there was also a discussion session about
problems in Algebra and Geometry. These proceedings contain 26 refereed research papers,
25 of them based on the corresponding contributions and one paper by E. Savin, which was
mislaid and not included in the monograph of the previous conference.

We would like to thank the following institutions for their regular financial and material
support in our cooperation programmes: Université de Pau et des Pays de l’Adour, Univer-
sidad de Zaragoza and Gobierno de Aragón. Thanks are also due to the Institut Carnot ISI-
FoR, the Centre National de la Recherche Scientifique (CNRS), Common Funds Aquitaine-
Aragón and European Social Fund (ESF), Instituto Universitario de Matemáticas y Apli-
caciones (IUMA) and the Fédération IPRA of Pau (Institut Pluridisciplinaire de Recherche
Appliquée) for the grants specially allotted at the time of the Fifteenth Conference.

We wish to express our gratitude to Alberto Abad (U. Zaragoza), Enrique Artal (U. Zara-
goza), Carmelo Clavero (U. Zaragoza), Jacky Cresson (U. Pau), Marc Dambrine (U. Pau),
Jacqueline Fleckinger (U. Toulouse I), Vincent Florens (U. Pau), Jacques Giacomoni (U.
Pau), Pedro Jodrá (U. Zaragoza), Sophie Mercier (U. Pau), Pedro J. Miana (U. Zaragoza),
Philippe Poncet (U. Pau), Carmen Sangüesa (U. Zaragoza), Peter Takáč (U. Rostock), Guy
Vallet (U. Pau), who, together with us, formed the Scientific Committee. We would like
also to express our special thanks to Pedro Mateo (U. Zaragoza) and to Juan José Torrens
(U. Pública de Navarra), for their invaluable help in organizing the web and editing these
proceedings, respectively. We are also indebted to all the others who helped in the organiza-
tion of the Conference, in particular, María Luisa Gómez, Marta Gómez, María del Carmen
Izaguerri and Beatriz Malo.



xiv Preface

We finally acknowledge the kind cooperation of the referees, as well as the assistance pro-
vided for the realization of the proceedings by the Servicio de Publicaciones of the University
of Zaragoza.

The next Conference Zaragoza-Pau will be held in Jaca from 9th to 11st September 2020.
All of you are cordially invited to participate in this event.

Pau and Zaragoza, November, 2019
The Editors

José Luis Gracia
María Cruz López de Silanes
Manuel Palacios
Departamento de Matemática Aplicada
Universidad de Zaragoza

Étienne Ahusborde
Chérif Amrouche
Gilles Carbou
Laboratoire de Mathématiques et de leurs
Applications
Université de Pau et des Pays de l’Adour
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Iñarrea, M., 165
Irissari, D., 143

Jabbour, A., 1
Jaiyeola, T. G., 229
Jha, S., 219

Kolb, S., 153

Lanchares, V., 165
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Departamento de Matemáticas,
Facultad de Ciencias,
Universidad Autónoma de Madrid,
Ciudad Universitaria de Cantoblanco,
28049 Madrid, Spain.
joseluis.torrea@uam.es



xxiv List of participants

TRESACO, Eva

Centro Universitario de la Defensa,
Academia General Militar,
Ctra. de Huesca s/n,
50090 Zaragoza, Spain.
etresaco@unizar.es

TURPAULT, Rodolphe

Institut de Mathématiques de Bordeaux,
351 Cours de la libération,
33405 Talence Cedex, France.
rodolphe.turpault@u-bordeaux.fr

UZAL, José Manuel
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STOKES PROBLEM WITH NAVIER-TYPE

BOUNDARY CONDITIONS
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Abstract. We study in this paper the generalized resolvent of the Stokes problem with
Navier-type boundary conditions.

Keywords: Generalized resolvent, Stokes Problem, Navier-type boundary conditions.
AMS classification: 35Q30, 76D05, 76D07, 35K20, 35K22, 76N10, 35A20, 35Q40.

§1. Introduction

This paper is devoted to the existence and uniqueness of weak and strong and very weak
solutions to the problem{

λu − ∆u + ∇π = f , div u = χ in Ω × (0,T ),
u · n = g, curl u × n = h × n on Γ × (0,T ), (1)

where we study the generalized resolvent of the Stokes operator with nonstandard Navier-
type boundary conditions. Up to now most research concerns the homogeneous boundary
conditions, and the case χ=0. Although the case χ ,0 has many important applications,
specially in treating more general boundary value problems and using cut-off procedure.

There exists several references on (1) when χ = 0 in Ω. This question was already studied
by Solonnikov in [12] for the homogeneous Dirichlet boundary condition (i.e. u = 0 on Γ).
In that work, the author considered the resolvent Problem when | arg λ| ≤ δ+π/2 where δ ≥ 0
is small. Later on, the resolvent of the Stokes operator with Dirichlet boundary condition
in bounded domains has been studied by Giga in [6] using the theory of pseudo-differential
operators. The results in [6] extends those in [12] in two directions. First, he consider larger
set of values of λ. More precisely λ in the sector | arg λ| ≤ π − ε, for any ε > 0. Second,
the resolvent of the Stokes operator is obtained explicitly and this enables him to describe the
domains of fractional powers of the Stokes operator with Dirichlet boundary condition.

In exterior domains, Giga and Sohr [7] approximate the resolvent of the Stokes operator
with Dirichlet boundary condition with the resolvent of the Stokes operator in the entire
space.

Farwig and Sohr [5] investigate the Problem (1) when div u , 0 in Ω and u = 0 on Γ.
Their results include bounded and unbounded domains, for the whole and the half space the
proof relies on multiplier technique. The problem is also investigated for bended half spaces
and for cones by using perturbation criterion and referring to the half space problem.

The Problem (1) is also studied with Robin boundary conditions by Saal [10], Shibata
and Shimada [11]. In [10], Saal proves that the Stokes operator with homogeneous Robin
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boundary conditions is sectorial and admits an H∞-calculus on Lp-spaces. Shibata and Shi-
mada proved in [11] a generalized resolvent estimate for the Stokes equations with non-
homogeneous Robin boundary conditions and divergence condition in Lp-framework in a
bounded or exterior domain by extending the argument of Farwig and Shor [5].

Concerning the Navier-type boundary conditions, Miyakawa [9] shows that the Laplacian
operator with homogeneous Navier-type boundary conditions generates a holomorphic semi-
group on Lp-spaces when the domain Ω is of class C∞. Mitrea and Monniaux [8] consider
the resolvent of the Stokes operator with homogeneous Navier-type boundary conditions in
Lipschitz domains using differential forms on Lipschitz sub-domains of a smooth compact
Riemannian manifold. In [1] and [2] Al Baba et al. consider the Problem (1) when χ = 0 in
Ω and g = 0, h = 0 on Γ and prove the existence of weak, strong and very weak solutions to
this problem.

This paper is organized as follows. In Section 2 we give the functional framework and
some preliminary results at the basis of our proofs. In Section 3 we prove our main results on
the existence of weak, strong and very weak solutions to Problem (1).

§2. Preliminaries

In this subsection we review some basic notations, definitions and functional framework
which are essential in our work.

In what follows, if we do not state otherwise, Ω will be considered as an open bounded
domain of R3 of class C2,1. Then a unit normal vector to the boundary can be defined almost
everywhere it will be denoted by n, n is defined everywhere because n is C1,1. The generic
point in Ω is denoted by x = (x1, x2, x3). The domain Ω is not necessarily simply-connected
and the boundary Γ is not necessarily connected.

Let us introduce some functional spaces.
Let Lp(Ω) denote the usual vector valued Lp-space over Ω. Let us define the spaces:

Hp(curl,Ω) = {u ∈ Lp(Ω); curl u ∈ Lp(Ω)},
Hp(div,Ω) = {u ∈ Lp(Ω); div u ∈ Lp(Ω)},

Xp(Ω) = Hp(curl,Ω) ∩ Hp(div,Ω),

equipped with their graph norms. Thanks to [4] and [3] we know that D(Ω) is dense in
Hp(curl,Ω), Hp(div,Ω) and Xp(Ω). We also define the subspaces:

Hp
0 (curl,Ω) = {u ∈ Hp(curl,Ω); u × n = 0 on Γ},
Hp

0 (div,Ω) = {u ∈ Hp(div,Ω); u · n = 0 on Γ},
Xp

N(Ω) = {u ∈ Xp(Ω); u × n = 0 on Γ},
Xp

T (Ω) = {u ∈ Xp(Ω); u · n = 0 on Γ}.

We recall that for all function u ∈ Hp(curl,Ω) (respectively u ∈ Hp(div,Ω)), the tangential
trace u × n (respectively the normal trace u · n) exists and belongs to W−1/p,p(Γ) (respectively
to W−1/p,p(Γ)). Thanks to [4] we know that D(Ω) is dense in Hp

0 (curl,Ω) and in Hp
0 (div,Ω).

Finally we denote by [Hp
0 (curl,Ω)]’ and [Hp

0 (div,Ω)]’ the dual spaces of Hp
0 (curl,Ω) and

Hp
0 (div,Ω) respectively.
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Next, we review some known results which are essential in our work. First, we recall that
the vector-valued Laplace operator of a vector field u= (v1, v2, v3) is equivalently defined by

∆ u = grad (div u) - curl curl u.
We have the following lemmas [4]

Lemma 1. The spaces Xp
N(Ω) and Xp

T (Ω) defined above are continuously embedded in
W1,p(Ω).

In order to consider the case of nonhomogeneous boundary conditions, we introduce the
following spaces:

X1,p(Ω) = {u ∈ Lp(Ω); divu ∈ Lp(Ω), curl u ∈ Lp(Ω) and u · n ∈ W1−1/p,p(Γ)},

Y1,p(Ω) = {u ∈ Lp(Ω); divu ∈ Lp(Ω), curl u ∈ Lp(Ω) and u × n ∈ W1−1/p,p(Γ)}.

Lemma 2. The spaces X1,p(Ω) and Y1,p(Ω) are continuously embedded in W1,p(Ω).

Consider as well the spaces:

X2,p(Ω) = {u ∈ Lp(Ω); divu ∈ W1,p(Ω), curl u ∈W1,p(Ω) and u · n ∈ W2−1/p,p(Γ)},

Y2,p(Ω) = {u ∈ Lp(Ω); divu ∈ W1,p(Ω), curl u ∈W1,p(Ω) and u × n ∈ W2−1/p,p(Γ)}.

Theorem 3. Assume that Ω is of class C2,1, then the spaces X2,p(Ω) and Y2,p(Ω) are contin-
uously embedded in W2,p(Ω).

Consider now the space

Ep(Ω) = {u ∈W1,p(Ω); ∆u ∈ [Hp′

0 (div,Ω)]′},

which is a Banach space for the norm ‖u‖Ep(Ω) = ‖u‖W1,p(Ω) + ‖∆u‖[Hp′
o (div,Ω)]′ . Thanks to [3,

Lemma 4.1] we know that D(Ω) is dense in Ep(Ω). Moreover, (see [3, Corollary 4.2]),
the linear mapping γ : u 7−→ curlu × n defined on D(Ω) can be extended to a linear and
continuous mapping γ : Ep(Ω) 7−→ W−1/p,p(Ω). Moreover, we have the Green formula: for
any u ∈ Ep(Ω) and ϕ ∈ Xp′

τ (Ω) such that div ϕ= 0 in Ω,

−〈∆u,ϕ〉[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) =

∫
Ω

curl u · curlϕ dx − 〈curl u × n,ϕ〉Γ,

where 〈·, ·〉Γ = 〈·, ·〉W−1/p,p(Γ)×W1/p,p′ (Γ).
Next, we introduce the following space

Tp(Ω) = {φ ∈ Hp
0 (div,Ω); divφ ∈ W1,p

0 (Ω)}.

The spaceD(Ω) is dense in Tp(Ω) and for all χ ∈ W−1,p(Ω) and φ ∈ Tp′ (Ω), we have:

〈∇χ,φ〉(Tp′ (Ω))′×Tp′ (Ω) = −〈χ, divφ〉W−1,p(Ω)×W1,p′
0 (Ω). (2)

A distribution f belongs to (Tp(Ω))′ if and only if there exist ψ ∈ Lp′ (Ω) and f0 ∈W−1,p′ (Ω),
such that f = ψ + ∇ f0. Moreover, we have the estimate

‖ψ‖Lp′ (Ω) + ‖ f0‖W−1,p′ (Ω) ≤ C‖ f‖(Tp(Ω))′ .
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We will need also the following space

Hp(∆; Ω) = {u ∈ Lp(Ω); ∆u ∈ (Tp′ (Ω))′},

which is a Banach space for the norm ‖u‖Hp(∆;Ω) = ‖u‖Lp(Ω) + ‖∆u‖(Tp′ (Ω))′ . The space D(Ω)
is dense in Hp(∆; Ω) and The mapping γ: u 7−→ curl u × n defined on D(Ω) can be extended
by continuity to a linear and continuous mapping γ : Hp(∆; Ω) 7−→W−1−1/p,p(Ω). Moreover,
we have the Green formula: for any u ∈ Hp(∆; Ω) and φ ∈ Yp′

τ (Ω),

〈∆u,φ〉(Tp′ (Ω))′×Tp′ (Ω) =

∫
Ω

u · ∆φ dx + 〈curlu × n,φ〉Γ, (3)

where 〈·, ·〉Γ = 〈·, ·〉W−1−1/p,p(Γ)×W1+1/p,p′ (Γ) and

Yp
τ (Ω) = {φ ∈W2,p(Ω); φ · n = 0, divφ = 0, curlφ × n = 0 on Γ}.

§3. Generalized resolvent problem

In this section we consider the generalized resolvent Problem (1) and we prove the existence
and uniqueness of weak, strong and very weak solution to this problem.

3.1. Weak solution

Consider the problem{
λu − ∆u + ∇π = f , div u = 0 in Ω × (0,T ),

u · n = 0, curl u × n = h × n on Γ × (0,T ), (4)

We start by the existence and uniqueness of weak solution to (4).

Theorem 4. Let ε ∈]0, π[ be fixed and λ ∈ Σε. Let p ≥ 2, f ∈ (Hp′

0 (div,Ω))′ and h × n ∈
W−1/p,p(Γ). Then the problem (4) has a unique solution (u, π) ∈W1,p(Ω)×Lp(Ω)/R satisfying
the following estimate

‖u‖W1,p(Ω) ≤ C(Ω, p)
(
‖ f‖(Hp′

0 (div,Ω))′ + ‖h × n‖W−1/p,p(Γ)

)
. (5)

Proof. Step 1 : Existence and uniqueness. We can easily verify that problem (4) is equiva-
lent to the variational problem: Find u ∈ Vp

τ (Ω) such that for all u ∈ Vp′
τ (Ω)

λ

∫
Ω

u · u dx +

∫
Ω

curl u · curl u dx = 〈 f , u〉Ω + 〈h × n, u〉Γ, (6)

where 〈·, ·〉Ω = 〈·, ·〉[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) and 〈·, ·〉Γ = 〈·, ·〉W−1/p,p(Γ)×W−1/p,p′ (Γ).
The proof is done in two steps:
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i) Case 2 ≤ p ≤ 6. The case p = 2 can be directly obtained using Lax-Milgram theorem.
Suppose that 2 < p ≤ 6, then Problem (4) has a unique solution (u, π) ∈ H1(Ω) ×
L2(Ω)/R. We write (4) in the form:{

−∆u + ∇π = f − λu = F, div u = 0 in Ω

u · n = 0, curl u × n = h × n on Γ
. (7)

As H1(Ω) ↪→ Lp(Ω), we have F ∈ (Hp′

0 (div; Ω))′ and

∀ u ∈ Kp′
τ (Ω), 〈F, u〉Ω + 〈h × n, u〉Γ = 0. (8)

Theorem 4.4 of [3] implies that u ∈W1,p(Ω) and π ∈ Lp(Ω).
Let u ∈ Kp′

τ (Ω), using the variational formulation we have

〈F, u〉Ω + 〈h × n, u〉Γ = 0.

Then our solution (u, π) belongs to W1,p(Ω) × Lp(Ω)/R.

ii) Case p ≥ 6. Observe that (Hp′

0 (div,Ω))′ ↪→ (H6/5
0 (div,Ω))′ and W−1/p,p(Γ) ↪→W−1/6,6(Γ).

Then Problem (7) has a unique solution (u, π) ∈ W1,6(Ω) × L6(Ω)/R. Thanks to the
embedding W1,6(Ω) ↪→ L∞(Ω) we deduce that F = f − λu ∈ (Hp′

0 (div,Ω))′. More-
over, F satisfies the compatibility condition (8), then we conclude that (u, π) belongs
to W1,p(Ω) × Lp(Ω)/R.

Step 2: Estimate. Let B ∈ L(Vp
τ (Ω), (Vp′

τ (Ω))′) be the operator defined by

∀u ∈ Vp
τ (Ω),∀ u ∈ Vp′

τ (Ω), 〈Bu, u〉(Vp′
τ (Ω))′×Vp

τ (Ω) = λ

∫
Ω

u · u dx +

∫
Ω

curl u · curl u dx.

For all p ≥ 2, the operator B is an isomorphism from Vp
τ (Ω) into (Vp′

τ (Ω))′ and ‖u‖Xp
τ
≈

‖Bu‖(Vp′
τ (Ω))′ for all u ∈ Vp

τ (Ω). Moreover using the continuous embedding Xp
τ (Ω) ↪→W1,p(Ω)

we have for every u ∈ Vp
τ (Ω) solution of problem (6),

‖u‖W1,p(Ω) ≤ C(Ω, p)‖u‖Xp
τ (Ω) ≤ C(Ω, p)‖Bu‖(Vp′

τ (Ω))′

and

‖Bu‖(Vp′
τ (Ω))′ = sup

u∈Vp′
τ (Ω)
u,0

|〈Bu, u〉|
‖u‖Xp′

τ (Ω)

= sup
u∈Vp′

τ (Ω)
u,0

|〈 f , u〉Ω + 〈h × n, u〉Γ|
‖u‖Xp′

τ (Ω)

≤ C(Ω, p)
(
‖ f‖(Hp′

0 (div,Ω))′ + ‖h × n‖W−1/p,p(Γ)

)
,

which is estimate (5). �

Theorem 5. Let λ ∈ Σε. Let p ≥ 2. Let f ∈ (Hp′

0 (div,Ω))′ , h×n∈W−1/p,p(Γ) , g ∈W1−1/p,p(Γ)
and χ ∈ Lp(Ω) verifying the following compatibility condition∫

Ω

χ dx =

∫
Γ

g dσ. (9)



6 Hind Al Baba and Antonia Jabbour

Then problem (1) has a unique solution (u, π) ∈W1,p(Ω) × Lp(Ω)/R satisfying the following
estimate

‖u‖W1,p(Ω) + ‖π‖Lp(Ω)/R ≤ C(Ω, p, λ)(‖ f‖(Hp′
0 (div,Ω))′ + ‖χ‖Lp(Ω) + ‖g‖W1−1/p,p(Γ)

+ ‖h × n‖W−1/p,p(Γ)). (10)

Proof. i) Existence and uniqueness. Consider the following Neumann problem

∆θ = χ in Ω and
∂θ

∂n
= g on Γ. (11)

Since g ∈ W1−1/p,p(Γ) and χ ∈ Lp(Ω) verifying the compatibility condition (9) this
problem has a unique solution θ ∈ W2,p(Ω)/R such that

‖θ‖W2,p(Ω)/R ≤ C
(
‖g‖W1−1/p,p(Γ) + ‖χ‖Lp(Ω)

)
. (12)

Set F = f − λ∇θ + ∇χ and observe that F ∈ (Hp′

0 (div,Ω))′. Then using Theorem 4 we
deduce that the problem{

λz − ∆z + ∇π = F, div z = 0 in Ω

z · n = 0, curl z × n = h × n on Γ
(13)

has a unique solution (z, π) ∈W1,p(Ω) × Lp(Ω)/R satisfying the following estimate

‖z‖W1,p(Ω) ≤ C(Ω, p)
(
‖F‖(Hp′

0 (div,Ω))′ + ‖h × n‖W−1/p,p(Γ)

)
. (14)

Set u = z + ∇θ. Then (u, π) solve (1).

ii) Estimate. Observe that

‖u‖W1,p(Ω) ≤ C(Ω, p)(‖ f‖(Hp′
0 (div,Ω))′ + |λ|‖∇θ‖(Hp′

0 (div,Ω))′ + ‖∇χ‖(Hp′
0 (div,Ω))′

+ ‖h × n‖W−1/p,p(Γ)) + ‖∇θ‖W1,p(Ω).

Then using estimate (12) one gets

‖u‖W1,p(Ω) ≤ C(Ω, p, λ)(‖ f‖(Hp′
0 (div,Ω))′ + ‖χ‖Lp(Ω) + ‖g‖W1−1/p,p(Γ)

+ ‖h × n‖W−1/p,p(Γ)). (15)

Moreover ‖π‖Lp(Ω)/R ≤ C(Ω, p) ‖∇π‖(Hp′
0 (div,Ω))′ = ‖ f − λu + ∆u‖(Hp′

0 (div,Ω))′ . Thus

‖π‖Lp(Ω)/R ≤ C(Ω, p, λ)(‖ f‖(Hp′
0 (div,Ω))′ + ‖χ‖Lp(Ω) + ‖g‖W1−1/p,p(Γ) + ‖h× n‖W−1/p,p(Γ)). (16)

Combining (15) together with (16) we obtain estimate (10).
�
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Theorem 6. Let 1 < p < 2, f ∈ (Hp′

0 (div,Ω))′ and h× n ∈W−1/p,p(Γ), g ∈W1−1/p,p(Γ) and χ
∈ Lp(Ω) verifying the following compatibility condition (9). Then Problem (1) has a unique
solution (u, π) ∈W1,p(Ω) × Lp(Ω)/R.

Proof. Step 1: We suppose that g = 0. The problem{
λu − ∆u + ∇π = f , div u = χ, in Ω,

u · n = 0, curl u × n = h × n, on Γ,
(17)

has the following equivalent variational formulation: Find (u, π) ∈ W1,p(Ω) × Lp(Ω)/R sat-
isfying u · n = 0 on Γ, such that ∀ w ∈ W1,p′ satisfying w · n = 0 and curl w × n=0 on
Γ

λ

∫
Ω

u · w dx +

∫
Ω

curl u · curlw dx −
∫

Ω

π · divw dx = 〈 f ,w〉[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω)

+ 〈h × n,w〉W−1/p,p(Γ)×W−1/p,p′ (Γ) −

∫
Ω

χ · divw dx.

According to theorem 5, for any (F, ϕ) in (Hp
0 (div,Ω))′×Lp′

0 (Ω) there exists a unique solution
(w, η) ∈W1,p′ (Ω) × Lp′ (Ω)/R solution to{

λw − ∆w + ∇η = F, divw = ϕ, in Ω,
w · n = 0, curlw × n = 0, on Γ,

(18)

and satisfying

‖w‖W1,p′ (Ω) + ‖η‖Lp′ (Ω)/R ≤ C(Ω, p′, λ)(‖F‖(Hp
0 (div,Ω))′ + ‖ϕ‖Lp′ (Ω)).

Let T be a linear form defined from (Hp
0 (div,Ω))′ × Lp′

0 (Ω) onto C by

T : (F, ϕ) 7−→ 〈 f ,w〉[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) + 〈h × n,w〉Γ −
∫

Ω

χ · η dx.

Observe that

|T (F, ϕ)| ≤ ‖ f‖(Hp′
0 (div,Ω))′‖w‖Hp′

0 (div,Ω))′ + ‖h × n‖W−1/p,p(Γ)‖w‖W1/p,p′ (Γ) + ‖ϕ‖Lp′ (Ω).

Then T is continuous on (Hp
0 (div,Ω))′ × Lp′ (Ω) and we deduce that there exists a unique

(u, π) ∈ Hp
0 (div,Ω) × Lp(Ω)/R such that

T (F, ϕ) = 〈u, F〉Hp
0 (div,Ω)×(Hp

0 (div,Ω))′ −

∫
Ω

π · ϕ dx.

As a result

λ

∫
Ω

u · w dx +

∫
Ω

curl u · curlw dx −
∫

Ω

π · divw dx

= 〈 f ,w〉[Hp′
0 (div,Ω)]′×Hp′

0 (div,Ω) + 〈h × n,w〉W−1/p,p(Γ)×W−1/p,p′ (Γ) −

∫
Ω

χ · divw dx.
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To finish, we shall prove that u belongs to W1,p(Ω). To this end we write our problem in the
form (7) where F = f −λu belongs to (Hp′

0 (div,Ω))′ and satisfies (8). Then using [3, Remark
4.6] our solution (u, π) ∈W1,p(Ω) × Lp(Ω).
Step 2 : g , 0. Let θ ∈W2,p(Ω)/R be the unique solution of the Neumann problem (11) with
χ ∈ Lp(Ω) and g ∈W1−1/p,p(Γ) satisfying (9). Let F = f + ∇χ − λ∇θ ∈ (Hp′

0 (div,Ω))′. Then
there exists (z, π) ∈W1,p(Ω) × Lp(Ω)/R solution of (13). Set u=z + ∇θ. We can easily verify
that (u, π) solves (1). �

3.2. Strong solution
Theorem 7. Let 1 < p < ∞. Let f ∈ Lp(Ω) and h × n ∈W1−1/p,p(Γ). Then the problem (4)
has a unique solution (u, π) ∈W2,p(Ω) ×W1,p(Ω)/R satisfying the following estimate

‖u‖W2,p(Ω) + ‖π‖W1,p(Ω)/R ≤ C(λ, p,Ω)(‖ f‖Lp(Ω) + ‖h × n‖W1−1/p,p(Γ)). (19)

Proof. We know that problem (4) has a unique solution (u, π) ∈W1,p(Ω) × Lp(Ω)/R .
Moreover π satisfies

div(∇π − f ) = 0 in Ω, (∇π − f ) · n = −divΓ(h × n) on Γ.

Since h × n ∈W1−1/p,p(Γ) we deduce that that π ∈ W1,p(Ω).
Set z = curl u. Notice that z verify the following problem:{

λz − ∆z = curl f , div z = 0, in Ω,
z × n = h × n, on Γ,

(20)

where curl f ∈ (Hp′

0 (curl,Ω))′ and h × n ∈W1−1/p,p(Γ). Then z ∈W1,p(Ω) and satisfies

‖z‖W1,p(Ω) ≤ C(Ω)(‖ f‖Lp(Ω) + ‖h × n‖W1−1/p,p(Γ)).

Thus u ∈ Lp(Ω), div u =0 ∈W1,p(Ω), curl u = z ∈W1,p(Ω) and u · n = 0 ∈W1−1/p,p(Γ). Then
u ∈W2,p(Ω) and

‖u‖W2,p(Ω) ≤ C(λ, p,Ω)(‖ f‖Lp(Ω) + ‖h × n‖W1−1/p,p(Γ)).

Finally proceeding as in step 2 of the proof of theorem 5 , we obtain that the solution (u, π)
satisfies the estimation (19) which ends the proof. �

Corollary 8. Let 1 < p < ∞. Let f ∈ Lp(Ω) , h × n ∈W1−1/p,p(Γ), g ∈ W2−1/p,p(Γ) and χ ∈
W1,p(Ω) verifying the following compatibility condition (9). Then problem (1) has a unique
solution (u, π) ∈W2,p(Ω) ×W1,p(Ω)/R satisfying

‖u‖W2,p(Ω) + ‖π‖W1,p(Ω)/R ≤ C(Ω, p, λ)(‖ f‖Lp(Ω) + ‖χ‖W1,p(Ω) + ‖g‖W2−1/p,p(Γ)

+ ‖h × n‖W1−1/p,p(Γ)). (21)

Proof. Let θ ∈ W2,p(Ω) be the unique solution of the Neumann problem (11).
Set F = f − λ∇θ + ∇χ and observe that F ∈ Lp(Ω). Thanks to Theorem 7, the Problem (13)
has a unique solution (z, π) ∈W2,p(Ω) ×W1,p(Ω)/R satisfying

‖u‖W2,p(Ω) + ‖π‖W1,p(Ω)/R ≤ C(Ω, p, λ)(‖ f‖Lp(Ω) + ‖h × n‖W1−1/p,p(Γ)).

By setting u = z + ∇θ, we can easily verify that (u, π) solves (1) and verifies (21). �
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3.3. Very weak solution
In this subsection we prove the existence of very week solution to Problem (1).

Theorem 9. Let f ∈ (Tp′ (Ω))′, χ ∈ Lp(Ω), g ∈W−1/p,p(Γ) and h× n ∈W−1−1/p,p(Γ) verifying
the compatibility condition (9). Then problem (1) has a unique solution (u, π) ∈ Lp(Ω) ×
W−1,p(Ω)/R. Moreover the following estimate holds

‖u‖Lp(Ω) + ‖π‖W−1,p(Ω)/R ≤ C(Ω, p, λ)(‖ f‖(Tp′ (Ω))′ + ‖χ‖Lp(Ω) + ‖g‖W−1/p,p(Γ)

+ ‖h × n‖W−1−1/p,p(Γ)). (22)

Proof. Step 1. Problem (1) is equivalent to the variational formulation: find (u, π) ∈ Lp(Ω)×
W−1,p(Ω)/R such that for any φ ∈ Yp′

τ (Ω), and for any q ∈ W1,p′ (Ω),

λ

∫
Ω

u · φ dx −
∫

Ω

u · ∆φ dx − 〈π, divφ〉W−1,p(Ω)×W1,p′
0 (Ω) = 〈 f ,φ〉Ω + 〈h × n,φ〉Γ (23)

∫
Ω

u · ∇q dx = −

∫
Ω

χq dx + 〈g, q〉W−1/p,p(Γ)×W1/p,p′ (Γ), (24)

where 〈·, ·〉Ω = 〈·, ·〉(Tp′ (Ω))′×Tp′ (Ω) and 〈·, ·〉Γ = 〈·, ·〉W−1−1/p,p(Γ)×W1+1/p,p′ (Γ).
Indeed, using the Green formula (3), we can verify that every (u, π) ∈ Lp(Ω) × W−1,p(Ω)
solution to (1) solves (23)-(24). Conversely, let (u, π) ∈ Lp(Ω) × W−1,p(Ω) be a solution to
(23)-(24). Clearly, −∆u + ∇π = f and div u = χ in Ω.
Consequently, u ∈ Lp(Ω) and since ∇π ∈ (Tp′ (Ω))′, we have ∆u = − f + λu +∇π ∈ (Tp′ (Ω))′.
Then u ∈ Hp(∆,Ω). Using (2) and (3), we obtain that for any φ ∈ Yp′

τ (Ω):

λ

∫
Ω

u · φ dx −
∫

Ω

u · ∆φ dx − 〈curlu × n,φ〉Γ − 〈π, divφ〉W−1,p(Ω)×W1,p′
0 (Ω) = 〈 f ,φ〉Ω.

Thus 〈curlu × n,φ〉Γ = 〈h × n,φ〉Γ. Let µ ∈W1+1/p,p′ (Γ), there exists a function φ ∈W2,p(Ω)
satisfying

φτ = µτ and
∂φ

∂n
= −ndivΓµτ +

2∑
j=1

(∂µτ
∂s j
× T j

)
× n on Γ.

It is clear that φ ∈ Yp′
τ (Ω) and

〈curlu × n,µ〉Γ − 〈h × n,µ〉Γ = 〈curlu × n,φτ〉Γ − 〈h × n,φτ〉Γ = 0.

Thus curl u × n = h × n on Γ. Next using that div u=χ in Ω, we deduce that for any q ∈
W1,p′ (Ω), we have
〈u · n, q〉W−1/p,p(Γ)×W1/p,p′ (Γ) = 〈g, q〉W−1/p,p(Γ)×W1/p,p′ (Γ). Consequently, u · n = g ∈ W−1/p,p(Γ).

Step 2. Let us now solve Problem (23)-(24). We suppose that

g = 0 on Γ and
∫

Ω

χ dx = 0.
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Thanks to Theorem 8, for any pair (F, ξ) ∈ Lp′ (Ω)× (W1,p′

0 (Ω)∩ Lp′

0 (Ω)) there exists a unique
(φ, q) ∈W2,p′ (Ω) ×W1,p′ (Ω)/R satisfying:{

λφ − ∆φ + ∇q = F, divφ = ξ, in Ω,
φ · n = 0, curlφ × n = 0, on Γ,

(25)

with the estimate

‖φ‖W2,p′ (Ω) + ‖q‖W1,p′ (Ω)/R ≤ C(λ,Ω, p′)(‖F‖Lp′ (Ω) + ‖ξ‖W1,p′ (Ω)).

Let T be a linear form defined from Lp′ (Ω) × (W1,p′

0 (Ω) ∩ Lp′

0 (Ω)) onto C by

T : (F, ξ) 7−→ 〈 f ,φ〉Ω + 〈h × n,φ〉Γ −
∫

Ω

χq dx.

An easy computation shows that

|T (F, ξ)| ≤ C(Ω, p′, λ)(‖ f‖(Tp′ (Ω))′ + ‖h × n‖W−1−1/p,p(Γ) + ‖χ‖Lp(Ω))(‖F‖Lp′ (Ω) + ‖ξ‖W1,p′ (Ω)).

This means that T defines an element of the dual space of Lp′ (Ω) × (W1,p′

0 (Ω) ∩ Lp′

0 (Ω))
and according to the Riesz’s representation theorem, there exists a unique (u, π) ∈ Lp(Ω) ×
W−1,p(Ω)/R such that

T (F, ξ) = 〈u, F〉Tp′ (Ω)×(Tp′ (Ω))′ −

∫
Ω

πξ dx.

Then (u, π) is a solution to (23)-(24) and satisfies (22).
Step 3. Suppose that g , 0 and the compatibility condition (9) holds. The Neumann problem
(11) has a unique solution θ ∈ W1,p(Ω)/R satisfying the estimate:

‖θ‖W1,p(Ω)/R ≤ C(‖χ‖Lp(Ω) + ‖g‖W−1/p,p(Γ)).

Set F = f − λ∇θ + ∇χ. Then F ∈ (Tp′ (Ω))′ and the Problem (13) has a unique solution (z, π)
∈ Lp(Ω) ×W−1,p(Ω)/R satisfying the following estimate

‖z‖Lp(Ω) + ‖π‖W−1,p(Ω)/R ≤ C(λ,Ω, p)
(
‖F‖(Tp′ (Ω))′ + ‖h × n‖W−1−1/p,p(Γ)

)
. (26)

Then (u, π) with u = z + ∇θ solves (1) and satisfies (22). �

Remark 1. i) Consider the Problem (1) with χ ∈ W1,p(Ω) such that
∫

Ω
χ d x = 0, g = 0 and

h = 0 on Γ. As in [7] we can prove that the solution (u, π) satisfies the following estimate

|λ| ‖u‖Lp(Ω) + ‖∇π‖Lp(Ω) ≤ C (‖ f‖Lp(Ω) + ‖∇χ‖Lp(Ω) + |λ| ‖χ‖W−1,p(Ω)). (27)

Indeed, let θ ∈ W2,p(Ω)/R solution to ∆ θ = χ in Ω, ∂θ
∂n = 0 on Γ and satisfying ‖θ‖W2,p(Ω) ≤

C ‖χ‖W1,p(Ω). Set F = f − λ∇θ + ∇χ, then F ∈ Lp(Ω)) and the problem{
λz − ∆z + ∇π = F, div z = 0 in Ω

z · n = 0, curl z × n = 0 on Γ

has a unique solution (z, π) ∈W1,p(Ω) × Lp(Ω)/R satisfying the following estimate

|λ| ‖z‖W1,p(Ω) + ‖∇π‖Lp(Ω) ≤ C(Ω, p)
(
‖ f‖Lp(Ω)) + ‖∇χ‖Lp(Ω)) + |λ|‖∇θ‖Lp(Ω))

)
Set u = z + ∇θ. Then (u, π) is a solution to (1) and satisfies (27).
ii) Notice that when χ = 0 we recover the resolvent estimate established in [1] and [2].
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SEMI-DETERMINISTIC APPROXIMATIONS

FOR DIFFUSIONS WITH SMALL NOISE
AND A REPULSIVE CRITICAL BOUNDARY

POINT

Florin Avram and Jacky Cresson

Abstract. We extend below a limit theorem [2] for diffusion models used in population
theory.

Keywords: dynamical systems, small noise, linearization, semi-deterministic fluid ap-
proximation.
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§1. Introduction

A diffusion with small noise is defined as the solution of a stochastic differential equation
(SDE) driven by standard Brownian motion Bt(·) (defined on a probability space and progres-
sively measurable with respect to an increasing filtration)dXε

t = µ(Xε
t )dt +

√
εσ(Xε

t )dBt, t ≥ 0,
Xε

0 = x0 = ε, Xε
t ∈ I := (0, r)

(1)

where 0 < r ≤ +∞, ε > 0, µ : I 7→ R, σ : I 7→ R>0 and µ, σ satisfy conditions ensuring
that (1) has a strong unique solution (for example, µ is locally Lifshitz and σ satisfies the
Yamada-Watanabe conditions [14, (2.13), Ch.5.2.C]).§

When ε → 0, (1) is a small perturbation of the dynamical system/ordinary differential
equation (ODE):

dxt

dt
= µ(xt), t ≥ 0, (2)

which will also be supposed to admit a unique continuous solution xt, t ∈ R+ subject to any
x0 ∈ (0, r), and the flow of which will be denoted by φt(x).

A basic result in the field is the “fluid limit”, which states that when (1) admits a strong
unique solution, the effect of noise is negligible as ε→ 0, on any fixed time interval [0,T ]:

§For reviews discussing the existence of strong and weak solutions, see for example [5, 13, 8].
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Theorem 1. [Freidlin and Wentzell] [11, Thm 1.2, Ch. 2.1] Let Xε
t satisfy (1), assume µ, σ

satisfy the Lifshitz condition, and that Xε
0

¶
−−−→
ε→0

x0 ∈ R+, where
¶
−−−→
ε→0

denotes convergence in

probability. Then, for any fixed T

sup
t≤T
|Xε

t − xt |
¶
−−−→
ε→0

0,

where xt is the solution of (2) subject to the initial condition x0.¶

Although interesting, this result does not give any understanding of the asymptotic be-
havior of the diffusion process for times converging to infinity; in particular, it does not tell
us how the diffusion travels between equilibrium points (which requires times converging to
infinity). Following [4, 2], we go here beyond Theorem 1, by analyzing the way a diffusion
process leaves an unstable equilibrium point. Precisely, we make the following assumptions:

Assumption 1. Suppose from now on that l = 0, µ(0) = 0, µ′(0) > 0, which makes zero an
unstable equilibrium point of (2) and of (1).

Note that under Assumption 1, the Freidlin-Wentzell theorem 1 implies that the solution
of (1) started from a small positive initial condition Xε

0 = ε > 0 converges to zero on any
fixed bounded interval

sup
t≤T

∣∣∣Xε
t

∣∣∣ ¶
−−−→
ε→0

0, ∀T ≥ 0.

Assumption 2. Put now a(x) = σ2(x), and assume that a(0) = σ(0) = 0, a′(0) > 0, which
makes 0 a singular point of the diffusion (1)– see for example [8].

Remark 1. Note that a′(0) > 0 rules out important population theory models like the linear
Gilpin Ayala diffusion [17] with

µ(x) = γx
(
1 − (

x
xc

)α
)
, σ(x) =

√
εx⇔ a(x) = εx2, γ > 0, xc > 0, α > 0, (3)

which includes by setting α = 1 another favorite, the logistic-type Verlhurst-Pearl diffusion
[12, 9, 1].

Recently, a new type of limit theorem [2] was discovered when T → ∞ under Assump-
tions 1 and 2, when xε0 converges to the unstable equilibrium point of (2). Following [2],
let

T ε :=
1

µ′(0)
log

1
ε

(4)

denote the solution of the equation φt,lin(x0) = x0eµ
′(0)t = 1 where φt,lin(x0) is the flow of the

linearized system of (2) in 0, and divide the evolution of the process in three time-intervals:

[0, tc := cT ε], [tc, t1 := T ε], [t1,∞), c ∈ (1/2, 1) (5)

(the restriction c > 1/2 is used in (15)).
It turns out that this partition allows separating the life-time of diffusions with small noise,

exiting an unstable point of the fluid limit, into three periods with distinct behaviors:
¶For other deterministic limit theorems for one-dimensional diffusions, see also Gikhman and Skorokhod [19],

Freidlin and Wentzell [11], Keller et al. [16], and Buldygin et al. [6].
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Figure 1: 6 paths of the Kimura-Fisher-Wright diffusion dXt = γXt(1 − Xt)dt +
√
εXt(1 − Xt)dBt, where xc = 1 is an exit boundary, with ε = .01. On the right, three stages

of evolution may be discerned

1. In the first stage, the process leaves the neighborhood of the unstable point. The lin-
earization of the SDE implies that here a Feller branching approximation may be used,
and this produces a certain exit law W which will be carried over to the next stage as a
(random) initial condition.

2. In the second “semi-deterministic stage” (meaning that paths cross very rarely here),
the system moves towards its first stable critical point xc, following the trajectories of
its fluid limit (2), again over a time whose length converges to ∞. A further renormal-
ization produces here the main result, the limit exit law (7).

3. In the third stage, after the SDE has approaches the stable critical point of the fluid
limit, “randomness is regained” – see crossings of paths in figures 1 and 2); (if the pro-
cess may reach and overshoot the stable critical point, convergence towards a stationary
distribution may occur).

The following result was obtained first in [2], for the “Kimura-Fisher-Wright” diffusion,
and extended subsequently to diffusions with bounded volatility.

Theorem 2. Fluid limit with random initial conditions [2]. Let Xε
t satisfy Assumption 1,

(1), and Xε
0 = ε > 0. Suppose in addition that the diffusion coefficient σ(·) is continuous and

bounded, as well as its first derivative, and that µ(·) satisfies the following drift condition:∣∣∣µ(y) − µ(x)
∣∣∣ ≤ µ′(0)|y − x|, x, y ∈ R+.

Let Yt denote the solution to the scaled linearized equation

dYt = µ′(0)Ytdt +
√

a′(0)YtdBt,Y0 = 1 =⇒ Yt = 1 +

∫ t

0
µ′(0)Ysds +

∫ t

0

√
a′(0)YsdBs, (6)

known as Feller branching diffusion.
Then, it holds that :
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(A)

Xε
T ε

¶
−−−→
ε→0

φ̃(W), (7)

where

(i) the random variable W is the a.s. martingale limit

W := lim
t→∞

e−µ
′(0)tYt = 1 +

∫ ∞

0
e−

µ′(0)
2 s

√
a′(0)YsdBs (8)

(ii) φ̃(x) denotes the limit of the deterministic flow pushed first backward in time
by the linearized deterministic flow φt,lin(x) = xeµ

′(0)t near the unstable critical
point 0

φ̃(x) = lim
t→∞

φt
(
φ−t,lin(x)

)
= lim

t→∞
φt

(
xe−µ

′(0)t), x ≥ 0. (9)

(B) Also, for any T > 0,

sup
t∈[0,T ]

∣∣∣Xε
Tε+t − xt

∣∣∣ ¶
−−−→
ε→0

0, (10)

where xt is the solution of (2) subject to the initial condition X0 = φ̃(W).

Remark 2. Note that W depends only on the local parameters µ′(0), a′(0) of the diffusion at
the critical point. Assume from now on, without loss of generality that a′(0) = 1 (recalling
however that this is the only part of the stochastic perturbation that survives in the limiting
regime), and put

γ := µ′(0) > 0. (11)

The Laplace transform of W is well known [18] and easy to compute.

Ee−λW = lim
t→∞

Ee−λWt = exp
(
−

2γλ
2γ + λ

)
= E exp

(
− λ

Π∑
j=0

τ j

)
, (12)

which is the Laplace transform of a Poisson Π ∼ Poi(2γ) sum of independent random vari-
ables τ j ∼ Exp(2γ).
Remark 3. The main part of Theorem 2 is the equation (7) which identifies the limit after the
second stage

Xε
T ε = Φε

T ε (ε)
¶
−−−→
ε→0

lim
t→∞

φt
(
φ−t,lin(W)

)
= φ̃(W), (13)

Φε
t (x) denotes the flow generated by the SDE (1).

Note that φ̃ depends only on the dynamical system µ, and that by [2, Prop. 4.1], it is a
nontrivial solution of the ODE γxφ̃′(x) = µ(φ̃(x)), x > 0, φ̃(0) = 0.

(13) suggests possible generalizations to multidimensional diffusions and possibly to
jump-diffusions (where a CBI might replace the Feller diffusion in the limit).
Remark 4. Part 2. of Theorem 2 follows immediately by a simple change of time: letting
X̃ε

t = Xε
T ε+t, and B̃t = BT ε+t − BT ε one obtains from (1)

X̃ε
t = X̃ε

0 +

∫ t

0
f (X̃ε

s )ds +

∫ t

0

√
εσ(X̃ε

s )dB̃s,
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and the result follows from (7) by the fluid convergence Theorem 1. This part may be viewed
as describing “short transitions” (invisible on a long time scale) between the second and third
stages.
Remark 5. The limit (7) describing the position after the second stage has been established
in [2] for one dimensional distributions with bounded σ(x). This assumption seems however
restrictive, since for typical diffusions whose fluid limit φt(x) admits a stable critical point xc,
the probability of leaving the neighborhood of the stable point xc is very small as ε→ 0. This
intuition is confirmed by simulations –see Figure 2.

The remark 5 suggests the relation of our problem to that of studying the maximum of Xt.
More precisely, we would like to establish and exploit the plausible fact that ∀θ > 1

lim
ε→0

P[Tθxc < T ε|X0 = ε] = lim
ε→0

P[ sup
0≤t≤T ε

Xε
t > θxc|X0 = ε] = 0, (14)

where xc is the closest critical point towards which the diffusion is attracted, and Tθxc is
the hitting time of θxc; clearly, (14) renders unnecessary the assumption that the diffusion
coefficient σ(·) be bounded.

A weaker statement than (14), but still sufficient for a slight extension, is provided in the
elementary Lemma (3) below.

Contents. The paper is organized as follows. In Section 2 we offer, based on Lemma 3, a
slight extension of Theorem 2 of [2]. A conjecture (see Problem 1 is presented here as well.
We illustrate our new result with the example of the logistic Feller diffusion in Section 3. We
include for convenience in Section 4 an outline of the remarkable paper [2].

§2. An extension of Theorem 2 [2]

Recall now from [2] that the restrictive condition ‖σ‖∞ < ∞ is used for proving that‡

‖σ‖∞ < ∞, c ∈ (1/2, 1) =⇒ Φtc,t1 (Xε
tc ) − φtc,t1 (Xε

tc )
L2

−−−→
ε→0

0, (16)

where tc = cT ε.
We will show now that it is possible to remove the condition ‖σ‖∞ < ∞ in (16), if only

convergence in probability is needed, by assuming rather weak and natural conditions on the
scale function s(·). Recall that the scale function s is defined (up to two integration constants)
as an arbitrary increasing solution of the equation Ls(x) = 0, where L is the generator

‡Let us recall the proof of this important piece of the puzzle. Let Φs,t(x), φs,t(x) denote the stochastic and
deterministic flows generated respectively by the SDE (1) and ODE (2), put Φε

t := Φtc ,tc+t(Xε
tc ), φt := φtc ,tc+t(Xε

tc )
for brevity, and define δεt = Φε

t − φt . Subtracting equations (1) and (2) and applying the Itô formula:

E
(
δεt

)2
= E

∫ t

0
2δs

(
µ(Φε

s) − µ(φs)
)
ds +

∫ t

0
εEσ(Φε

s)ds ≤
∫ t

0
2γE(δs)2ds + εt‖σ‖∞, t ∈ R+

where assumption 2 was used. By Grönwall’s inequality

E
(
Φtc ,t1 (Xε

tc ) − φtc ,t1 (Xε
tc )

)2
= E

(
δεt1−tc

)2
≤ C1εt1e2γ(t1−tc) ≤ C2ε

2c−1 log
1
ε
−−−→
ε→0

0 (15)

where the convergence holds since c ∈ ( 1
2 , 1).
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operator of the diffusion, and that this function is continuous – see [15, Ch. 15, (3.5), (3.6)]
(noting that [15] denote the scale function by S (·)).

Lemma 3. Assume that 0 is an attracting boundary and that r is an unattracting boundary,
i.e. that , s(0+) > −∞, s(r−) = ∞. Put

X
ε

= sup
0≤t<∞

Xε
t , (17)

where Xε is defined in (1). Then:

(A) ∀ε, lim
M→r

Pε[X
ε
> M] = lim

M→r

s(ε) − s(0)
s(M) − s(0)

= (s(ε) − s(0)) lim
M→r

1
s(M) − s(0)

= 0, (18)

and
(B) c ∈ (1/2, 1) =⇒ Φtc,t1 (Xε

tc ) − φtc,t1 (Xε
tc )

P
−−−→
ε→0

0. (19)

Proof. (18) is straightforward. Indeed, recall that the boundary 0 is attracting. Then,

Pε[X
ε
> M] = Pε[TM < T0] =

s(ε) − s(0)
s(M) − s(0)

(20)

where T0,TM are the hitting times of Xε
t at 0 and M – see [15, Ch. 15, (3.1), (3.10)]. Using

now the continuity of the scale function s(·) [15, Ch. 15, (3.5), (3.6)] (note that [15] denote
the scale function by S (·)) yields limM→r s(M) = s(r−) = ∞ and the result.

(19) follows by a similar argument. Indeed, denote the deterministic and stochastic flows
generated by the ODE (2) and SDE (1) (i.e. the solutions of these equations at time t that start
at x at time s) by φs,t(x) and Φs,t(x), respectively, and put Φε := Φtc,t1 (Xε

tc ) and φε := φtc,t1 (Xε
tc )

for brevity and define δε = Φε − φε. For fixed ε and M, it holds that

∀δ > 0, Pε[|δε| > δ] ≤ Pε[X
ε

T ε ≤ M]Pε[|δε| > δ|X
ε

T ε ≤ M] + Pε[X
ε

T ε > M]

≤ Pε[X
ε

T ε ≤ M]Pε[|δε| > δ|X
ε

T ε ≤ M] + Pε[X
ε
> M].

Letting now ε to 0 makes the first term go to 0 by (16), yielding

∀M < r,∀δ > 0, lim sup
ε→0

Pε[|δε| > δ] ≤ lim
ε→0

s(ε) − s(0)
s(M) − s(0)

= 0

where we have used again the continuity of the scale function. �

Theorem 4. The conclusions of Theorem 2 still hold under the assumptions of Lemma 3.

Proof. Theorem 2 of [2] only uses the assumption ‖σ‖∞ < ∞ in establishing the unneces-
sarily strong result (16). Providing weaker conditions for the weaker but still sufficient result
(19) establishes therefore our claim. �

Problem 1. Note that essential use of s(0) > −∞ was made in (18). We conjecture
however that a finer analysis will reveal that the result of Theorem 4 still holds whenever
r is “repelling/unattracting”, more precisely when it is natural unattracting or entrance, cf.
Feller’s classification of boundary points [15, Ch. XV].
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Figure 2: 6 paths of the logistic Feller diffusion (xc = 1 is regular) with ε = .01, until Tε and
after

§3. Examples with limt→∞ Xt/xt = 0:
The logistic Feller and Gilpin-Ayala diffusions

We recall now some famous examples for which the conditions of our Lemma 3 hold. The
logistic Feller diffusion is defined by

dXt = γXt

(
1 −

Xt

xc

)
dt +

√
εXtdBt, Xt ∈ (0,∞).

The limit point xc of xt is a regular point for the diffusion; w.l.o.g. we will take it equal
to 1. The scale density s′(x) = e−

2γ
ε (x− x2

2 ) is integrable at 0, but not at ∞, and the speed

density [15] m′(x) =
e

2γ
ε (x− x2

2 )
εx is integrable at∞, but not at 0, so that the conditions of Lemma 3

hold.§

Therefore, fluid convergence with random initial point before Tε [2] still holds, with
the same deterministic flow and random initial condition as for the Kimura-Fisher Wright
diffusion studied in [2]

φt(x) =
xeγt

1 − x + xeγt , φ̃(x) =
x

1 + x
, X0 =

W
W + 1

(since µ(.), a′(0) did not change)–see Figure 2.
In fact, the paths of the logistic Feller and Kimura-Fisher-Wright diffusions are almost

indistinguishable up to T ε of each other –see Figure 3. After reaching the neighborhood of xc

however, the paths split, reflecting the different natures (regular and exit) of xc for these two
stochastic processes.

§Furthermore, conform Feller’s boundary classification [15], 0 is an exit boundary since s′(x)m[x, 1] is inte-
grable at 0, and absorbtion in 0 occurs with probability 1, and ∞ is an entrance (nonattracting) boundary, since
m′(x)s[1, x] is integrable at∞–see also [7, 3] and [10] for the generalization to continuous-state branching processes
with competition.
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Figure 3: 6 paths of the logistic Feller and Kimura-Fisher-Wright diffusions with ε = 1/20,
before and after Tε

Some other examples of interest in population theory are the diffusion processes defined
by the SDEs

dXt = γXt

(
1 − (

Xt

xc

θ)
dt + σ

√
XtdBt, σ >, θ > 0,

dXt =
[
γXt

(
1 −

Xt

xc
− β

Xn−1
t

1 + Xn
t

)]
dt + σ

√
XtdBt, β ≥ 0, n ≥ 1,

which are stochastic extensions with square root volatility of deterministic population models
introduced by Gilpin and Ayala and Holling respectively.

It is easy to check that adding the exponents θ and n does not affect integrability of the
scale and speed densities of these diffusions, so that our extension applies. Furthermore, the
rescaled flow φ̃ may be computed numerically by [2, Prop. 4.1] (and even symbolically for
small integer values of θ, n).

Moving away from the square root volatility case, an interesting, still open question is
to investigate whether analogues of the [2] result are available for the processes satisfying
dXt = γXt

(
1 − ( Xt

xc
)θ
)
dt +

√
ε(Xt)αdBt, α > 0.§

§The particular case α = θ = 1 is the famous Verlhurst-Pearl diffusion (VP)– see for example [17].
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§4. Sketch of the proof of Theorem 2 [2]

Recall that tc = ct1 with c ∈ (1/2, 1), arbitrary, and note that Xε
T ε = Φtc,t1 (Xε

tc ) = Φtc,t1 (Φtc (ε)).
The idea of the proof is to approximate this random variable by

Xε
T ε ≈ φtc,t1 (Φtc (ε))

ε→0
−−−→ φ̃(W), (21)

with the random variable W from (8).
The proof of [2] involves several steps

1. The first idea for establishing the approximation φ̃(W) of Xε
T ε is to blow-up the process

near the boundary 0
X̃ε

t := ε−1Xε
t ,

which fixes the initial condition to 1 and changes the SDE to

dX̃ε
t = ε−1µ(εX̃ε

t )dt +

√
a(εX̃ε

t )
ε

dBt, t ≥ 0, (22)

it is easy to check that a subsequent linearization of the SDE yields

X̃ε
t ≈ Yt

where Yt is a Feller branching diffusion started from 1, defined by

Yt = 1 +

∫ t

0
µ′(0)Ysds +

∫ t

0

√
Y sdBs, t ≥ 0. (23)

One may take advantage then of the well-known nonnegative martingale convergence
theorem for the “scaled final position” of the branching process Yt

W := lim
t→∞

e−µ
′(0)tYt. (24)

Remark 6. Let us note that the linearization for processes satisfying a(x) = O(x2) and
failing Assumption 2, like the linear Gilpin-Ayala (3), leads to geometric Brownian
motion. In this case, (24) holds with W = 0, and a different approach seems necessary.

2. After “blowing up” the beginning of the path, the second idea is to “look from far
away”. We want to break the trajectory at a suitably chosen time point

tc < t1 = T ε =
1
γ

log
1
ε

(25)

such that before tc, the original process is close to Feller’s branching diffusion (23),
and convergence to the limit W of the Feller diffusion occurs, i.e.

Xε
tc = εX̃ε

tc = e−γt1 X̃ε
tc ≈ e−γt1 Ytc = e−γ(t1−τc)e−γtc Ytc ≈ e−γ(t1−τc)W. (26)

The first approximation e−γtc X̃ε
tc

L1

−−−→
ε→0

Ytc follows from the following lemma [2] show-

ing that the solution of (1) converges, under appropriate scaling, to the Feller branching
diffusion (23).
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Lemma 5. Let X̃ε
t := ε−1Xε

t , where Xε
t is the solution of (1) subject to Xε

0 = ε. Then

X̃ε
t

L1

−−−→
ε→0

Yt, ∀ t ≥ 0,

where Yt is the solution of (23).

Putting these together yields φtc,t1 (Xε
tc )

¶
−−−→
ε→0

φ̃(W).

3. The hardest part is proving that in the second portion [tc, t1], the influence of the

stochasticity is negligible, for example that Φtc,t1 (Xε
tc ) − φtc,t1 (Xε

tc )
L2

−−−→
ε→0

0, as proved

in [2] under the restrictive assumption ‖σ‖∞ < ∞.

Putting it all together in one line, one must prove that

Xε
t1 = Φtc,t1 (Xε

tc ) ≈ Φtc,t1 (We−γ(t1−τc)) ≈ φtc,t1 (We−γ(t1−τc))
¶
−−−→
ε→0

φ̃(W). (27)

To extend [2], it is sufficient to improve the third approximation step above.
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ADAPTIVE AUGMENTED MIXED FEM
FOR THE OSEEN PROBLEM WITH MIXED

BOUNDARY CONDITIONS
Tomás P. Barrios, José Manuel Cascón and María González

Abstract. We present an adaptive augmented dual-mixed method for the Oseen problem
with mixed boundary conditions in the pseudostress-velocity variables. The new varia-
tional formulation and the corresponding Galerkin scheme are well-posed for appropriate
values of the stabilization parameters. We provide the rate of convergence when each
row of the pseudostress is approximated by Raviart-Thomas elements and the velocity
is approximated by continuous piecewise polynomials. Moreover, we give an a poste-
riori error indicator and show the performance of the corresponding adaptive algorithm
through a numerical example.

Keywords: Incompressible flow, Oseen, mixed finite element, stabilization, a posteriori
error estimates.
AMS classification: 65N30, 65N12, 65N15.

§1. Introduction

The problem of computing the flow of a viscous and incompressible fluid at small Reynolds
numbers is described by the Oseen equations. In the recent paper [4], we introduced a new
augmented variational formulation for this problem in the pseudostress-velocity variables
under homogeneous Dirichlet boundary conditions for the velocity, and developed a simple a
posteriori error analysis.

Now, we propose a related method for the case when mixed boundary conditions are
considered. We remark that the new method is not an extension of the one proposed in [4]
since here the Dirichlet boundary condition is imposed weakly.

The paper is organized as follows. In Section 2 we describe a new augmented dual-
mixed variational formulation for the Oseen problem in the pseudostress-velocity variables
with mixed boundary conditions. Then, in Section 3 we analyze the stabilized mixed finite
element method. In Section 4 we present an a posteriori error indicator that is reliable and
locally efficient. Finally, numerical experiments are reported in Section 5.

§2. The augmented dual-mixed variational formulation

Assume that the fluid at hand occupies the region Ω, a polygonal domain in R2 with boundary
Γ. We assume that Γ = ΓD ∪ ΓN , where ΓD is a closed part of Γ with positive measure and
ΓN = Γ \ ΓD. Let ν > 0 be the kinematic viscosity of the fluid, and let a , 0 denote the
advective velocity. We assume that a is solenoidal in Ω. Let f be an external body force, and
denote by uD a prescribed velocity on ΓD and by g the Neumann data.
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We consider the following Oseen problem: find the velocity field u and the pressure p
such that 

−ν∆u + a · ∇u + ∇p = f in Ω ,

div(u) = 0 in Ω,

u =uD on ΓD ,

−p n + ν
∂u
∂n

= g on ΓN ,

(1)

where n is the unit outward normal to ΓN .
Let I be the identity matrix in R2×2 and denote by σ := ν∇u − p I the pseudostress.

Proceeding similarly as in [4], problem (1) can be stated equivalently in terms of σ and u,
and the pressure can be recovered as p = − 1

2 tr(σ).
For simplicity, we consider the following decomposition ofσ: σ = σ0+σg, withσ0n = 0

and σgn = g on ΓN . Moreover, given a tensor τ, we denote by τd := τ − 1
2 tr(τ) I the deviator

of τ. Then, problem (1) is equivalent to the following problem:

−div(σ0) + a · ∇u = f̃ in Ω ,

1
ν
σd0 =∇u + ζ in Ω ,

u = uD on ΓD ,

σ0n = 0 on ΓN ,

(2)

where f̃ := f + div(σg) and ζ := − 1
ν
σdg.

Throughout this paper, we will use the standard notations for Sobolev spaces and norms.
In particular, we denote by H(div,Ω) := {τ ∈ [L2(Ω)]2×2 : div(τ) ∈ [L2(Ω)]2} and H0 :=
{τ ∈ H(div,Ω) : τn = 0 on ΓN}.

Let us define now the bilinear forms a : H0 × H0 → R, b : [H1(Ω)]2 × H0 → R and
c : [H1(Ω)]2 × [H1(Ω)]2 → R as follows:

a(σ, τ) :=
1
ν

∫
Ω

σd : τd , b(u, τ) :=
∫

Ω

u · div(τ) , c(u, v) :=
∫

Ω

(a · ∇u) · v ,

for any σ, τ ∈ H0 and u, v ∈ [H1(Ω)]2.
We also define the linear functionals l : [L2(Ω)]2 → R and m : H0 → R as follows:

l(v) := −
∫

Ω

f̃ · v, ∀ v ∈ [L2(Ω)]2 ,

m(τ) :=
∫

Ω

ζ : τ +

∫
Γ

uD · τn, ∀ τ ∈ H0 .

Then, we have the following dual-mixed variational formulation of problem (2): find
(σ0,u) ∈ H0 × [H1(Ω)]2 such thata(σ0, τ) + b(u, τ) =m(τ) , ∀ τ ∈ H0 ,

b(v,σ0) − c(u, v) = l(v) , ∀ v ∈ [H1(Ω)]2 .
(3)



Adaptive augmented mixed FEM for the Oseen problem with mixed boundary conditions 27

We remark that the variational formulation (3) exhibits a generalized saddle-point struc-
ture, with a non-symmetric bilinear form c(·, ·). According to [5], to ensure that problem
(3) has a unique solution, we require, among other conditions, that the bilinear form a(·, ·)
be coercive on H0. However, it is well-known that a(·, ·) is coercive in the divergence free
subspace of H0 (see, for instance, the proof of Theorem 2.3 in [6]) but not on H0. We also
require that the bilinear form b(·, ·) satisfies an inf-sup condition in H0 × [H1(Ω)]2. These
facts motivated us to consider an augmented formulation of problem (2).

Combining ideas from [4] and [9], we subtract the second equation in (3) from the first
one and then, add the following least-squares type terms, that arise from the equilibrium and
constitutive equations in (2) and from the Dirichlet boundary condition:

κ1

∫
Ω

(div(σ0) − a · ∇u) · (div(τ) + a · ∇v) = −κ1

∫
Ω

f̃ · (div(τ) + a · ∇v)

κ2

∫
Ω

(∇u −
1
ν
σd0) : (∇v +

1
ν
τd) = −κ2

∫
Ω

ζ : (∇v +
1
ν
τd) ,

and

κ3

∫
ΓD

u · v = κ3

∫
ΓD

uD · v

where (σ0,u) ∈ H0×[H1(Ω)]2 is a solution of (2) and (τ, v) ∈ H0×[H1(Ω)]2 is a test function.
The parameters κ1, κ2 and κ3 are positive constants to be chosen so that the augmented bilinear
form

A((σ,u), (τ, v)) :=
1
ν

∫
Ω

σd : τd +

∫
Ω

u · div(τ) −
∫

Ω

div(σ) · v +

∫
Ω

(a · ∇u) · v

+ κ1

∫
Ω

(div(σ) − a · ∇u) · (div(τ) + a · ∇v) + κ2

∫
Ω

(∇u −
1
ν
σd) : (∇v +

1
ν
τd) + κ3

∫
ΓD

u · v

be coercive in the whole space H0 × [H1(Ω)]2.
Let us define the linear functional F : H0 × [H1(Ω)]2 → R by

F(τ, v) :=
∫

Ω

ζ : τ +

∫
ΓD

uD · τn +

∫
Ω

f̃ · v − κ1

∫
Ω

f̃ · (div(τ) + a · ∇v)

− κ2

∫
Ω

ζ : (∇v +
1
ν
τd) + κ3

∫
ΓD

uD · v , ∀ (τ, v) ∈ H0 × [H1(Ω)]2 .

Then, the augmented variational formulation of problem (2) reads: find (σ0,u) ∈ H0 ×

[H1(Ω)]2 such that

A((σ0,u), (τ, v)) = F(τ, v) , ∀ (τ, v) ∈ H0 × [H1(Ω)]2 . (4)

Remark 1. In case of homogeneous Dirichlet boundary conditions, that is, when ΓD = Γ,
ΓN = ∅ and uD = 0 on Γ, we obtain the same linear functional F as in [4]. However, the
variational formulation is not equivalent, since here we look for u ∈ [H1(Ω)]2.
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In what follows, we assume that a ∈ [L∞(Ω)]2, a · n ≥ 0 on ΓN , and f ∈ [L2(Ω)]2.
Moreover, we assume that

0 < κ1 <
κ2

2 ‖a‖2[L∞(Ω)]2

, 0 < κ2 < ν , and κ3 >
1
2
‖a · n‖L∞(Ω) .

Then, there exists Cell > 0 such that

A((τ, v), (τ, v)) ≥ Cell ‖(τ, v)‖2H0×[H1(Ω)]2 , ∀ (τ, v) ∈ H0 × [H1(Ω)]2 ,

with

Cell = min(
1
ν

(
1 −

κ2

ν

)
c1,

κ1

2
c1,

κ1

2
,
(
κ2 − 2 κ1 ‖a‖2[L∞(Ω)]2

)
c2, (κ3 −

1
2
‖a · n‖L∞(Ω)) c2) ,

where c1 and c2 are the positive constants in Lemma 3.1 in [2] and in Lemma 3.3 in [8],
respectively.

Theorem 1. Under the previous hypotheses, problem (4) has a unique solution (σ0,u) ∈
H0 × [H1(Ω)]2 and

‖(σ0,u)‖H0×[H1(Ω)]2 ≤ C−1
ell M (‖f‖[L2(Ω)]2 + ‖uD‖[H1/2(ΓD)]2 + ‖σg‖H(div;Ω)) ,

where M := max(1 + κ1 (1 +
√

2 ‖a‖[L∞(Ω)]2 ), 1
ν
(1 + κ2(1 + 1

ν
)), 1 + κ3) .

Proof. It follows from the Lax-Milgram Lemma. �

§3. Augmented mixed finite element method

Let {Th}h>0 be a family of shape-regular meshes of Ω̄ made up of triangles. We denote by hT

the diameter of an element T ∈ Th and define h := maxT∈Th hT .
Let H0,h and Vh be any finite element subspaces of H0 and [H1(Ω)]2, respectively. Then,

the Galerkin scheme associated to problem (4) reads: find (σ0,h,uh) ∈ H0,h × Vh such that

A((σ0,h,uh), (τh, vh)) = F(τh, vh) , ∀ (τh, vh) ∈ H0,h × Vh . (5)

Under the same hypotheses as for the continuous problem (4), problem (5) has a unique
solution (σ0,h,uh) ∈ H0,h × Vh. Moreover, there exists a constant CCea > 0, independent of h,
such that

||(σ0 − σ0,h,u − uh)||H0×[H1
0 (Ω)]2 ≤ CCea inf

(τh,vh)∈H0,h×Vh
||(σ0 − τh,u − vh)||H0×[H1

0 (Ω)]2 . (6)

In order to establish a rate of convergence result, we consider specific finite element
subspaces H0,h and Vh. Hereafter, given T ∈ Th and an integer l ≥ 0, we denote by Pl(T ) the
space of polynomials of total degree at most l on T and, given an integer r ≥ 0, we denote by
RT r(T ) the local Raviart-Thomas space of order r + 1 (cf. [12]),

RT r(T ) := [Pr(T )]2 ⊕ [x]Pr(T ) ⊂ [Pr+1(T )]2 ,
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where x is a generic vector of R2.
Let r ≥ 0 and m ≥ 1. Then, we let H0,h be

H0,h := [RT tr ]2 =
{
τh ∈ H0 : τh

∣∣∣
T ∈ [RT r(T )t]2, ∀T ∈ Th

}
,

and define

Vh := [Lm]2 =
{
vh ∈ [C(Ω)]2 : vh

∣∣∣
T ∈ [Pm(T )]2, ∀T ∈ Th

}
.

The corresponding rate of convergence is given in the next theorem.

Theorem 2. Assume σ0 ∈ [Ht(Ω)]2×2, div(σ0) ∈ [Ht(Ω)]2 and u ∈ [Ht+1(Ω)]2. Then, there
exists C = O(CCea) > 0, independent of h, such that

||(σ0 − σ0,h,u − uh)||H0×[H1(Ω)]2 ≤ C hα
(
||σ0||[Ht(Ω)]d×d + ||div(σ0)||[Ht(Ω)]2 + ||u||[Ht+1(Ω)]2

)
,
(7)

where α := min{t,m, r + 1}.

Proof. It follows straightforwardly from inequality (6) and the approximation properties of
the corresponding finite element subspaces. �

§4. A posteriori error analysis

The a posteriori error analysis of the Oseen equations is very important for the numerical
solution of the stationary incompressible Navier-Stokes equations. The incompressibility
condition and the presence of a non-selfadjoint operator in the momentum equations are the
main difficulties to obtain a posteriori error estimates for the Oseen problem.

We let Eh be the set of all the edges induced by the triangulation Th and write Eh =

EI ∪ EΓD ∪ EΓN , where EI := {e ∈ Eh : e ⊆ Ω}, EΓD := {e ∈ Eh : e ⊆ ΓD} and EΓN := {e ∈
Eh : e ⊆ ΓN}. Also, for each edge e ∈ Eh, we denote by he the length of edge e and fix a unit
normal vector ne := (n1, n2)t; finally, we let te := (−n2, n1)t be the corresponding fixed unit
tangential vector along e.

We define the local a posteriori error indicator

θ2
T := ||f̃ + div(σ0,h) − a · ∇uh||

2
[L2(T )]2 + ||ζ + ∇uh −

1
ν
σd0,h||

2
[L2(T )]d×d

+
∑

e∈EΓD∩∂T

he

(
‖uD − uh‖

2
[L2(e)]2 + ‖∇(uD − uh)te‖

2
[L2(e)]2

)
and the global a posteriori error indicator

θ :=
( ∑

T∈Th

θ2
T

)1/2

The following theorem establishes the reliability of the a posteriori error indicator.
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Theorem 3. Assume uD ∈ [H1(ΓD)]2. Then, there exists Crel > 0, independent of h, such
that

‖(σ0 − σ0,h,u − uh)‖H0×[H1(Ω)]2 ≤ Crel θ

Proof. We proceed as in [4] to bound the error in terms of residuals, but use a quasi-Helm-
holtz decomposition [7] instead of the usual Helmholtz decomposition. �

The next theorem establishes the local efficiency of the a posteriori error indicator.

Theorem 4. Assume uD ∈ [H1(Γ)]2 is component-piecewise polynomial on ΓD. Then, there
exists Ceff = C(ν, κ1, κ2, , κ3, a) > 0, independent of h, such that for all T ∈ Th we have

Ceff θT ≤ ‖(σ0 − σ0,h,u − uh)‖H0(T )×[H1(T )]2 ∀T ∈ Th

Proof. We proceed with the first two terms of θT as usual. The second term is bounded using
a discrete trace inequality [1, Theorem 3.10]. Finally, the last term is bounded similarly as in
Lemma 3.9 in [3]. �

§5. Numerical experiments

We performed numerical experiments with the finite spaces H0,h and Vh defined in Section 3,
with r = 0 and m = 1. We implemented the standard adaptive finite element method (AFEM)
based on the loop

SOLVE → ESTIMATE → MARK → REFINE

(see, for instance, [11]). For the numerical experiments, we used the finite element toolbox
ALBERTA [13]. This toolbox employs the Kossaczky refinement algoritm, that uses recursive
bisection [10]. The corresponding linear systems are solved using MATLAB (UMFPACK).

We consider an example in which Ω = (0, 1) × (0, 1) is the unit square, ΓN = {0} × [0, 1]
and ΓD = Γ \ ΓN . We take the kinematic viscosity ν = 1 and the advective velocity a = (1, 0).
Then, we let

φ(x, y) = 10x2y2(1 − y)2 tanh
(
100(x −

1
2

)
)
,

and choose f and uD so that the exact solution is

u = curl φ =

(
∂φ

∂y
,−
∂φ

∂x

)
, p(x, y) = exp

(
−(x −

1
2

)2
)
.

We remark that the velocity u exhibits an inner layer around the line x = 1
2 .

In Figure 1 we show the individual errors in the velocity and the pseudostress for the
uniform (U) and adaptive (A) refinements with respect to the number of degrees of freedom
(DOFs). We can observe that the adaptive refinement performs better than the uniform re-
finement. In Figure 2 we show the total error and the estimator vs. the DOFs for the uniform
and adaptive refinements. In this case, we can observe that the estimator fits the total er-
ror. Accordingly, in this example the efficiency indices are almost one for both refinements
(see Figure 3).
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Figure 1: Individual errors in the velocity and the pseudostress.
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Figure 2: Total error and estimator vs. the DOFs.
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Figure 4: Initial mesh and corresponding velocity module.

In Figures 4-6 we show, respectively, the initial mesh, an intermediary mesh and the final
mesh (after 8 iterations) obtained with the AFEM algorithm, together with the corresponding
velocity modules. We can observe that the AFEM algorithm is able to locate the inner layer
of the solution, since the refinement is essentially concentrated around the line x = 1

2 .
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[9] González, M. Stabilized dual-mixed method for the problem of linear elasticity with
mixed boundary conditions. Applied Mathematics Letters 30 (2014), 1–5.
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A TRIAXIAL MODEL FOR THE
ROTO-ORBITAL COUPLING IN A BINARY

SYSTEM
Antonio Cantero, Francisco Crespo and Sebastian Ferrer
Abstract. We study the roto-orbital dynamics of a uniform sphere and a triaxial body by
means of a model which defines a 2-DOF Hamiltonian system using variables referred to
the total angular momentum. The validity and applicability of our model is been assessed
numerically. We present a classification of some relative equilibria, finding constant ra-
dius solutions filling 4-D and lower dimensional tori. These families of relative equilibria
include some of the classical ones reported in the literature and some new types show-
ing the triaxiality influence on both. For a number of scenarios the relation between the
triaxiality and the inclination connected with relative equilibria are discussed and a full
analysis in in progress [2].

Keywords: Roto-orbital dynamics, rigid body, relative equilibria, triaxiality..

§1. Introduction

We study a 2-DOF Hamiltonian model for the roto-orbital dynamics of a general binary sys-
tem made of two rigid bodies B1 and B2, with masses m1 and m2 respectively. This problem
is known as the full gravitational 2-body problem (FG2BP)[10] and usually is approximated
by means of the MacCullagh’s truncation [8], which is the second non vanishing term of the
expansion of the potential energy. That is to say, the associated Hamiltonian with the FG2BP
is obtained out of the sum of the rotational and orbital kinetic energies plus the potential en-
ergy, which is computed as a series expansion in Legendre polynomials. The first step in this
expansion leaves us with a maximally super-integrable model, the Kepler plus the free rigid
body. Nevertheless, accuracy increasing demands ask for a more realistic model. With this
purpose, the usual procedure is adding the following term (MacCullagh’s term) of the po-
tential expansion, leading us to a non-integrable system in many degrees of freedom, which
involves an extraordinary complexity. The main idea of this communication is to present a
halfway model between these two extremes. The interest of our model is twofold. On the
one hand, it allows us to identify special solutions that could become nominal trajectories in
missions design whereas it alleviates usual heavy computations. On the other hand, it can
be used to build a perturbation theory based on a new unperturbed part avoiding the degen-
erate character inherent to the classical superintegrable models. In other words, a first order
perturbed solution based on this model might be accurate enough for tracking purposes. The
benefits of a similar approach are now seen in areas such as the relative motion in formation
flights [7].

In a series of previous works and with the same idea in mind, the authors have presented
and analysed 1-DOF models [4, 3, 1]. In this work, we consider a 2-DOF model.
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Figure 1: Geometry of the variables (r, φ, ψ, θ, δ, ν,R,Φ,Ψ,Θ,∆,N). The variable r and the
angles are explicitly given in the figure, while the associated momenta are included implic-
itly through the inclinations of the planes. The conjugate variable R remains unrepresented
because of its pure dynamical sense. Note that this figure appeared first in [6]

.

§2. Variables

The variables in which the problem is posed may have a significant impact on its treatment.
Our choice is the use of the total angular momentum as the key object to define them, which
application for the roto-translatory problem was first introduced in [6] as a result of the appli-
cation of the elimination of the nodes in the n-body problem [5] to the roto-translatory model.
Nevertheless, quoting Meyer [9] “there is a saying in celestial mechanics that no set of coor-
dinates is good enough”. This claim highlights that in every choice of variables, a sacrifice
must be done. More precisely, Cartesian variables have a simple formulation, but they do not
take advance of the presence of symmetries. Conversely, by using variables referred to the
total angular momentum, we incorporate the angles associated to the symmetries allowing
for compact expressions and intuitive geometric insight of the relative equilibria. However,
this is done at the expenses of having singularities, i. e. a global study of the system requires
the use of several charts.

A complete set of canonical variables related with the angular momentum planes are
used here denoted by (r, φ, ψ, θ, δ, ν,R,Φ,Ψ,Θ,∆,N). We are not going to provide a complete
derivation of them, which may be found in [6]. Instead and with the aim of fixing notation,



A triaxial model for the roto-orbital coupling in a binary system 37

we provide the geometric meaning of the angles by means of Figure 1 and briefly recall
the definition of the canonical angles by following [4]: Let us consider the reference frame
S ∗ = (`, n×`, n), where ` is the unitary vector defining node of the total angular momentum
plane with the horizontal spatial plane and n is the unitary vector pointing in the direction
of the total angular momentum. In addition, S E = {E1,E2,E3} and S b = {b1,b2,b3} are
the spatial and body frames respectively, where bi corresponds with the principal moment of
inertia of B1. The orientation and center of mass of the body are referred to the new frame by
means of (r, φ, ψ, θ, δ, ν), see Figure 1. These angles are determined by the nodes; `µδ defined
by the rotational angular momentum and the spatial plane, `r = −`o given by the intersection
of the total, rotational and orbital angular momentum planes and `θ generated by the orbital
and spatial planes intersection. Precisely, we have that φ = (Ê1, `), ψ = (̂̀, `I), θ = (̂̀o, r),
δ = (`̂r, `I) and ν = ( ̂`I ,b1). Moreover, there are three more auxiliary angles which are
not among the canonical variables but we will use them later on; λ = (Ê1, `), µ = ( ̂`µδ, `I),
σ = (Π̂r,Πb) and h = (Ê1, `θ). In addition, the conjugate momenta of the variables read as
follows

R, Φ = G · E3, Ψ = G · n = G, Θ = Go, ∆ = Gr, N = Gr · b3,

where G is the total angular momentum vector, Gr is the angular momentum of the sec-
ondary body in the body frame and Go is the orbital angular momentum. Thus, we have the
following interpretation of the momenta: (R) Radial velocity of the center of mass. (Φ) Third
component of the total angular momentum in space frame. (Ψ) Magnitude of the total angular
momentum. (Θ) Magnitude of the angular momentum of the center of mass. (∆) Magnitude
of the angular momentum of the rigid body. (N) Third component of the angular momentum
of the rigid body in the body frame (principal axes of inertia).

§3. Hamiltonian formulation of the triaxial model

The formulation of the triaxial model follows the same derivation as the one made in Crespo et
al. [4], which is based in six simplifying assumptions. More specifically, the following set of
simplifications are assumed in order to define our modelization: (i) Barycentric coordinates.
The inertial frame is chosen to be moving with the total center of mass. (ii) Shape and mass
distribution of B2. The main body B2 (mass m2) is endowed with spherical symmetry. (iii)
Size ratios. Dimensions of the secondary body B1 are small when compared to the distance
between the centers of mass of the two bodies. (iv) Shape and mass distribution of B1. The
secondary body may be approximated by an homogeneous triaxial ellipsoid with total mass
m1. (v) Eccentricity. Only small eccentricity orbits are considered. (vi) Resonances. The case
of spin-orbit resonances is not considered.

The Hamiltonian of the roto-orbital model is obtained from the mechanic energy func-
tion. Thus, denoting TO, TR the orbital and rotational kinetic energies and P the potential,
the Hamiltonian function is defined in the cotangent bundle of the special Euclidean group
T ∗S E(3)

H = TO + TR + P = TO + TR −
GM

r
+V = HK +HR +V,
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in other words, the potential is usually split in two parts: a term which depends only on 1/r
andV, called the perturbing potential, depending on the rest of the variables of the problem.
As a result, we have that HK = TO − GM/r is the Keplerian part of the system, where G
is the gravitational constant and HR = TR is referred as the Euler system (or the free rigid
body).More explicitly, we obtain the following expression forH in the B1-body frame

H(r,A,p,Π) =
|p|2

2m
+

1
2

Π·I−1·Π − Gm2

∫
B1

dm1(x1)
|r − x1|

,

where m = m1m2/(m1 + m2), r is the vector joining the center of mass of the bodies, A is the
rotation matrix transforming a vector in the body-fixed frame into the inertial frame and p and
Π are the linear and angular momenta. In addition, the assumption (iii) allows us to consider
the approximation of the gravitational potential P given by −GM/r and the MacCullagh’s
term [8]

U = −
κm

2 m1 r3

[
(A3 − A2)(1 − 3γ2

3) − (A2 − A1)(1 − 3γ2
1)
]
, (1)

where κ = GM, M = m1 + m2 is the total mass of the system, A1 ≤ A2 ≤ A3 are the principal
moments of inertia associated to the secondary body and (γ1, γ2, γ3) are the director cosines
of r.

The direction cosines appearing in (1) may be expressed in the body frame by means of
the following composition of rotations:

γ = R3(ν) R1(σ) R3(δ) R1(ι) R3(π − θ) e1

where γ = (γ1, γ2, γ3) and e1 = (1, 0, 0). Finally, taking into account that γ2
1 + γ2

2 + γ2
3 = 1

and after some calculations, we are allowed to express the MacCullagh’s term (1) as follows

U =
κm

32m1r3

[
(2A3 − A2 − A1)V1 +

3
2

(A2 − A1)V2

]
, (2)

where
V1 = −2(1 − 3c2

ι )(1 − 3c2
σ)

−3s2
σ

[
(1 − cι)2C2,2,0 + (1 + cι)2C−2,2,0

]
−6s2

ι

[
s2
σC0,2,0 − (1 − 3c2

σ)C2,0,0

]
+12cσsιsσ

[
(1 − cι)C2,1,0 + 2cιC0,1,0 − (1 + cι)C−2,1,0

] (3)

which is independent of ν, and V2, the “triaxiality part” given by

V2 = −(1 − cσ)2
[
(1 − cι)2C2,2,−2 + (1 + cι)2C−2,2,−2 + 2s2

ι C0,2,−2

]
−(1 + cσ)2

[
(1 − cι)2C2,2,2 + (1 + cι)2C−2,2,2 + 2s2

ι C0,2,2

]
−6s2

ι s2
σ

[
C2,0,2 + C2,0,−2

]
+ 4s2

σ(1 − 3c2
ι )C0,0,2

+4sιsσ(1 − cσ)
[
(1 − cι)C2,1,−2 + 2cιC0,1,−2 − (1 + cι)C−2,1,−2

]
+4sιsσ(1 + cσ)

[
− (1 − cι)C2,1,2 − 2cιC0,1,2 + (1 + cι)C−2,1,2

]
,

(4)

and the notation has been abbreviated by writing Ci, j,k ≡ cos(iθ + jδ + kν) and cx ≡ cos x and
sx ≡ sin x.
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3.1. A model for roto-orbital dynamics.
Facing a non-integrable Hamiltonian system of 4-DOF requires the development of a pertur-
bation theory. A usual way to proceed is to expand the Hamiltonian function in power series
and truncate it at a certain order; this procedure gives in general an approximation. However
a different approach to the problem is based in a simplification of the original Hamiltonian
considering a related Hamiltonian of less degrees of freedom. In fact in this search for a
simplified model a radial of 2 separable DOF has been proposed. Indeed, in [4], the authors
proposed an axis-symmetric integrable model, whose accuracy was tested by comparing with
the MacCullagh’s truncation and showing a good performance in the numerical experiments.
Here, we continue this previous study by investigating a triaxial case. One of our aims is to
analyze the physical-parametric families of relative equilibria asociated. Keeping this mo-
tivation in mind, we propose our model following exactly the same procedure than in [4],
except for the triaxial parameter. That is to say, we only take into account the first line of
V1 in (3) and in V2 (4) the only terms that depends exclusively on ν . Then, the perturbing
potential of the model is given by

V =
κm

32m1r3

[
−2(2A3 − A2 − A1)(1 − 3c2

ι )(1 − 3c2
σ) +

3
2

(A2 − A1)4s2
σ(1 − 3c2

ι ) cos(2ν)
]
,

which leads us to the final expression of the model Hamiltonian

H =
1
2

(
R2 +

Θ2

r2

)
−
κ

r
+

q
2

[(
sin2(ν)

A1
+

cos2(ν)
A2

)
(∆2 − N2) +

1
A3

N2
]

−
κ(1 − 3c2

ι )
16r3

[
(2A3 − A2 − A1)(1 − 3c2

σ) + 3(A1 − A2)s2
σ cos(2ν)

]
,

(5)

where q = m/m1. Furthermore, with the aim of alleviate formulas, we have considered the
Hamiltonian per unit of mass by scaling the system and inertia momenta as follows:

H ′ = H/m; R′ = R/m; Θ′ = Θ/m; ∆′ = ∆/m; N′ = N/m; Ψ′ = Ψ/m;
Φ′ = Φ/m; A′1 = A1/m1; A′2 = A2/m1; A′3 = A3/m1.

(6)

Nevertheless, for the sake of simplicity, we keep the original notation without primes on the
variables. Then, the 2-DOF Hamiltonian system of differential equations associated with (5)
is given by the following expressions:

ṙ = R

Ṙ =
Θ2

r3 −
κ

r2 −
3κ

(
1 − 3c2

ι

)
16r4

[
α
(
1 − 3c2

σ

)
− 3(A2 − A1)(1 − c2

σ) cos(2ν)
]

ν̇ = q
[

1
A3
−

(
sin2(ν)

A1
+

cos2(ν)
A2

)
+

3κ
8∆2qr3

(
1 − 3c2

ι

)
(α − (A2 − A1) cos(2ν))

]
N

Ṅ = q(A1 − A2)
(
1 − c2

σ

)
∆2

 1
2 A1A2

−
3κ

(
1 − 3cι2

)
8∆2qr3

 sin(2ν)

θ̇ =
Θ

r2 −
3κ
8r3

(
cι
∆

+
c2
ι

Θ

) [
α
(
1 − 3c2

σ

)
− 3(A2 − A1)(1 − c2

σ) cos(2ν)
]
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ψ̇ =
3κΨ

8r3∆Θ
cι

[
α
(
1 − 3c2

σ

)
− 3(A2 − A1)

(
1 − c2

σ

)
cos(2ν)

]
δ̇ = q

[(
sin2(ν)

A1
+

cos2(ν)
A2

)
−

3κ
8∆2qr3

(
1 − 3c2

ι

)
c2
σ (α − (A2 − A1) cos(2ν))

−
3κ

8∆2qr3 cι

(
cι +

∆

Θ

) (
α
(
1 − 3c2

σ

)
− 3(A2 − A1)

(
1 − c2

σ

)
cos(2ν)

)]
∆

where α = 2A3 − A2 − A1 together with the integrals φ̇ = Φ̇ = Θ̇ = Ψ̇ = ∆̇ = 0. In other
words the 2-DOF system is made of the (r, ν) subsystem and three quadrature associated to θ,
ψ and δ.

Note that, in general, a 2-DOF system is not integrable. Thus, in the triaxial case, the
analytical integration is not provided and the integrability of the system remains as an open
question, which is not in the scope of the present paper.

§4. Numerical assessment of our model.

We assess the validity of our model by carrying out a simulation comparing our model versus
the MacCullagh’s approximation [8]. The expansion of the gravitational potential truncated to
the third term known as the MacCullagh’s term is commonly used as a good approximation to
the potential because considering the next term lead to expressions with r5 in the denominator.
For situations where the term with r5 is required a new model should be provided. However
this is out the scope of this paper.

Numerical simulations have been carried out by using the Mathematica 11 software [11]
running on the platform macOS Sierra, 3.1 GHz Intel Core i5 (64-bit), 8 GB RAM.

There are several details to bear in mind through this section in order to proceed with the
numerical experiment. Firstly, in what follows it is convenient to use the triaxiality parameter
defined in [3] ρ = (A2−A1)/(2A3−A2−A1), noticing that due to the constrains of the principal
moments of inertia ρ ∈ (0, 1). Secondly, we have considered the Hamiltonian per unit of
mass and the canonical and inertia momenta have been scaled, see (6). Furthermore, we have
changed internally the units for longitudes by choosing the radius of the spherical body Rp as
the new one. However, we set these units back to Km when we present our results. Regarding
the initial conditions, the radius and angles (radians) are given directly. In our simulations we
consider the scenario of a massive spherical primary body and an arbitrary triaxial secondary
body. More precisely, the two bodies are described as follows. Main body B2: a sphere with
radius 500 Km and mean density d = 2.8 g/cm3, and mass m2 = 1.47 · 1021 Kg. Secondary
body B1: an ellipsoid with mean density d = 1.4 g/cm3 while the principal axes and the
triaxiality parameter are: A1 = 1.069 · 1021, A2 = 1.18 · 1021, A3 = 1.28 · 1021, ρ =

0.353. Initial distance between the center of masses is 2060 Km and we also assume the
secondary body in a slow rotating regime. Solutions are evaluated for three orbital periods,
see Figure 2, where we show the evolution of variables which are not constant for the model
we are presenting.

We would like to highlight that, after three orbital periods, the differences between the
slow variables r,R, ψ, θ,N are always in the order of thousandth or less. For the case of the
fast variables δ, ν, we have a competitive performance for 4 hours, which represent 1/4 orbital
periods, see Figure 3.
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Figure 2: Slow variables: Differences between the 2-DOF model versus the MacCullagh’s
approximation. Abscissas are orbital periods and angles are given in radians. The orbital
period is 16.5 hours and the rotation regime for each orbital period is 1-100.
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Figure 3: Fast variables: Differences between the 2-DOF model versus the MacCullagh’s
approximation. Abscissas represent 1/4 of the orbital period and angles are given in radians.
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§5. Constant radius solutions. Some relative equilibria.

The system of differential equations defined by the Hamiltonian (5) is endowed with several
distinguish and physical parameters. Thus, bifurcations occur in several directions in the
parametric space [2].

With the aim of simplifying this scenario and provide a geometric interpretation of our
equilibria, we organize our families of relative equilibria according to the inclinations of
pairs of fundamental planes (orbital, rotational and body planes) due to the fact that the
associated momenta of (θ), (ψ), (δ) and (ν) are included through the inclinations of the planes.
More precisely, we consider the relative inclination between orbital and rotational planes (ι)
and the one determined by the rotational and body planes (σ). For that reason cos ι and
cosσ are the key objects to present the analysis of the relative equilibria and allowed us to
classify the relative equilibria on the following families: critical inclination equilibria when
(1 − 3c2

ι ) = 0, body-inclined equilibria when cσ , 0 and body-perpendicular equilibria when
cσ = 0. Each of these families of relative equilibria contains different orbits of constant
radius filling different tori depending on the fixed angles. Note that ρ = 1/3 is equivalent to
A3 − A2 = A2 − A1 leading to the maximum triaxiality case. Below we show two particular
cases of these families of relative equilibria found in this problem [2].

Case 1: Body-Inclined equilibria cσ , 0 with ν and ψ fixed.

This particular case shows a family of relative equilibria filling a 2-tori manifold T2(θ, δ). On
one hand the orbital variables behave as a keplerian "circular" orbit, however on the other
hand the rotational part shows the triaxiality influence and introduce several novelties with
respect to the classical scheme of the free rigid body. More precisely imposing the following
initial conditions and relations between the momenta and physical parameters:

r =
Θ2

κ
, R = 0, c2

ι =
1
3
−

4qΘ6∆2

9κ4A2A3
, ν = 0, π, c2

σ =
A1 − 2A2 + A3

3(A3 − A2)

we get a relative equilibria with the following mean motions:

θ̇ =
κ2

Θ3 δ̇ = q∆

(
−A1 + 2(A2 + A3)

3A2A3

)
Note that the values ν = 0, π are related to well-known equilibria of the free rigid body. It is
worth noticing that in general cσ , 0 which is a notorious difference from the classical case.
Nevertheless for the particular value ρ = 1/3 we get cσ = 0 and therefore we recover the
Euler equilibria and obtain a simplified form of the mean motion δ̇ = q∆/A2

Case 2: Body-perpendicular equilibria cσ = 0 with ν and ψ fixed.

This case shows also a relative equilibria filling a 2-tori manifold T2(θ, δ) where the orbital
variables behave as a keplerian "circular". As it happens with the previous case the rotational
part shows a triaxiality influence and introduce several novelties with respect to the classical
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scheme of the free rigid body. In particular imposing the following initial conditions and
relations between the momenta and physical parameters:

r =
Θ2

κ
, R = 0, c2

ι =
1
3
−

4qΘ6∆2

9κ4A1A2
, cos(2ν) =

2A3 − A1 − A2

3(A2 − A1)
, cσ = 0,

we get that a relative equilibria with the following mean motions:

θ̇ =
κ2

Θ3 δ̇ =
q∆

3

(
2A1 + 2A2 − A3

A1A2

)
Note that for this relative equilibria being cσ = 0 we get cos(2ν) , 0 which is also a

difference from the classical. It is worth mentioning that for the particular value ρ = 1/3 we

get cos(2ν) = 1 and δ̇ =
q∆

A2
which is a particular relative equilibria of our model and it is

work in progress [2].

Observe, on both cases shown, that conditions for periodic orbits are easily obtained since
expression for mean motions are explicitly given.The reader should also take into account that
bounds among the integrals and physical parameters have to be added to the formulas given
above.
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STABILITY OF DOMAIN WALLS IN
FERROMAGNETIC RINGS

Gilles Carbou, Mohand Moussaoui and Romeissa Rachi
Abstract. In this work we consider a one-dimensional model of ferromagnetic ring taking
into account curvature and anisotropy effects. We describe all the planar static solutions
representing domain walls and we study their stability.

Keywords: ferromagnetism, Landau-Lifshitz equation, stability, domain walls,... .
AMS classification: 35K55, 35Q60.

§1. Introduction

Ferromagnetic materials are permanent magnets characterized by a spontaneous magnetiza-
tion [1, 4]. In ferromagnetic nanowires, the wire axis is a preferential axis of magnetization,
and one observes formation of domains (zone in which the magnetization is oriented along
the wire) separated by domain walls (zones of magnetization switching). This property plays
an important role for applications in data storage or logic devices (see [10] and [2]).

In this paper, we deal with ferromagnetic rings and we study the influence of their shape
on their performances for data storage. In particular, the main criterium is the number of
stable configurations possibly stored by the device.

First we recall the three-dimensional model of the ferromagnetic materials (see [7, 9]):
we denote by Ω ⊂ R3 the ferromagnetic domain and by m(t, x) the distribution of the magne-
tization at time t and at point x ∈ Ω. We suppose that the material is saturated, i.e. the norm
of m constant equals to ms. The magnetic induction b and the magnetic field h are linked by
the constitutive relation b = h + m, where m is the extension of m by zero outside Ω. The
variation of m satisfies the following Landau-Lifshitz equation:

∂m
∂t

= −γm × heff −
αγ

ms
m × (m × heff),

where γ is the gyromagnetic ratio, α is the damping coefficient, and heff is the effective field
given by:

heff(m) =
A

µ0m2
s
∆m + hd(m),

where A is the exchange constant, µ0 the permeability of the vacuum and hd the demagnetiz-
ing field obtained by solving Maxwell-Faraday equation:

curl hd(m) = 0, div(hd(m) + m) = 0, in R3.

We consider a ferromagnetic ring Ωη ⊂ R
3 obtained by rotation around the z axis of the ellipse

contained in the plane x = 0 of equation
(y − R)2

a2 +
z2

b2 < η
2, where η is a small parameter.
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Figure 1: Ferromagnetic Ring.

When η tends to zero, the ring tends to the circle contained in the plane z = 0 of equation
x2 + y2 = R2. We parametrize this circle by θ 7→ (R cos θ,R sin θ, 0). As it is established
in [3] by asymptotic process, we obtain the following one-dimensional limit model: writing
the magnetic moment as m(t,R cos θ,R sin θ, 0) = msM(

γms

λ
t, θ), where the parameter λ is

given by λ =
A

µ0R2m2
s
, the new unknownM satisfies the renormalized saturation constraint

|M| = 1 and verifies:



M : (t, θ) 7→ M(t, θ) ∈ S 2 ⊂ R3, 2π-periodic in the variable θ,

∂M

∂t
= −M×Heff(M) − αM× (M×Heff(M)),

Heff(M) = ∂θθM +
1
λ
Hd(M),

Hd(M)(θ) = −
b

a + b
〈M(θ)|er(θ)〉 er(θ) −

a
a + b

M3(θ)e3,

(1)

with

er =

cos θ
sin θ

0

 , eθ =

− sin θ
cos θ

0

 , e3 =

001
 .

We remark in particular that the limit demagnetizing operator Hd is local in the one-dimen-
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sional model. We introduce the rotation Rσ given by

Rσ =

cosσ − sinσ 0
sinσ cosσ 0

0 0 1

 .
Remark 1. Equation (1) is invariant by translation-rotation: if we denote byM a solution of
(1), we considerMσ defined by:

Mσ(t, θ) = Rσ(M(t, θ − σ)).

Since er(θ) = Rσ(er(θ − σ)), we have:

Hd(Mσ)(t, θ) = Rσ(Hd(M)(t, θ − σ)).

In addition,

∂θθM
σ(t, θ) = Rσ(∂θθM(t, θ − σ)) and

∂Mσ

∂t
(t, θ) = Rσ(

∂M

∂t
(t, θ − σ)).

ThereforeMσ is also solution for (1).

We denote by M =

M1
M2
M3

 the vector of the coordinates ofM(t, θ) in the frame (er, eθ, e3):

M(t, θ) = M1(t, θ)er(θ) + M2(t, θ)eθ(θ) + M3(t, θ)e3.

Rewriting equation (1) in the mobile frame (er(θ), eθ(θ), e3) with these coordinates, we obtain
the following model:

M : (t, θ) 7→M(t, θ) ∈ S 2 2π − periodic in θ,

∂M
∂t

= −M ×Heff(M) − αM × (M ×Heff(M)),

Heff(M) = ∂θθM + 2e3 × ∂θM −M1e1 −M2e2 +
1
λ

Hd(M),

Hd(M) = −
1

a + b
(bM1e1 + aM3e3).

(2)

Remark 2. From the invariance by rotation-translation of (1), we obtain that (2) is invariant
by translation, i.e. if M satisfies (2), then for all σ ∈ R, (t, θ) 7→ M(t, θ − σ) is also solution
for (2).

We focus on static planar solutions M0 for Equation (2) taking their values in the plane
z = 0, that is on the form

M0 = (cos u(θ), sin u(θ), 0), (3)
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where u ∈ H1
loc(R;R) satisfies:

∃k ∈ Z, ∀θ ∈ R, u(θ + 2π) = u(θ) + 2kπ, (4)

in order to ensure that M0 is 2π-periodic. We denote byM0 the corresponding solution for
Equation (1):

M0(θ) = cos u(θ)er(θ) + sin u(θ)eθ(θ).

We remark that k + 1 is the winding number ofM0 as a function from the unit circle S 1

into itself. As already said, we take care about Domain Walls. Since the wire direction is an
easy axis of magnetization, we call domain a point in which the magnetizationM0 is tangent
to the ring, and we call Domain Wall (or magnetization switching) a point separating two
consecutive domains in which the magnetization is orthogonal to the ring. We remark that
by periodicity argument, the number of switchings in even. The key point for applications is
to address the stability of the configurations in order to fix the number of switchings. As we
will see after, the number of switching for a configuration u is equal to 2|k| in Formula (4). In
the following section, we will describe all the static planar configurations, and we will study
their stability in Section 3.
Remark 3. We can construct static solutions M0 of (2) taking their values in the plane y = 0,
that is on the form M0 = (cos u(θ), 0, sin u(θ)) (for example M0 ≡ e3). From the physical
point of view, since a > b, we can prove that these solutions are unstable. The existence of
static solutions of (2) which do not take their values either in the plane z = 0 or in the plane
y = 0 remains an open problem.

§2. Construction of static profiles

By a straightforward calculation, M0 is a static solution of (2) is and only if u satisfies (4) and
the pendulum equation:

u′′ +
b

λ(a + b)
cos u sin u = 0. (5)

By multiplying the pendulum equation by u′ and integration, we obtain that there exists a
constant ρ such that for all θ,

(u′(θ))2 +
b

λ(a + b)
sin2 u(θ) = ρ2. (6)

2.1. Case k = 0

First we look for planar static solutionsM0 for (1) of winding number equal to one, i.e. we
look for the solutions u of (5) such that u(θ + 2π) = u(θ) (i.e. with k = 0). The periodic
solutions of (5) are either the constant solutions equal to 0 modulo π

2 or are the non constant

trajectories between the separatrix, which are the lines p = ±
√

b
λ(a+b) cos u in the phase

portrait (where we denote by (u, p) the coordinate in the phase plane, see Figure 2). By
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Figure 2: Phase portrait (u(θ), u′(θ)) for (5).

classical arguments, such a solution θ 7→ (u(θ), u′(θ)) remains in one cell Cn between the
separatrix, where:

Cn =

(u, p) ∈ R2,−π/2 + nπ < u < π/2 + nπ with |p| <

√
b

λ(a + b)
| cos u|

 .
We first look for the 2π-periodic solutions in C0. By translation in the variable θ, we can
assume that u(0) ∈]0, π2 [ and u′(0) = 0. For γ ∈]0, π2 [, we denote by uγ the solution of (5)
such that uγ(0) = γ and u′(0) = 0. We have:

∀θ ∈ R, (u′γ(θ))2 +
b

λ(a + b)
sin2 uγ(θ) =

b
λ(a + b)

sin2 γ.

By classical calculation, the period L(γ) of this solution is given by:

L(γ) = 4

√
λ(a + b)

b

∫ γ

0

du√
sin2 γ − sin2 u

.

The function uγ satisfies uγ(0) = uγ(2π) if and only if there exists n ∈ N∗ such that
nL(γ) = 2π. The function L is continuous and non decreasing. In addition, we have

lim
γ→ π

2

L(γ) = +∞, and lim
γ→0

L(γ) = 2π

√
λ(a + b)

b
.

Therefore, if
b

λ(a + b)
≤ 1, for all γ ∈]0, π2 [, L(γ) > 2π, so there is no 2π-periodic solution

of this type.

If
b

λ(a + b)
> 1, let l ∈ N∗ such that l + 1 ≥

√
b

λ(a+b) > l. Then, 2π
l+1 ≤ lim

γ→0
L(γ) < 2π

l .

So on the one hand, by monotonicity argument, for all n ∈ {1, . . . , l}, there exists only one
γn ∈]0, π2 [ such that L(γn) = 2π

n . On the other hand, for all γ ∈]0, π2 [, L(γ) > 2π
l+1 , so the

minimal possible period of such solutions is 2π
l . Therefore, there are exactly l 2π-periodic

solutions (modulo translation in θ) in the cell C0.
By the same arguments, we find exactly l 2π-periodic solutions in the cell C1.

So, in the case k = 0, we have the following theorem:
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Figure 3: Profile of eθ. Figure 4: Profile of er.

Figure 5: Solution with l = 2.

Theorem 1. Let λ > 0, a > 0, b > 0. Let l ∈ N such that l <
√

b
λ(a+b) ≤ l + 1. In addition

to the solutions ±er and ±eθ, Equation (1) admits 2l other degree-one planar static solutions
modulo rotation-translation.

2.2. Case k , 0

Now we look for planar static solutions of (1) of degree k+1, k , 0, i.e. we look for solutions
u for (5) such that u(θ + 2π) = u(θ) + 2kπ, with k , 0. These solutions are outside the
separatrix, since the solutions inside the separatrix remain in intervals which sizes are less

than π. These solutions satisfy (6) with |ρ|2 >
b

λ(a + b)
.

For k ≥ 1, we consider, for ρ >
√

b
λ(a+b) , the solution vρ of (5) such that vρ(0) = 0 and

v′ρ(0) = ρ. Writing (6), we obtain that vρ reaches the value 2kπ at the point θρ given by:

θρ =

∫ 2kπ

0

dv√
ρ2 −

b
λ(a + b)

sin2 v

= 4k
∫ π

2

0

dv√
ρ2 −

b
λ(a + b)

sin2 v

.
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Figure 6: Solution with 2 walls (k=1). Figure 7: Solution with 4 walls (k=2).

Figure 8: Solution with 2 walls (k=-1). Figure 9: Solution with 4 walls (k=-2).

We remark that ρ 7→ θρ is continuous and non increasing. In addition, we have:

lim
ρ→

√
b

λ(a+b)

θk(ρ) = +∞ and lim
ρ→+∞

θk(ρ) = 0.

Then we deduce that for all fixed k ≥ 1 there exist an unique ρ ∈
]√

b
λ(a+b) ,+∞

[
such that

θk(ρ) = 2π.

By the same way we find the same result for k ≤ −1 with ρ < −
√

b
λ(a + b)

. So, in the case

k ∈ Z∗ we have the following theorem:

Theorem 2. For any fixed k ∈ Z∗, Equation (1) admits a planar static solution of degree
k + 1. This solution is unique modulo translation-rotations and presents 2|k| walls.

§3. Stability of wall profiles

In this part we address the stability of the solutions given in the previous part. The first dif-
ficultly comes from the saturation constraint: we must consider only perturbations satisfying
this constraint. To solve this problem we use the mobile frame technique developed in [5].
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3.1. Mobile frame technique

We address the stability of a static solution M0 =

cos u
sin u

0

 for Equation (2), obtained either in

Theorem 1 or in Theorem 2. We denote by ρ2 the conserved quantity (u′)2 + b
λ(a+b) sin2 u in

(6). We introduce the mobile frame (M0(θ),M1(θ),M2), where

M1(θ) =

− sin u(θ)
cos u(θ)

0

 and M2 =

001
 .

We describe the perturbations of M0 as follows:

M(t, θ) = r1(t, θ)M1(θ) + r2(t, θ)M2 + (1 + ν(r(t, θ)))M0(θ),

with ν(r) =

√
1 − r2

1 − r2
2 − 1, so that the saturation constraint is satisfied. We write the

Landau-Lifshitz equation (2) with this new unknown r : R+× [0, 2π]→ R2, and by projection
onto M1 and M2, we establish as in [5] that M satisfies (2) if and only if r satisfied the
equation:

∂tr =

(
−α −1
1 −α

)
Lr + F(θ, r, ∂θr, ∂θθr), (7)

where F(θ, r, ∂θr, ∂θθr) is the non linear part, and with:

Lr =

(
L1r1
L2r2

)
with

L1 = −∂θθ +
b

λ(a + b)
(sin2 u − cos2 u),

L2 = L1 + (
a

λ(a + b)
− ρ2 − 2u′ − 1).

. (8)

In addition, M is stable for (2) if and only if 0 is stable for (7). The positivity of L1 and L2 is
crucial for the stability (see [6]). Let us study the different cases.

3.2. Stability of eθ
The static planar solution eθ for Equation (1) corresponds to the static planar solution
M0 = (0, 1, 0) for Equation (2) with u = π

2 . The obtained linearization is L given by:

L =


−∂θθ +

b
λ(a + b)

−∂θθ +

(
a

λ(a + b)
− 1

)
 .
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As already said, we prove in [6] that if L > 0 then 0 is asymptoticly stable for (7). The
operator L1 is positive. Concerning L2, its positiveness is related to the sign of

a
λ(a + b)

− 1,

so we obtain the following theorem:

Theorem 3. If λ < a
a+b , then eθ is asymptoticly stable. If λ > a

a+b then eθ is linearly unstable.

Remark 4. In the previous theorem, if λ > a
a+b , i.e. if the radius of the ring is sufficiently

small, then the exchange energy of eθ becomes large and creates instability.

3.3. Instability of er

We study the static planar solution er of the equation (1), which corresponds to the static
planar solution M0 = (1, 0, 0) for Equation (2), i. e. with u = 0. The obtained linearization
is given by:

L =

(
L1
L2

)
,

where

L1 = −∂θθ −
b

λ(a + b)
and L2 = −∂θθ +

a − b
λ(a + b)

− 1.

In particular, L1 admits negative eigenvalues so we have the following theorem:

Theorem 4. Whatever λ > 0, a > 0 and b > 0, er is linearly unstable for Equation (1)..

3.4. Stability of the non constant solutions

We address the stability of a non constant solution M0 =

cos u
sin u

0

 for Equation (2), obtained

either in Theorem 1 in the case b
λ(a+b) > 1, or in Theorem 2. We denote by ρ2 the conserved

quantity (u′)2+ b
λ(a+b) sin2 u in (6). We recall that the stability for M0 is related to the positivity

of the operators L1 and L2 given by (8).

3.4.1. Linear instability for the non constant solutions given by Theorem 1

We assume that ρ2 < b
λ(a+b) . In this case, the trajectories θ 7→ (u(θ), u′(θ)) are between the

separatrix. We remark thatL1 cos u = (ρ2− b
λ(a+b) ) cos u. So ρ2− b

λ(a+b) is a negative eigenvalue
associated to the eigenvector cos u. Thus, L1 is not positive. Therefore we have the following
Theorem:

Theorem 5. In the case ρ2 < b
λ(a+b) , the static solution M0 is linearly unstable for (1).

3.4.2. Linear stability for the non constant solutions given by Theorem 2

We assume now that ρ2 > b
λ(a+b) . We have the following proposition:

Proposition 6. L1 is a linear non negative operator. In addition KerL1 = Ru′.
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Proof. We set `1 = ∂θ+
b

λ(a + b)
sin u cos u

u′
, then `∗1 = −∂θ+

b
λ(a + b)

sin u cos u
u′

and we have

the factorization:
`∗1 ◦ `1 = L1.

So L1 is a positive operator. We have also

L1u′ = −

(
u′′ +

b
λ(a + b)

cos u sin u
)′

= 0,

so u′ ∈ KerL1. �

Therefore in this case, L1 is non negative. The existence of an order-one vanishing eigen-
value is an additional difficulty to obtain the nonlinear stability. This is due to the invariance
of (2) by translation (see Remark 2), so that there exists a one-parameter family of constant
solutions for (2): θ 7→ M0(θ − σ) depending of the parameter σ. By projection on the mo-
bile frame, we obtain the existence of a one-parameter family of constant solutions for (7):
θ 7→ R(σ)(θ).

In order to take into account the zero eigenvalue of L, as in [5] or [8], we rewrite r in the
following new system of coordinates:

r(t, θ) = R(σ(t))(θ) + w(t, θ),

where now the parameterσ depends on the time variable: σ ∈ C1(R+;R), and w ∈ C1(R+; H2
per)

such that the first component w1 of w satisfies the orthogonality condition:

∀t > 0,
∫ 2π

0
w1(t, θ)u′(θ)dθ = 0.

In this new unknown (σ, w), we are able to separate the dynamics of w and the dynamics of
σ. In particular, if L2 is positive, we can prove by variational estimates that w(t) tends to zero
in H1 and that σ(t) tends to a finite limit when t tends to +∞. This means that M(t) tends to a
translation of M0 when t tends to +∞ (asymptotic stability modulo translation in the variable
θ).
Now, the difficulty is to prove the study of L2. We prove in [6] the following Theorems:

Theorem 7. We consider the solutions of (1) given by Theorem 2 in the case k ≤ 1.
If a ≤ b, these solutions are unstable.
If a > b, if λ is large enough, these solutions are unstable.
If a > b, there exists λ0 > 0 such that if 0 < λ < λ0 then there exists k0 > 0 such that the
solutions with k ≤ k0 are stable and the solutions with k > k0 are unstable.

Theorem 8. We consider the solutions of (1) given by Theorem 2 in the case k ≥ −1. If a > b,
there exists λ0 > 0 such that if 0 < λ < λ0 then there exists k0 < 0 such that the solutions with
k0 ≤ k ≤ −1 are stable and the solutions with k < k0 are unstable.

Remark 5. We remark in particular that, if a > b, the solution with k = −1 is stable whatever
λ > 0. In addition, we establish that the larger the diameter of the ring, the more information
it can store.
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[7] Halpern, L., and Labbé, S. Modélisation et simulation du comportement des matériaux
ferromagnétiques. Matapli 66 (2001), 70–86.

[8] Kapitula, T. Multidimensional stability of planar traveling waves. Trans. Amer. Math.
Soc. 349, 1 (1997), 257–269.

[9] Landau, L., and Lifschitz, E. Electrodynamique des milieux continus. 1969. Moscou,
vol 8.

[10] Parkin, S. S., Hayashi, M., and Thomas, L. Magnetic domain-wall racetrack. Science
320 (2008), 190–194.

G. Carbou and R. Rachi
LMAP - UMR CNRS 5142 - ES2 UPPA - IPRA,
Université de Pau et des Pays de l’Adour
Avenue de l’Université - BP 1155, 64013 PAU
CEDEX FRANCE
gcarbou@univ-pau.fr and
rrachi@univ-pau.fr

M. Moussaoui
Laboratoire d’Analyse Non Linéaire et Histoire des Maths
E.N.S, B.P. 92 Vieux Kouba16050 Algiers, Algeria
mmohand47@gmail.com





Monografías Matemáticas García de Galdeano 42, 57–64 (2019)

GENERALIZED FRACTIONAL
DIFFERENTIAL EQUATIONS WITH ORDER
VARYING IN TIME IN COMPLEX BANACH

SPACES: ANALYTIC AND NUMERICAL
ASYMPTOTIC BEHAVIOR
Eduardo Cuesta and Rodrigo Ponce

Abstract. The asymptotic behavior of the solution of generalized fractional order integral
equations with order varying in time arising in image processing is investigated in this
work. It is shown here that the asymptotic behavior is extended from the corresponding
property for the scalar abstract equation u(t) = ∂−α(t)

t Au(t) + f (t), 0 ≤ t ≤ T, for a given
α : [0,T ]→ (1, 2), f defined in 0 ≤ t ≤ T , A : D(A) ⊂ X → X a bounded operator, and X
a Banach space. It is also proved that a first order time discretization inherits the behavior
of the continuous solution.

Keywords: fractional integrals, variable order, Banach spaces, convolution quadrature.
AMS classification: 45D05,65J08,65R20.

§1. Introduction

One of the most interesting properties in time dependent partial differential equations based
models for image processing is the asymptotic behavior of the analytic solution as time goes
to infinity, but an even more important issue is if the time discretization inherits this behavior.
In fact, the asymptotic behavior allows us to predict the diffusion level of the solution as the
scale parameter t grows up, or in image processing terminology, this allows one to predict the
degree of blurring acting on the image as time tends to infinity.

The asymptotic behavior of most of local models related to image processing has been
extensively investigated, on the contrary what happens with nonlocal models. The memory
effect in nonlocal equations makes in many cases the study of the asymptotic behavior more
difficult if compared to the local models, but in spite of this the study has been carried out for
general Volterra equations [8], and in a particular and very well known kind of nonlocal mod-
els as they are the linear integro–differential equations of fractional order [1]. This behavior
has been already experienced in practical instances related to image processing (see e.g. the
pioneer work [3]).

Recently an extension of the integro–differential equations of fractional order in [3] con-
sisting in replacing the constant fractional order by fractional order varying in time has been
successfully applied in the framework of image filtering [2]. To the best of our knowledge up
to now there was no particular results on the asymptotic behavior adapted to fractional equa-
tions with order varying in time, however a recent work solves this issue. In fact, in [5] the



58 Eduardo Cuesta and Rodrigo Ponce

authors study the asymptotic behavior of such a kind of equations, and they extend the result
to its time discretization. The well–posedness, and the regularity of the solution is studied in
[5] as well, everything done in the abstract framework of complex Banach spaces.

The main contribution of this work is the extension of these results to the case of gen-
eralized fractional equations in the sense of [2], whose main difference is that this approach
involves severals varying in time integration orders in a matrix–form.

The paper is organized as follows, Section 2 is devoted to mathematical background and
model formulation, in Section 3 and 4 we present the main result of this work related to
the continuous and discrete solutions respectively, and finally in Section 5 we presents some
observations and final conclusions.

§2. Mathematical background

The present work is motivated by the nonlocal in time evolution partial differential equations
based approach to image processing introduced in [2], whose formulation is given in terms of
time fractional integrals with orders varying in time. In fact, let u0 be an initial data, standing
for a J × J, perturbed sampled image, J > 0, vector–arranged as J2 × 1 vector, and intended
to be restored. The nonlocal evolutionary model proposed in [2] reads

u(t) = u0 +

∫ t

0
AhD(t − s)u(s) ds, t > 0, (1)

where u : [0,T ] → MJ2×1(R), stands for the original image evolved up to the time level
t > 0, which has been vector–arranged as a column vector with J2 entries, i.e. u = (u j)1≤ j≤J2 .
Moreover, Ah ∈ MJ2×J2 (R) is a symmetric and negative semi–definite matrix. An example
of matrix Ah is the one corresponding to the discrete Laplacian based on second order finite
difference scheme, including discrete and homogeneous Newman boundary conditions. No-
tice that most of classical spatial discretizations of the Laplacian give rise to one of these
matrices. Finally, D : [0,T ] → MJ2×J2 (R) stands for a diagonal matrix, D = diag1≤i≤J2 (k j),
where the entries k j(t), 1 ≤ j ≤ J2, coincide with the convolution kernels those define the
fractional integral with order varying in time α j(t), for each 1 ≤ j ≤ J2.

Recall that several definitions for non integer integrals (or derivatives) with order varying
in time can be found in the literature, and the convenience of using one vs. the others has been
largely discussed, and basically depends on the purposes of the model. For the shortness of
the presentation, we do not include such a discussion here, we just adopt the same definition
as in [5] and we refer there the reader for a more precise motivation of this choice. Before
recalling this definition let us denote L and L−1 the Laplace transform operator and the
inverse Laplace transform operator, respectively. In that manner, let α : [0,T ] → (1, 2) be a
piecewise continuous function then, for f ∈ L1(0,+∞), the fractional integral of order α(t) is
defined as

∂−α(t)
t f (t) =

∫ t

0
k(t − s) f (s) ds, t > 0, (2)

where,

k(t) := L−1(K)(t), and K(z) :=
1

zzα̃(z) , (3)
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and
α̃(z) = L(α)(z), (4)

for z ∈ D(K) ⊂ C. Simply observe that, if the fractional order turns out to be constant, then
α̃(z) = α/z for certain constant α, and the definition (2)–(4) coincides with the very well
known Riemann–Liouville one [9]. We refer the reader to [5] for a deeper discussion on this
matter.

The underlying idea behind the use of this model in image filtering is that the diffusion
in the original image u0 applies pixel–by–pixel by setting different viscosity parameters (or
diffusion coefficients) α j(t) for each single pixel, which evolves in time according to some
criteria (edge–preserving, texture–preserving, among others). This fact gives rise to the con-
volution kernels k j(t), 1 ≤ j ≤ J2 of the type mentioned above. This approach extends many
other previous fractional approaches whose diffusion orders keep constant along the whole
time interval.

§3. Main result

In this section we present the main theorem of the paper related to the continuous solution,
but we previously recall the result on which this is based on.

Let (Y, ‖ · ‖) be a complex Banach space, α : [0,T ] → (1, 2) a piecewise continuous
function, and consider the abstract integral equation

u(t) = u0 + ∂−α(t)
t (Au)(t), t > 0, (5)

where A : D(A) ⊂ Y → Y is a linear, closed, and θ–sectorial operator in Y , 0 < θ < π/2,
u0 ∈ Y stands for the initial data, and ∂−α(t)

t defines the fractional integral according the
definition (2)–(4).

Recall that a linear and closed operator is θ–sectorial, 0 < θ < π/2, if there exist w ∈ R
and L > 0 such that

• The resolvent (zI − A)−1 is analytic, and

• It satisfies

‖(zI − A)−1‖Y→Y ≤
L

|z − w|
,

for z ∈ C, with Arg(z − w) > π − θ.
Notice that, since we are assuming that α(t) is piecewise continuous in [0,T ], α(t) admits

Laplace transform in a complex domain Re(z) ≥ Cα, for some Cα > 0. In addition assume
that there exist 1 < m < M < 2, C > 0, and 0 < ε < 1, such that, for z ∈ C, Re(z) ≥ Cα,

(A1) m ≤ Re(zα̃(z)) ≤ M, and
Mπ

2
< ε(π − θ).

(A2) |Im(zα̃(z))| ≤ C, and ∣∣∣log (|z|Im(zα̃(z)))
∣∣∣ < (1 − ε)(π − θ),

where ε is expected to be close to 1.
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Assume also that
0 < θ < π −

Mπ

2
−max

r≥R

log(r)
rε

,

for R > 0 large enough.
Under these assumptions, equation (5) can be written in terms of the Laplace transform

as
U(z) =

H(z)
z

(H(z)I − A)−1u0, (6)

where
H(z) := zzα̃(z), and U(z) = L(u)(z),

for Re(z) ≥ Cα. Therefore there exists an evolution operator E(t), t > 0, such that the mild
solution of (5) can be written as

u(t) = E(t)u0, t > 0. (7)

In addition the evolution operator E(t) can be expressed by means of the Bromwich formula
as

E(t) =
1

2π i

∫
Γ

etz H(z)
z

(H(z)I − A)−1 dz, (8)

where Γ is a convenient complex path running from − i∞ to + i∞ within the analyticity do-
main of the resolvent of A, and positively oriented, i.e. with increasing imaginary part (see
[5] for more details).

The asymptotic behavior of the solution of (5) is stated in [5, Theorem 5.1], in fact it is
proved that there exists C > 0 such that

‖E(t)‖Y→Y ≤
CL

1 + |w|tm , as t → +∞. (9)

The first contribution of this work consists of extending the asymptotic behavior of the
solution of (5) to the solution of (1). To this end denote the Banach space Y = L1((0,T ),R)
normed as usual by ‖ · ‖L1 and denoted by simplicity as ‖ · ‖.

Let (X, ‖ · ‖X) be the Banach space defined by

X :=
J2∏
j=1

Y normed by ‖v‖X := sup
1≤ j≤J2

‖v j‖, (10)

for v = (v j)1≤ j≤J2 ∈ X.
It is straightforward to prove that the operator AhD(t) in (1), and described in Section 2,

is on the one hand commutative, i.e. AhD(t) = D(t)Ah, and on the other hand θ0–sectorial for
certain 0 < θ0 < π/2, and w ∈ R−.

Assume that the diffusion coefficients α j(t) involved in the definition of kernels in the
matrix D, admit Laplace transform in a complex domain Re(z) ≥ Cα, for some Cα > 0, and
in addition we assume (A1) and (A2) for each one. In fact assume that there exist 1 < m j <
M j < 2, C j > 0 and 0 < ε j < 1, for 1 ≤ j ≤ J2, such that, for z ∈ C, Re(z) ≥ Cα,

(B1) m j ≤ Re(zα̃ j(z)) ≤ M j, and
M jπ

2
< ε j(π − θ0).
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(B2) |Im(zα̃ j(z))| ≤ C, and

| log
(
|z|Im(zα̃ j(z))

)
| < (1 − ε j)(π − θ0)

where all ε j are expected to be close to 1.

Assume also that

(C) 0 < θ0 < π −

max
1≤ j≤J2

{M j} · π

2
−max

r≥R

log(r)
rε

,

for R > 0 large enough, and
ε = max

1≤ j≤J2
ε j. (11)

The well–posedness, and the regularity of the solution stated in [5] can be straightfor-
wardly extended to (1) under the assumptions (B1), (B2), and (C). Therefore, in order to not
extend unnecessarily this work we will focus solely on the asymptotic behavior of the solu-
tion of (1). On the other hand, the mild solution u(t) of (1) can be writen as u(t) = E(t)u0
where the evolution operator E : X → X admits the expression

E(t) :=
1

2π i

∫
Γ0

etz

z
(I − D̃(z)Ah)−1 dz, t > 0, (12)

where D̃(z) stands for the componentwise Laplace transform of D(t), and Γ0 is once again a
convenient complex path connecting − i∞ and + i∞ with increasing imaginary part.

The theorem below represents the main contribution of this section.

Theorem 1. Let E(t) be the evolution operator (12) corresponding to the mild solution of (1)
under assumptions (B1), (B2), and (C).

If zero does not belong to the spectrum of Ah, then there exists C > 0 independent on t,
such that

‖E(t)‖X→X ≤
C

1 + |λ|tm , as t → +∞, (13)

where m = min
1≤ j≤J2

{m j}, and λ is the spectral value of Ah corresponding to same index as m.

If zero belongs to the spectrum on Ah, then E(t) is merely bounded, i.e. there exists C > 0
independent on t, such that

‖E(t)‖X→X ≤ C, t > 0.

Proof. Since Ah stands for a symmetric and negative semi–definite matrix, there exists an
orthogonal matrix P, and a diagonal matrix DA with non positive diagonal entries such that
Ah = PDAPT .

On the one hand, we can write E(t) as follows

E(t) =
1

2π i

∫
Γ0

etzPT H(z)
z

(H(z) − DA)−1P dz, t > 0,

where H(z) = PD̃−1(z)PT is a bounded operator in X along the complex path Γ0. On the other
hand

‖E(t)u0‖X ≤
1

2π

∫
Γ0

∣∣∣∣∣∣ etz

z

∣∣∣∣∣∣ ‖H(z)‖X→X‖(H(z) − DA)−1u0‖X dz,
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for t > 0.
Moreover, ‖H(z)‖X→X = ‖D̃−1(z)‖X→X , for z ∈ Γ0, and the resolvent (H(z) − DA)−1 cor-

responds to a system of scalar equations where the diagonal matrix DA plays the role of the
operator A in (5), and the convolution kernel associated in (5) is here replaced by a linear
combination of kernels of the same type.

First of all recall that the spectrum of DA is located in the negative real line. Therefore,
in order to accomplish the bounds of the resolvent (H(z) − DA)−1 and the term H(z), we
make use, as in [5], of a suitable choice of the complex path Γ0 in (12), now under the
restrictions imposed by (B1), (B2), and (C). In particular, define the complex paths Γ

(1)
0 and

Γ
(2)
0 respectively by

γ(1)
0 (φ) :=

1
tm + ρ0 e iφ, −ε(π − θ) ≤ φ ≤ ε(π − θ),

and
γ(2)

0 (ρ) := ρ e± iε(π−θ), ρ ≥ ρ0,

where ε is defined in (11), ± in γ(2)
0 represents the upper and lower branches (positive and

negative imaginary parts respectively), and ρ0 stands for the distance from the origin to the
intersection point of γ(1)

0 and γ(2)
0 . Therefore,

Γ0 := Γ
(1,1/m)
0 ∪ Γ

(2,1/m)
0 , (14)

where Γ
(1,1/m)
0 and Γ

(2,1/m)
0 come parametrized by (γ(1)

0 (φ))1/m and (γ(2)
0 (ρ))1/m respectively.

So, from the bounds along Γ0 of all terms involved in the integral (12) the proof follows.
�

§4. Time discretization

The time discretization considered in [5] is based on the backward Euler convolution quadra-
ture (see [4, 6, 7]). Now we extend the formulation to the non–scalar case,

Un = u0 +

n∑
j=0

Qn− jAhU j, 0 ≤ n ≤ N, (15)

where the J2 × J2 quadrature weights {Qn}n≥0, come out from the evaluation

D̃
(

1 − ζ
τ

)
=

+∞∑
n=0

Qnζ,

τ = T/N, and D(t) is the matrix–valued function in (1). In order to not extend unnecessarily
this presentation we refer again the reader for more details on the convolution quadratures to
[6, 7], and in fact for the one based on the backward Euler method see [4].

The key point here is that the numerical solution can be written in terms of discrete evo-
lution operators {En}n≥0.
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Un = Enu0, 0 ≤ n ≤ N, (16)

and that the Bromwich formula in vectorial form allows us to write

En =
1

2π i

∫
Γ0

rn(tz)
z

(I − D̃(z)Ah)−1 dz, n ≥ 0,

where Γ0 is the complex path stated in (14), and rn(z) := 1/(1 − z)n. Notice that rn(z) stands
for the characteristic function of the backward Euler method.

What follows is the main result of this section.

Theorem 2. Let {En}n≥0 be the discrete evolution operators (16) associated to the numerical
solution (15) under assumptions (B1), (B2), and (C).

If zero does not belong to the spectrum of Ah, then there exists C > 0, independent on t,
such that

‖En‖X→X ≤
C

1 + |λ|tm
n
, as t → +∞, (17)

where m = min
1≤ j≤J2

{m j}, and λ is the spectral value of Ah corresponding to same index as m.

If zero belongs to the spectrum on Ah, then E is merely bounded, i.e. there exists C > 0
independent on t, such that

‖En‖X→X ≤ C, t > 0.

The proof of Theorem 2 follows the same steps as the one of the Theorem 1, now replac-
ing the exponential etz by the rational function rn(z).

§5. Observations and final conclusions

The first to be observed is that the numerical solution inherits the behavior as t goes to infinity
of the analytic solution. Observe also that the asymptotic behavior turns out to be indepen-
dent of the initial data u0 and its regularity since the proofs of both, Theorem 1 and 2, are
done merely for the continuous and discrete evolution operators respectively. In other words,
the regularity of the initial data does not affect the asymptotic behavior nor of the analytic so-
lution neither the numerical one. This fact is a crucial issue specially in the context of image
processing because this proves that the blurring is the same whatever the original image one
has.

Observe also that if the matrix DA has a null eigenvalue, the evolution operator is merely
bounded and the decrease is not longer guaranteed. This confirms what happens in the case
of abstract infinitesimal semigroup generators when w = 0 (according the notation in Section
2). The reason is that the evolution operators do not longer admit analytic extension to the
left hand side complex plane.

Moreover, if λ , 0 in Theorems 1 and 2, then the decrease of u is limited by the slowest
decrease along all components, or in other words it is limited by the lowest diffusion along
every single pixels of the image represented by u.
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A PROFILE DECOMPOSITION FOR THE
LIMITING SOBOLEV EMBEDDING

Giuseppe Devillanova and Cyril Tintarev
Abstract. For many known non-compact embeddings of two Banach spaces E ↪→ F,
every bounded sequence in E has a subsequence that takes form of a profile decomposition
- a sum of clearly structured terms with asymptotically disjoint supports plus a remainder
that vanishes in the norm of F. In this note we construct a profile decomposition for
arbitrary sequences in the Sobolev space H1,2(M) of a compact Riemannian manifold,
relative to the embedding of H1,2(M) into L2∗ (M), generalizing the well-known profile
decomposition of Struwe [12, Proposition 2.1] to the case of arbitrary bounded sequences.

Keywords: concentration compactness, profile decompositions, multiscale analysis.
AMS classification: 46E35, 46B50, 58J99, 35B44, 35A25.

§1. Introduction

When the embedding of two Banach spaces E ↪→ F is continuous and not compact, the lack
of compactness can be manifested by the (behavior in F of the) difference uk − u between the
elements of a weakly convergent sequence (uk)k∈N ⊂ E and its weak limit u. Therefore one
may call defect of compactness of (uk)k∈N the (sequences of) differences uk − u taken up to a
suitable remainder that vanishes in the norm of F. (Note that, if the embedding is compact
and E is reflexive, the defect of compactness is itself infinitesimal and so it can be identified
with zero). For many embeddings there exist well-structured representations of the defect
of compactness, known as profile decompositions. Best studied are profile decompositions
relative to Sobolev embeddings, which are sums of terms with asymptotically disjoint sup-
ports, called elementary concentrations or bubbles. Profile decompositions were originally
motivated by studies of concentration phenomena in PDE in the early 1980’s by Uhlenbeck,
Brezis, Coron, Nirenberg, Aubin and Lions, and they play a significant role in the verification
process of the convergence of sequences of functions in applied analysis, particularly when
the information available via the classical concentration-compactness method is not enough
detailed.

Profile decompositions are known to exist when the embedding E ↪→ F is cocompact
relative to some group G of isometries on E, see [11]. We recall that an embedding E ↪→ F is
called cocompact relative to a group G of isometries (G-cocompact for short) if any sequence
(uk)k∈N ⊂ E such that gk(uk) ⇀ 0 for any sequence of operators (gk)k∈N ⊂ G turns out
to be infinitesimal in the norm of F. (An elementary example due to Jaffard [7], which
is easy to verify, is cocompactness of embedding of `∞(Z) into itself relative to the group
of shifts G := {gm := (an)n∈N 7→ (an+m)n∈N | m ∈ Z}.) Up to the authors knowledge the
first cocompactness result for functional spaces is [8, Lemma 6] by E. Lieb which expresses
(using different terminology than the present note) that the nonhomogeneous Sobolev space
H1,p(RN) is cocompactly embedded into Lq(RN), when N > p and q ∈ (p, p∗) (where p∗ =
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N p
N−p ), relative to the group of shifts u 7→ u(· − y), y ∈ RN . A profile decomposition relative
to a group G of bijective isometries on a Banach space E represents defect of compactness
uk − u as a sum of elementary concentrations, or bubbles, namely

∑
n∈N\{0} g

(n)
k w(n) with some

g(n)
k ∈ G and w(n) ∈ E. Note that in the above sum the index n = 0 is not allowed since, in

the existing literature, usually w(0) represents the weak-limit u of the sequence and (g(0)
k )k∈N

is the constant sequence of constant value the identity map of the space. So, by using this
convention, we can use defect of compactness to represent the sequence (uk)k∈N as a sum of∑

n∈N g
(n)
k w(n) and a remainder vanishing in F. In the above sums each of the elements w(n)

(for n ≥ 1), called concentration profiles, is obtained as the weak-limit (as k → ∞) of the
“deflated” sequence ((g(n)

k )−1(uk))k∈N .
Typical examples of isometries groups G, involved in profile decompositions, are the

above mentioned group of shifts u 7→ u(· − y) and the rescaling group, which is a product
group of shifts and dilations u 7→ tru(t·), t > 0, where, for instance, when u belongs to the
homogeneous Sobolev space Ḣs,p(RN) (N/s > p ≥ 1, s > 0), r = r(p, s) =

N−ps
p .

Existence of profile decompositions for general bounded sequences in Ḣ1,p(RN) (relative
to the rescaling group) was proved by Solimini, see [10, Theorem 2], and independently, but
with a weaker form of remainder, by Gérard in [6], with an extension to the case of fractional
Sobolev spaces by Jaffard in [7]. Only in [9], for the first time, the authors observed that
profile decomposition (and thus concentration phenomena in general) can be understood in
functional-analytic terms, rather than in specific function spaces. Actually the results in [9]
where extended in [11] to uniformly convex Banach spaces with the Opial condition (without
the Opial condition profile decomposition still exists but weak convergence must be replaced
by (a less-known) Delta convergence, see [4]). Finally the result has been extended up to a
suitable class of metric spaces, see [5] and [3]. Despite the character of the statement in [11]
is rather general, profile decompositions are still true, for instance, when the space E is not
reflexive (e.g. [2]), or when one only has a semigroup of isometries (e.g. [1]), or when the
profile decomposition can be expressed without the explicit use of a group (e.g. Struwe [12])
and so when [11, Theorem 2.10] does not apply.

The present paper generalizes, in the spirit of [10, Theorem 2], Struwe’s result [12, Propo-
sition 2.1] (which provides a profile decomposition for Palais-Smale sequences of particular
functionals) to the case of general bounded sequences in Ḣ1,2(M), where M is a smooth
compact manifold in dimension N ≥ 3.

The paper is organized as follows. In Section 2 we introduce some notation and state the
main theorem of the paper and the result on which the related proof is based. In Section 3 we
prove that the embedding H1,2(M) ↪→ L2∗ (M) is cocompact with respect to a group of suitable
transformations which are depending on the Atlas associated to the manifold. Section 4 is
devoted to the proof of (the main) Theorem 1.

§2. Statement of the main result

Let N ≥ 3 and let (M, g) be a compact smooth Riemannian N-dimensional manifold. We
consider the Sobolev space H1,2(M) equipped with the norm defined by the quadratic form
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of the Laplace-Beltrami operator,

‖u‖2 =

∫
M

(|du|2 + u2)dvg, (1)

(vg denotes the Riemannian measure of the manifold). For every y ∈ M we shall denote by
Ty(M) the tangent space in y to M, and by expy the exponential (local) map at the point y
(defined on a suitable set Uy ⊂ Ty(M) by setting, for all v ∈ Uy, expy(v) := γv(1) where γv is
the unique geodesic, contained in M, such that γv(0) = y and γ′v(0) = v and extended to the
case v = 0 by setting expy(0) = y). Since we will not use here any property of tangent bundles
we will identify tangent spaces of M at different points with RN and, for any ρ > 0, we shall
denote by Bρ(0) the Euclidean N-dimensional ball centered at the origin with radius ρ. On
the other hand, we shall denote by Bρ(y) the open coordinate ball (i.e. the subset in M such
that exp−1

y (Bρ(y)) = Bρ(0)) with center y and radius ρ > 0. For the reader’s convenience we
recall that the injectivity radius ρy of a point y ∈ M is the radius of the largest ball about the
origin in Ty(M) that can be mapped diffeomorfically via the map expy, and that, the injectivity
radius of the mainfold M, ρM := infy∈M ρy. Since M is compact, ρM is strictly positive, so
we can fix 0 < ρ < ρM

3 , moreover, there exists a finite set of points (zi)i∈I ⊂ M such that(
Bρ(zi), exp−1

zi

)
i∈I

is a finite smooth atlas of M.
In what follows we shall fix χ ∈ C∞0 (Bρ(0)) so that, set for i ∈ I

χ̂i := χ̂zi = χ ◦ exp−1
zi

and χi :=
χ̂i∑
j∈I χ̂ j

, (2)

(χi)i∈I is a smooth partition of unity on M subordinated to the covering (Bρ(zi))i∈I . Then, since
‖u ◦ expzi

‖L2∗ (Bρ(0)) is bounded by the H1,2(Bρ(0))-norm of u ◦ expzi
, the Sobolev embedding

H1,2(M) ↪→ L2∗ (M) can be deduced from the corresponding one on the Euclidean space (by
the use of the fixed partition of unity (χi)i∈I). In fact, Theorem 1 below will provide a profile
decomposition for bounded sequences in H1,2(M).

Finally we recall that the scalar product associated with (1) can be written with help of
the partition of unity (χs)s∈I in the following coordinate form:

〈Φ,Ψ〉 :=
∑
s∈I

∫
Bρ(0)

N∑
i, j=1

gzs
i, j∂i((χsΦ)(expzs

(ξ)))∂ j(Ψ(expzs
(ξ)))

√
det(gzs

i, j)dξ

+
∑
s∈I

∫
Bρ(0)

(χsΦ)(expzs
(ξ))Ψ(expzs

(ξ))
√

det(gzs
i, j)dξ.

(3)

Before stating the theorem, we warn the reader that, given a bounded sequence (vk)k∈N ⊂

H1,2(Bρ(0)) and a vanishing sequence of positive numbers (tk)k∈N, and setting r = r(2) =
N
2∗ = N−2

2 , we will say (with a slight abuse on the definition of weak convergence) that the
sequence (tr

kvk(tk·))k∈N weakly converges to v ∈ Ḣ1,2(RN) if for any ϕ ∈ C∞0 (RN) such that
suppϕ ⊂ Bρ(0) ∫

ϕ(x) tr
kvk(tk x) dx −→

∫
ϕ(x) v(x) dx as k → ∞.
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Theorem 1. Let M be a compact smooth Riemannian N-dimensional manifold (N ≥ 3). Let
ρ ∈ (0, ρM

3 ), let χ ∈ C∞0 (Bρ(0)), χ = 1 on B ρ
2
(0), and let (χi)i∈I , defined by (2), be a smooth

partition of unity on M subordinated to the covering (Bρ(zi))i∈I . Then, given a bounded
sequence (uk)k∈N in H1,2(M) and, with r = N

2∗ = N−2
2 , there exist:

• a sequence
(
Y (n)

)
n∈N\{0}

of sequences Y (n) :=
(
y(n)

k

)
k∈N
⊂ M, y(n)

k → ȳ(n) ∈ M,

• a sequence
(
J(n)

)
n∈N\{0}

of sequences J(n) :=
(

j(n)
k

)
k∈N
⊂ R+,

• a sequence
(
w(n)

)
n∈N\{0}

of functions (profiles) w(n) ∈ Ḣ1,2(RN),

such that, modulo subsequences,

j(n)
k −→ ∞ as k → ∞ ∀n ∈ N \ {0}, (4)

| j(n)
k − j(m)

k | + 2 j(n)
k d(y(n)

k , y(m)
k )→ ∞ whenever m , n, (5)

2− j(n)
k ruk ◦ expy(n)

k
(2− j(n)

k ·)⇀w(n) in Ḣ1,2(RN) as k → ∞. (6)

Moreover, setting for all k ∈ N

Sk(x) :=
∑

n∈N\{0}

2 j(n)
k r χ ◦ exp−1

y(n)
k

(x) w(n)
(
2 j(n)

k exp−1
y(n)

k
(x)

)
, x ∈ M, (7)

the series Sk ∈ Ḣ1,2(M) are unconditionally convergent (with respect to n) and the sequence
(Sk)k∈N is uniformly convergent (with respect to k) in Ḣ1,2(M), in addition

uk − u − Sk → 0 in L2∗ (M) . (8)

Finally the following energy bound holds∑
n∈N\{0}

∥∥∥∇w(n)
∥∥∥2

L2(RN ) + ‖u‖2H1,2(M) ≤ lim inf
k→∞

‖uk‖
2
H1,2(M) . (9)

We want to emphasize that (8) states that, modulo subsequence, the defect of compactness
uk − u of the bounded sequence (uk)k∈N (which, modulo subsequence, weakly converges to u)
has a representation given (up to a remainder which vanishes in the norm of L2∗ (M)) by the
clearly structured terms in Sk.

The proof of this theorem is based on the following easy corollary to Solimini’s profile
decomposition [10, Theorem 2].
Theorem 2. Given m ∈ N\ {0} and 1 < p < N

m let r = N
p∗(m) =

N−mp
p . Let (vk)k∈N be a bounded

sequence in the homogeneous Sobolev space Ḣm,p(RN) supported on a compact set K ⊂ RN .
Then, there exists a (renamed) subsequence (s.t. vk ⇀ v) whose defect of compactness vk − v
has the form

S k =
∑

n∈N\{0}

2 j(n)
k rw(n)(2 j(n)

k (· − ξ(n)
k )), (10)

where, for any n ∈ N \ {0}, Ξ(n) := (ξ(n)
k )k∈N ⊂ K, and J(n) := ( j(n)

k )k∈N ⊂ R are such that
j(n)
k → + ∞ as k → ∞ and w(n) is the weak limit of the sequence

(
2− j(n)

k rvk(2− j(n)
k · +ξ(n)

k )
)

k∈N
.

Moreover the addenda are asymptotically mutually orthogonal, i.e.

| j(n)
k − j(m)

k | + 2 j(n)
k |ξ(n)

k − ξ
(m)
k | → ∞ whenever m , n. (11)
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Proof. We shall assume, without restrictions, that uk ⇀ 0. According to the profile decom-
position result [10, Theorem 2], modulo the extraction of a subsequence, each term vk has
concentration terms (depending on n) of the following shape

cn
k := 2 j(n)

k rw(n)(2 j(n)
k (· − ξ(n)

k )) (12)

for some ξ(n)
k ∈ RN , j(n)

k ∈ R where w(n) is obtained as the weak limit of the sequence(
2− j(n)

k rvk(2− j(n)
k · +ξ(n)

k )
)

k∈N
. We claim that the sequence J(n) is bounded from below. Indeed,

on the contrary, the assumption j(n)
k → − ∞ as k → ∞ would imply, since vk has a bounded

support, that ∥∥∥∥∥2− j(n)
k rvk

(
2− j(n)

k · +ξ(n)
k

)∥∥∥∥∥
p
→0 as k → ∞,

and so that w(n) = 0.
As a consequence ξ(n)

k ∈ K for k large enough. Note also that J(n) cannot have any bounded
subsequence, since otherwise (vk)k∈N should have a nonzero weak limit, in contradiction to
our assumptions.

Finally, condition (11) is the condition of asymptotic orthogonality (decoupling) of bub-
bles from [10]. �

§3. Cocompactness in Sobolev spaces of compact manifolds

The Sobolev embedding H1,2(M) ↪→ L2∗ (M) has the following property of cocompactness
type.

Theorem 3. Let M be a compact smooth Riemannian N-dimensional manifold (N ≥ 3), and
0 < ρ < ρM

3 . Let
(
Bρ(zi), exp−1

zi

)
i∈I

be a finite smooth atlas of M and let χ ∈ C∞0 (Bρ(0)) so
that (χi)i∈I , defined by (2), is a smooth partition of unity on M subordinated to the covering
(Bρ(zi))i∈I . Set r = r(2) = N

2∗ = N−2
2 . If (uk)k∈N is any bounded sequence in H1,2(M) such that

for every i ∈ I, (yk)k∈N ⊂ Bρ(zi), and ( jk)k∈N ⊂ N such that jk → +∞

2− jkr(χiuk) ◦ expyk
(2− jk ·)⇀0 as k → ∞, (13)

then uk→0 in L2∗ (M).

Proof. We claim that for all sequences (ξk)k∈N ⊂ R
N and ( jk)k∈N ⊂ N such that jk → +∞ and

for every i ∈ I we have

2− jkr(χiuk) ◦ expzi
(2− jk · +ξk)⇀0 as k → ∞. (14)

Since (14) is obviously true when |ξk | ≥ ρ, (indeed the terms in (14) are identically zero for k
large enough), we shall assume ξk ∈ Bρ(0) for all k ∈ N. Given i ∈ I, we set yk := expzi

(ξk) ∈
M and denote by ψk the transition map between the charts (Bρ(zi), exp−1

zi
) and (Bρ(yk), exp−1

yk
)

i.e. we set ψk := exp−1
yk
◦ expzi

(so that expzi
= expyk

◦ψk and ψk(ξk) = 0). Therefore, for k
large enough, by using Taylor expansion of the first order at ξk (where, for a lighter notation,
we denote by ψ′k(ξk) the Jacobi matrix of ψk at ξk (ψ′k(ξk))−1 its inverse and by |(ψ′k(ξk))−1| the
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corresponding Jacobian, and drop the dot symbol for the rows-by-columns product) we get,
since jk → +∞, that

2− jkr(χiuk)(expzi
(2− jkξ + ξk)) = 2− jkr(χiuk)(expyk

◦ψk)(2− jkξ + ξk)

= 2− jkr(χiuk)(expyk
(2− jk (ψ′k(ξk) + o(1))ξ)).

(15)

(we are using the Landau symbol o(1) to denote any (matrix valued) function uniformly
convergent to zero). In correspondence to any test function ϕ ∈ C∞0 (RN),∫

B2ρ(0)
ϕ(ξ)2− jkr

[
(χiuk) ◦ expzi

(2− jkξ + ξk) − (χiuk) ◦ expyk
(2− jkψ′k(ξk)ξ)

]
dξ

=

∫
B2ρ(0)

ϕ(ξ)2− jkr
[
(χiuk) ◦ expyk

◦ψk(2− jkξ + ξk) − (χiuk) ◦ expyk
(2− jkψ′k(ξk)ξ)

]
dξ

= |(ψ′k(ξk))−1|2 jk N+2
2

∫
|η|<C2− jk

ϕ(2 jk (ψ′k(ξk))−1η)

×
[
(χiuk) ◦ expyk

(
ψk((ψ′k(ξk))−1η + ξk

)
− (χiuk) ◦ expy(η)

]
dη

= |(ψ′k(ξk))−1|2 jk N+2
2

∫ 1

0
ds

∫
|η|<C2− jk

ϕ(2 jk (ψ′k(ξk))−1η)

× ∇

(
(χiuk) ◦ expyk

(sψk

(
(ψ′k(ξk))−1η + ξk) + (1 − s)η

))
· (ψk((ψ′k(ξk))−1η + ξk) − η)dη,

(the second equality holds by integrating with respect to the variable η = 2− jkψ′k(ξk)ξ). Set,
for each s ∈ [0, 1], ζ := sψk

(
(ψ′k(ξk))−1η + ξk

)
+ (1− s)η, since for η→ 0, ζ = η+ O(|η|2) and

since the Jacobian of the transformation is close to 1 in the domain of integration, the modulus
of the last expression is bounded by the following one, which, in turn, can be estimated by
Cauchy inequality. So, we have

C2 jk N+2
2

∫
|ζ |<C2− jk

ϕ(2 jk (ψ′k(ξk))−1η(ζ))|∇(χiuk) ◦ expyk
(ζ)||ζ |2dζ

≤ C2 jk N+2
2 ‖∇(χiuk) ◦ expyk

‖2

(∫
|ζ |<C2− jk

|ϕ(2 jk (ψ′k(ξk))−1η(ζ))|2|ζ |4dζ
) 1

2

≤ C2 jk N+2
2 ‖uk‖H1,2(M)

(∫
|ξ|<C
|ϕ(ξ)|22−4 jk |ξ|42− jk Ndξ

) 1
2

≤ C2− jk−→0.

Therefore, by taking into account (15), we deduce that both sequences
(
2− jkr(χiuk)(expyk

(2− jk ·))
)

k∈N

and
(
2− jkr(χiuk)(expzi

(2− jk · +ξk))
)

k∈N
have the same weak limit and, since (13) holds true,

(14) holds too.
Consequently, from the cocompactness of the embedding Ḣ1,2(RN) ↪→ L2∗ (RN) ([10,

Theorem 1]), it follows that for every i ∈ I,

(χiuk) ◦ expzi
→0 in L2∗ (RN) as k → ∞, (16)
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and therefore, since (χi)i∈I is a partition of unity subordinated to the atlas
(
Bρ(zi), exp−1

zi

)
i∈I

,
we deduce that∫

M
|uk |

2∗dvg =

∫
M

∣∣∣∣∣∣∣∑i∈I

χiuk

∣∣∣∣∣∣∣
2∗

dvg ≤ C
∑
i∈I

∫
Bρ(zi)

|χiuk |
2∗dvg

≤ C
∑
i∈I

∫
Bρ(0)
|uk ◦ expzi

(ξ)|2
∗

dξ → 0,

which proves the statement of the theorem. �

§4. Proof of Theorem 1 (profile decomposition)

1. Without loss of generality we may assume (by replacing uk with uk − u) that uk ⇀ 0.
Then, setting for all i ∈ I

vk,i := (χiuk) ◦ expzi
(17)

we get that the sequence (vk,i)k∈N is bounded in H1,2
0 (Bρ(0)) (and weakly converges to zero),

and so we can consider a profile decomposition of (vk,i)k∈N given by Theorem 2 when m =

1 and r = N−2
2 . An iterated extraction allows to find a subsequence which has a profile

decomposition for every i ∈ I i.e. such that for all i ∈ I the defect of compactness of vk,i has
the following form

S k,i =
∑

n∈N\{0}

2 j(n)
k,i rw(n)

i

(
2 j(n)

k,i

(
· − ξ(n)

k,i

))
=:

∑
n∈N\{0}

c(n)
k,i . (18)

By taking into account (17) we will be able to get concentration terms of χiuk by com-
posing each concentration term c(n)

k,i of vk,i with exp−1
zi

. More in detail we consider for all i ∈ I
the term, defined on Bρ(zi),

C
(n)
k,i := c(n)

k,i ◦ exp−1
zi

= 2 j(n)
k,i rw(n)

i

(
2 j(n)

k,i

(
exp−1

zi
(·) − ξ(n)

k,i

))
. (19)

Setting
y(n)

k,i := expzi
(ξ(n)

k,i ) (20)

we have that
C

(n)
k,i = 2 j(n)

k,i rw(n)
i

(
2 j(n)

k,i

(
exp−1

zi
(·) − exp−1

zi
(y(n)

k,i )
))
. (21)

Since for all i ∈ I and n ∈ N \ {0}

w(n)
i := w-lim

k→∞
2− j(n)

k,i r(χiuk) ◦ expzi

(
2− j(n)

k,i · +ξ(n)
k,i

)
, (22)

we can see that w(n)
i “evaluates” χiuk on points belonging to Bρ(zi) which are mapped by

exp−1
zi

in subsets of Bρ(0) which are (for large k) concentrated around the points ξ(n)
k,i . So, due

to (20), it is sufficient to evaluate w(n)
i on points which belong also to Bρ(y

(n)
k,i ). So, setting

Bi,k,n := exp−1
y(n)

k,i
(Bρ(y

(n)
k,i ) ∩ Bρ(zi)) ⊂ Bρ(0), (23)
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we shall consider the transition map between the charts (Bρ(y
(n)
k,i ), exp−1

y(n)
k,i

) and (Bρ(zi), exp−1
zi

),

i.e. the map
ψi,k,n := exp−1

zi
◦ expy(n)

k,i
(24)

defined on Bi,k,n. Note that ψi,k,n(0) = ξ(n)
k,i , moreover, by setting for any x ∈ Bi,k,n

η := 2 j(n)
k,i exp−1

y(n)
k,i

(x), (25)

we have exp−1
zi

(x) = ψi,k,n(2− j(n)
k,i η) for all x ∈ Bi,k,n. Therefore (by using Taylor expansion of

the first order of the transition map ψi,k,n at 0, where, to use a lighter notation we denote by
ψ′i,k,n(0) the Jacobi matrix of ψi,k,n at zero, (ψ′i,k,n(0))−1 its inverse and omit the dot symbol for
the rows-by-columns product) we deduce

2 j(n)
k,i

(
exp−1

zi
(x) − ξ(n)

k,i

)
= 2 j(n)

k,i

(
ψi,k,n(2− j(n)

k,i η) − ξ(n)
k,i

)
= 2 j(n)

k,i

(
ψi,k,n(2− j(n)

k,i η) − ψi,k,n(0)
)

= ψ′i,k,n(0)η + O(2− j(n)
k,i η2) = 2 j(n)

k,i ψ′i,k,n(0) exp−1
y(n)

k,i
(x) + O

(
2 j(n)

k,i

(
exp−1

y(n)
k,i

(x)
)2

)
.

(26)

Without loss of generality, applying Arzelà-Ascoli theorem and passing to a suitable subse-
quence, we can assume that

(
ψi,k,n

)
k∈N converges in the norm of C1(RN) as k → ∞ to some

function ψi,n. We claim that, under a suitable renaming of the profile w(n)
i , namely by re-

naming w(n)
i (ψ′i,n(0) ·) as w(n)

i , concentration terms C(n)
k,i (of χiuk) in (19) take the following

form:
C̃

(n)
k,i := 2 j(n)

k,i rw(n)
i

(
2 j(n)

k,i exp−1
y(n)

k,i
(·)

)
. (27)

For this purpose we show that, as k → ∞,∫
Bρ(y(n)

k,i )∩Bρ(zi)

∣∣∣∣∣2 j(n)
k,i rd

(
w(n)

i

(
2 j(n)

k,i (exp−1
zi

(x) − ξ(n)
k,i )

)
− w(n)

i

(
2 j(n)

k,i ψ′i,n(0) exp−1
y(n)

k,i
(x)

))∣∣∣∣∣2 dvg→0. (28)

Indeed, the previous relation written under the coordinate map expy(n)
k,i

, i.e. by setting ξ =

exp−1
y(n)

k,i

(x) becomes (by taking into account (24) and (23))

∫
Bi,k,n

∣∣∣∣∣2 j(n)
k,i r
∇

(
w(n)

i

(
2 j(n)

k,i (ψi,k,n(ξ) − ξ(n)
k,i )

)
− w(n)

i

(
2 j(n)

k,i ψ′i,n(0)ξ
))∣∣∣∣∣2 dξ→0 as k → ∞,

and, by taking into account (25) (and by a null extension to whole of RN of the involved
functions), the claim will follow if, as k → ∞,

2− j(n)
k,i

N+2
2

∫
RN

∣∣∣∣∣ψ′i,k,n(2− j(n)
k,i η)∇w(n)

i

(
2 j(n)

k,i (ψi,k,n(2− j(n)
k,i η) − ξ(n)

k,i )
)
− ψ′i,n(0)∇w(n)

i (ψ′i,n(0)η)
∣∣∣∣∣2 dη→0.

This last convergence easily follows by Lebesgue dominated convergence theorem, indeed
(for all n and for all i) ∇w(n)

i ∈ L2(RN), and when k → ∞, we have j(n)
k,i→ +∞, and (by taking
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into account that convergence of
(
ψi,k,n

)
k∈N and

(
ψ′i,k,n

)
k∈N

to ψi,n and ψ′i,n respectively is uni-

form) the pointwise convergence of ψ′i,k,n(2− j(n)
k,i η)→ψ′i,n(0), 2 j(n)

k,i

(
ψi,k,n(2− j(n)

k,i η) − ξ(n)
i

)
→ψ′i,n(0)η

(as easily follows by (26) and (25)).
It is easy to see now that the renamed profiles w(n)

i are obtained as pointwise limits (and
thus also as weak limits)

w(n)
i (ξ) = lim

k→∞
2− j(n)

k,i r(χiuk) ◦ expy(n)
k,i

(
2− j(n)

k,i ξ
)
, for a.e. ξ ∈ RN . (29)

2. Since each Bρ(zi) ⊂ B2ρ(zi) ⊂ M and M is compact, we may assume that for all
n ∈ N \ {0} and for all i ∈ I, there exist, up to subsequences, points of concentration

y(n)
i := lim

k→∞
y(n)

k,i . (30)

In order to achieve the orthogonality relation (5) we shall introduce the following equiv-
alence relation on the set of sequences in M × R. Namely given (yk, jk)k∈N and

(
y′k, j′k

)
k∈N

in
M × Z we shall write

(yk, jk)k∈N '
(
y′k, j′k

)
k∈N

when
(
| jk − j′k | + 2 jk d(yk, y

′
k)
)

k∈N
is a bounded sequence. (R)

Since the set I is a finite set, the number of sequences
(
y(n)

k,i , j(n)
k,i

)
k∈N

which can be equivalent

to a fixed sequence
(
y(n̄)

k,ı̄ , j(n̄)
k,ı̄

)
k∈N

is finite. Therefore we can exploit the unconditional conver-
gence with respect to the indexes (n) of the series S k,i and synchronize them by replacing n̄
and all the indexes m in the finite set

Nn̄ :=
{
m ∈ N \ {0} | ∃i ∈ I s.t.

(
y(n)

k,i , j(n)
k,i

)
k∈N
'

(
y(n̄)

k,ı̄ , j(n̄)
k,ı̄

)
k∈N

}
(31)

with, say, the smallest integer in Nn̄.
Thanks to this synchronization procedure the following property(

y(n)
k,i1
, j(n)

k,i1

)
k∈N
'

(
y(m)

k,i2
, j(m)

k,i2

)
k∈N

⇐⇒ m = n, (32)

holds true for all i1, i2 ∈ I and m, n ∈ N \ {0}.

Note also that when
(
y(n)

k,i1
, j(n)

k,i1

)
k∈N
'

(
y(n)

k,i2
, j(n)

k,i2

)
, since

(∣∣∣∣ j(n)
k,i2
− j(n)

k,i1

∣∣∣∣)
k∈N

is bounded, we

can set, modulo subsequences

j(i1, i2, n) := lim
k→+∞

j(n)
k,i2
− j(n)

k,i1
∈ R, (33)

so that, by redefining w(n)
i2

(2− j(i1,i2,n)·) as (the corresponding profile) w(n)
i2

, we can assume that(
j(n)
k,i2

)
k∈N

=
(

j(n)
k,i1

)
k∈N

. Moreover, since also
(
2 j(n)

k,i1 d
(
y(n)

k,i1
, y(n)

k,i2

))
k∈N

is bounded, we get (by (4))

that (see (30))
ȳ(n)

i1
= ȳ(n)

i2
for all

(
y(n)

k,i1
, j(n)

k,i1

)
k∈N
'

(
y(n)

k,i2
, j(n)

k,i2

)
k∈N

. (34)
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Finally, we show that the elementary concentrations terms C(n)
k,i do not change (up to a

vanishing term) by varying
(
y(n)

k,i , j(n)
k,i

)
k∈N

in the same equivalence class. Namely the following
property holds true(

y(n)
k,i1
, j(n)

k,i1

)
k∈N
'

(
y(n)

k,i2
, j(n)

k,i2

)
k∈N

⇒

∥∥∥∥C(n)
k,i1
−C(n)

k,i2

∥∥∥∥→ 0, (35)

for all i1, i2 ∈ I. Since, as shown above, we can assume, without restrictions, that
(

j(n)
k,i1

)
k∈N

=(
j(n)
k,i2

)
k∈N

(and we shall denote, to shorten notation, their common value as
(

j(n)
k

)
k∈N

) it will

suffice to prove that, set ξ̄(n)
k,i1

= exp−1
zi1
y(n)

k,i1
and ξ̄(n)

k,i2
= exp−1

zi1
y(n)

k,i2
, we have∫

Bρ(zi1 )

∣∣∣∣∣2 j(n)
k rd

(
w(n)

i1

(
2 j(n)

k (exp−1
zi1

(x) − ξ̄(n)
k,i2

)
)
− w(n)

i1

(
2 j(n)

k (exp−1
zi1

(x) − ξ̄(n)
k,i1

)
))∣∣∣∣∣2 dvg→0 as k → ∞.

(36)
Indeed, by (20), we get, modulo subsequences, that

2 j(n)
k |ξ̄(n)

k,i2
− ξ̄(n)

k,i1
| = 2 j(n)

k | exp−1
zi1
y(n)

k,i2
− exp−1

zi1
y(n)

k,i1
|

= 2 j(n)
k |d(y(n)

k,i2
, zi1 ) − (y(n)

k,i1
, zi1 )| ≤ 2 j(n)

k d(y(n)
k,i2
, y(n)

k,i1
)→ 0.

Then, (5) follows directly from (34).

3. Consider now the sum
∑

n∈N\{0}
∑

i∈I C̃
(n)
k,i , with the sequences y(n)

k,i and j(n)
k,i , which are

synchronized at the Step 2 as y(n)
k and j(n)

k , while y(n)
k → ȳ(n) and (29) takes form

w(n)
i (ξ) = lim

k→∞
2− j(n)

k r(χiuk) ◦ expy(n)
k

(
2− j(n)

k ξ
)
, for a.e. ξ ∈ RN . (37)

The latter yields for a.e. ξ ∈ RN , since j(n)
k → ∞ implies expy(n)

k

(
2− j(n)

k ξ
)
→ ȳ(n) in M,

w(n)
i (ξ) = χi(ȳ(n)) lim

k→∞
2− j(n)

k ruk ◦ expy(n)
k

(
2− j(n)

k ξ
)
, for a.e. ξ ∈ RN , (38)

taking into account that for each ξ ∈ RN the limit is evaluated with k ≥ k(ξ) with some k(ξ)
sufficiently large. Set

w(n) :=
∑
i∈I

w(n)
i . (39)

Then relation (6) immediately follows from (38), w(n)
i = χi(ȳ(n))w(n), and since, by Step 1,

defect of compactness of χiuk is a unconditionally convergent series, we have∑
i∈I

∑
n∈N\{0}

C̃
(n)
k,i (x) =

∑
n∈N\{0}

∑
i∈I

C̃
(n)
k,i (x)

=
∑

n∈N\{0}

∑
i∈I

2 j(n)
k rw(n)

i

(
2 j(n)

k exp−1
y(n)

k
(x)

)
=

∑
n∈N\{0}

w(n)
(
2 j(n)

k exp−1
y(n)

k
(x)

)
, x ∈ M.

Not now, which gives (7).
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4. In order to prove the “energy” estimate (9), assume, without loss of generality, that
the sum in (7) is finite and that all w(n) have compact support, and expand by bilinearity the
trivial inequality ‖u − uk +Sk‖

2
H1,2(M) ≥ 0. Then, by using the norm (1) and the representation

(3) of the scalar product in H1,2(M), we have

0 ≤ ‖uk‖
2 + ‖u‖2 − 2〈uk, u〉 + 2〈u − uk,Sk〉

+
∑

n

‖2 j(n)
k r χ ◦ exp−1

y(n)
k
w(n)

(
2 j(n)

k exp−1
y(n)

k
(·)

)
‖2

−
∑
m,n

〈
2 j(m)

k r χ ◦ exp−1
y(m)

k
w(m)

(
2 j(m)

k exp−1
y(m)

k
(·)

)
, 2 j(n)

k r χ ◦ exp−1
y(n)

k
w(n)

(
2 j(n)

k exp−1
y(n)

k
(·)

)〉
.

(40)

The first line of (40) can be evaluated taking into account that uk ⇀ u, Sk ⇀ 0, that the
definition of profiles w(n) given by (6) and that r = N−2

2 :

‖uk‖
2 + ‖u‖2 − 2〈uk, u〉 + 2〈u − uk,Sk〉

= ‖u2
k‖ + ‖u2‖ − 2‖u‖2 + o(1) − 2

∑
n

〈
uk, 2 j(n)

k r χ ◦ exp−1
y(n)

k
w(n)

(
2 j(n)

k exp−1
y(n)

k
(·)

)〉
= ‖uk‖

2 − ‖u‖2 + o(1)

− 2
∑

n

2 j(n)
k r

∫
|ξ|<ρ

N∑
i, j=1

g
y(n)

k
i j ∂i

(
uk(expy(n)

k
(ξ))

)
∂ j

(
χ(ξ)w(n)(2 j(n)

k ξ)
) √

det g
y(n)

k
i, j (ξ)dξ

− 2
∑

n

2 j(n)
k r

∫
|ξ|<ρ

uk(expy(n)
k

(ξ))χ(ξ)w(n)(2 j(n)
k ξ)

√
det g

y(n)
k

i, j (ξ)dξ

= ‖uk‖
2 − ‖u‖2 + o(1)

− 2
∑

n

∫
|η|<ρ2 j(n)

k

N∑
i, j=1

g
y(n)

k
i j ∂i

(
2− j(n)

k ruk ◦ expy(n)
k

(2− j(n)
k η)

)
∂ j

(
χ(2− j(n)

k η)w(n)(η)
)

·

√
det g

y(n)
k

i, j (2− j(n)
k η) dη

− 2
∑

n

2−2 j(n)
k

∫
|η|<ρ2 j(n)

k

2− j(n)
k ruk ◦ expy(n)

k
(2− j(n)

k η)χ(2− j(n)
k η)w(n)(η)

√
det g

y(n)
k

i, j (2− j(n)
k η)dη

= ‖uk‖
2 − ‖u‖2 + o(1) − 2

∑
n

∫
RN

N∑
i

|∂iw
(n)(η)|2dη − 2

∑
n

2−2 j(n)
k

∫
RN
|w(n)(η)|2dη

= ‖uk‖
2 − ‖u‖2 − 2

∑
n

‖∇w(n)‖22 + o(1).

(In the third equality we have set η = 2 j(n)
k ξ, while in the fourth we have used the fact, due to

(6) that 2− j(n)
k χ(2− j(n)

k ·)(uk◦expy(n)
k

)(2− j(n)
k ·)⇀χ(0)w(n) = w(n) as k → ∞ (in our slightly modified

sense of weak convergence). Note also we have still denoted by ∂i (resp. ∂ j) the derivative
with respect to the ith (resp jth) component of η = 2 j(n)

k ξ. Finally in the last equality we have
used (1)).
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In order to estimate the second line of (40) we shall split (according to (1)) the H1,2(M)-
norm into the L2-norm of the gradient (gradient part) and the L2-norm of the function (L2

part) and consider first the latter. Since

∑
n

∥∥∥∥∥2 j(n)
k

N−2
2 χ ◦ exp−1

y(n)
k
w(n)(2 j(n)

k exp−1
y(n)

k
(·))

∥∥∥∥∥2

2

=
∑

n

2 j(n)
k (N−2)

∫
Bρ(yn)

|χ ◦ exp−1
y(n)

k
(x)w(n)(2 j(n)

k exp−1
y(n)

k
(x))|2dvg

=
∑

n

2 j(n)
k (N−2)

∫
|ξ|<ρ

|χ(ξ)(w(n)(2 j(n)
k ξ)|2

√
det g

y(n)
k

i, j (ξ)dξ

=
∑

n

2−2 j(n)
k

∫
|η|<ρ2 j(n)

k

|χ(2− j(n)
k η)w(n)(η)|2

√
det g

y(n)
k

i, j (2− j(n)
k η)dη→0 as k → ∞,

(since j(n)
k →∞) as k → ∞, the second line of (40) is evaluated in the limit by the sum of the

gradient terms as follows:

∑
n

2 j(n)
k (N−2)

∫
Bρ(y(n)

k )

∣∣∣∣∣d (
χ ◦ exp−1

y(n)
k

(x)w(n)(2 j(n)
k exp−1

y(n)
k

(x))
)∣∣∣∣∣2 dvg

=
∑

n

2 j(n)
k (N−2)

∫
|ξ|<ρ

N∑
i, j=1

g
y(n)

k
i j (ξ)∂i

(
χ(ξ)w(n)(2 j(n)

k ξ)
)
∂ j

(
χ(ξ)w(n)(2 j(n)

k ξ)
) √

det g
y(n)

k
i, j (ξ)dξ

=
∑

n

∫
|η|<ρ2 j(n)

k

N∑
i, j=1

g
y(n)

k
i j ∂i

(
χ(2− j(n)

k η)w(n)(η)
)
∂ j

(
χ(2− j(n)

k η)w(n)(η)
) √

det g
y(n)

k
i, j (2− j(n)

k η) dη

−→
∑

n

∫
RN
|∇w(n)(η)|2 dη =

∑
n

∥∥∥∇w(n)
∥∥∥2

as k → ∞.

Consider now the terms in the sum in third line of (40). Note that the L2-part of the scalar
product converges to zero by Cauchy inequality and by the calculations for the first line of
(40). At the light of the orthogonality condition (5) we have to face two cases.

Case 1: The sequence ( j(n)
k − j(m)

k )k∈N is unbounded. Assume without loss of generality
that j(n)

k − j(m)
k →+∞ as k → ∞. Then, using changes of variables ξ = exp−1

y(n)
k

(x) and η = 2 j(n)
k ξ,

〈
2 j(m)

k r χ ◦ exp−1
y(m)

k
(x)w(m)

(
2 j(m)

k exp−1
y(m)

k
(·)

)
, 2 j(n)

k r χ ◦ exp−1
y(n)

k
(x)w(n)

(
2 j(n)

k exp−1
y(n)

k
(·)

)〉
= 2 j(n)

k r2 j(m)
k r

∫
Bρ(y(m)

k )∩Bρ(y(n)
k )

d
(
χ ◦ exp−1

y(m)
k

(x)w(m)
(
2 j(m)

k exp−1
y(m)

k
(x)

))
· d

(
χ ◦ exp−1

y(n)
k

(x)w(n)
(
2 j(n)

k exp−1
y(n)

k
(x)

))
dvg + o(1)
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= 2 j(n)
k r2 j(m)

k r
∫
|ξ|<ρ

N∑
i, j=1

g
y(n)

k
i j (ξ)∂i

(
χ(ξ)w(n)(2 j(n)

k ξ)
)

· ∂ j

(
χ(exp−1

y(m)
k

(expy(n)
k

(ξ)))w(m)(2 j(m)
k exp−1

y(m)
k

(expy(n)
k

(ξ)))
) √

det g
y(n)

k
i, j (ξ)dξ

= 2− j(n)
k r2 j(m)

k r
∫
|η|<ρ2 j(n)

k

N∑
i, j=1

g
y(n)

k
i j (2− j(n)

k η)∂i

(
(1 + o(1))w(n)(η)

)
· ∂ j

(
(1 + o(1))w(m)(2 j(m)

k exp−1
y(m)

k
(expy(n)

k
(2− j(n)

k η)))
)

since, by (6),

w-lim
k→∞

2− j(n)
k r2 j(m)

k rw(m)(2 j(m)
k (exp−1

y(m)
k
◦ expy(n)

k
)(2− j(n)

k ·)) = w-lim
k→∞

2− j(n)
k ruk(·) = 0.

Case 2: 2 j(n)
k d(y(n)

k , y(m)
k ) → ∞ as k → ∞. Since case 1 has been ruled out, we can assume

without restrictions that the sequence j(m)
k − j(n)

k = j ∈ R for all large k. Then, by arguing
as above (and in particular by taking into account that the L2-part of the scalar product is
negligible), we get that, as k → ∞,〈

2 j(m)
k r χ ◦ exp−1

y(m)
k
w(m)(2 j(m)

k exp−1
y(m)

k
(·)), 2 j(n)

k r χ ◦ exp−1
y(n)

k
w(n)(2 j(n)

k exp−1
y(n)

k
(·))

〉
→ 0,

since the values of w(m) and of w(n) are set to concentrate at sufficiently separated points,
indeed d(2 j(n)

k y(n)
k , 2 j(m)

k y(m)
k ) = 2 j(n)

k d(y(n)
k , 2 jy(m)

k ) ≥ 2 j(n)
k d(y(n)

k , y(m)
k )→ ∞.

Then, by applying the estimates obtained for the three lines of inequality (40) we finally
deduce (9) concluding the proof of Theorem 1.
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MATHEMATICAL ASPECTS OF
COMPUTERIZED TOMOGRAPHY:

COMPRESSION AND COMPRESSED
COMPUTING

Benedikt Diederichs, Tomas Sauer and A. Michael Stock
Abstract. Modern industrial tomography can produce such huge amounts of data that
they cannot be handled any more by normal computers. To overcome this problem, the
data can be represented and even further compressed by means of a sparse representation
with thresholding, as, for example, a three dimensional tensor product wavelet represen-
tation. This approach, on the other hand, requires that all operations are realized in the
sparse basis. After introducing the basic concepts behind this approach, we show one ex-
plicit example, namely how to compute the correlation of two objects by means of sparse
representations.

Keywords: Tomography, wavelets, compression.
AMS classification: AMS classification codes.

§1. Introduction

While computerized tomography (CT) is a standard method in medical diagnosis, it is less
widely known that tomography is also applied quite frequently in industrial applications.
These applications comprise metrology and reverse engineering, documentation and digital-
ization, for example of cultural heritage, as well as nondestructive testing in manufacturing
processes. In contrast to medical applications, these scans are not restricted in size, materials
and nature of the objects. A so-called XXL–CT can scan even a full size car with the help of a
particle accelerator, a micro or nano CT may scan a “normal sized” object with an extremely
high resolution and an inline CT may scan one object per second.

What all these applications have in common is the fact that they produce a huge amount
of data: large objects and high-resolution scans can easily reach one Terabyte and more of
voxel data after reconstruction, and even if the individual inline scans are usually of moderate
size, they come in a large number, typically hundreds of scans every day. Clearly, these
circumstances provide new challenges for image processing. The large variety of objects
and tasks that occur in industrial CT require advanced and extremely flexible algorithms for
segmentation, object separation and information extraction. In medical applications a lot of
a priori knowledge can be applied: for most organs, for example, location, size and shape
are roughly known and can often been modeled quite efficiently by combining geometric
primitives like ellipsoids, cylinders and cones. In industrial CT, the effort of these methods
is usually too large for complex separation tasks and methods from machine learning have
to be applied so that the system automatically extracts the relevant aspects of different parts.
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Figure 1: Cultural heritage CT bigture (Peruvian mummy, about 6th century AD, courtesy
of Lindenmuseum, Stuttgart): (Left) region of interest containing skull and corncob, (middle)
segmented corncob, (right) segmented skull.

An example for the complexity of such segmentation tasks in cultural heritage can be seen in
Fig. 1.

But the main obstacle, of course, is the sheer size of data which leads us to an important
concept.

Definition 1. An image is called a bigture (with respect to a certain representation) if it
cannot be handled in the main memory of a computer any more.

The image on the left hand side of Fig. 1 is an example of a bigture: the size of the original
image is about 170GB.

Whether an image is a bigture or not depends on two aspects: the size of the computer
memory and the representation of the image. The trivial solution of the bigture problem
would be to increase the computer memory and to rely on out of core memory techniques;
while this is possible to a certain extent, it is not really practical since even if we take the
very optimistic and somewhat unrealistic point of view that loading and access times only
scale linearly with the amount of data, there is a significant slowdown, especially if we take
into account that the amount of data scales cubically with the resolution: if we double the
resolution of the image, the data increases by a factor of eight.

The more promising approach is to another representation of the image which is sparse.
This means that we represent the same image, i.e., the same information, by a significantly
smaller amount of data. Fortunately, such bases are known in many instances and as a general
purpose tool, wavelets are still one of the best bases for sparse representation of discrete
data on a rectangular grid, especially when this data is locally constant. This is one of the
reasons why they were integrated into the JPEG2000 standard. The drawback of sparse
representations, however, is that now all operations have to be implemented in terms of the
sparse basis as reconstruction of the full image would result in a bigture and thus render
the algorithm useless. This paper will deal with some special case, namely computing the
correlation of two bigtures using only their sparse representation. Correlations are important
to register images and thus a fundamental operation in image processing.

The paper is organized as follows: we first give a short recapitulation of some of the
basic concepts of computerized tomography, then recall the basics of the discrete wavelet
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transformations, based on which we derive a method to compute the correlations depending
on different shifts.

§2. Tomography basics

Tomography reconstructs objects from lower dimensional projections. Here, we focus on
X-ray tomography which is based on the attenuation of X-rays by different materials. Let
f : Rd → R be the function that describes the spatial distribution of this attenuation, where
the standard cases are d = 2 and d = 3. Moreover, let L denote the straight line that connects
the radiation source and the detector pixel. Then the energy ID arriving at the detector pixel
has the form

ID

IS
=

∫
L

f (x) dx. (1)

Note that (1) is only a first order model of the physical process that does not take into account
effects like scattering and beam hardening. On the other hand, provided that the intersection
of the support of f with L is contained in the line segment between source and detector, X-ray
attenuation measures, in R2, the value of the Radon transform

L 7→ R f (L) :=
∫

L
f (x) dx, L = L(v, s) =

{
x ∈ Rd : vT x = s

}
∈ L, (2)

where L denotes the set of all lines in R2. In R3 the situation is more intricate as the Radon
transform is then defined for planes and in the general s-dimensional case for hyperplanes.

In 2D slices the classical reconstruction is based on the filtered backprojection formula

(R∗g) ∗ f = R∗(g ∗ R f ), f ∈ L1(R2), g ∈ S(L), (3)

where S(L) is the Schwartz space and

R∗g(x) =

∫
‖v‖=1

g(v, vT x)dv, x ∈ R2, g ∈ S(L) ⊂ S(S1 × R),

stands for the dual Radon transform, where we cover L by S1 ×R. For the application of (3),
one chooses g such that R∗g is close to the Dirac delta functional, resulting in (R∗g) ∗ f ≈ f .
Typically, g is a radial function, i.e., g(v, vT x) = g(|vT x|) and constructed such that convolving
with g acts as a low-pass filter, hence the name filtered back projection. This formula is then
discretized.

Similar inversion formulas exist in the three dimensional case. However, while in the two
dimensional case typically a rather dense sampling of all lines passing through the support
of f is available, the scanning geometries used in practice for the three dimensional case
are more limited. Specific approximate inversion formulas, tailored to different geometries,
are available. For example in the important case of the cone-beam geometry, the classical
Feldkamp algorithm is widely used. For details on analytical methods see [10, 11].

A different approach is to see (1) as a system of integral equations and to discretize those
directly. This could be done in a function as in Galerkin methods, but the standard technique
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is to discretize the region of interest Ω into a voxel grid

Ω =

N⋃
j=1

V j, V j = [a j1, b j1] × · · · × [a jd, b jd],

to assume the function f to have the constant value f j on V j and to rewrite (1) as

ID

IS
=: yL =

∑
j∈JL

λL, j f j, JL :=
{
1 ≤ j ≤ n : V j ∩ L , ∅

}
. (4)

The values λL j is normally chosen as the length of the intersection V j ∩ L. Using a finite set
of measurement rays, L1, . . . , LM , which describe the scanning geometry, we end up with the
linear system

y = Λ f , Λ =

[
λL j,k :

j = 1, . . . ,M
k = 1, . . . ,N

]
, y =


yL1

...
yLM

 ∈ RM , f =


f1
...
fN

 ∈ RN . (5)

This is the simple concept of the algebraic reconstruction technique (ART), but solving the
linear system (5) is far from trivial since it is usually huge. Nevertheless ART has some
advantages:

1. The method works in any dimensionality and with any measurement geometry. Whether
cone beam or parallel beam is used, only results in a different geometry matrix Λ.

2. The method works independently of dimension and the matrix is modestly sparse: if
the voxels are arranged on an n × · · · × n grid, i.e., N = nd, then any equation still
involves only O(n) variables.

3. A priori knowledge like obstructions or side conditions like positivity can be easily
integrated into the approach as well as regularizers.

For more details see, for example [2, 6] and, of course, [10].

§3. Wavelet basics and definitions

Next, we briefly fix the notation for a wavelet multiresolution analysis (MRA). The starting
point is a refinable function φ, i.e., a solution of the refinement equation

φ =
∑
k∈Z

ak φ(2 · −k), a ∈ `0(Z), (6)

where `0(Z) stands for the space of all bi–infinite sequences with finite support:

`0(Z) = {c = (ck : k ∈ Z) : ‖c‖0 < ∞} , ‖c‖0 := #{k : ck , 0}.

In addition, φ is called an orthonormal scaling function if its integer translates are mutually
orthonormal, that is,

δk0 = 〈φ, φ(· − k)〉 =

∫
R

φ(x) φ(x − k) dx, k ∈ Z.
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Substituting the refinement equation (6) into this requirement, it is easily seen that the se-
quence a, called mask in the subdivision literature [1], has to satisfy the quadrature mirror
filter equation

δk0 =
1
2

∑
j∈Z

ak−2 ja j, k ∈ Z. (7)

A generic construction for finitely supported masks that satisfy (7) and give rise to L2–
solutions of (6) has first been given by Daubechies [4], see also [5]. This was the starting
point for a multitude of different wavelet constructions, orthogonal as well as biorthogonal
ones, and eventually the inclusion of wavelets into the JPEG2000 standard.

Based on an orthogonal scaling function, we define the MRA as the sequence of spaces

V j := span
{
φ(2 j · −k) : k ∈ Z

}
, j ∈ N0;

by (6), these spaces are nested in the sense that V0 ⊂ V1 ⊂ · · · and the associated wavelet,
defined as

ψ =
∑
k∈Z

bk φ(2 · −k), bk := (−1)ka1−k, k ∈ Z, (8)

belongs to V1 and satisfies 〈φ, ψ(· − k)〉 = 0, k ∈ Z, so that

V j+1 = V j ⊕W j, W j := span
{
ψ

(
2 j · −k

)
: k ∈ Z

}
, j ∈ N0. (9)

Moreover, the integer shifts of the wavelet φ form an orthonormal basis of W0 and, accord-
ingly, the functions ψ j,k := 2 j/2ψ(2 j · −k), k ∈ Z, are an orthonormal basis of W j. Hence, any
function f ∈ Vn can be written as

f =
∑
k∈Z

cn
k( f ) φ (2n · −k) =

∑
k∈Z

ck( f ) φ(· − k) +

n−1∑
j=0

∑
k∈Z

d j
k( f ) 2 j/2ψ

(
2 j · −k

)
, (10)

where
d j

k( f ) = 2 j/2
∫
R

f (x)ψ(2 jx − k) dx.

The main point in favor of wavelets, however, is that the conversion from cn to c, d0, . . . , dn−1,
i.e., the transmission between the two representations of f in (10) can be performed very
efficiently by means of discrete filterbank operations; this is Mallat’s discrete wavelet trans-
form [8, 9], see also [13].

Wavelets are naturally related to subdivision schemes. This is an immediate consequence
of the refinement equation (6) which yields that for any f ∈ V0 we have

f =
∑
j∈Z

c j( f ) φ(· − j) =
∑
j,k∈Z

c j( f ) ak φ(2 · −2 j − k) =
∑
k∈Z

∑
j∈Z

ak−2 j c j( f )

 φ(2 · −k),

or, in terms of (semidiscrete) convolutions,

f = c( f ) ∗ φ = (S ac( f )) ∗ φ(2 ·), (S ac) j :=
∑
k∈Z

a j−2k ck, (11)
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and the subdivision operator S a. We will use this connection later.
In s variables, usually s = 2, 3, we use the respective tensor product scaling functions

φ(x) =

s∏
r=1

φ(xr),

so that, for α ∈ Zs,∫
Rs
φ(x) φ(x − α) dx =

s∏
r=1

∫
R

φ(xr) φ(xr − αr) dxr =

s∏
r=1

δαr ,0 = δα,0.

To build wavelets, we set ψ0 = φ, ψ1 = ψ and define the 2s − 1 wavelet functions

ψη(x) :=
s∏

r=1

ψηr (xr), η ∈ H := {0, 1}s \ {0}

and the refinement equation is given by

ψη =
∑
α∈Zs

bη,α φ(2 · −α), η ∈ H,

with

bη,α :=
s∏

r=1

(
(1 − ηr)aαr + ηrbαr

)
, η ∈ H, α ∈ Zs.

These function satisfy the orthonormality condition∫
Rs
ψη(x)ψη′ (x − α) dx = δη,η′ δα,0, η, η′ ∈ {0, 1}, α, β ∈ Zs.

Thus, with V j = span
{
φ(2 j · −α) : α ∈ Zs

}
, we again have the multiresolution analysis

V j+1 = V j ⊕W j, W j := span
{
2 js/2 ψη(2 j · −α) : η ∈ H, α ∈ Zs

}
,

and the wavelet decomposition

f =
∑
α∈Zs

cn
α( f ) φ (2n · −α) =

∑
α∈Zs

cα( f ) φ(· − α) +

n−1∑
j=0

∑
η∈H

∑
α∈Zs

d j
η,α( f ) 2 js/2ψη

(
2 j · −α

)
. (12)

Remark 1. There exist orthogonal wavelet decompositions for arbitrary scaling matrices and
even a generic tensor-product like approach to construct them, see [3, 7], but the classi-
cal dyadic tensor product construction offers an extremely efficient way of localizing the
supports of scaling functions and wavelets which is useful in the implementation of a fast
decomposition and reconstruction as described in [12].
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Figure 2: Different levels of wavelet decomposition of a typical industrial piece (engine pis-
ton). (Left) One level, the different types of edge and face dectections are clearly visible,
(middle) even after two levels wavelet coefficients become almost invisible, (right) and after
three iterations, they are mainly irrelevant.

§4. Wavelets and compression

The idea behind wavelet compression is rather simple: if a function f : Rs → R can be
approximated well by Vk for some rather small k, then the wavelet coefficients d j

η,α( f ) for
j > k will be very small and can be discarded without significant loss of quality. This works
for two reasons, cf. [5, 9]:

1. Any reasonable scaling function φ is compactly supported and (re)produces polynomi-
als of a certain degree, but at least satisfies∑

α∈Zs

φ(· − α) = 1.

This means that the wavelet coefficients for locally constant functions vanish in the
regions where the function is constant.

2. The spaces Vk usually have good approximation properties for smooth function which
implies that in smooth regions the absolute values

∣∣∣∣d j
η,α( f )

∣∣∣∣ of the wavelet coefficients
decay very fast with respect to j.

Starting from the high resolution cn( f ) of

f ≈
∑
α∈Zs

cn
α( f ) φ(2n · −α),

one computes the wavelet coefficients dn−1
η ( f ), dn−2

η ( f ), · · · , d0
η( f ) and the scaling coefficients

c0( f ) by means of a fast wavelet transform. Note that the index η also has an intuitive ge-
ometric meaning for the wavelet coefficient. Indeed, if |η| = 1, it detects faces parallel to
the coordinate planes, if |η| = 2 the coefficients correspond to edges parallel to the axes and
η = (1, 1, 1) detects some “diagonal” feature, see Fig. 2.

While the originally sampled data cn( f ) is usually dense, the wavelet transform is sparse
if the underlying image is piecewise constant which is the case in most technical applications,
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see again Fig. 2. In addition to deleting zero coefficients, lossy compression is obtained by
thresholding the wavelet coefficients and replacing them by

d̂ j
η,α = tε

(
d j
η,α

)
, η ∈ H, α ∈ Zs, j = 0, . . . , n − 1,

by means of threshold function tε.

Definition 2. For a threshold level ε the hard threshold and the soft threshold use the func-
tions

th
ε(x) =

0, |x| < ε,
x, |x| ≥ ε,

ts
ε(x) =


0, |x| < ε,
x − ε, x ≥ ε,
x + ε, x ≤ −ε.

respectively.

While soft thresholding is known to perform a denoising operation, popular as wavelet shrink-
age, hard threshold is more contrast and edge preserving. The choice of the threshold level
can be made according to several strategies, for example

1. absolute choice of threshold level,

2. best N–term approximation: the threshold is chosen in such a way that only the N
largest coefficients remain,

3. overall precision: ε is chosen such that

n−1∑
j=0

∑
η∈H

∑
α∈Zs

(
d j
η,α − d̂ j

η,α

)2

does not exceed a certain bound. Since these are the coefficients in an orthonormal
expansion, this is also the norm of the L2–error, hence a certain PSNR can be prescribed
for the compression.

Recall also that after transformation and thresholding, the array of coefficients is encoded in
an efficient way using a more or less standard entropy encoder, cf. [12] for details. We will
not dwell on these issues here though they are of course important for the overall compression
rates.

Definition 3. For a function f with a thresholded wavelet decomposition we define

N( f ) := # {α : ĉα , 0} +
n−1∑
j=0

∑
η∈H

#
{
α : d̂ j

η,α , 0
}

as the number of nonzero coefficients in the representation.

§5. Wavelet correlation

The correlation between two functions f , g is defined as

f ? g(y) :=
∫
Rs

f (x) g(x + y) dx, y ∈ Rs,
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Figure 3: Two images with a PSNR value of 0, i.e., of maximal disparity, while σ( f , g) = 1.

and measures the best fit between f and a shifted version of g. It is useful for image compar-
ison by using

σ( f , g) :=
1

‖ f ‖2 ‖g‖2
max
y∈Rs
| f ? g(y)|

as a translation invariant similarity measure for images. An extremal example in this respect
can be seen in Fig. 3. Moreover, local correlations are needed in order to stitch images to-
gether by finding a proper offset of one of the images such that the overlapping areas coincide
as much as possible.

Taking into account that in many cases a complete reconstruction of a bigture is impos-
sible due to memory limitations, we need an algorithm that computes the correlation entirely
from the wavelet decomposition. We will develop such a method in this section. To that end,
we set up some terminology first.

Definition 4. The correlation of two sequences c, d ∈ Zs is defined as

(c ? d)α :=
∑
β∈Zs

cα+β dβ, α ∈ Zs,

and the translation operator as (
τγc

)
α

:= cα+γ, α ∈ Zs.

We start with f , g ∈ Vn, written as

f =
∑
α∈Zs

cα( f ) φ(· − α) +

n−1∑
j=0

2 js/2
∑
η∈H

∑
α∈Zs

d j
η,α( f )ψη(2 j · −α),

g =
∑
α∈Zs

cα(g) φ(· − α) +

n−1∑
j=0

2 js/2
∑
η∈H

∑
α∈Zs

d j
η,α(g)ψη(2 j · −α),

and first observe that the integer correlations can be easily computed as shifted correlations
of the discrete sequences.
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Lemma 1. For γ ∈ Zs we have that

f ? g(γ) = τ−γ (c( f ) ? c(g)) +

n−1∑
j=0

∑
η∈H

τ−2 jγ

(
d j
η( f ) ? d j

η(g)
)
. (13)

The number of arithmetic operations is bounded by min{N( f ),N(g)} and hence subadditive
in the number of nonzero coefficients in the expansion of f or g, respectively.

Proof. We compute

f ? g(γ)

=
∑
α,β∈Zs

cα( f ) cβ(g) 〈φ(· − α), φ(· − β + γ)〉

+

n−1∑
j=0

2− js/2
∑
η∈H

∑
α,β∈Zs

(
cα( f ) d j

η,β(g) + cα(g) d j
η,β( f )

) 〈
φ(· − α), ψη

(
2 j · −β + 2 jγ

)〉
+

n−1∑
j,k=0

2−( j+k)s/2
∑
η,η′∈H

∑
α,β∈Zs

d j
η,α( f ) dk

η′,β(g)
〈
ψη

(
2 j · −α

)
, ψη′

(
2k · −β + 2kγ

)〉
=

∑
α,β∈Zs

cα( f ) cβ(g) δα,β−γ +

n−1∑
j,k=0

∑
η,η′∈H

∑
α,β∈Zs

d j
η,α( f ) dk

η,β(g)δ jkδα,β−2kγδη,η′

=
∑
β∈Zs

cβ−γ( f ) cβ(g) +

n−1∑
j=0

∑
η∈H

∑
β∈Zs

d j
η,β−2 jγ

( f ) d j
η,β(g),

which gives (13). Since any contribution to the sum requests a nonzero coefficient of the
expansion of f and g, the number of arithmetic operations is bounded by min (N( f ),N(g)).

�

For the general case, we define the bi–infinite matrix valued function

Φ(y) :=
[
〈φ(· − α), φ(· − β + y)〉 : α, β ∈ Zs] , y ∈ Rs, (14)

which represents the correlation for f , g ∈ V0 in the sense that f ? g(y) = c( f )T Φ(y) c(g).

Lemma 2. If φ ∈ L2(Rs) is a compactly supported orthonormal scaling function, then

1. the matrix Φ(y) is a banded Toeplitz matrix,

2. Φ(y) is almost 1-periodic: Φ(y + γ) = Φ(y)τγ = τ−γΦ(y), γ ∈ Zs,

3. y 7→ Φ(y) is continuous with Φ(0) = I, in the sense that the coefficients form a uni-
formly equicontinuous family.

Proof. For 1) we note that

Φ(y)α,β = 〈φ(· − α), φ(· − β + y)〉 = 〈φ (· − (α − β)) , φ(· + y)〉,
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hence depends only on α − β. Bandedness results from the compact support of φ: if ‖α − β‖
is large enough, then the supports of φ (· − (α − β)) and φ(· + y) are disjoint and the integral
is zero. For 2) we consider

(Φ(y + γ)c)α =
∑
β∈Zs

〈φ(· − α), φ(· − (β − γ) + y)〉cβ =
∑
β∈Zs

〈φ(· − α), φ(· − β + y)〉cβ+γ

and (
cT Φ(y + γ)

)
β

=
∑
α∈Zs

〈φ (· − (α + γ)) , φ(· − β + y)〉cα =
(
τ−γcT Φ(y)

)
β
.

To prove 3) we first note that due to 1) the matrix Φ(y) only contains finitely many nonzero
entries of the form

〈φ(· − α), φ(· + y)〉, α ∈ Zs.

For each α ∈ Zs and δ ∈ Rs we then have that

|〈φ(· − α), φ(· + y + δ)〉 − 〈φ(· − α), φ(· + y)〉| ≤ ‖φ‖2 ‖φ(· + δ) − φ‖2

which tends to zero for ‖δ‖ → 0 uniformly in α and y, as φ ∈ L2(Rs). �

Example 1. In the simple case of Haar wavelets where φ = χ = χ[0,1]s , the entries of Φ(y)
can easily be computed explicitly, namely, for y ∈ (0, 1)s as

Φ(y)α,β =

∫
[0,1]s

χ (x + α − β + y) dx =

s∏
r=1

∫ 1

0
χ(x + αr − βr + yr) dx.

Now, [0, 1] + αr − βr + yr ∩ [0, 1] , ∅ only if βr = αr + 1 or βr = αr, where∫ 1

0
χ(x + αr − βr + yr) dx =

∫ 0

−1
χ(x + yr) = yr

in the first case and ∫ 1

0
χ(x + αr − βr + yr) dx =

∫ 1

0
χ(x + yr) = 1 − yr

in the latter. Therefore, every row of Φ(y) contains exactly 2s nonzero values, namely

Φ(y)α,α+η =

s∏
r=1

(ηryr + (1 − ηr)(1 − yr)) , α ∈ Zs, η ∈ {0, 1}s.

For arbitrary y ∈ Rs, we apply Lemma 2. Note however that there is a shift in the matrices in
this case:

lim
y→(1,...,1)

Φ(y) = τ(1,...,1) = lim
y→0

Φ(y)τ(1,...,1).

Since the finely sampled data cn( f ) corresponds to evaluation of a function on the grid
2−nZs, even if the sequence is indexed by integers, we have to be able to compute correlations
at least for dyadic values 2−mγ, γ ∈ Zs, 0 ≤ m ≤ n. The next result shows that also in this
case, correlations can be computed from wavelet coefficients by means of Φ(y).
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Theorem 3. For γ ∈ Zs and 0 ≤ m ≤ n we have that

f ? g
(
2−mγ

)
= c( f )T Φ

(
2−mγ

)
c(g) + 2−s

m−1∑
j=0

∑
η,η′∈H

(
S bηd

j
η( f )

)T
Φ

(
2 j+1−mγ

) (
S bη′ d

j
η′ (g)

)
+

∑
0≤ j<k≤m−1

2−
(
1+

k− j
2

)
s

∑
η,η′∈H

(
S k− j

a S bηd
j
η( f )

)T
Φ

(
2−mγ

) (
S bη′ d

k
η′ (g)

)
+

∑
0≤k< j≤m−1

2−
(
1+

j−k
2

)
s

∑
η,η′∈H

(
S bηd

j
η( f )

)T
Φ

(
2−mγ

) (
S j−k

a S bη′ d
k
η′ (g)

)
+

n−1∑
j=m

∑
η∈H

τ−2 j−mγ

(
d j
η( f ) ? d j

η(g)
)
. (15)

Proof. As all levels at least as fine as m are still orthogonal, we obtain

f ? g(2−mγ)

=
∑
α,β∈Zs

cα( f ) cβ(g)
〈
φ(· − α), φ(· − β + 2−mγ)

〉
+

m−1∑
j,k=0

2( j+k)s/2
∑
η,η′∈H

∑
α,β∈Zs

d j
η,α( f ) dk

η′,β(g)
〈
ψη

(
2 j · −α

)
, ψη′

(
2k · −β + 2k−mγ

)〉
(16)

+

n−1∑
j=m

∑
η∈H

∑
β∈Zs

d j
η,β−2 j−mγ

( f ) d j
η,β(g)

= c( f )T Φ
(
2−mγ

)
c(g) +

n−1∑
j=m

∑
η∈H

∑
β∈Zs

d j
η,β−2 j−mγ

( f ) d j
η,β(g)

+

m−1∑
j,k=0

2−( j+k)s/2
∑
η,η′∈H

∑
α,β∈Zs

d j
η,α( f ) dk

η′,β(g)
〈
2 jsψη

(
2 j · −α

)
, 2ksψη′

(
2k · −β + 2k−mγ

)〉
,

which already gives the first and the last term in the right hand side of (15). We are left with
calculating the correlations of all levels from zero to m − 1.

Recalling that
ψη =

∑
α∈Zs

bη,α φ(2 · −α), η ∈ H,

we obtain for j ≤ n − 1 that∑
α∈Zs

d j
η,α( f )ψη

(
2 j · −α

)
=

∑
α∈Zs

d j
η,α( f )

∑
β∈Zs

bη,βφ
(
2 j+1 · −2α − β

)
=

∑
β∈Zs

∑
α∈Zs

bη,β−2α d j
α( f )

 φ (
2 j+1 · −β

)
=

∑
β∈Zs

(
S bηd

j
η( f )

)
β
φ
(
2 j+1 · −β

)
,

and the refinement equation (6) for φ yields in the same way for k > j that∑
α∈Zs

d j
η,α( f )ψη

(
2 j · −α

)
=

∑
β∈Zs

(
S k− j

a S bηd
j
η( f )

)
β
φ
(
2k+1 · −β

)
.
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With these formulas at hand, we split the sum from (16) into its diagonal
m−1∑
j=0

2 js
∑
η,η′∈H

∑
α,β∈Zs

d j
η,α( f ) d j

η′,β(g)
〈
ψη

(
2 j · −α

)
, ψη′

(
2 j(· + 2−mγ) − β

)〉
=

m−1∑
j=0

2 js
∑
η,η′∈H

∑
α,β∈Zs

(
S bηd

j
η,( f )

)
α

(
S bη′ d

j
η′ (g)

)
β

〈
φ
(
2 j+1 · −α

)
, φ

(
2 j+1(· + 2−mγ) − β

)〉
= 2−s

m−1∑
j=0

∑
η,η′∈H

(
S bηd

j
η( f )

)
Φ

(
2 j+1−mγ

) (
S bη′ d

j
η′ (g)

)
,

the lower triangle∑
0≤ j<k≤m−1

2( j+k)s/2
∑
η,η′∈H

∑
α,β∈Zs

d j
η,α( f ) dk

η′,β(g)
〈
ψη

(
2 j · −α

)
, ψη′

(
2k(· + 2−mγ) − β

)〉
=

∑
0≤ j<k≤m−1

2( j+k)s/2
∑
η,η′∈H

∑
α,β∈Zs

(
S bηd

j
η,( f )

)
α

(
S bη′ d

j
η′ (g)

)
β

·
〈
φ
(
2 j+1 · −α

)
, φ

(
2k+1(· + 2−mγ) − β

)〉
=

∑
0≤ j<k≤m−1

2( j+k)s/2
∑
η,η′∈H

∑
α,β∈Zs

(
S k− j

a S bηd
j
η,( f )

)
α

(
S bη′d

j
η′ (g)

)
β

·
〈
φ
(
2k+1 · −α

)
, φ

(
2k+1(· + 2−mγ) − β

)〉
=

∑
0≤ j<k≤m−1

2
(

j−k
2 −1

)
s

∑
η,η′∈H

(
S k− j

a S bηd
j
η,( f )

)T
Φ

(
2k+1−mγ

) (
S bη′ d

j
η′ (g)

)
and the upper triangle∑

m−1≥ j>k≥0

· · · =
∑

m−1≥ j>k≥0

2
(

k− j
2 −1

)
s

∑
η,η′∈H

(
S bηd

j
η,( f )

)T
Φ

(
2 j+1−mγ

) (
S j−k

a S bη′ d
j
η′ (g)

)
that is obtained in the same way. �

Correlation is a standard tool for matching objects whose mutual displacement is due to shifts.
This goal can often be achieved by aligning calibrated reference objects which are first used
to compensate rotational effects. After that, maximizing the correlation means finding the
best alignment between the two objects f and g. For this purpose we propose the following
hierarchical algorithm:

1. Determine the best integer shift γ0 by computing the correlations with the formula (13)
from Lemma 1.

2. For m = 1, 2, . . . , n determine the best dyadic shift 2−mγm among the 3s − 1 neighbors
21−mγm−1 + 2−mκ, κ ∈ {−1, 1, 1}s \ {0} of 21−mγm−1.

Note that for m = 1 the iteration only requires to apply the subdivision operator S b to d0
η( f )

and d1
η(g) and the matrices Φ(2−1γ) and Φ(γ) = I τγ to compute

c( f )T Φ
(
2−1γ

)
c(g)+2−s

m−1∑
j=0

∑
η,η′∈H

τ−γ
(
S bηd

j
η( f ) ? S bη′ d

j
η′ (g)

)
+

n−1∑
j=1

∑
η∈H

τ−2 j−mγ

(
d j
η( f ) ? d j

η(g)
)
.
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If we store the level correlations seperately for j = 0, . . . , n, we only need to recompute the
first two sums of the above expression. This technique can in general be extended to later
iterations, but the two middle sums in (15) also necessitate the application of the subdivision
S a to the low level wavelet coefficient vectors. Of course, the finer the resolution becomes,
the effort increases, but keep in mind that also then, due to the hierarchical procedure, only
3s − 1 correlations have to be computed which even for s = 3 is still the relatively moderate
value of 26.

§6. Conclusions

Tomography is much more than a medical diagnosis tool, and the technology available for
industrial tomography enables us to generate spectacular measurements with very high reso-
lution or of very large objects. The resulting amount of data, however, is no more tractable
on even well-equipped computer systems without switching to sparse representations. This
provides a lot of mathematical challenges starting from an efficient creation of such sparse
representations, requiring the development of compression and storage strategies that allow
fast access to full resolution data in certain regions of interest and leading to a redefinition of
standard operations in terms of the sparse representation – the sparse perspective only makes
sense if it is respected in all steps of computations and manipulations.

The example of correlation shows that this is doable, even efficiently, but requires some
non-straightforward mathematical operations.
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CONVERGENCE AND ERROR ESTIMATES
FOR THE COMPRESSIBLE

NAVIER-STOKES EQUATIONS
Thierry Gallouët

Abstract. We are interested in the paper by the discretization of the (unsteady and sta-
tionary) compressible (isentropic) Navier-Stokes Equations with the Marker-And- Cell
scheme. We present recent results for the convergence (as the discretization parameter
goes to zero) of the approximate solutions to a weak solution of the continuous equations
and error estimates when the solution of the continuous equations is regular enough.

Keywords: Keywords separated by commas.
AMS classification: AMS classification codes.

§1. Introduction

I present in this paper some results obtained with R. Eymard, R. Herbin, J. C. Latché, D.
Maltese and A. Novotny.

Let Ω be a bounded open connected set of R3 with a Lipschitz continuous boundary,
T > 0, γ > 3/2, u0 ∈ L2(Ω), ρ0 ∈ Lγ(Ω) and f ∈ L2(]0,T [, L2(Ω)3). The compressible
Navier-Stokes equations read

∂tρ + div(ρu) = 0 in Ω×]0,T [, (mass equation) (1)
∂t(ρu) + div(ρu ⊗ u) − ∆u + grad p = f in Ω×]0,T [, (momentum equation) (2)
p = ργ in Ω×]0,T [. (Equation Of State) (3)

To this system, we add a Dirichlet boundary condition,

u = 0 on ∂Ω×]0,T [, (4)

and an initial condition
u(·, 0) = u0, ρ(·, 0) = ρ0 on ∂Ω. (5)

The main unknowns of Problem (1)-(5) are u and ρ (then, p is given with (3)). Under
the assumption ρ0 > 0 a.e. on Ω and

∫
Ω

( 1
2ρ0|u0|

2 + ρ
γ
0/(γ − 1))dx < +∞, existence of

a weak solution (u, ρ) to (1)-(5) is known (but no uniqueness in general) since the works
of P.-L. Lions [18] and E. Feireisl and coauthors [5], [6]. This weak solution sastifies
ρ ∈ L∞(]0,T [, Lγ(Ω)), ρ ≥ 0 a.e., u ∈ L2([0,T [,H1

0(Ω)3) and ρ|u|2 ∈ L∞(]0,T [, L1(Ω)).
Futhermore,

∫
Ω
ρ(x, t)dx =

∫
Ω
ρ0(x)dx a.e.. In particular, such a weak solution has a finite

energy. More precisely, for a.e. t in ]0,T [, if f = 0,∫
Ω

(
1
2
ρ|u|2 +

ργ

γ − 1
)(t) dx +

∫ t

0

∫
Ω

| grad u|2 dxdτ ≤
∫

Ω

(
1
2
ρ0|u0|

2 +
ρ
γ
0

γ − 1
)dx. (6)
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It is said that this weak solution is a “suitable” solution.
We are also interested by the stationary compressible Navier Stokes equations. In this

case, Ω is a bounded open set of R3, with a Lipschitz continuous boundary, γ > 3/2, f ∈
L2(Ω)3 and M > 0. The equations read

div(ρu) = 0 in Ω, (7)
div(ρu ⊗ u) − ∆u + grad p = f in Ω, (8)
p = ργ in Ω. (9)

To this system, we add a Dirichlet boundary condition,

u = 0 on ∂Ω×]0,T [, (10)

and
ρ ≥ 0 a.e.

∫
Ω

ρ(x)dx = M. (11)

Here also, the main unknowns of Problem (7)-(11) are u and ρ (and p is given with (9)).
Existence of a weak solution (u, ρ) to (7)-(11) is known (but no uniqueness) with u ∈ H1

0(Ω)3

and ρ ∈ Lγ(Ω), at least for γ > 5/3, see for instance [19], [20]. Indeed, the “optimal” space
for this weak solution depends on γ (except for u which always belongs to H1

0(Ω)3). If γ > 3,
ρ ∈ L2γ(Ω) and then p ∈ L2(Ω). If γ < 3, ρ ∈ Lγδ(Ω), with δ = 3(γ−1)/γ, and then p ∈ Lδ(Ω).
In particular, the function ρ belongs to L2(Ω) for γ ≥ 5/3.
Remark 1. For γ = 3/2, one has q̄ = 3(γ − 1)/γ = 1, and γδ = 3(γ − 1) = 3/2, so that
the natural spaces for p, ρ,u seem to be p ∈ L1(Ω), ρ ∈ L

3
2 (Ω), u ∈ H1

0(Ω)3. Using the
Sobolev embedding H1

0(Ω) ⊂ L6(Ω) these natural spaces gives ρu ⊗ u ∈ L1(Ω)3. This is a
reason for the limitation γ > 3/2. However, in the case of the stationary compressible Stokes
equations (that is without this term ρu ⊗ u in (8)), one has a weak solution with p ∈ L2(Ω)
(and ρ ∈ L2γ(Ω)) and there is no restriction on γ in the sense that we can take γ ≥ 1 (see for
instance [4, 3] for γ > 1 and [9] for γ = 1).

For this two problems (Compressible Navier-Stokes Equations and Stationary Compress-
ible Navier-Stokes Equations, namely Problem (1)-(5) and Problem (7)-(11)) we are inter-
ested by the discretized models obtained with the Marker-And-Cell scheme (MAC in short)
and, for the unsteady problem, with an implicit discretization in time. The reason of this
choice is that the MAC scheme is widely used in computational fluid dynamics. It was intro-
duced in [16] and considered (since the beginning) as a suitable space discretization for both
incompressible and compressible flow problems (see [14, 15] for the seminal papers and [23]
for a review). We refer to [3], [10], [12] for a description of the MAC scheme. Of course, we
have to consider a domain Ω adapted to the discretization by the MAC scheme.

Admitting the existence of an approximate solution, that is a solution of the discretized
problem (this existence can be proven), two questions ares interesting:

1. Is it possible to prove convergence (up to the subsequence) of the approximate solution
to the weak solution of the continuous problem as the mesh size goes to 0 (and also the
time step in the evolution case) ?

2. In case of uniqueness of the solution of the continuous problem, is it possible to obtain
error estimates and what are they ?
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The answer for this two questions are partially known, it remains some open questions
(and the known results are completely different between the unsteady case and the steady
case) :

1. For the stationary compressible Navier-Stokes problem (namely (7)-(11)), we prove,
for γ > 3, convergence (up to the subsequence) of the approximate solution to the
(weak) solution of (7)-(11) as the mesh size goes to 0, see [10]. But it is an open
problem for 3/2 < γ ≤ 3. Note that for γ > 3 the proof of convergence given in [10]
also gives existence of a weak solution to (7)-(11) since the existence of an approximate
solution is also proven in [10].

2. For the compressible Navier-Stokes problem (namely (1)-(5)), the convergence of the
approximate solution, up to a subsequence, to the solution of the continuous problem
is probably true, but we do not have a complete proof.

3. For the compressible Navier-Stokes problem (namely (1)-(5)), if the solution of the
continuous problem is regular enough (then we call it a “strong solution”), we obtain,
for γ > 3/2 an error estimate, cf. [12] for the case f = 0. The rate of convergence
obtained in [12] depends on γ and is probably not optimal.

4. For the stationary compressible Navier-Stokes problem, even when the solution of the
continuous problem is regular, we are not able to obtain error estimates.

Remark 2. It is possible to obtain some convergence results or some error estimates with other
schemes than the MAC scheme. For instance, a convergence result is given for the unsteady
compressible Navier-Stokes equations in [17] with a FV-FE scheme, albeit only in the case
γ > 3 (the difficulty in the realistic case γ ≤ 3 arise from the treatment of the non linear
convection term). Some error estimates (when the solution of these unsteady compressible
Navier-Stokes equations is regular enough) have been derived for this FV-FE scheme in [11]
if γ > 3/2.

§2. Error estimates

2.1. For the compressible Navier-Stokes problem

For the compressible Navier-Stokes problem the proof of an error estimate, that is the compar-
ison of a “strong” solution of Problem (1)-(5) and an approximate solution (that is a solution
given by the MAC-scheme in space and an Euler-backward scheme in time) is very close to
the so called “weak-strong uniqueness principle", which is the comparison of a “strong” so-
lution and a weak solution of Problem (1)-(5). Indeed, the weak-strong uniqueness principle
states that if Problem (1)-(5) has a regular enough solution (the main hypothesis on the solu-
tion is the fact that div u ∈ L1(]0,T [, L∞(Ω)) and grad p ∈ L1(]0,T [, L∞(Ω))) then Problem
(1)-(5) has a unique weak solution (and this solution is equal to the strong solution).

This idea of the weak-strong uniqueness principle comes back to G. Prodi [21] (1959)
and J. Serrin [22] (1963) for the case of Incompressible Navier-Stokes Equations. For the
compressible isentropic Navier-Stokes equations, the first result is probably in [13]. More
general Equation Of State are considered in [6].
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For the compressible Navier-Stokes equations, the proof of this weak-strong uniqueness
principle uses the so-called “relative entropy” introduced by C. M. Dafermos for Euler Equa-
tions [2]. In other papers, the “relative entropy” is called “modulated energy”. We will use
below the term “relative energy” which seems to be more adapted to our system of equations.

We first describe in Sec. 2.2 this weak-strong uniqueness principle in a very simple case
containing the main idea of the method.

2.2. Weak-strong uniqueness principle, simple case

We present in this section the weak-strong uniqueness principle in the case of the compress-
ible Stokes equations with γ = 2 and f = 0. The set Ω is still a bounded open connected set
of R3, with a Lipschitz continuous boundary and T > 0. The problem read

∂tρ + div(ρu) = 0 in Ω×]0,T [, (12)
∂tu − ∆u + grad p = 0 in Ω×]0,T [, (13)

p = ρ2 in Ω×]0,T [. (14)

with a Dirichlet boundary condition,

u = 0 on ∂Ω×]0,T [, (15)

and an initial condition
u(·, 0) = u0, ρ(·, 0) = ρ0 on ∂Ω. (16)

Let (ū, ρ̄, p̄) be a regular solution of (12)-(16) (we call it ”strong solution”) and let (u, ρ, p)
be a suitable weak solution of (12)-(16).

The idea of the proof is to use a Gronwall inequality on the “relative energy" between (u,
ρ) and (ū, ρ̄) which reads in this case (Stokes Equations, γ = 2), for t ∈ [0,T ],

Et(u, ρ | ū, ρ̄) =

∫
Ω

(
1
2
|u(t) − ū(t)|2 + |ρ(t) − ρ̄(t)|2) dx.

Note that this quantity is indeed well defined for any t, thanks to some continuity which can
be proven for u and ρ. We now transform formally the quantity Et(u, ρ | ū, ρ̄) in three steps,
using (12)-(16).

Step 1 Energy Inequalities for the suitable weak solution and for the strong solution
We formally take u as test function in the momentum equation for u (Equation (13)) to

obtain, for t ∈ [0,T ],

1
2

∫
Ω

|u|2(t) dx +

∫ t

0

∫
Ω

(| grad u|2 − p div u) dxdτ =
1
2

∫
Ω

|u0|
2dx. (17)

We formally take ρ as test function in the mass equation (Equation (12)) to obtain

1
2

∫
Ω

ρ2(t) dx −
1
2

∫
Ω

ρ2
0 dx −

∫ t

0

∫
Ω

ρu · grad ρ dxdτ = 0.
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But, since ρ2 = p,∫ t

0

∫
Ω

ρu · grad ρ dxdτ =
1
2

∫ t

0

∫
Ω

u · grad(ρ2) dxdτ = −
1
2

∫ t

0

∫
Ω

p div u dxdτ

and then ∫
Ω

ρ2(t) dx +

∫ t

0

∫
Ω

p div u dxdτ =

∫
Ω

ρ2
0 dx. (18)

Then, adding Equations (17) and (18) gives for all t ∈ [0,T ],

1
2

∫
Ω

|u|2(t) dx +

∫
Ω

ρ2(t) dx +

∫ t

0

∫
Ω

(| grad u|2 dxdτ =
1
2

∫
Ω

|u0|
2dx +

∫
Ω

ρ2
0 dx.

Indeed, this is Inequality (6) with an equality instead of an inequality, but the computation
here is formal. For the suitable weak solution, one has Inequality (6) which is here

1
2

∫
Ω

|u|2(t) dx +

∫
Ω

ρ2(t) dx +

∫ t

0

∫
Ω

(| grad u|2 dxdτ ≤
1
2

∫
Ω

|u0|
2dx +

∫
Ω

ρ2
0 dx. (19)

For the the strong solution (which is “more” than a suitable weak solution), one has also

1
2

∫
Ω

|ū|2(t) dx +

∫
Ω

ρ̄2(t) dx +

∫ t

0

∫
Ω

(| grad ū|2 dxdτ ≤
1
2

∫
Ω

|u0|
2dx +

∫
Ω

ρ2
0 dx. (20)

Using (19) and (20), for all t,

Et(u, ρ | ū, ρ̄) =

∫
Ω

(
1
2
|u(t) − ū(t)|2 + |ρ − ρ̄|2) dx ≤

−

∫
Ω

u(t) · ū(t) dx − 2
∫

Ω

ρ(t)ρ̄(t) dx −
∫ t

0

∫
Ω

(| grad u|2 + | grad ū|2) dxdτ

+

∫
Ω

|u0|
2 dx + 2

∫
Ω

|ρ0|
2 dx, (21)

We have now to transform the two first terms of the right hand side of (21).
Step 2 Transformation of

∫
Ω
ρ(t)ρ̄(t) dx.

Using the regularity of the strong solution, we can take ρ̄ as test function in the mass
equation for the weak solution (Equation (12)) and ρ as test function in the mass equation for
the strong solution. This gives∫ t

0

∫
Ω

(∂tρ)ρ̄ dxdτ −
∫ t

0

∫
Ω

ρu · grad ρ̄ dxdτ = 0,

∫ t

0

∫
Ω

(∂tρ̄)ρ dxdτ +

∫ t

0

∫
Ω

div(ρ̄ū)ρ dxdτ = 0.

The non-symmetry between these two equalities is due to fact that (u, ρ) is only a weak
solution. Adding the two equations leads to∫

Ω

ρ̄(t)ρ(t) dx −
∫

Ω

ρ2
0 dx =

∫ t

0

∫
Ω

ρu · grad ρ̄ dxdτ −
∫ t

0

∫
Ω

div(ρ̄ū)ρ dxdτ. (22)
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Step 3 Transformation of
∫

Ω
u(t) · ū(t) dx.

Using, here also, the regularity of the strong solution, we can take ū as test function in
the momentum equation for the weak solution (Equation (13)) and u as test function in the
momentum equation for the strong solution. This gives∫ t

0

∫
Ω

(∂tu)ū dxdτ +

∫ t

0

∫
Ω

(grad u : grad ū − p div(ū)) dxdτ = 0,

∫ t

0

∫
Ω

(∂tū)u dxdτ +

∫ T

0

∫
Ω

(grad u : grad ū + u · grad p̄) dxdτ = 0.

Adding the two equations leads to

∫
Ω

ū(t) ·u(t) dx−
∫

Ω

|u0|
2 dx =

∫ t

0

∫
Ω

(−2 grad u : grad ū + p div(ū)−u · grad p̄) dxdτ. (23)

Step 4 End of the proof of the weak strong uniqueness principle

We use (22) and (23) to transform (21). We obtain

Et(u, ρ | ū, ρ̄) ≤ −
∫ t

0

∫
Ω

| grad u − grad ū|2 dxdτ −
∫ t

0

∫
Ω

(p div(ū) − u · grad p̄) dxdτ

− 2
∫ t

0

∫
Ω

ρu · grad ρ̄ dxdτ + 2
∫ t

0

∫
Ω

div(ρ̄ū)ρ dxdτ.

Using p = ρ2, p̄ = ρ̄2,
∫ t

0

∫
Ω

div(ρ̄ū)ρ dxdτ =
∫ t

0

∫
Ω

(ρ̄ρ div(ū) + ρū · grad ρ̄) dxdτ and∫ t
0

∫
Ω

(div(ū)ρ̄2 + 2ūρ̄ · grad ρ̄)dxdτ = 0, this inequality can be rewritten as

Et(u, ρ | ū, ρ̄) ≤
∫ t

0

∫
Ω

(−| grad u − grad ū|2 − (ρ − ρ̄)2 div(ū) − 2(ρ̄ − ρ)(ū − u) · grad ρ̄) dxdτ.

and then

Et(u, ρ | ū, ρ̄) ≤
∫ t

0

∫
Ω

(−(ρ − ρ̄)2 div(ū) − 2(ρ̄ − ρ)(ū − u) · grad ρ̄) dxdτ. (24)

Setting ϕ(t) = Et(ρ,u|ρ̄, ū) = 1
2

∫
Ω
|u(t)− ū(t)|2 dx+

∫
Ω

(ρ(t)− ρ̄(t))2 dx, using Cauchy-Schwarz
Inequality for the last term, we obtain from (24), since div ū ∈ L1(]0,T [, L∞(Ω)) and grad ρ̄ ∈
L1(]0,T [, L∞(Ω)),

ϕ(t) ≤ C
∫ t

0
a(τ)ϕ(τ)dτ for all t ∈ [0,T ],

with some a ∈ L1(]0,T [). This gives, by Gronwall Inequality, ϕ(t) ≤ ϕ(0)e
∫ t

0 a(τ)dτ and then,
since ϕ(0) = 0, ϕ(t) = 0 for all t ∈ [0,T ]. The weak-strong uniqueness principle is then
proven for this simple case (compressible Stokes equations with γ = 2 and f = 0).
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2.3. Error estimate for the compressible Navier Stokes equations
We consider here the compressible Navier Stokes system (1)-(5) with f = 0, γ > 3/2 and a
domain Ω adapted to the MAC scheme (for instance, Ω =]0, 1[3). Mimicking the previous
proof of uniqueness (given in Sec. 2.2) at the discrete level it is possible to obtain error esti-
mates, that is an estimate between a strong solution (we assume existence of such a solution)
and the approximate solution given by a numerical scheme (roughly speaking it is not so far
of a weak solution with some errors due to the discretization). Instead of a suitable weak
solution (ρ, u), we use now the solution of the scheme (that is the solution obtained with a
space discretization using the MAC scheme and an Euler-backward discretiztation in time).
This numerical solution is denoted by (u, ρ) and the strong solution is denoted by (u, ρ̄). The
energy is now

Et(u, ρ | ū, ρ̄) =

∫
Ω

(
1
2
ρ|u(t) − ū(t)|2 + e(ρ(t)|ρ̄(t))) dx,

with e(ρ|ρ̄) = ργ − ρ̄γ−1γ(ρ − ρ̄) − ρ̄γ. Note that e(ρ|ρ̄) = 0 if and only if ρ = ρ̄.
If h is the mesh size and k the time step, the error estimate given in [12] is

Et(ρ, u|ρ̄, ū) ≤ C(hα + k1/2) for all 0 ≤ t ≤ T,

where C depends only on the strong solution and on the regularity of the mesh and α =

min( 2γ−3
γ
, 1

2 ). For γ = 2, one has α = 1/2 and Et is the L2-norm of (ρ − ρ̄) plus the L2-norm
of (u − ū) weighted by ρ (and we have ρ > 0 a.e.).

2.4. For the stationary compressible Navier-Stokes problem
We are not able to give error estimates for the stationary compressible Navier-Stokes problem
(that is problem (7)-(11)) as we did for the compressible Navier-Stokes problem in Sec. 2.3.
The proof in Sec. 2.3 follows closely the proof of the weak-strong uniqueness principle.
A crucial tool in the proof of weak-strong uniqueness principle is the use of the Gronwall
inequality. Then a natural question is “What can play the role of Gronwall Inequality for
stationary problems” ?

We present below a very simple example where uniqueness in the unsteady case follows
easily from the Gronwall inequality and uniqueness is also true in the stationary case, with a
trick which has some similarity with the Gronwall inequality. Unfortunately, we are not able
to adapt the same trick in the case of the stationary compressible Navier-Stokes problem.

Let Ω be a bounded open set of R3, T > 0, w ∈ L∞(Ω)3, f ∈ L2(]0,T [, L2(Ω)), u0 ∈ L2(Ω)
and ϕ be Lipschitz continuous function from R to R. We consider the following problem,

∂tu + div(wϕ(u)) − ∆u = f in Ω×]0,T [,
u(·, t) = 0 on ∂Ω for all t ∈]0,T [,

u(·, 0) = u0 on ∂Ω.

For this problem, one has existence of the solution in the space L2(]0,T [,H1
0(Ω)) and the

solution is continuous with value in L2(Ω). Uniqueness easily follows from a Gronwall in-
equality.
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We now consider the stationary case, that is f ∈ L2(Ω) (and still w ∈ L∞(Ω)3, ϕ Lipschitz
continuous) and the stationary problem reads

div(wϕ(u)) − ∆u = f in Ω,

u(·, t) = 0 on ∂Ω.

Note that we do not have any hypothesis on div(w). Then, we may have a non-coercive
differential operator.

For this problem, it is possible to prove existence in the space H1
0(Ω) (for instance cf. [8],

Exercice 3.5). But, for this problem, it is also possible to prove uniqueness. If u and ū
are two solutions, the idea is to take Tε(u − ū) (ε > 0) as test function, where Tε(s) =

max(−ε,min(s, ε)) for s ∈ R.
Using in particular Sobolev Injection of W1,1

0 (Ω) in L1? (Ω) (with 1? = 3/2 since Ω ⊂ R3)
and letting ε→ 0 allows us to conclude u = ū a.e.. (for instance, cf. [1] or [8] Exercice 3.6.)

§3. Convergence results

3.1. For the stationary compressible Navier-Stokes problem
For the stationary compressible Navier-Stokes equations (7)-(11) discretized with a MAC
scheme (of course, we assume that Ω is adapted to the MAC scheme), we prove (cf. [10])
convergence of the approximate solution (up to a subsequence) to a weak solution, in the
case γ > 3 (and f ∈ L2(Ω)3, M > 0) following the idea of P.L. Lions (cf. [18]) for proving
existence of a solution.

Let (un, pn, ρn)n∈N be a sequence a approximate solutions obtained with the MAC scheme
(existence of such an approximate solution is proven, cf. [10]). We assume limn→+∞ hn = 0,
where hn is the mesh size. The steps for proving the convergence result are

1. Estimates on the approximate solution (un, pn, ρn);

2. Compactness result (convergence of the approximate solution, up to a subsequence);

3. Passage to the limit in the approximate equations.

The main difficulty is in the passage to the limit in the EOS (p = ργ) since the EOS is a non
linear function and Step 2 only leads to weak convergences of pn and ρn.

The estimate on un is with a norm which mimic (at the discrete level) the H1
0(Ω)3-norm.

The estimate on pn is in L2(Ω)-norm (thanks to γ ≥ 3) and the estimate on ρn is in L2γ(Ω)-
norm. Thanks to these estimates on un, pn, ρn, it is possible to assume (up to a subsequence)
that, as n→ +∞,

un → u in Lq(Ω)3 for q < 6 and weakly in L6(Ω)3, u ∈ H1
0(Ω)3,

pn → p weakly in L2(Ω), ρn → ρ weakly in L2γ(Ω).

We show now how to pass to the limit in the equations. For simplicity we will asume that
(un, pn, ρn) is a weak solution of (7)-(11) with fn instead of f, and fn → f weakly in L2(Ω)3

as n → +∞. The passage to the limit in the equation when (un, pn, ρn) is an approximate
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solution given by MAC scheme follows the same lines, with some modifications that we
indicate when there are interesting.

For the mass equation, let v ∈ C∞c (R3), one has∫
Ω

ρnun · grad v = 0, (25)

Since ρn → ρ weakly in L2γ(Ω), with 2γ > 6/5, and un → u in Lq(Ω)3 for all q < 6. Then
ρnun → ρu weakly in L1(Ω)3. This gives

∫
Ω
ρu · grad v = 0. Indeed, at the discrete level, in

Equation (25), there is an additional term which allows us to prove
∫

Ω
ρn dx = M. This term

vanishes as n→ +∞ since it is of ordre hαn , where α ∈]0, 1[ is a given parameter (cf. [10]).
The L1-weak convergence of ρn gives non negativity of ρ and convergence of the total

mass, that is ρ ≥ 0 a.e. in Ω,
∫

Ω
ρ(x)dx = M. For the momentum equation, let v ∈ C∞c (Ω)3,∫

Ω

grad un : grad v dx −
∫

Ω

ρnun ⊗ un : grad v dx −
∫

Ω

pn div(v)dx =

∫
Ω

fn · u dx (26)

This is also true at the discrete level with an error term (vanishing as n → +∞) and a discret
operator gradn (acting on un) mimicking grad. One has, as n→ +∞, grad un → grad u weakly
in L2(Ω)3 (this is also true at the discrete level with gradn isntead of grad). Furthemore,
using ρn → ρ weakly in L2γ(Ω), with 2γ > 3/2, and un → u in Lq(Ω)3 for all q < 6 (and
2
3 + 1

6 + 1
6 = 1), ρnun ⊗ un → ρu ⊗ u weakly in L1(Ω)3×3. It remains to remark that pn → p

weakly in L2(Ω) and fn → f weakly in L2(Ω)3. Then, we can pass to the limit in (26), it gives∫
Ω

grad u : grad v dx −
∫

Ω

ρu ⊗ u : grad v dx −
∫

Ω

p div(v) dx =

∫
Ω

f · v dx.

For the moment, we proved that (un, pn, ρn) is solution of the momentum equation and of
the mass equation. We also proved non negativity of ρ and

∫
Ω
ρdx = M. It remains to prove

p = ργ. This is not easy since pn and ρn converge only weakly. . . and γ > 1.
In order to prove p = ργ a.e. in Ω, the main step is to prove that

lim inf
n→+∞

∫
Ω

pnρn dx ≤
∫

Ω

pρ dx. (27)

(Then, we deduce the a.e. convergence of pn and ρn and p = ργ using the fact that the function
y 7→ yγ is increasing and a variant of the Minty trick.) Note that for γ < 3 the natural spaces
given in Sec. 1 are L3(γ−1) for p and L3(γ−1)/γ fro ρ. Then, we need here γ ≥ 2, in order to
have pρ ∈ L1(Ω).

In order to prove (27), we first remark that, for all ū, v̄ in H1
0(Ω)3,∫

Ω

grad ū : grad v̄ dx =

∫
Ω

div(ū) div(v̄) dx +

∫
Ω

curl(ū) · curl(v̄) dx. (28)

A similar equality is true at the discrete level with the MAC scheme and the natural discrete
operators gradn and divn (acting on discrete functions), cf. [3] (this is the first “miracle” with
the Mac scheme). With other schemes, it seems that there is not a similar equality and this
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introduces an additional difficulty, needing, for instance, a “regularization” term for proving
the convergence of the scheme, cf. [4].

Using (28), the momentum equation is, for all v̄ in H1
0(Ω)3,∫

Ω

div(un) div(v̄) dx +

∫
Ω

curl(un) · curl(v̄) dx −
∫

Ω

(ρnun ⊗ un) : grad v̄ dx

−

∫
Ω

pn div(v̄) dx =

∫
Ω

fn · v̄ dx (29)

Our aim is now to choose v̄ = v̄n with curl(v̄n) = 0, div(v̄n) = ρn and (v̄n)n∈N bounded
in H1

0(Ω)3. Unfortunately, it is possible to choose such a v̄n in H1(Ω)3 (as we will below)
but not in H1

0(Ω)3. Assuming anyway that we can have such a v̄n in H1
0(Ω)3, then, up to a

subsequence,

v̄n → v in L2(Ω)3 and weakly in H1
0(Ω)3, curl(v) = 0, div(v) = ρ,

and (29) becomes∫
Ω

(div(un) − pn)ρn dx =

∫
Ω

ρnun ⊗ un : grad v̄n dx +

∫
Ω

fn · v̄n dx.

If we prove that
∫

Ω
ρnun ⊗ un : grad v̄n dx→

∫
Ω
ρu ⊗ u : grad v dx then

lim
n→+∞

∫
Ω

(div(un) − pn)ρn dx =

∫
Ω

ρu ⊗ u : grad v dx +

∫
Ω

f · v dx.

But, since we already know that −∆u + div(ρu ⊗ u) + grad p = f,∫
Ω

div(u) div(v) dx+

∫
Ω

curl(u) ·curl(v) dx−
∫

Ω

p div(v) =

∫
Ω

ρu⊗u : grad v dx+

∫
Ω

f ·v dx,

which gives (using div v = ρ and curl v = 0)∫
Ω

(div(u) − p)ρ dx =

∫
Ω

ρu ⊗ u : grad v dx +

∫
Ω

f · v dx,

Then, limn→+∞

∫
Ω

(pn − div(un))ρn dx =
∫

Ω
(p − div(u))ρ dx.

Finally, thanks to the mass equations, we can prove
∫

Ω
ρn div(un) dx = 0 and

∫
Ω
ρ div(u) dx =

0. Then, limn→+∞

∫
Ω

pnρn dx =
∫

Ω
pρ dx.

Indeed, at the discrete level, one has only
∫

Ω
ρn div(un) dx ≤ 0 and (27) is proven (even

with lim sup instead of lim inf). It remains to prove∫
Ω

ρnun ⊗ un : grad v̄n dx→
∫

Ω

ρu ⊗ u : grad v dx. (30)

We remark that (since div(ρnun) = 0)∫
Ω

ρnun ⊗ un : grad v̄n dx =

∫
Ω

(ρnun · grad)un · v̄n dx,
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and the sequence ((ρnun · grad)un)n∈N is bounded in Lr(Ω)3 with 1
r = 1

2 + 1
6 + 1

2γ , and r > 6
5

since γ > 3. Then, up to a subsequence, (ρnun · grad)un → G weakly in Lr(Ω)3. and (since
v̄n → v̄ in Lr(Ω)3 for all r < 6),∫

Ω

(ρnun · grad)un · v̄n dx→
∫

Ω

G · v̄ dx.

But, G = (ρu · grad)u, since for a fixed w ∈ H1
0(Ω)3,∫

Ω

(ρnun · grad)un · w dx =

∫
Ω

ρnun ⊗ un : grad w dx→
∫

Ω

ρu ⊗ u : grad w dx.

Then, (30) is proven and this gives (27) except that there is a mistake in the previous proof
since it is not possible to have such a v̄n in H1

0(Ω)3 such that curl v̄n = 0, div v̄n = ρn and
(v̄n)n∈N bounded in H1

0(Ω)3. In order to correct to proof, we will use such a v̄n in H1(Ω)3 but
not in H1

0(Ω)3.
Let wn ∈ H1

0(Ω), −∆wn = ρn, It is well known that wn ∈ H2
loc(Ω) (equivalent to say here,

since wn ∈ H1(Ω), ∆(wnϕ) ∈ L2(Ω) for all ϕ ∈ C∞c (Ω)). An easy way to prove this regularity
result is to remark that, for ϕ ∈ C∞c (Ω), with Cϕ depending only on ϕ and of the bound of the
L2-norm of ρn,

3∑
i, j=1

∫
Ω

∂i∂ j(wnϕ) ∂i∂ j(wnϕ) dx =

3∑
i, j=1

∫
Ω

∂i∂i(wnϕ) ∂ j∂ j(wnϕ) dx

=

∫
Ω

(∆(wnϕ))2 dx = Cϕ < +∞.

The main interest of this way to prove he H2
loc-regularity of wn is that it is possible to prove a

discrete version of this result with the corresponding discrete problem obtained on the primal
mesh of the MAC discretization. Namely, we obtain an H2

loc-discrete estimate on wn in term
of the L2-norm of ρn when wn is the solution of the discrete problem (it is the second miracle
for the MAC scheme).

To continue our proof of (27), we take vn = gradwn so that div vn = ρn and curl vn = 0
a.e. in Ω. Furthermore, thanks to the H2

loc-discrete estimate, the sequence (vn)n∈N is bounded
in (H1

loc(Ω))3. Then, up to a subsequence, as n → +∞, vn → v in L2
loc(Ω) and weakly in

H1
loc(Ω), curl(v) = 0, div(v) = ρ.

Let ϕ ∈ C∞c (Ω) (so that vnϕ ∈ H1
0(Ω)3)). Taking v̄ = vnϕ in (29) gives∫

Ω

div(un) div(vnϕ) dx +

∫
Ω

curl(un) · curl(vnϕ) dx −
∫

Ω

pn div(vnϕ) dx

=

∫
Ω

ρnun ⊗ un : grad(vnϕ) dx +

∫
Ω

fn · (vnϕ) dx.

Using a proof similar to that given if ϕ = 1 (with additional terms involving ϕ), we obtain, as
n→ +∞,

lim
n→+∞

∫
Ω

(pn − div(un))ρnϕ dx =

∫
Ω

(p − div(u))ρϕ dx for all ϕ ∈ C∞c (Ω),



106 Thierry Gallouët

that is Fn = (pn−div(un))ρn)→ F = (p−div(u))ρ in the distribution sense. But since (Fn)n∈N

bounded in Lq for some q > 1 (this is due to the fact that pn − div(un) is bounded in L2(Ω)
and ρn is bounded in Lr(Ω) with some r > 2, here we use γ > 5/3), one has also Fn → F
weakly in L1(Ω) and therefore∫

Ω

(pn − div(un))ρn dx→
∫

Ω

(p − div(u))ρ dx.

Finally, thanks to the mass equations,
∫

Ω
div(u)ρ dx = 0 and

∫
Ω

div(un)ρn dx = 0 (or ≤ in the
case of the discrete setting) and one obtains (27), that is lim infn→+∞

∫
Ω

pnρn dx ≤
∫

Ω
pρ dx.

We prove now the a.e. convergence of ρn and pn. Let Gn = (ργn − ργ)(ρn − ρ) so that
Gn ∈ L1(Ω) and Gn ≥ 0 a.e. in Ω. Futhermore Gn = (pn−ρ

γ)(ρn−ρ) = pnρn−pnρ−ρ
γρn +ργρ

and: ∫
Ω

Gn dx =

∫
Ω

pnρn dx −
∫

Ω

pnρ dx −
∫

Ω

ργρn dx +

∫
Ω

ργρ dx.

Using the weak convergence in L2(Ω) of pn and ρn and (27), lim infn→+∞

∫
Ω

Gn = 0. Then
(up to a subsequence), Gn → 0 a.e. and then ρn → ρ a.e. (since y 7→ yγ is an increasing
function on R+). Finally, ρn → ρ in Lq(Ω) for all 1 ≤ q < 2γ, pn = ρ

γ
n → ργ in Lq(Ω) for all

1 ≤ q < 2 and p = ργ a.e. in Ω.
It is possible to adapt this proof of convergence when (un, ρn, pn) is the approximate

solution given by the MAC scheme as it is done in [10]. As we said before, two main tools
are interesting with the MAC scheme:

1. There exists a discrete counterpart of∫
Ω

grad u : grad v dx =

∫
Ω

(div u div v + curl u · curl v) dx.

2. If wn, belonging to a discrete equivalent of the H1
0(Ω)-space, is the solution of −∆nwn =

ρn where −∆n is the natural discretization of −∆ on the primal mesh of the MAC-
discretization, then one has an estimate on wn in the “discrete local H2-norm” of wn in
term of the L2-norm of ρn.
If γ < 3, a new difficulty appears since we have to work with the local Lp-norm of the
second dicrete derivatives of wn for some p > 2.

In order to conclude this section, we recall that the convergence of approximate solutions
(given by the MAC scheme) if 3/2 < γ ≤ 3 is, to our knowledge, still an open problem.

3.2. For the compressible Navier-Stokes problem
We consider in the section the compressible Navier-Stokes problem discretized with the MAC
scheme and the Euler backward discretization in time, as in Sec. 2.3 (with T > 0, γ > 3/2
and f ∈ L2(]0,T [, L2(Ω))). For n ∈ N, the approximate solution (un, ρn, pn) is solution of the
discretization of Problem (1)-(5). We assume that limn→+∞ hn = limn→+∞ kn = 0, where hn

and kn are the mesh size and the time step of the discretization. Our objective is to prove that
the approximate solution converges, in an appropriate sense, up to a subsequence, to a weak
solution of (1)-(5).
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As usual, the first step, for proving such a convergence result, is to obtain estimates
on the approximate solution. A quite easy estimate is in L∞(]0,T [, Lγ(Ω)) for ρn and in
L2(]0,T [,Hn) for un where the norm in Hn is a discrete counterpart of the H1

0(Ω)-norm (this
gives also an L2(]0,T [, L6(Ω)) estimate on un).

Then, in order to pass to the limit in the equations (as n→ +∞), a new difficulty appears
(with respect to the stationary case) for passing to the limit on the non linear terms, namely
ρnun and ρnun⊗un. For instance, in the stationary case (Sec. 3.1), we pass to the limit on ρnun

(up to a subsequence) using the (strong) convergence of un in a Lebesgue space Lq(Ω)3 for
some q < 6 and the weak convergence of ρn in the dual space Lq′ (Ω), q′ = q/(q − 1) > 6/5.
It gives convergence of ρnun in L1(Ω). This method does not work in the unsteady case since
we do not have relative (strong) compactness of the sequence (un)n in a Lebesgue space.
However, we can also conclude in the stationary case by changing the roles of un and ρn.
Assuming, for simplicity that (un)n∈N is bounded in H1

0(Ω)3, one has, up to subsequence,
un → u weakly in H1

0(Ω)3, ρn → ρ in H−1(Ω) (thanks to the compact embedding of Lq′ (Ω) in
H−1(Ω)) and then, for all ψ ∈ C∞c (R)3,∫

Ω

ρnun · ψ dx = 〈ρn,un · ψ〉H−1,H1
0
→ 〈ρ,u · ψ〉H−1,H1

0
=

∫
Ω

ρu · ψ dx.

For the discrete setting, we also have to replace the H1
0(Ω)-norm by the so-called discrete-

H1
0-norm (which depends on n), cf. [7] for a complete proof.

The main interest of this new proof for passing to the limit on ρnun is that it works also for
the unsteady case. Assuming also for simplicity that (un)n∈N is bounded in L2(]0,T [,H1

0(Ω)3)
(cf. [7] for the discrete case), one has (up to a subsequence) un → u weakly in L2(]0,T [,
H1

0(Ω)3). We also know that (ρn)n in L2(]0,T [, Lq′ (Ω)) for some q′ > 6/5 and the mass equa-
tion (1) (together with the fact that un is bounded in L6(Ω)) gives that the sequence (∂tρn)n

is bounded in L2(]0,T [,W−1,1(Ω)). Then (ρn)n∈N is relatively compact in L2(]0,T [,H−1(Ω))
(thanks to Aubin-Lions-Simon compactness results, since Lq′ (Ω) is compactly embedded
in H−1(Ω)). Then, up to a subsequence ρn → ρ in L2(]0,T [,H−1(Ω)) and finally, for all
ψ ∈ C∞c (R × R3)3,

∫ T

0

∫
Ω

ρnun · ψ dxdt =

∫ T

0
〈ρn,un · ψ〉H−1,H1

0
→=

∫ T

0

∫
Ω

ρu · ψ dxdt.

The difficulty is similar for the term ρu ⊗ u. In Sec. 3.1 we pass to the limit on this
term using un → u in Lq(Ω)3 for all q < 6 and ρnun → ρu weakly in Lq′ (Ω)3, with some
q′ > 6

5 . It gives ρnun ⊗ un → ρu ⊗ u weakly in L1(Ω)3×3. But an other method is possible.
One can use un → u weakly in H1

0(Ω)3 and ρnun → ρu in H−1(Ω)3 (thanks to the compact
embedding of Lq′ (Ω) in H−1(Ω)). It also gives convergence of ρnun ⊗un to ρu⊗u, that is, for
all ψ ∈ C∞c (R)3×3,

∫
Ω
ρnun ⊗ un : ψ dx →

∫
Ω
ρu ⊗ u : ψ dx. Here also, the generalization of

this second method is possible for the unsteady case cf. [7].
This does not conclude the convergence (as n→ +∞, up to a subsequence) of the approx-

imate solution to a weak solution of Problem (1)-(5). It remains to pass to the limit on pn and
on the EOS pn = ρ

γ
n. It is an ongoing work.
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[8] Gallouët, T., and Herbin, R. Equations aux dérivées partielles. Lecture, Sept. 2015.
Available from: https://hal.archives-ouvertes.fr/cel-01196782.
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A COLLOCATION METHOD FOR A
TWO-POINT BOUNDARY VALUE PROBLEM

WITH A RIEMANN-LIOUVILLE-CAPUTO
FRACTIONAL DERIVATIVE

José Luis Gracia, Eugene O’Riordan and Martin Stynes

Abstract. Numerical methods for a two-point boundary value problem, where the leading
term in the differential operator is a Caputo fractional-order derivative of order 1 < α < 2,
are examined. By reformulating the problem as a Volterra integral equation of the second
kind, the problem can be discretized using a collocation method. The performance of
this collocation method is compared to a finite difference method applied to the original
two-point boundary value problem.

Keywords: Fractional differential equation, Riemann-Liouville-Caputo fractional deriva-
tive, two-point boundary value problem, collocation method, weak singularity.
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§1. Introduction

Judging by the ever-expanding literature on numerical methods for fractional differential
equations, this topical area is of interest to many researchers. In numerous publications within
this area, the classical numerical method of finite differences has been adapted to deal with
the presence of a fractional derivative in the differential equation, which results in the as-
sociated system matrix being a relatively dense matrix. This matrix structure has practical
implications in terms of the accumulation of rounding errors and in storage issues for prob-
lems in higher dimensions, Moreover, the associated numerical analysis of finite difference
methods for fractional differential equations can be difficult.

In this paper, we examine an alternative approach to discretizing the following two-point
boundary value problem

−Dα
RLCu(x) + b(x)u′(x) + c(x)u(x) = f (x) for x ∈ (0, L), (1a)

Dα−1
C u(0) = 0, u(L) + β1u′(L) = γ1. (1b)

The leading term in the differential operator is a fractional-order derivative of order α, α ∈
(1, 2), which is called a Riemann-Liouville-Caputo [7], Patie-Simon [1, 8, 12] or conservative
Caputo derivative [15]. It is defined by

Dα
RLCu(x) :=

d
dx

Dα−1
C u(x) for x > 0,
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where Dβ
C denotes the Caputo fractional derivative of order β (see for example [4]) with

n − 1 < β < n and n is a positive integer; that is,

Dβ
Cv(x) :=

1
Γ(n − β)

∫ x

t=0
(x − t)n−1−β v(n)(t) dt, where v(n)(t) :=

dnv(t)
dtn . (2)

The constants β1 ≥ 0 and γ1 and the functions b, c, f are given and it is assumed that

c(x) ≥ 0 for x ∈ [0, L].

The motivation for using the fractional derivative Dα
RLC in problem (1) instead of the

more commonly used Riemann-Liouville or Caputo fractional derivatives comes from recent
publications modelling physical processes [1, 3, 5, 12]. The use of the Caputo fractional
Neumann boundary condition Dα−1

C u(0) = 0 in combination with the fractional derivative
Dα

RLC is suggested in [3]. In [6] it is proved that, in the case of problem (1), Dα−1
C u(0) = 0

is equivalent to u′(0) = 0. We shall consider this commonly used boundary condition in the
present paper.

The solution of problem (1) has a weak singularity at x = 0 so its numerical approxi-
mation is troublesome. To deal with it, the problem (1) is first reformulated as a Volterra
integral equation of the second kind, which is then discretized using a collocation method on
a graded mesh. Relative to the finite difference method, this approach is easier to implement
and, moreover, the associated numerical analysis is more natural for such problems involving
fractional derivatives. The numerical analysis follows the classical approach for collocation
methods for Volterra integral equations [2].

This reformulation for fractional-derivative problems was first presented in [9] for certain
types of boundary conditions. The convergence result established in [9] is a significant im-
provement on the corresponding convergence result in [14] where a finite difference scheme
was considered. Reformulation was also applied successfully in [10] to a two-point boundary
value problem where the highest-order derivative is of Riemann-Liouville type.

In this current paper, we demonstrate that both the method and analysis of [9] extend
easily to problem (1), which was not covered in [9]. In [6], we examined the same problem
using a finite difference method; there, to prove first-order convergence, we needed to impose
the constraint b ≤ 0 on the data. In the present paper, using the collocation approach, we
derive a convergence result without imposing this constraint on the sign of b.

The paper is structured as follows: In Section 2 the two-point boundary value problem (1)
is first shown to be equivalent to another boundary value problem whose highest-order deriva-
tive is of Caputo type and whose boundary condition at x = 0 is u′(0) = 0. This new problem
is reformulated as a Volterra integral equation of the second kind. In Section 3 the collocation
method for this integral equation is presented on a graded mesh condensing at the endpoint
x = 0. Error estimates are obtained showing the convergence of the collocation method and
the dependence of the order of convergence on the choice of the collocation points and on
the grading exponent of the mesh. In Section 4 two examples are used in order to compare
our collocation method and the finite difference scheme of [6]. They illustrate that the col-
location method is more efficient with both a lower computational cost and a higher order of
convergence.

Notation: In this paper C denotes a generic constant that can depend on the data of the
boundary value problem (1) and possibly on the mesh grading but is independent of the mesh
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diameter. Note that C can take different values in different places. For each g ∈ C[0, 1], set
‖g‖∞ = max0≤x≤L |g(x)|.

§2. Reformulations of the problem

In [6] it is proved that problem (1) is equivalent to the Caputo two-point boundary value
problem

−Dα
Cu(x) + b(x)u′(x) + c(x)u(x) = f (x) for x ∈ (0, L), (3a)

u′(0) = 0, u(L) + β1u′(L) = γ1. (3b)

This follows because

(i) the condition Dα−1
C u(0) = 0 implies u′(0) = 0 (which is proved in [6]);

(ii) using integration by parts, one can deriver the relationship

Dα
Cu(x) = Dα

RLCu(x) −
x1−α

Γ(2 − α)
u′(0). (4)

between the Caputo and Riemann-Liouville-Caputo fractional derivatives, provided
that they exist;

(iii) in [4, Lemma 3.11] it is proved that Dα−1
C u(0) = 0 if u′ is absolutely continuous.

Hence, we shall approximate problem (3). Before considering any numerical method
for its numerical approximation, some information about the behaviour of the solution is
required. Assuming appropriate regularity conditions on the data problem, in [6] it is proved
that the solution of (3) satisfies the bounds

|u(i)(x)| ≤

C if i = 0,
Cxα−i if i = 1, 2, 3, . . . ,

(5)

showing that a typical solution u of problem (1) has a weak singularity at x = 0.
In [6], the standard L2 discretization on a uniform mesh is used to approximate (3). In

the present paper, similarly to [9], a collocation method is used instead. To this end we
reformulate (3) as a Volterra integral equation of the second kind. Recall the definition of the
Riemann-Liouville fractional integral operator of order r, which is

(Jrg)(x) :=
1

Γ(r)

∫ x

t=0
(x − t)r−1g(t) dt. (6)

Applying Jα−1 to (3a) and using the fact that

Jα−1Dα
Cg(x) = Jα−1J2−αg′′(x) = Jg′′(x) = g′(x) − g′(0),

and u′(0) = 0, one has

−u′(x) + Jα−1(b(x)u′(x) + c(x)u(x)) = Jα−1 f (x).
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Noting that u(x) =
∫ x

s=0 u′(s) ds + u(0) and denoting y(x) = u′(x) and Y(x) =
∫ x

s=0 y(s) ds,
then (3a) is rewritten as

y(x) − Jα−1(b(x)y(x) + c(x)Y(x)) = −Jα−1 f (x) + u(0)Jα−1c(x). (7)

Consider the decomposition

y(x) := v(x) + u(0)w(x),

where v(x) is the solution of

v(x) − Jα−1(b(x)v(x) + c(x)V(x)) = −Jα−1 f (x), for x ∈ (0, L], v(0) = 0, (8)

with V(x) =
∫ x

s=0 v(s) ds, and w(x) is the solution of

w(x) − Jα−1(b(x)w(x) + c(x)W(x)) = Jα−1c(x), for x ∈ (0, L], w(0) = 0, (9)

with W(x) =
∫ x

s=0 w(s) ds. Hence, both v and w satisfy weakly singular Volterra integral
equations of the second kind. From [9, Lemma 2.1], the problems (8) and (9) each have a
unique solution.

Once v and w are obtained, then we calculate u(0) from

u(x) =

∫ x

s=0
u′(s) ds + u(0) =

∫ x

s=0
v(s) ds + u(0)

(
1 +

∫ x

s=0
w(s) ds

)
(10)

and imposing the boundary condition (1b) at x = L:∫ L

s=0
v(s) ds + u(0)

(
1 +

∫ L

s=0
w(s) ds

)
= u(L)

= γ1 − β1u′(L)
= γ1 − β1 [v(L) + u(0)w(L)] ;

Thus, one has

u(0) =
γ1 − β1v(L) −

∫ L
s=0 v(s) ds

1 + β1w(L) +
∫ L

s=0 w(s) ds
. (11)

The denominator in (11) must not be zero, i.e.,

1 + β1w(L) +

∫ L

s=0
w(s) ds , 0. (12)

Since c(x) ≥ 0, a proof by contradiction argument, as in the proof of [9, Lemma 4.1], can be
used to prove that w(x) ≥ 0 for x ∈ [0, L]. Hence (12) is satisfied. Moreover, from [9, Lemma
2.1], we have ‖v‖∞ ≤ C and ‖w‖∞ ≤ C. Thus |u(0)| ≤ C from (11).
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§3. The collocation method

Consider the problem

z(x) − Jα−1(b(x)z(x) + c(x)Z(x)) = Jα−1g(x), for x ∈ (0, L], z(0) = 0 (13)

with Z(x) :=
∫ x

s=0 z(s) ds. Observe that if g(x) = − f (x) or g(x) = c(x), then we have the
problems (8) and (9) associated with the components v and w of u. From the definition (6),
one can write (13) as: Find z such that

z(x) −
1

Γ(α − 1)

∫ x

t=0
(x − t)α−2

[
b(t)z(t) + c(t)

∫ t

s=0
z(s) ds

]
dt

=
1

Γ(α − 1)

∫ x

t=0
(x − t)α−2g(t) dt, for x ∈ (0, L], (14)

which will be approximated using the collocation method.
Let N be a positive integer. Consider the graded mesh

xi = L(i/N)r for i = 0, 1, . . . ,N, hi = xi+1 − xi, for i = 0, 1, . . . ,N − 1, (15)

where r ≥ 1 is the grading exponent. If r = 1 the mesh is uniform, while the larger r is, the
more the grid condenses near x = 0. We set h = max0≤i≤N−1 hi and hN = 0.

The computed solution zh ∈ S −1
m−1, where

S −1
m−1 :=

{
v : v|(xi,xi+1) ∈ πm−1, i = 0, 1, . . . ,N − 1

}
and πm−1 denotes the space of polynomials of degree at most m − 1. Thus, the elements of
S −1

m−1 are piecewise polynomials of degree at most m − 1 that may be discontinuous at the
points xi. The set of collocation points is

Xh = {xi + c jhi : 0 ≤ c1 < c2 < · · · < cm ≤ L, i = 0, 1, . . . ,N − 1},

where {ci} are chosen by the user. If c1 = 0 and cm = 1, then zh ∈ S −1
m−1 ∩ C[0, L]. The

collocation solution zh ∈ S −1
m−1 is computed by imposing

zh(x) −
1

Γ(α − 1)

∫ x

t=0
(x − t)α−2

[
b(t)zh(t) + c(t)

∫ t

s=0
zh(s) ds

]
dt

=
1

Γ(α − 1)

∫ x

t=0
(x − t)α−2g(t) dt for all x ∈ Xh ∪ {L}. (16)

Note that the collocation method solves mesh interval by mesh interval; thus on each
interval one solves a system of m equations (or m − 1 equations if c1 = 0 and cm = 1) where
the unknowns are located at the collocation points. Therefore, collocation methods are more
efficient than finite difference methods where one has to solve a single large linear system
(see [6] for a comparison).

In practice, the integrals in (16) are evaluated using quadrature formulas with the colloca-
tion points as nodes and the functions b, c and g are replaced by polynomials of degree m− 1
that interpolate to these functions at the collocation points. The computed solution is denoted
by ẑh and satisfies the following result.
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Lemma 1. Assume that b, c, g ∈ Cm[0, 1]. Then the collocation solution ẑh satisfies

max
0≤i≤N

|(ẑh − z)(xi)| ≤ Chmin{r(α−1),m}.

If in addition the collocation points {c j} are such that∫ 1

s=0

m∏
j=1

(s − c j) ds = 0, (17)

and b, c, g ∈ Cm+1[0, 1], then if r(α − 1) ≥ m,

max
0≤i≤N

max
1≤ j≤m

|(ẑh − z)(xi + c jhi)| ≤ Chm+α−1.

Proof. See [2, Theorem 6.2.14] and [9, Corollary 3.1 and Corollary 3.2]. �

Using the quadrature formulas, one computes the approximations v̂h and ŵh to vh and wh,
respectively. Assuming that h is sufficiently small so that

1 + β1ŵh(L) +

∫ L

s=0
ŵh(s) ds , 0,

by imitating (10) and (11) one constructs the following approximations of u and u′:

ûh(x) =

∫ x

s=0
v̂h(s) ds + ûh(0)

(
1 +

∫ x

s=0
ŵh(s) ds

)
, (18)

û′h(x) = v̂h(x) + ûh(0)ŵh(x), (19)

with

ûh(0) =
γ1 − β1v̂h(L) −

∫ L
s=0 v̂h(s) ds

1 + β1ŵh(L) +
∫ L

s=0 ŵh(s) ds
.

Recalling (11), we see that

|(u − ûh)(0)| ≤ C
(
|(v − v̂h)(L)| +

∫ L

s=0
|(v − v̂h)(s)| ds + |(w − ŵh)(L)| +

∫ L

s=0
|(w − ŵh)(s)| ds

)
and from (10) and (18) we have

(u − ûh)(x) =

∫ x

s=0
(v − v̂h)(s) ds + ûh(0)

∫ x

s=0
(w − ŵh)(s) ds + (u − ûh)(0)

(
1 +

∫ x

s=0
w(s) ds

)
.

Using Lemma 1 to bound ‖v− v̂h‖∞ and ‖w− ŵh‖∞ (as in [9, Theorem 4.2]), one can establish
the following error bound for the collocation method (16).

Theorem 2. Assume that b, c, f ∈ Cm[0, 1]. Let h be sufficiently small. Then the collocation
solution uh of (1) and its equivalent problem (1), when product quadrature with collocation
points as nodes is used, satisfies the error bound

max
0≤i≤N

|(ûh − u)(xi)| + max
0≤i≤N

|(û′h − u′)(xi)| ≤ Chmin{r(α−1),m}, (20)
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where r is the mesh grading exponent (15). If in addition (17) is satisfied and b, c, f ∈
Cm+1[0, 1], then for r(α − 1) ≥ m one obtains

max
0≤i≤N

|(ûh − u)(xi)| + max
0≤i≤N

max
1≤ j≤m

|(û′h − u′)(xi + c jhi)| ≤ Chm+α−1. (21)

Remark 1. The error estimate of Theorem 2 for our collocation method does not place any
constraint on the sign of b. In contrast, the convergence analysis for the finite difference
method in [6] is valid only when b ≤ 0; its analysis without the restriction b ≤ 0 is still open.

§4. Numerical experiments

Numerical results are given in this section for two examples with b and f constants and c ≡ 0.
In the first example b < 0 while b > 0 in the second example. The exact solution of both
examples can be obtained using Laplace transforms. The maximum error and maximum
derivative errors in the computed solution {ûh} are denoted by

EN := max
0≤i≤N

|(ûh − u)(xi)|, DN := max
0≤i≤N

max
1≤ j≤m

|(û′h − u′)(xi + c jh j)|.

Note that the errors in the approximate solutions are computed at the mesh points and the
errors in the approximate first derivative of the solution are computed at the collocation points.
The orders of convergence are computed from these values in a standard way:

pN := log2

(
EN

E2N

)
, qN := log2

(
DN

D2N

)
.

The solutions of both examples are approximated using our collocation method and the finite
difference scheme considered in [6]. In the former, for the sake of brevity, we only consider
a specific collocation method with m = 1 and c1 = 1/2 using both a uniform and a graded
mesh with r = 1/(α − 1). The collocation point c1 = 1/2 is special because (17) is satisfied,
i.e., ∫ 1

s=0

(
s −

1
2

)
ds = 0,

and, as a result, the collocation method with c1 = 1/2 provides more accurate approximations
than for c1 , 1/2. Theorem 2 tells us that the optimal graded mesh is obtained when r =

m/(α− 1), as this then gives the highest possible rate of convergence O(hm+α−1) — any larger
value of r would not improve the rate of convergence but would increase the mesh width near
x = L and consequently increase the constant multiplier C in the error bound. As we use
m = 1 in our experiments, we choose r = 1/(α − 1) to get the optimal mesh grading.

A numerical approximation ẑh(x) (for all x ∈ Xh∪{L}) to the solution of (16) is computed
and then the maximum derivative errors DN can be computed. To approximate the nodal
values u(xi) =

∫ xi

s=0 y(s) ds + u(0), all integrals of the form
∫ xi

s=0 ẑh(s) ds are approximated
using the composite trapezoidal rule, i.e.,∫ xi

s=0
ẑh(s) ds ≈

x1 − x0

2
ẑh(h0/2)

2
+

i−1∑
l=1

xl+1 − xl−1

2
ẑh(xl−1 + hl−1/2) + ẑh(xl + hl/2)

2

+
xi − xi−1

2
ẑh(xi−1 + hi−1/2) + zh(xi + hi/2)

2
, 0 < i ≤ N,
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with ẑh(xN + hN/2) = ẑh(xN). The maximum errors EN can then be computed.
The finite difference scheme [6] is defined on a uniform mesh. It is given by(

−Dα
C,L2uh + bD0uh + cuh

)
( jL/N) = f ( jL/N) for j = 1, 2, . . . ,N − 1,

−D+uh(0) = 0, uh(L) + β1D−uh(L) = γ1,

where Dα
C,L2 is the well-known L2 approximation [11] of the Caputo fractional derivative Dα

C
and D0, D− and D+ are the standard central, backward and forward differences, respectively.

Example I
Consider the problem

−Dα
RLCu − 0.5u′ = 1 on (0, 1), Dα−1u(0) = 0, u(1) = 0. (22)

Its exact solution can be obtained in closed form using Laplace transforms (see [6]):

u(x) = −xαEα−1,α+1(−0.5xα−1) + Eα−1,α+1(−0.5) for 0 ≤ x ≤ 1,

where Eβ,γ(·) is the two-parameter Mittag-Leffler function defined by

Eβ,γ(z) :=
∞∑

k=0

zk

Γ(kβ + γ)
for β, γ > 0 and all real numbers z.

In order to compute the errors, the Mittag-Leffler function Eβ,γ(z) is evaluated in our code
using the function mlf provided at MatLab Central File exchange [13].

The maximum nodal errors and orders of convergence of the finite difference scheme
proposed in [6] are given in Table 1. The computed orders of convergence indicate that this
method is first-order convergent, in agreement with the convergence result proved in [6].

The solution of Example I is now approximated by the collocation method (16) for m = 1
and c1 = 1/2. Numerical results using uniform and graded meshes are given in Tables 2
and 3. We see that the collocation method is more accurate on the graded mesh than on the
uniform mesh and that both approaches are more accurate than the finite difference scheme [6]
(see Table 1) for all the values of α. The order of convergence of the collocation method on
the graded mesh is predicted by (21). Note that this theoretical error bound has not been
established in the case of a uniform mesh (as (21) requires r(α − 1) ≥ m). Nevertheless,
superconvergence is still observed in Table 2, when a uniform mesh is used. Unlike [6],
the collocation theory also gives error estimates for numerical approximations û′h to u′. In
Tables 4 and 5 the maximum derivative errors for the collocation method are given using
a uniform and a graded mesh. If N is sufficiently large, the approximation of u′ is again
more accurate when a graded mesh is used and the computed orders of convergence are in
agreement with Theorem 2.

Example II
Consider the following problem

−Dα
RLCu + 0.5u′ = 1 on (0, 1), Dα−1u(0) = 0, u(1) = 0, (23)
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Table 1: Example I: Maximum nodal errors and orders of convergence using the finite differ-
ence scheme [6] on a uniform mesh

N=32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096
α = 1.1 1.789E-02 8.946E-03 4.473E-03 2.237E-03 1.118E-03 5.592E-04 2.796E-04 1.398E-04

1.000 1.000 1.000 1.000 1.000 1.000 1.000
α = 1.2 1.840E-02 9.207E-03 4.605E-03 2.303E-03 1.152E-03 5.759E-04 2.880E-04 1.440E-04

0.999 0.999 1.000 1.000 1.000 1.000 1.000
α = 1.3 1.888E-02 9.457E-03 4.734E-03 2.368E-03 1.185E-03 5.925E-04 2.963E-04 1.482E-04

0.998 0.998 0.999 0.999 1.000 1.000 1.000
α = 1.4 1.929E-02 9.681E-03 4.852E-03 2.430E-03 1.216E-03 6.085E-04 3.044E-04 1.522E-04

0.995 0.997 0.998 0.998 0.999 0.999 1.000
α = 1.5 1.956E-02 9.848E-03 4.948E-03 2.482E-03 1.244E-03 6.231E-04 3.119E-04 1.561E-04

0.990 0.993 0.995 0.997 0.998 0.998 0.999
α = 1.6 1.958E-02 9.902E-03 4.994E-03 2.513E-03 1.263E-03 6.338E-04 3.178E-04 1.592E-04

0.983 0.987 0.991 0.993 0.995 0.996 0.997
α = 1.7 1.915E-02 9.748E-03 4.943E-03 2.500E-03 1.261E-03 6.353E-04 3.195E-04 1.605E-04

0.974 0.980 0.984 0.987 0.989 0.991 0.993
α = 1.8 1.804E-02 9.236E-03 4.711E-03 2.396E-03 1.216E-03 6.156E-04 3.111E-04 1.570E-04

0.966 0.971 0.975 0.979 0.982 0.984 0.987
α = 1.9 1.590E-02 8.142E-03 4.160E-03 2.122E-03 1.080E-03 5.493E-04 2.789E-04 1.414E-04

0.966 0.969 0.971 0.974 0.976 0.978 0.980

whose exact solution is (see [6])

u(x) = −xαEα−1,α+1(0.5xα−1) + Eα−1,α+1(0.5).

The error analysis in [6] does not apply to this example because b > 0, nevertheless the
numerical results from Table 6 show that the finite difference method proposed in that paper
on a uniform mesh also converges with first order to the solution u. On the other hand, the
error estimates for our collocation method remain valid for this example; the numerical results
given in Tables 7 and 8 show that the collocation method converges with order O(hα) using
either a uniform or a graded mesh. Observe also that the maximum errors for the collocation
method on both meshes are similar in this example but smaller than the finite difference errors
in Table 6.

Finally, it is shown in Tables 9 and 10 that the numerical approximations û′h generated
by the collocation method on a uniform and a graded mesh also converge to u′. Conclusions
similar to Example I are reached.
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Table 2: Example I: Maximum errors and orders of convergence using a collocation method
for m = 1 and c1 = 1/2 on a uniform mesh

N=32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096
α = 1.1 3.741E-03 1.779E-03 8.451E-04 4.010E-04 1.901E-04 9.001E-05 4.259E-05 2.014E-05

1.072 1.074 1.076 1.077 1.078 1.080 1.081
α = 1.2 2.670E-03 1.197E-03 5.345E-04 2.380E-04 1.056E-04 4.679E-05 2.068E-05 9.125E-06

1.157 1.163 1.168 1.171 1.175 1.178 1.181
α = 1.3 1.877E-03 7.875E-04 3.283E-04 1.362E-04 5.628E-05 2.318E-05 9.525E-06 3.905E-06

1.253 1.262 1.269 1.275 1.280 1.283 1.286
α = 1.4 1.296E-03 5.066E-04 1.965E-04 7.577E-05 2.910E-05 1.114E-05 4.251E-06 1.620E-06

1.355 1.366 1.375 1.381 1.386 1.389 1.392
α = 1.5 8.770E-04 3.191E-04 1.151E-04 4.126E-05 1.473E-05 5.245E-06 1.864E-06 6.612E-07

1.459 1.471 1.480 1.486 1.490 1.493 1.495
α = 1.6 6.289E-04 2.185E-04 7.460E-05 2.518E-05 8.434E-06 2.811E-06 9.337E-07 3.095E-07

1.525 1.550 1.567 1.578 1.585 1.590 1.593
α = 1.7 5.005E-04 1.607E-04 5.082E-05 1.592E-05 4.957E-06 1.538E-06 4.759E-07 1.470E-07

1.639 1.661 1.675 1.683 1.689 1.692 1.694
α = 1.8 3.795E-04 1.128E-04 3.311E-05 9.647E-06 2.798E-06 8.095E-07 2.338E-07 6.743E-08

1.750 1.768 1.779 1.785 1.789 1.792 1.794
α = 1.9 2.749E-04 7.565E-05 2.062E-05 5.589E-06 1.510E-06 4.075E-07 1.098E-07 2.958E-08

1.861 1.876 1.883 1.888 1.890 1.892 1.893

Table 3: Example I: Maximum errors and orders of convergence using a collocation method
for m = 1 and c1 = 1/2 on a graded mesh with r = 1/(α − 1)

N=32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096
α = 1.1 3.725E-04 1.249E-04 4.500E-05 1.735E-05 7.108E-06 3.050E-06 1.352E-06 6.122E-07

1.576 1.473 1.375 1.288 1.220 1.173 1.143
α = 1.2 3.879E-04 1.320E-04 4.719E-05 1.777E-05 6.994E-06 2.850E-06 1.190E-06 5.047E-07

1.556 1.483 1.409 1.345 1.295 1.260 1.237
α = 1.3 3.770E-04 1.219E-04 4.105E-05 1.444E-05 5.283E-06 1.996E-06 7.720E-07 3.037E-07

1.629 1.570 1.507 1.451 1.405 1.370 1.346
α = 1.4 3.471E-04 1.055E-04 3.310E-05 1.076E-05 3.617E-06 1.254E-06 4.457E-07 1.615E-07

1.717 1.673 1.622 1.572 1.528 1.492 1.465
α = 1.5 3.122E-04 8.958E-05 2.622E-05 7.867E-06 2.426E-06 7.678E-07 2.489E-07 8.233E-08

1.801 1.773 1.736 1.697 1.660 1.625 1.596
α = 1.6 2.793E-04 7.639E-05 2.108E-05 5.902E-06 1.681E-06 4.873E-07 1.439E-07 4.327E-08

1.870 1.857 1.837 1.812 1.786 1.759 1.734
α = 1.7 2.506E-04 6.622E-05 1.751E-05 4.654E-06 1.246E-06 3.367E-07 9.188E-08 2.533E-08

1.920 1.919 1.912 1.901 1.888 1.874 1.859
α = 1.8 2.263E-04 5.847E-05 1.505E-05 3.874E-06 9.985E-07 2.580E-07 6.686E-08 1.739E-08

1.952 1.958 1.958 1.956 1.952 1.948 1.943
α = 1.9 2.048E-04 5.242E-05 1.329E-05 3.364E-06 8.506E-07 2.150E-07 5.437E-08 1.375E-08

1.966 1.979 1.982 1.984 1.984 1.984 1.983
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Table 4: Example I: Maximum derivative errors and orders of convergence using a collocation
method for m = 1 and c1 = 1/2 on a uniform mesh

N=32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096
α = 1.1 1.460E-03 1.337E-03 1.221E-03 1.112E-03 1.010E-03 9.156E-04 8.281E-04 7.474E-04

0.128 0.131 0.135 0.138 0.142 0.145 0.148
α = 1.2 3.141E-03 2.551E-03 2.056E-03 1.645E-03 1.308E-03 1.035E-03 8.142E-04 6.378E-04

0.300 0.311 0.321 0.330 0.339 0.346 0.352
α = 1.3 3.452E-03 2.437E-03 1.701E-03 1.176E-03 8.058E-04 5.486E-04 3.714E-04 2.502E-04

0.502 0.519 0.533 0.545 0.555 0.563 0.570
α = 1.4 2.767E-03 1.683E-03 1.010E-03 6.000E-04 3.537E-04 2.072E-04 1.208E-04 7.017E-05

0.717 0.736 0.751 0.763 0.772 0.778 0.783
α = 1.5 1.832E-03 9.572E-04 4.939E-04 2.526E-04 1.283E-04 6.490E-05 3.271E-05 1.645E-05

0.936 0.955 0.968 0.977 0.984 0.988 0.992
α = 1.6 1.067E-03 4.795E-04 2.132E-04 9.411E-05 4.135E-05 1.811E-05 7.915E-06 3.454E-06

1.154 1.169 1.180 1.187 1.191 1.194 1.196
α = 1.7 5.672E-04 2.198E-04 8.443E-05 3.227E-05 1.229E-05 4.673E-06 1.774E-06 6.731E-07

1.368 1.380 1.388 1.392 1.395 1.397 1.398
α = 1.8 2.819E-04 9.439E-05 3.141E-05 1.041E-05 3.445E-06 1.138E-06 3.758E-07 1.241E-07

1.578 1.587 1.593 1.596 1.598 1.599 1.599
α = 1.9 1.330E-04 3.858E-05 1.114E-05 3.208E-06 9.227E-07 2.652E-07 7.619E-08 2.188E-08

1.786 1.792 1.796 1.798 1.799 1.799 1.800

Table 5: Example I: Maximum derivative errors and orders of convergence using a collocation
method for m = 1 and c1 = 1/2 on a graded mesh with r = 1/(α − 1)

N=32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096
α = 1.1 2.595E-03 1.264E-03 6.025E-04 2.842E-04 1.333E-04 6.240E-05 2.916E-05 1.361E-05

1.038 1.069 1.084 1.092 1.096 1.098 1.099
α = 1.2 1.897E-03 8.453E-04 3.727E-04 1.634E-04 7.139E-05 3.114E-05 1.357E-05 5.912E-06

1.166 1.182 1.190 1.194 1.197 1.198 1.199
α = 1.3 1.267E-03 5.246E-04 2.155E-04 8.809E-05 3.592E-05 1.462E-05 5.948E-06 2.418E-06

1.272 1.284 1.290 1.294 1.296 1.298 1.299
α = 1.4 8.025E-04 3.100E-04 1.189E-04 4.543E-05 1.730E-05 6.579E-06 2.499E-06 9.482E-07

1.372 1.382 1.388 1.393 1.395 1.397 1.398
α = 1.5 4.858E-04 1.756E-04 6.306E-05 2.254E-05 8.028E-06 2.853E-06 1.013E-06 3.590E-07

1.468 1.478 1.484 1.489 1.492 1.495 1.496
α = 1.6 2.804E-04 9.509E-05 3.203E-05 1.073E-05 3.582E-06 1.192E-06 3.958E-07 1.312E-07

1.560 1.570 1.577 1.583 1.587 1.590 1.593
α = 1.7 1.524E-04 4.857E-05 1.538E-05 4.842E-06 1.518E-06 4.742E-07 1.477E-07 4.592E-08

1.650 1.659 1.667 1.673 1.678 1.683 1.686
α = 1.8 9.695E-05 2.619E-05 7.067E-06 2.002E-06 5.908E-07 1.737E-07 5.091E-08 1.488E-08

1.888 1.890 1.819 1.761 1.766 1.771 1.774
α = 1.9 7.537E-05 1.966E-05 5.117E-06 1.330E-06 3.457E-07 8.979E-08 2.332E-08 6.056E-09

1.939 1.942 1.943 1.944 1.945 1.945 1.945
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Table 6: Example II: Maximum errors and orders of convergence using a finite difference
scheme on a uniform mesh

N=32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096
α = 1.1 1.006E-01 5.061E-02 2.539E-02 1.271E-02 6.362E-03 3.182E-03 1.592E-03 7.959E-04

0.991 0.995 0.998 0.999 0.999 1.000 1.000
α = 1.2 9.787E-02 4.953E-02 2.492E-02 1.250E-02 6.262E-03 3.134E-03 1.568E-03 7.841E-04

0.982 0.991 0.995 0.998 0.999 0.999 1.000
α = 1.3 9.051E-02 4.605E-02 2.324E-02 1.168E-02 5.859E-03 2.934E-03 1.468E-03 7.346E-04

0.975 0.986 0.992 0.996 0.998 0.999 0.999
α = 1.4 8.136E-02 4.162E-02 2.109E-02 1.063E-02 5.339E-03 2.677E-03 1.341E-03 6.713E-04

0.967 0.981 0.989 0.993 0.996 0.997 0.998
α = 1.5 7.170E-02 3.691E-02 1.880E-02 9.508E-03 4.791E-03 2.407E-03 1.208E-03 6.053E-04

0.958 0.974 0.983 0.989 0.993 0.995 0.997
α = 1.6 6.197E-02 3.213E-02 1.646E-02 8.373E-03 4.237E-03 2.137E-03 1.075E-03 5.403E-04

0.948 0.965 0.975 0.983 0.987 0.991 0.993
α = 1.7 5.219E-02 2.725E-02 1.407E-02 7.204E-03 3.669E-03 1.861E-03 9.410E-04 4.747E-04

0.938 0.954 0.965 0.973 0.979 0.984 0.987
α = 1.8 4.219E-02 2.213E-02 1.150E-02 5.931E-03 3.043E-03 1.555E-03 7.916E-04 4.020E-04

0.931 0.945 0.955 0.963 0.969 0.974 0.978
α = 1.9 3.166E-02 1.653E-02 8.583E-03 4.436E-03 2.284E-03 1.173E-03 6.007E-04 3.070E-04

0.937 0.946 0.952 0.957 0.962 0.965 0.968

Table 7: Example II: Maximum errors and orders of convergence using a collocation method
for m = 1 and c1 = 1/2 on a uniform mesh

N=32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096
α = 1.1 5.498E-03 2.438E-03 1.085E-03 4.844E-04 2.170E-04 9.747E-05 4.391E-05 1.983E-05

1.173 1.168 1.163 1.159 1.155 1.151 1.147
α = 1.2 1.525E-03 5.963E-04 2.684E-04 1.304E-04 6.160E-05 2.854E-05 1.304E-05 5.905E-06

1.355 1.152 1.041 1.082 1.110 1.129 1.144
α = 1.3 9.601E-04 4.722E-04 2.177E-04 9.681E-05 4.207E-05 1.799E-05 7.607E-06 3.190E-06

1.024 1.117 1.169 1.202 1.226 1.242 1.254
α = 1.4 7.204E-04 3.253E-04 1.388E-04 5.725E-05 2.312E-05 9.199E-06 3.622E-06 1.415E-06

1.147 1.229 1.277 1.308 1.329 1.345 1.356
α = 1.5 4.571E-04 1.935E-04 7.718E-05 2.977E-05 1.124E-05 4.180E-06 1.538E-06 5.615E-07

1.240 1.326 1.374 1.406 1.427 1.442 1.454
α = 1.6 2.723E-04 1.027E-04 3.867E-05 1.404E-05 4.983E-06 1.740E-06 6.004E-07 2.054E-07

1.407 1.408 1.461 1.495 1.518 1.535 1.547
α = 1.7 2.189E-04 5.902E-05 1.732E-05 5.980E-06 2.009E-06 6.622E-07 2.154E-07 6.936E-08

1.891 1.769 1.534 1.574 1.601 1.620 1.635
α = 1.8 1.954E-04 5.001E-05 1.266E-05 3.186E-06 7.994E-07 2.208E-07 6.824E-08 2.083E-08

1.966 1.982 1.990 1.995 1.856 1.694 1.712
α = 1.9 1.957E-04 4.998E-05 1.263E-05 3.175E-06 7.960E-07 1.993E-07 4.986E-08 1.247E-08

1.970 1.984 1.992 1.996 1.998 1.999 1.999
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Table 8: Example II: Maximum errors and orders of convergence using a collocation method
for m = 1 and c1 = 1/2 on a graded mesh with r = 1/(α − 1)

N=32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096
α = 1.1 4.686E-03 1.347E-03 4.078E-04 2.305E-04 1.169E-04 5.667E-05 2.691E-05 1.266E-05

1.799 1.724 0.823 0.979 1.045 1.074 1.088
α = 1.2 2.150E-03 1.057E-03 4.924E-04 2.204E-04 9.701E-05 4.238E-05 1.846E-05 8.034E-06

1.024 1.102 1.159 1.184 1.195 1.199 1.200
α = 1.3 1.908E-03 8.072E-04 3.315E-04 1.345E-04 5.440E-05 2.199E-05 8.895E-06 3.602E-06

1.241 1.284 1.301 1.306 1.307 1.306 1.304
α = 1.4 1.339E-03 5.069E-04 1.897E-04 7.084E-05 2.649E-05 9.934E-06 3.735E-06 1.407E-06

1.401 1.418 1.421 1.419 1.415 1.411 1.408
α = 1.5 8.558E-04 2.953E-04 1.015E-04 3.498E-05 1.210E-05 4.208E-06 1.469E-06 5.143E-07

1.535 1.540 1.537 1.531 1.524 1.519 1.514
α = 1.6 5.309E-04 1.679E-04 5.315E-05 1.690E-05 5.407E-06 1.740E-06 5.625E-07 1.826E-07

1.661 1.659 1.653 1.644 1.636 1.629 1.623
α = 1.7 3.811E-04 9.938E-05 2.834E-05 8.311E-06 2.453E-06 7.287E-07 2.177E-07 6.535E-08

1.939 1.810 1.770 1.760 1.751 1.743 1.736
α = 1.8 3.000E-04 7.754E-05 1.972E-05 4.972E-06 1.249E-06 3.289E-07 9.056E-08 2.506E-08

1.952 1.976 1.987 1.994 1.925 1.861 1.854
α = 1.9 2.395E-04 6.144E-05 1.556E-05 3.916E-06 9.822E-07 2.460E-07 6.155E-08 1.539E-08

1.963 1.981 1.991 1.995 1.998 1.999 1.999

Table 9: Example II: Maximum derivative errors and orders of convergence using a colloca-
tion method for m = 1 and c1 = 1/2 on a uniform mesh

N=32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096
α = 1.1 1.130E-02 8.939E-03 7.133E-03 5.737E-03 4.648E-03 3.789E-03 3.106E-03 2.560E-03

0.339 0.326 0.314 0.304 0.295 0.287 0.279
α = 1.2 1.141E-02 7.808E-03 5.430E-03 3.826E-03 2.725E-03 1.958E-03 1.418E-03 1.034E-03

0.547 0.524 0.505 0.490 0.477 0.466 0.456
α = 1.3 7.765E-03 4.703E-03 2.899E-03 1.812E-03 1.145E-03 7.297E-04 4.682E-04 3.020E-04

0.723 0.698 0.678 0.662 0.650 0.640 0.632
α = 1.4 4.590E-03 2.469E-03 1.350E-03 7.476E-04 4.178E-04 2.351E-04 1.329E-04 7.545E-05

0.895 0.871 0.853 0.840 0.830 0.822 0.817
α = 1.5 2.506E-03 1.195E-03 5.777E-04 2.822E-04 1.388E-04 6.859E-05 3.402E-05 1.691E-05

1.069 1.048 1.034 1.024 1.017 1.012 1.008
α = 1.6 1.293E-03 5.444E-04 2.318E-04 9.946E-05 4.289E-05 1.855E-05 8.042E-06 3.491E-06

1.248 1.232 1.221 1.214 1.209 1.206 1.204
α = 1.7 6.380E-04 2.363E-04 8.828E-05 3.316E-05 1.250E-05 4.721E-06 1.785E-06 6.757E-07

1.433 1.420 1.412 1.408 1.405 1.403 1.402
α = 1.8 3.027E-04 9.834E-05 3.216E-05 1.055E-05 3.472E-06 1.143E-06 3.768E-07 1.242E-07

1.622 1.613 1.607 1.604 1.602 1.601 1.601
α = 1.9 1.983E-04 5.246E-05 1.385E-05 3.656E-06 9.651E-07 2.657E-07 7.627E-08 2.190E-08

1.918 1.921 1.922 1.922 1.861 1.801 1.800
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Table 10: Example II: Maximum derivative errors and orders of convergence using a collo-
cation method for m = 1 and c1 = 1/2 on a graded mesh with r = 1/(α − 1)
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A DECOUPLED STAGGERED SCHEME
FOR THE SHALLOW WATER EQUATIONS
Raphaèle Herbin, Jean-Claude Latché, Youssouf Nasseri and

Nicolas Therme

Abstract. We present a first order scheme based on a staggered grid for the shallow water
equations with topography in two space dimensions, which enjoys several properties:
positivity of the water height, preservation of constant states, and weak consistency with
the equations of the problem and with the associated entropy inequality.

Keywords: Shallow water, finite volumes, staggered grid.
AMS classification: 65M08,76B99.

§1. Introduction

The shallow water equations form a hyperbolic system of two conservation equations (mass
and momentum) which are obtained when modelling a flow whose vertical height is consid-
ered small with respect to the plane scale. The solution of such a system may develop shocks,
so that the finite volume method is usually preferred for numerical simulations. Two main
approaches are found: one is the colocated approach which is usually based on some approx-
imate Riemann solver, see e.g. [3] and references therein; the other one is based on a stag-
gered arrangement of the unknowns on the grid. Indeed, staggered schemes have been used
for some time in the hydraulic and ocean engineering community, see e.g. [1, 2, 12]. They
have been recently analysed in the case of one space dimension [5, 8], following the works on
the related barotropic Euler equations, see [11] and references therein. In the present work,
we obtain a discrete local entropy inequality; furthermore, we extend the consistency analysis
of the scheme to the case of two space dimensions, and we weaken the assumptions on the es-
timates, namely we no longer require a bound on the BV norm of the approximate solutions,
at least for the weak formulation (the passage to the limit in the entropy still necessitates a
time BV boundedness).

Let Ω be an open bounded domain of R2 and let T > 0. We consider the shallow water
equations with topography over the space and time domain Ω × (0,T ):

∂th + div(hu) = 0 in Ω × (0,T ), (1a)
∂t(hu) + div(hu ⊗ u) + ∇p + gh∇z = 0 in Ω × (0,T ), (1b)

p =
1
2
gh2 in Ω × (0,T ), (1c)

u · n = 0 on ∂Ω × (0,T ), (1d)
h(x, 0) = h0, u(x, 0) = u0 in Ω. (1e)
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where t stands for the time, g is the standard gravity constant and z the (given) topography,
which is supposed to be regular in this paper. These equations solve the water height h and
the velocity u.

Let us recall that if (h,u) is a regular solution of (1), the following elastic potential energy
balance and kinetic energy balance is obtained by manipulations on the mass and momentum
equations:

∂t(
1
2
gh2) + div(

1
2
gh2u) +

1
2
gh2divu = 0 (2)

∂t(
1
2

h|u|2) + div(
1
2

h|u|2u) + u · ∇p + ghu · ∇z = 0. (3)

Summing these equations, we obtain en entropy equality of the form ∂tη + divΦ = 0, where
the entropy-entropy flux pair (η,Φ) is given by:

η =
1
2

h|u|2 +
1
2
gh2 + ghz and Φ = (η +

1
2
gh2)u. (4)

For non regular functions the above manipulations are no longer valid, and the entropy in-
equality ∂tη + divΦ ≤ 0 is satisfied in a distributional sense.

In this paper, we build a decoupled scheme, involving only explicit steps; the resulting ap-
proximate solutions are shown to satisfy some discrete equivalent of (2) and (3); furthermore,
under some convergence and boundedness assumptions, the approximate solutions are shown
in Section 5 to converge to a weak solution of (1) and to satisfy a weak entropy inequality.

§2. Mesh and space discretizations

Let Ω be a connected subset of R2 consisting in a union of rectangles whose edges are as-
sumed to be orthogonal to the canonical basis vectors, denoted by (e(1), e(2)).

Definition 1 (MAC grid). A discretization (M,E) of Ω with a staggered rectangular grid (or
MAC grid), is defined by:

– A primal gridM which consists in a conforming structured partition of Ω in rectan-
gles, possibly non uniform. A generic cell of this grid is denoted by K, and its mass
center by xK . The scalar unknowns (water height and pressure) are associated to this
mesh.

– The set of all edges of the mesh E, with E = Eint ∪ Eext, where Eint (resp. Eext) are
the edges of E that lie in the interior (resp. on the boundary) of the domain. The
set of edges that are orthogonal to e(i) is denoted by E(i), for i = 1, 2. We then have
E(i) = E

(i)
int ∪ E

(i)
ext, where E(i)

int (resp. E(i)
ext) are the edges of E(i) that lie in the interior

(resp. on the boundary) of the domain.
For σ ∈ Eint, we write σ = K|L if σ = ∂K ∩ ∂L. A dual cell Dσ associated to an edge
σ ∈ E is defined as follows:

- if σ = K|L ∈ Eint then Dσ = DK,σ ∪ DL,σ, where DK,σ (resp. DL,σ) is the
half-part of K (resp. L) adjacent to σ (see Fig. 1);
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Figure 1: Notations for control volumes and dual cells (in two space dimensions, for the
second component of the velocity).

- if σ ∈ Eext is adjacent to the cell K, then Dσ = DK,σ.

For each dimension i = 1, 2, the domain Ω is partitioned in dual cells: Ω = ∪σ∈E(i) Dσ,
i = 1, 2; the ith partition is refered to as the ith dual mesh; it is associated to the ith

velocity component, in a sense which is clarified below. The set of the edges of the ith

dual mesh is denoted by Ẽ(i) (note that these edges may be orthogonal to any vector
of the basis of R2 and not only e(i)) and is decomposed into the internal and boundary
edges: Ẽ(i) = Ẽ

(i)
int ∪ Ẽ

(i)
ext. The dual edge separating two duals cells Dσ and Dσ′ is

denoted by ε = σ|σ′. We denote by Dε the dual cell associated to a dual edge ε ∈ Ẽ
defined as follows:

- if ε = σ|σ′ ∈ Ẽint then Dε = Dσ,ε ∪ Dσ′,ε , where Dσ,ε (resp. Dσ′,ε) is the
half-part of Dσ (resp. Dσ′ ) adjacent to ε (see Fig. 1);

- if ε ∈ Ẽext is adjacent to the cell Dσ, then Dε = Dσ,ε .

In order to define the scheme, we need some additional notations. The set of edges of a
primal cell K and of a dual cell Dσ are denoted by E(K) and Ẽ(Dσ) respectively. For σ ∈ E,
we denote by xσ the mass center of σ. The vector nK,σ stands for the unit normal vector to σ
outward K. In some cases, we need to specify the orientation of various geometrical entities
with respect to the axis:

- a primal cell K will be denoted K = [
−−−→
σσ′] if σ,σ′ ∈ E(i)(K) for some i = 1, 2 are such

that (xσ′ − xσ) · e(i) > 0;

- we write σ =
−−→
K|L if σ ∈ E(i), σ = K|L and −−−−→xK xL · e(i) > 0 for some i = 1, 2;

- the dual edge ε separating Dσ and Dσ′ is written ε =
−−−→
σ|σ′ if −−−−→xσxσ′ · e(i) > 0 for some

i = 1, 2.
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The size δM of the mesh and its regularity ηM are defined by:

δM = max
K∈M

diam(K), and ηM = max
{ |σ|
|σ′|

, σ ∈ E(i), σ′ ∈ E( j), i, j = 1, 2, i , j
}
, (5)

where | · | stands for the one (or two) dimensional measure of a subset of R (or R2).

The discrete velocity unknowns are associated to the dual cells and are denoted by (ui,σ)σ∈E(i) ,
i = 1, 2, while the scalar unknowns (discrete water height and pressure) are associated to the
primal cells and are denoted respectively by (hK)K∈M and (pK)K∈M. The scalar unknown
space LM is defined as the set of piecewise constant functions over each grid cell K of M,
and the discrete ith velocity space HE(i) as the set of piecewise constant functions over each of
the grid cells Dσ, σ ∈ E

(i). As in the continuous case, the Dirichlet boundary conditions are
taken into account by defining the subspaces HE(i),0 ⊂ HE(i) , i = 1, 2 as follows

HE(i),0 =
{
ui ∈ HE(i) , ui(x) = 0, ∀x ∈ Dσ, σ ∈ E

(i)
ext

}
.

We then set HE,0 = HE(1),0 × HE(2),0. Defining the characteristic function 11A of any subset
A ⊂ Ω by 11A(x) = 1 if x ∈ A and 11A(x) = 0 otherwise, the functions u = (u1, u2) ∈ HE,0,
may then be written:

ui(x) =
∑
σ∈E(i)

ui,σ11Dσ
(x), i = 1, 2. (6)

For u ∈ HE,0, let ~ui�ε = |ui,σ − ui,σ′ |, for ε = σ|σ′ ∈ Ẽ(i)
int, i = 1, 2. In the same way

the functions h ∈ LM are defined by h(x) =
∑

K∈M hK11K(x) and the notation ~ �σ refers to
~h�σ = |hK − hL|, for σ = K|L ∈ Eint(K).

§3. A decoupled explicit scheme

Description of the scheme Let us consider a uniform discretisation 0 = t0 < t1 < · · · < tN =

T of the time interval (0,T ), and let δt = tn+1 − tn for n = 0, 1, · · · ,N − 1 be the (constant)
time step. The discrete velocity u and water height h unknowns are defined by:

u(x, t) =

N−1∑
n=0

un+1(x)11[tn,tn+1)(t), with un+1 ∈ HE,0,

h(x, t) =

N−1∑
n=0

hn+1(x)11[tn,tn+1)(t), with hn+1 ∈ LM,

where 11[tn,tn+1) is the characteristic function of the interval [tn, tn+1) and the space functions
un and hn take the form defined in the previous section. We propose the following decoupled
discretisation of the system (1), written in compact form, with the various discrete operators
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defined below.

Initialisation: u0 = PEu0, h0 = PMh0, p0 =
1
2
g(h0)2. (7a)

Iteration n, 0 ≤ n ≤ N − 1 : solve for un+1 ∈ HE,0, hn+1 ∈ LM and pn+1 ∈ LM :

ðthn+1 + divM (hnun) = 0, (7b)

pn+1 =
1
2
g(hn+1)2, (7c)

ðt(hu)n+1 + CE(hnun)un + ∇Epn+1 + g IEhn+1 ∇Ez = 0, (7d)

Projection operators - The operators PE and PM used in the initialisation step are defined
by PE = (PE(i) )i=1,··· ,d with

PE(i) : L1(Ω) −→ HE(i),0

v 7−→ PE(i)v =
∑
σ∈E(i)

int

vσ 11Dσ
with vσ =

1
|Dσ|

∫
Dσ

v(x) dx, for σ ∈ E(i)
int.

(8)

For q ∈ L2(Ω), PMq ∈ LM is defined by:

PMq =
∑
K∈M

qK11K with qK =
1
|K|

∫
K

q(x) dx for K ∈ M. (9)

Discrete time derivative - The symbol ðt denotes the discrete time derivative for both
water height and momentum:

ðthn+1 =
∑
K∈M

1
δt

(hn+1
K − hn

K)11K , ðt(hu)n+1 = (ðt(hu1)n+1, . . . , ðt(hud)n+1)

with ðt(hui)n+1 =
∑
σ∈E(i)

1
δt

(hn+1
Dσ

un+1
i,σ − hn

Dσ
un

i,σ)11Dσ
, i = 1, 2,

where hDσ
is the discrete water height in the dual cell, which is computed from the primal

unknowns (hn
K)n∈N,K∈M and defined so as to satisfy a discrete mass balance, see below.

Discrete divergence and gradient operators - The discrete divergence operator divM is de-
fined by:

divM : HE,0 −→ LM,0

u 7−→ divM (hu) =
∑
K∈M

divK(hu)11K , with divK(hu) =
1
|K|

∑
σ∈E(K)

FK,σ,
(10)

where FK,σ is the (conservative) numerical mass flux, defined by FK,σ = |σ| hσuK,σ with
uK,σ = ui,σnK,σ · e(i) for σ ∈ E(i)

int, i = 1, 2, while hσ is approximated by the first order upwind
scheme namely, for σ = K|L ∈ Eint, hσ = hK if uK,σ ≥ 0 and hσ = hL otherwise.
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The discrete gradient operator applies to the pressure and the topography and is defined
by:

∇E : LM −→ HE,0
p 7−→ ∇Ep,

with for i = 1, 2:

(∇Ep)i =
∑
σ∈E(i)

int

(ði p)σ11Dσ
with for σ =

−−→
K|L, (ði p)σ =

|σ|

|Dσ|
(pL − pK). (11)

The above defined discrete divergence and gradient operators satisfy the following div-grad
duality relationship [7, Lemma 2.5]:

for p ∈ LM, u ∈ HE,0,
∫

Ω

p divM(u) dx +

∫
Ω

∇Ep · (u) dx = 0.

Discrete convection operator – The discrete nonlinear convection operator CE(hu) is
linked to the discrete divergence operator on the dual mesh by the relation CE(hu)u =

divE(hu ⊗ u), where the full discrete convection operator CE(hu) is defined by:

CE(hu) u =
(
CE(1) (hu) u1,CE(2) (hu) u2

)
,

and the i-th component CE(i) (hu) of the convection operator is defined by:

CE(i) (hu) : HE(i),0 −→ HE(i),0

ui 7−→ CE(i) (hu) ui =
∑
σ∈E(i)

int

divE(i) (huiu) 11Dσ
,

with divE(i) (huiu) =
1
|Dσ|

∑
ε∈Ẽ(i)(Dσ)

Fσ,εui,ε ,

(12)

where ui,ε is approximated by the upwind technique with respect to the sign of Fσ,ε . The
quantity Fσ,ε is the numerical mass flux through ε outward Dσ; it must be chosen carefully
to ensure some stability properties of the scheme as in [7, 11]. Indeed we recall that in order
to derive a discrete kinetic energy balance (Lemma 3 below), it is necessary that a discrete
equation of the mass balance holds in the dual mesh, namely:

|Dσ|

δt
(hn+1

Dσ
− hn

Dσ
) + divE(hnun) = 0, with |Dσ| divE(hnun) =

∑
ε∈Ẽ(Dσ)

Fn
σ,ε . (13)

The water height hDσ
and the flux Fσ,ε are computed from the primal unknowns and fluxes so

as to satisfy this latter relation thanks to the discrete mass balance on the primal mesh (7b).
For σ = K|L ∈ Eint, the water height hDσ

is defined as a weighted average between hK and
hL:

|Dσ| hDσ
= |DK,σ| hK + |DL,σ| hL, (14)

where Dσ, DK,σ and DL,σ are defined in Definition 1. The numerical flux Fσ,ε on the internal
dual edges, is defined according to the location of the edges as follows:
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Figure 2: Notations for the definition of the momentum flux on the dual mesh for the first
component of the velocity- left: first case - right: second case.

- First case – The vector e(i) is normal to ε, and ε is included in a primal cell K, with
K = [

−−−→
σσ′] (see Definition 1 and Figure 2 on the left for i = 1). Then for a dual edge

ε ∈ Ẽ(i) such that ε =
−−−→
σ|σ′, the flux Fσ,ε through the edge ε is given by:

Fσ,ε =
1
2

(FK,σ′ − FK,σ) =
1
2
|ε| (hσui,σ + hσ′ui,σ′ ), (15)

since |σ| = |σ′| = |ε|.

- Second case – The vector e(i) is tangent to ε, and ε is the union of the halves of two
primal edges τ and τ′ such that τ =

−−→
K|L, τ ∈ E(K) and τ′ =

−−−→
N |M ∈ E(N) (see

Definition 1 and Figure 2 on the right for i = 2). The flux numerical through ε is then
given by:

Fσ,ε =
1
2

(FKτ + FLτ′ ) =
1
2

(|τ| hτu,τ + |τ′| hτ′ui,τ′ ). (16)

Note that the numerical momentum flux on a dual edge is conservative. It is easy to check
that the unknowns hn

Dσ
and Fn

σ,ε thus defined satisfy the discrete dual mass balance (13).

Discrete water height on the dual mesh, for the topography term – In equation (7d) the
interpolation operator IE is defined as the mean value of the water height:

IEh =
∑
σ∈Eint

hσ,c11Dσ
with hσ,c =


1
2 (hK + hL) for σ = K|L ∈ Eint,

hK for σ ∈ Eext ∩ E(K).
(17)

This choice is important to preserve steady states, see Lemma 2.

§4. Properties of the scheme

The scheme (7) enjoys some interesting properties, which we now state. First of all, thanks to
the upwind choice for hn in (1a), the positivity of the water height is preserved under a CFL
like condition.
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Lemma 1 (Positivity of the water height). Let n ∈ ~0,N−1�, let (hn
K , un

i,σ)K∈M, σ∈E(i) be given
and such that hn

K ≥ 0, for all K ∈ M, and let hn+1
K be computed by (7b). Then hn+1

K ≥ 0, for
all K ∈ M under the following CFL condition,

δt ≤
|K|∑

σ∈E(K)

|σ| |un
K,σ|

. (18)

Second, thanks to the choice (17) for the reconstruction of the water height, the "lake at
rest" steady state is preserved by the scheme.

Lemma 2 (Steady state "lake at rest"). Let n ∈ ~0,N − 1�, C ∈ R+; let un+1 ∈ HE,0 and
hn+1 ∈ LM be a solution to (7b)-(7d) with un = 0 and hn + z = C, where C is a given real
number. Then un+1 = 0 and hn+1 + z = C.

As a consequence of the careful discretisation of the convection term, the scheme satisfies
a discrete kinetic energy balance, as stated in the following lemma. The proof of this result is
an easy adaptation of [10, Lemma 3.2].

Lemma 3 (Discrete kinetic balance). A solution to the scheme (7) satisfies the following
equality, for i = 1, 2, σ ∈ E(i) and 0 ≤ n ≤ N − 1:

1
2 δt

(hn+1
Dσ

(un+1
i,σ )2 − hn

Dσ
(un

i,σ)2) +
1

2 |Dσ|

∑
ε∈Ẽ(i)(Dσ)

Fn
σ,ε(u

n
i,ε)

2

+ un+1
i,σ (ði pn+1)σ + g hn+1

σ,c un+1
i,σ (ðiz)σ = −Rn+1

i,σ , (19)

with Rn+1
i,σ ≥ 0 under the CFL like restriction:

∀σ ∈ E(i), δt ≤
|Dσ| hn+1

Dσ∑
ε∈Ẽ(Dσ)

(Fn
σ,ε)
−
. (20)

The scheme also satisfies the following potential energy balance [10, Lemma 3.3].

Lemma 4 (Discrete elastic potential balance). Let, for K ∈ M and 0 ≤ n ≤ N the potential
energy be defined by (Ep)n

K = 1
2g (hn

K)2. A solution to the scheme (7) satisfies the following
equality, for K ∈ M and 0 ≤ n ≤ N − 1:

ðtEn+1
p + divK(En

pun) + pn
KdivK(un) = −Rn+1

K , (21)

with
Rn+1

K ≥
1
|K|

g
∑

σ∈E(K)

|σ| un
K,σhn

σ(hn+1
K − hn

K). (22)

Note that the right-hand side of Equation (22) may be negative, and thus the quantities
Rn+1

K also. This is specific to explicit schemes (for implicit or pressure-correction schemes
[9], this residual is non-negative) and prevents getting a stability estimate for the scheme.
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However, combining the two previous lemmas allows to prove that convergent sequences of
solutions to the scheme satisfy an entropy inequality, as depicted in the next section. To this
purpose, we will pass to the limit in a discrete entropy balance which is built as follows. Let
K ∈ M and let us denote by (Ek)n

K the following quantity, which may be seen as a kinetic
energy associated to K:

(Ek)n
K =

1
4 |K|

2∑
i=1

∑
σ∈E(K)∩E(i)

|Dσ| hn
Dσ

(un
i,σ)2.

Then, for σ0 ∈ E(K), we define a kinetic energy flux, which we denote by Gn
K,σ0

, as follows.
Let us suppose, for instance, that σ0 ∈ E

(1). We denote by ε the face of Dσ0 parallel to σ0
and included in K and by ε′ the opposite face of Dσ0 . In addition, σ0 is the union of two
half-faces of the dual mesh associated to the second component of the velocity, which we
denote by τ and τ′, and we denote by σ and σ′ the two faces of K belonging to E(2) such that
τ ∈ Ẽ(Dσ) and τ′ ∈ Ẽ(Dσ′ ). We then have:

Gn
K,σ0

=
1
4

[
−Fn

σ0,ε
(un

1,ε)
2 + Fn

σ0,ε′
(un

1,ε′ )
2 + Fn

σ,τ (un
2,τ)

2 + Fn
σ,τ′ (un

2,τ′ )
2
]

Multiplying the kinetic energy balance equation (19) associated to each face σ of K by 1
2 |Dσ|

and summing the four obtained relations with (21), we get

|K|
δt

[
(Ek)n+1

K + (Ep)n+1
K − (Ek)n

K − (Ep)n
K
]
+

∑
σ∈E(K)

[
Gn

K,σ + Fn
K,σ (Ep)n

σ

]
+

∑
σ∈E(K), σ=K|L

|σ|
1
2

(pn+1
L −pn+1

K ) un+1
K,σ+

∑
σ∈E(K), σ=K|L

|σ|
1
4
g (hn+1

K +hn+1
L ) (zL−zK) un+1

K,σ = −T n+1
K ,

where T n+1
K collects the residual terms in (19) and (21), and thus T n+1

K ≥ Rn+1
K . We now remark

that, thanks to the discrete mass balance equation and the fact that the topography does not
depend on time,

1
2

∑
σ∈E(K)

Fn
K,σ(zL − zK) =

|K|
δt

(hn+1
K zK − hn

KzK) +
1
2

∑
σ∈E(K), σ=K|L

Fn
K,σ (zK + zL),

and we finally obtain the following discrete entropy balance:

|K|
δt

[
(Ek)n+1

K + (Ep)n+1
K + g hn+1

K zK − (Ek)n
K − (Ep)n

K − g hn
K zK

]
+

∑
σ∈E(K)

[
Gn

K,σ + Fn
K,σ (Ep)n

σ +
1
2

Fn
K,σ(zK + zL)

]
+

∑
σ∈E(K), σ=K|L

|σ|
1
2

(pn+1
K + pn+1

L ) un+1
K,σ = −(Re)n+1

K , (23)



136 Raphaèle Herbin, Jean-Claude Latché, Youssouf Nasseri and Nicolas Therme

with

(Re)n+1
K ≥ T n+1

K + g
∑

σ∈E(K)

[1
2

Fn
K,σ −

1
4
|σ| (hn+1

K + hn+1
L ) un+1

K,σ
]

(zL − zK)

+
∑

σ∈E(K), σ=K|L

|σ|
1
2

(pn+1
K un+1

K,σ − pn
Kun

K,σ). (24)

§5. Consistency analysis

The objective of this section is to show that the schemes are consistent in the Lax-Wendroff

sense, namely that if a sequence of solutions is controlled in suitable norms and converges to
a limit, this latter necessarily satisfies a weak formulation of the continuous problem.

A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞c
(
Ω × [0,T )

)
(ϕ ∈

C∞c
(
Ω × [0,T )

)2):∫ T

0

∫
Ω

[
h ∂tϕ + h u · ∇ϕ

]
dx dt +

∫
Ω

h0(x)ϕ(x, 0) dx = 0, (25a)

−

∫ T

0

∫
Ω

[
h u · ∂tϕ + (hu ⊗ u) : ϕ +

1
2
g h2div(ϕ) + g h∇(z)ϕ

]
dx dt (25b)

−

∫
Ω

h0(x) u0(x) · ϕ(x, 0) dx = 0.

This system is supplemented with a weak entropy inequality, for any nonnegative test func-
tions ϕ ∈ C∞c

(
Ω × [0,T ),R+

)
:

−

∫ T

0

∫
Ω

[
η ∂tϕ + Φ · ∇ϕ

]
dx dt −

∫
Ω

η0(x)ϕ(x, 0) dx ≤ 0, (26)

with η and Φ defined by (4).

Before stating the global weak consistency of the scheme (7), some definitions and esti-
mate assumptions are needed.

Let (M(m),E(m))m∈N be a sequence of meshes in the sense of Definition 1 and let (h(m)

u(m))m∈N be the associated sequence of solutions of the scheme (7)).

Assumed estimates - We need also some a priori estimates on the sequence of discrete
solutions (h(m), u(m))m∈N in order to prove the consistency result we are seeking. First of all
we assume that h(m) > 0, ∀m ∈ N which can be obtained under the CFL condition (18).
Furthermore:

– The water height h(m) and its inverse are uniformly bounded in L∞(Ω×(0,T )), i.e.there
exists some constants C,C′ ∈ R∗+ such that for m ∈ N and 0 ≤ n < N(m):

1/C < (h(m))n
K ≤ C, 1/C′ < 1/(h(m))n

K ≤ C′ ∀K ∈ M(m) (27)
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– The velocity u(m) is also uniformly bounded in L∞(Ω × (0,T ))2:

|(u(m))n
σ| ≤ C, ∀σ ∈ E(m). (28)

Finally, the weak consistency to the entropy inequality is only proved under additional as-
sumptions. First we need the following condition on the space and time steps, which is
stronger than a CFL condition:

δt(m)

δM(m)
→ 0 as m→ +∞ (29)

Second, the L1(Ω, BV) norm of the height is required to be bounded, i.e. there exists one
constant C such that, for m ∈ N,

N−1∑
n=0

∑
K∈M

|K| |(h(m))n+1
K − (h(m))n

K | ≤ C. (30)

We are now in position to state the following consistency result.

Theorem 5 (Weak consistency of the scheme). Let (M(m),E(m))m∈N be a sequence of meshes
such that δt(m) and δM(m) → 0 as m → +∞ ; assume that there exists η > 0 such that
ηM(m) ≤ η for any m ∈ N (with ηM(m) defined by (5)); assume moreover that (27) and (28)
hold. Let (h(m),u(m))m∈N be a sequence of solutions to the scheme (7) converging to (h̄, ū) in
L1(Ω× (0,T ))×L1(Ω× (0,T ))2. Then (h̄, ū) satisfies the weak formulation (25) of the shallow
water equations.

If we furthermore assume the space and time steps satisfy (29) and that the sequence of
heights is uniformly bounded in L1(Ω, BV), i.e. satisfy (30), then (h̄, ū) satisfies the entropy
inequality (26).

Proof. The proof is obtained by passing to the limit in the scheme and in the discrete en-
tropy balance (23), using the tool of [6] (or, more precisely speaking, simplified versions of
these tools adapted to Cartesian grids). The additional assumptions required for the entropy
condition are used to prove that the residual term appearing in the discrete potential energy
balance, given by (22), tends to zero. �

§6. Numerical results

We now assess the behaviour of the scheme on some numerical experiments. The compu-
tations presented here are performed with the CALIF3S free software developed at IRSN
[4].

6.1. Rotation in a paraboloid
This first test case consists in calculating the uniform rotation of a circular drop on a support
of parabolic shape (see Figure 3). The computational domain is (0, L)×(0, L) and the elevation
of the support is:

z = −h0
(
1 − (x −

L
2

)2 − (y −
L
2

)2),
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Figure 3: Sloshing of a drop on a parabolic support – State obtained after one revolution (very
close to the initial state).

with L = 4 and h0 = 0.1. The fluid height is given by

h = h0 max
(
0, (x −

L
2

) cos(ωt) + (y −
L
2

) sin(ωt) − z − 0.5
)
,

and the velocity is

u =
1
2
ω

[
− sin(ωt)
cos(ωt)

]
.

It is then easy to check that the mass and momentum balance equations are verified provided
that ω2 = 2 g h0. The solution is thus regular, and this test features a regular topography
and dry zones (i.e. zones where h = 0). We compare the numerical and theoretical height
obtained after one rotation (i.e. ωt = 2π), for different uniform grids and with a time step
δt = δx/8. (the maximal speed of sound and the maximal velocity are both close to 1); results
are gathered in the following table:

grid error (discrete L1 norm)

100 × 100 3.02 10−3

200 × 200 1.54 10−3

400 × 400 0.896 10−3

800 × 800 0.511 10−3

We observe an order of convergence between 0.8 and 1, which is consistent with a first-
order approximation of the fluxes and the time derivative.
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6.2. A dam-break problem
In this test, the computational domain is:

Ω = (0, 200) × (0, 200) \Ωw with Ωw = (95, 105) × (0, 95) ∪ (95, 170) × (0, 200).

The fluid is supposed to be initially at rest, and the initial height is h = 10 for x1 ≤ 100 and h =

5 for x1 > 100. A zero normal velocity is prescribed at all the boundaries of the computational
domain. The computation is performed with a mesh obtained from a 1000×1000 regular grid,
by removing the cells included in Ωw. The time step is δt = δx/25 (the maximal speed of
sound and the maximal velocity are both close to 10). The obtained fluid height is shown
at different times on Figure 4; they confirm the efficiency of the scheme, and its capability
to deal with reflexion phenomena very simply (i.e. just by setting the normal velocity at
the boundary to zero, by contrast with schemes based on Riemann solvers which need to
implement fictitious cells techniques).
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[7] Gallouët, T., Herbin, R., Latché, J.-C., and Mallem, K. Convergence of the marker-
and-cell scheme for the incompressible Navier-Stokes equations on non-uniform grids.
Foundations of Computational Mathematics 18 (2018), 249–289.

[8] Gunawan, H. Numerical simulation of shallow water equations and related models.
PhD thesis, Université Paris-Est and Institut Teknologi Bandung, 2015.



140 Raphaèle Herbin, Jean-Claude Latché, Youssouf Nasseri and Nicolas Therme

Figure 4: Partial dam break – Height obtained at t = 4, t = 8, t = 10, t = 12, t = 16 and
t = 20 with a mesh obtained (by supression of the zones associated to the obstacles) from
a 1000 × 1000 regular grid. In the last Figure (t = 20), the obtained minimal and maximal
heights are h = 2.149 and h = 9.306 respectively.



A decoupled staggered scheme for the shallow water equations 141
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STABILIZED VIRTUAL ELEMENT METHOD
FOR THE INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS
Diego Irisarri and Guillermo Hauke

Abstract. In this work, we present a discretization for the incompressible Navier-Stokes
equations based on the stabilized virtual element method (VEM). Basically, VEM can
be considered a generalization of FEM that enables a polynomial decomposition of the
domain. In this work, the concepts of stabilized methods are introduced in the VEM for-
mulation. Thus, stabilization terms are included in the variational form to circumvent the
Babuška-Brezzi condition and to stabilize the solution for convection dominated flows.
Numerical examples are presented to show the behavior of the method.

Keywords: Virtual element methods, Navier-Stokes problem, stabilized methods.
AMS classification: 76D05, 65M60.

§1. Introduction

The virtual element method (VEM) can be considered a generalization of the finite element
method (FEM) that allows a greater versatility in the partition of the domain. The basis of
VEM was established in [4, 5, 12]. Many works related to VEM have been published both in
the field of elasticity [6, 13, 19] and fluid mechanics [23, 10, 8, 9].

In this work, we address the stabilized VEM formulation for incompressible Navier-
Stokes equations. The VEM has already been applied to the Stokes problem [2, 8] and
the Navier-Stokes equations [9]. It is well known that the space for the velocity and pres-
sure cannot be selected arbitrarily since the Babuška-Brezzi condition or inf-sup condition
must be satisfied. However, stabilization terms can be introduced in the discretization in or-
der to circumvent the inf-sup condition. In this work, the concepts of stabilized methods
[15, 21, 22, 18, 26, 20, 16] are introduced in the VEM formulation for Navier-Stokes equa-
tions. This formulation enables to select the velocity and pressure spaces with equal order
interpolation functions. Thus, stabilization terms are included in the variational form to cir-
cumvent the Babuška-Brezzi condition and to stabilize the solution for convection dominated
flows. We consider the transient incompressible Navier-Stokes using a semi-discrete scheme
(see, for instance, [18, 17]).

§2. The incompressible Navier-Stokes equations

The problem is defined on a bounded domain Ω ⊂ RN , N = 2, 3. The boundary is partitioned
into two non-overlapping zones Γg and Γh such that Γg ∪ Γh = Γ and Γg ∩ Γh = �.

Let us set up the unsteady incompressible Navier-Stokes equations, given by
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

∂u
∂t

+ (∇u)u − 2ν∇ · ε(u) +
1
ρ
∇p = f in Ω × (0,T )

∇ · u = 0 in Ω × (0,T )
u = g on Γg × (0,T )

2νε(u)n = h on Γh × (0,T )
u = u0 in Ω at t = 0

(1)

where u and p are the unknown velocity and pressure, respectively. ρ is the fluid density, ν
represents the kinematic viscosity, f is the source term.

The tensor ε(u) is the symmetric part of the velocity gradient and is defined as

εi j =
1
2

(ui, j + u j,i) for i, j = 1, ..., nsd (2)

where nsd is the number of spatial dimensions, i.e., nsd = 2 for 2D and nsd = 3 for 3D.

2.1. Variational formulation

Firstly, we define the spaces for the test and trial functions,

V = {u(·, t) ∈ H1(Ω)nsd , t ∈ [0,T ] | u(·, t) = 0 on Γg}

S = {u(·, t) ∈ H1(Ω)nsd , t ∈ [0,T ] | u(·, t) = g on Γg}

P = Q = {q(·, t) ∈ L2(Ω) ∩ H1(Ω), t ∈ [0,T ] s.t.
∫

Ω

q(·, t)dΩ = 0}

The variational formulation is defined as: Find u ∈ S and p ∈ P such that

B(u, p; u, q) = F(u, q), (u, q) ∈ V × Q (4)

with

B(u, p; u, q) = d(u, u) + a(u, u) + c(u; u, u) + bm(p, u) + bc(u, q) (5)

where d(·, ·), a(·, ·), bm(·, ·), bc(·, ·) are bilinear forms and c(·; ·, ·) is the trilinear form that
represents the convective term,

d(u, u) =

(
∂u
∂t
, u

)
, a(u, u) =

(
νε(u), ε(u)

)
, c(w; u, u) = ((∇u)w, u

)
bm(p, u) =

(
∇p, u

)
, bc(u, q) =

(
∇ · u, q

) (6)

and

F(u, q) = ( f , u) + (h, u)Γh (7)
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§3. Virtual element method discretization

In this section, we show the VEM discretization of the variational form (4) using a first order
approximation. The domain Ω is decomposed into a partition Th composed of polygons K,
and let Eh be the set of edges e of Th. Let Ω̃ denote the union of the polygons, Ω̃ =

⋃nel
e=1 K

where nel is the number of polygons. In this work, linear elements are employed. We define
the following initial local space defined on each element:

Ṽh(K) := {v ∈ C0(K) : v|e ∈ P1(e) ∀ e ⊂ ∂K,∆v ∈ P1(K)},

where P1(K) are the polynomials of degree 1 on the polygon K. In Ṽh(K), we can take the
values of v ∈ Ṽh(K) at the vertices as degrees of freedom, dof. Then, the number of degrees
of freedom in K is equal to the number of vertices NV .

We define the following projectors in K:

• the H1-seminorm projection Π
∇,K
1 : [Ṽh(K)]nsd → [P1(K)]nsd ,∫

K
∇(Π∇1 u − u) : ∇p1 dx = 0 and

∫
∂K

(Π∇1 u − u) ds = 0 ∀p1 ∈ P1, (8)

• the L2-projection for scalar functions Π
0,K
k : Ṽh → Pk(K) is defined locally as∫

K
(v − Π0

kv) pk dx = 0 ∀pk ∈ Pk for k = 0 and k = 1. (9)

We can now introduce the local Virtual Element space:

Vh(K) := {v ∈ Ṽh(K) :
∫

K
v p1 dx =

∫
K

Π∇1 v p1 dx ∀ p1 ∈ P1(K)}. (10)

The dimension of Vh(K) is Ndof = NV as the same as the degrees of freedom which are
unisolvent with respect to Vh(K) [1].

The global virtual spaces defined for the unknown variables of the discrete problem are

Vu
h := {u ∈ [H1(Ω)]nsd : u|K ∈ [Vh(K)]nsd ∀K ∈ Th} (11)

Qh := {q ∈ H1(Ω) s. t.
∫

Ω

q dΩ = 0 : q|K ∈ Vh(K) ∀K ∈ Th}. (12)

The basis functions on each element K, ϕi ∈ Ṽh(K), are defined, as happens in FEM, as
the canonical basis functions, dofi(ϕ j) = δi j for i, j = 1, ...,Ndof . We recall that the basis
functions for the velocity and pressure are the same. Thus, the unknown variables (uh, ph)
are expressed as a linear combination of these basis functions,

uh =

Ndof∑
i=1

dofi(uh)ϕi ph =

Ndof∑
i=1

dofi(ph)ϕi. (13)

The Galerkin formulation reads: Find (uh, ph) ∈ Vu
h × Qh such that
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B(uh, ph; uh, qh) = F(uh, qh), for all (uh, qh) ∈ Vh × Ph (14)

with

B(uh, ph; uh, qh) = d(uh, uh) + a(uh, uh) + c(uh; uh, uh) + bm(ph, u) + bc(uh, qh) (15)

where the bilinear forms d(·, ·), a(·, ·), bm(·, ·), bc(·, ·) and the trilinear form c(·; ·, ·) are

d(uh, uh) =
∑

K

dK(uh, uh) =
∑

K

(∂uh

∂t
, uh

)
K

a(uh, uh) =
∑

K

aK(uh, uh) =
∑

K

(νε(uh), ε(uh))K

c(uh; uh, uh) =
∑

K

cK(uh; uh, uh) =
∑

K

((∇uh)uh, uh)K

bm(ph, uh) =
∑

K

bK
m(ph, uh) =

∑
K

(∇ph, uh)K

bc,h(uh, qh) =
∑

K

bK
c (uh, qh) =

∑
K

(∇ · u, qh)K .

(16)

The discrete terms belonging to B(·, ·) are computable using the projector operators and
the degrees of freedom. Thus, we define the approximate bilinear and trilinear forms:

aK
h (uh, uh) =

∫
K
νΠ0

0∇uh : Π0
0∇uhdΩ + SK

ν

(
(I − Π∇1 )uh, (I − Π∇1 )uh

)
dK

h (uh, uh) =

∫
K

∂

∂t
Π0

1uh · Π
0
1uhdΩ + SK

t
(
(I − Π0

1)uh, (I − Π0
1)uh

)
cK

h (uh; uh, uh) =

∫
K

[
(Π0

0∇uh)(Π0
1uh)

]
· Π0

1uh dΩ

bK
m,h(uh, uh) =

∫
K

Π0
0∇ph · Π

0
1uh dΩ

bK
c,h(uh, uh) =

∫
K

(Π0
0∇ · uh)(Π0

1qh) dΩ

(17)

where the VEM-stabilization terms SK
α are necessary for stability [1] and will be explained

later.
In this work, the stabilized VEM that is proposed uses a linear approximation (k = 1)

both for the velocity and the pressure. Thus, the degrees of freedom of pressure and velocity
are the values at the vertices. We have followed the work of Franca et al. [18] to stabilize the
VEM formulation. As it is well known, in stabilized methods additional terms are included
in the Galerkin formulation that consist in weighting the residual by a determined differential
operator (related to the differential equation) applied to the test functions. Besides, a general-
ized trapezoidal method is employed for the temporal term in order to reach the steady-state
solutions and deal with the nonlinearity of the equations.

The stabilized VEM formulation includes additional terms to circumvent the Babuška-
Brezzi condition and to obtain a stable solution for convection dominated flows. This formu-
lation can be written as:
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Find (uh, ph) ∈ Vu
h × Qh such that

B(uh, ph; uh, qh) + Bτ(uh, ph; uh, qh) = F(uh, qh) + Fτ(uh, qh)
for all (uh, qh) ∈ Vh × Ph

(18)

where

Bτ(uh, ph; u, q) =
∑
K∈Ω̃

((∂uh

∂t
+ (∇uh)uh + ∇ph − 2ν∇ · ε(uh),

τ
(
(∇uh)uh + ∇qh ± 2ν∇ · ε(uh)

))
+ (∇ · uh, δ∇ · uh)

)
K

(19)

Fτ(uh, q) =
∑
K∈Ω̃

(
f , τ

(
(∇uh)uh + ∇qh ± 2ν∇ · ε(uh)

))
K

(20)

where τ and δ are the stability parameters. They are taken from the work of Codina [16],

τ =

(c1ν

h2 +
c2‖uh‖L∞(K)

h

)−1
δ =

c3h2

τ
. (21)

The constants c1, c2 and c3 are taken as c1 = 4, c2 = 2 and c3 = 1. Other possibilities for
non-regular elements can be found in [3]. The value of h (length of the element) is taken as
h =
√
|K|, where |K| is the area of the element.

We observe that the operators Bτ(·, ·) and Fτ(·) correspond to the stabilization terms. Since
we only consider k = 1, the terms containing ∇ · ε(uh) disappear because ∇ · ε(uh) = 0. The
stabilized terms for the momentum and continuity equations are defined as follows.
· Stabilized terms for the momentum equations

τ

(
∂uh

∂t
, (∇uh)uh

)
= τ

∫
K

[
(Π0

0∇uh)(Π0
1uh)

]
· Π0

1
∂uh

∂t
dΩ

τ((∇uh)uh, (∇uh)uh) = τ

∫
K

[
(Π0

0∇uh)(Π0
1uh)

]
·
[
(Π0

0∇uh)(Π0
1uh)

]
dΩ

τ(∇ph, (∇uh)uh) = τ

∫
K

[
(Π0

0∇uh)(Π0
1uh)

]
· (Π0

0∇qh) dΩ

τ(
∂uh

∂t
,∇qh) = τ

∫
K

(Π0
0∇qh) · Π0

1
∂uh

∂t
dΩ

τ((∇uh)uh,∇qh) = τ

∫
K

(Π0
0∇qh) ·

[
(Π0

0∇uh)(Π0
1uh)

]
dΩ

τ(∇ph,∇qh) = τ

∫
K

(Π0
0∇qh) · (Π0

0∇ph) + SK
p ((I − Π∇1 )ph, (I − Π∇1 )qh) dΩ

(22)

· Stabilized terms for the continuity equation

δ(∇ · uh,∇ · uh) = δ

∫
K

(Π0
0∇ · uh)(Π0

0∇ · uh) dΩ (23)
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We observe that in the presented VEM formulation, there appear some terms called
SK
α (·, ·) which are the VEM-stabilization part, for α = ν, t, p. These terms are a peculiar-

ity of VEM and they emerge from the projection of the basis functions. In order to compute
the above mentioned matrices, we decompose the basis functions as ϕ = Πϕ + (I − Π)ϕ.
Therefore, we project the basis functions, Πϕ, from the virtual space to a determined poly-
nomial space. Thus, these terms that involve the projection of the variables, both Π∇k and Π0

k ,
can be computed exactly via numerical integration and they ensure consistency. However,
a peculiarity of VEM is that the kernel of these projections, (I − Π)ϕ, must be considered
for some terms to ensure the VEM stability [7, 4]. The terms SK

α (,̇·) take into account the
terms (I − Π)ϕ which are not considered by the consistency part. The only condition is that
SK
α (,̇·) scales as the consistency part. In this case, it has been observed numerically that three

stability terms must be considered.
The term SK

α (,̇·) can be selected in different ways. A rigorous work on the stability term
can be found in [7, 11]. In [27, 19] are proposed different definitions for the VEM stabilization
term SK . The authors exploited the flexibility of selecting this term in order to improve the
characteristics of the method. Here, we define them as follows:

• The diffusion term,

SK
ν

(
(I − Π∇1 )uh, (I − Π∇1 )uh

)
≈ ν

[
(I − Π∇1 )−→u h

]T [
(I − Π∇1 )−→v Mx

h
]

+ν
[
(I − Π∇1 )−→v h

]T [
(I − Π∇1 )−→v My

h
] (24)

• The temporal term,

SK
t ((I − Π0

1)uh, (I − Π0
1)uh) ≈ h2

K
[
(I − Π0

1)−→u h
]T [

(I − Π0
1)−→v Mx

h
]

+h2
K
[
(I − Π0

1)−→v h
]T [

(I − Π0
1)−→v My

h
] (25)

• The stability term, τ(∇qh,∇ph)

SK
p
(
(I − Π∇1 )ph, (I − Π∇1 )qh

)
≈

[
(I − Π∇1 )−→p h

]T [
(I − Π∇1 )−→q h

]
(26)

with −→u h, −→u h and −→p h being the vector containing the degrees of freedom of uh, vh and ph in
the element K, respectively. That is to say,

uh|K =

Ndof,K∑
i=1

[−→u h]iϕi, vh|K =

Ndof,K∑
i=1

[−→v h]iϕi and ph|K =

Ndof,K∑
i=1

[−→p h]iϕi, (27)

where Ndof,K are the degrees of freedom in K. Similarly, we have that −→v Mx
h , −→v My

h and −→q h

are the degrees of freedom for the test function in the x-momentum equation, y-momentum
equation and continuity equation.

Whereas the VEM-stabilization term in the diffusion SK
ν is the classical choice in VEM,

see for instance [4], we have considered two more VEM stabilizing terms. The temporal term
stabilization is only necessary to be considered when the temporal term is dominant. However
it has been observed that it improves considerably the condition number of the matrix. On the
other hand, the term SK

p is very important in order to obtain a proper solution since it helps
to penalize those non-physical oscillations of the pressure.
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Figure 1: Domain dimensions and mesh.

As for the source term, it is approximated by

( f h, uh) =
∑
K∈Th

( f h, uh)K =
∑
K∈Th

∫
K

Π0
1 f · uh dΩ =

∑
K∈Th

∫
K

f · Π0
1uh dΩ (28)

where Eq. (28) expresses the RHS and it is computable using the degrees of freedom.
In the discrete problem, there are terms with derivatives of the velocities with respect to

time that represent the evolution of the velocity field.
We consider the generalized trapezoidal rule given by the following predictor multi-

corrector algorithm [18]. We name a = ∂u
∂t the acceleration. For the purpose of integrating in

time, we write Eq. (18) separating the terms that include the acceleration a and the others,

M(ah) + K(uh, ph) = F + Fτ (29)

where, for the sake of simplicity, we use now ah, uh and ph to denote the vectors including
the global degrees of freedom of the acceleration, velocity and pressure, respectively. In [24]
the time integration algorithm is explained in more detail.

§4. Numerical examples: Flow around a circular cylinder

This problem has been studied extensively in the literature, see for instance [14] and its ref-
erences. The flow around the circular cylinder depends on the Reynolds number which is
defined as Re = U·D

ν
, where U is the incoming flow velocity, D is the diameter, and ν is the

kinematic viscosity. The domain is depicted in Fig. 1 and the mesh consists of hexagonal
elements generated by PolyMesher, [25]. We have employed 8000 elements. We impose the
velocity (u, v) = (1, 0) on the outer boundary except on the right boundary where natural out-
flow boundary conditions are set. The no-slip boundary condition is applied on the cylinder
surface. Fig. 2 represents the velocity and pressure magnitudes for Re = 25.

We have simulated this problem for Reynolds number up to 45 in which the steady flow
becomes unstable. It is well-known that for Re that range from 6 to 45 approx. the flow is
symmetric with two vortices behind the cylinder, see Fig. 3. In contrast, for higher Re, a
Hopf bifurcation arises producing unstable flow.

As we can observed the numerical solution is stable and similar to the expected one for
this problem. Also, in comparison with the use of FEM and stabilized methods, the solution
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(a) Velocity field (b) Pressure

Figure 2: Velocity field and pressure. Re = 25.

(a) Re = 5 (b) Re = 10 (c) Re = 15

(d) Re = 25 (e) Re = 30 (f) Re = 45

Figure 3: Streamlines for several Reynolds numbers.

is close to the VEM solution we have presented [18, 24]. In [24], there are more numerical
examples related to this work.

§5. Conclusions

In this work, the Navier-Stokes equations are discretized using VEM. The numerical method
is based on the theory of stabilized methods. Thus, this method enables to select the velocity
and pressure spaces with equal order interpolation functions circumventing the Babuška-
Brezzi condition. Also, it can be applied to convection dominated flows since stabilization
terms are considered. Numerical examples show the good performance of the method.
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ANALYSIS OF THE EQUILIBRIA AND LIMIT
CYCLE OSCILLATIONS OF FLIGHT

DYNAMICS AND AIRFOIL
AEROELASTICITY

Sébastien Kolb
Abstract. In aeronautics some phenomena require a nonlinear approach because the
linear analysis is not sufficient to catch the underlying physics. Some issues met in the
fields of flight dynamics and aeroelasticity are concerned with this feature. This study
aims at showing so-called bifurcations implying unpredictable behaviours in the linear
frame such as jumps or appearances of limit cycles and thus for which a nonlinear analysis
is mandatory in order to catch the real behaviour. The methodology is based on the
continuation algorithm amongst others. Practical aspects necessary to perform such an
analysis of airplane design are here exposed.

Keywords: bifurcation theory, flight dynamics, aeroelasticity.
AMS classification: 34A34, 34K18, 37G10, 37G15.

Introduction

Some phenomena of aircraft flight dynamics and airfoil aeroelasticity must be examined
thanks to a nonlinear approach. In this context, the bifurcation theory allows to set a mathe-
matical frame, to perform an analysis and to understand the underlying dynamics.

As far as the longitudinal flight dynamics of the studied aircraft is concerned, a Hopf
bifurcation is diagnosed and gives rise to periodic orbits. Moreover there is a range of el-
evator deflections δe for which there are multiple equilibria. A pitchfork bifurcation seems
responsible for this feature leading to a possible stabilization at a nonzero bank angle φ. Both
situations may surprise the pilot and can be hazardous to manage (especially during a critical
phase such as a landing).

The other topic deals with the aeroelasticity of an airfoil whose nonlinear physics come
from the pitch stiffness (torsion) or the plunge stiffness (bending) amongst others. Computing
the equilibria and the envelope of the periodic orbits (with the continuation algorithm of the
matcont toolbox of matlab) may help investigating some types of nonlinear behaviour.

For example, the plunge stiffness can be hardened kh : h 7→ Kh

(
1 + ξhh2

)
. The obser-

vation of the bifurcation diagrams shows that the Hopf bifurcation associated to a high ξh is
supercritical whereas the one associated to a low ξh is subcritical. This last case may be a
dangerous situation since limit cycles may appear before the critical flutter speed determined
in the classical linear frame.

In this article, after presenting the employed mathematical framework of dynamical sys-
tems, the flight dynamics of the F-18 fighter aircraft is first studied. The modeling of the
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flight dynamics and the variables employed are explicited. The phases of longitudinal flight
and turn are analysed mathematically then the results are interpreted from the point of view of
flight dynamics. Afterwards the nonlinear aeroelasticity of a 2D airfoil section is examined.
Two cases of stiffness hardening are examined. The type of the associated Hopf bifurcations
is determined and the dangerousness of each situation is assessed.

§1. Mathematical framework and modeling

The models are described under the form of an ordinary differential equation (ODE) whose
function F : Rn × Rp → Rn (vector field corresponding to the dynamics) is supposed suffi-
ciently regular [5]:

Ẋ = F (X,U) (1)

where X is the so-called state vector of dimension n and U is the control vector of dimen-
sion p.

Bifurcation theory studies how the structure of the trajectories solution of a dynamical
system evolves qualitatively when the control parameters are varying. When limiting the
approach to the local bifurcations, then the focus is set on the equilibria, their changes of
stability and the apparition of multiple equilibria and limit cycles for certain values of control
parameters.

Definition 1. Equilibria are linked to zero dynamics and are the solutions (X,U) of the equa-
tion

F (X,U) = 0 (2)

For most of the equilibria (Xe,Ue) i.e. the non critical ones, the methodology of analysis
is based on the theorem of Hartman-Grobman [5] which states that

Theorem 1 (Hartman-Grobman). If DXF (Xe,Ue) has no zero or purely imaginary eigenval-
ues then there is a homeomorphism locally taking orbits of the nonlinear flow to those of the
linear flow.

There are several types of bifurcations which are met in this study i.e. the Hopf bifurcation
which is the main one for this issue, the pitchfork bifurcation, the saddle-node bifurcation [5].

Theorem 2 (Hopf). If F (X,U) = 0 has an equilibrium (Xe,Ue) for which DXF (Xe,Ue) has:

1. a pair of purely imaginary eigenvalues λ, λ̄ and no other eigenvalues with zero real
parts,

2. ∂Reλ(u)
∂u |ue , 0 (derivative of the real part of one eigenvalue λ with respect to one control

state u of the control vector U),

then there is a surface of periodic solutions in the center manifold which has a quadratic
tangency with the eigenspace of λ (ue) , λ̄ (ue).

As far as the practical aspects are concerned, the computations will be made with the
numerical bifurcation analysis toolbox matcont [2]. First the analysis will be focused on the
flight dynamics of a fighter aircraft and next on the aeroelasticity of a two-dimensional airfoil.
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Figure 1: F/A-18 High Alpha Research Vehicle (HARV) flown by NASA’s Dryden
Flight Research Center, Edwards, CA (https://www.dfrc.nasa.gov/Gallery/Photo/
F-18HARV/Large/EC89-0096-149.jpg) with added annotations for controls and body-
fixed frame

§2. Flight dynamics

The flight dynamics of a F-18 fighter aircraft is studied here. After presenting the model
used, two flight phases are studied, that is to say longitudinal flight and turn. Each time, the
link is made between the mathematical results and a practical interpretation of the aircraft
behaviour.

2.1. Description of the flight dynamics model
The flight dynamics model [4] is taken “as is” that is to say phenomena are observed and
analysed but the inner content of the model is not deeply studied.

Concerning the mathematical model, as for the (smooth) function F associated to the
dynamical system (1), its expression is polynomial or piecewise polynomial due to the iden-
tification of the aerodynamic forces and moments. When studying the whole flight dynamics,
the control vector is U = {δa, δe, δr, δx} (figure 1 explicits the parts of aircraft especially the
tails involved for each control) and the state vector X = {M, α, β, p, q, r, φ, θ, ψ, x, y, h} con-
tains the variables of airspeed, angles, rotation rates and position (illustrated in figure 2). For
a fighter aircraft, the MachM which corresponds to the dimensionless ratio of the airspeed
to the local speed of sound vs is often preferred to the classical airspeed V (M = V/vs).

As far as the pure longitudinal model is concerned, it takes only into account the move-
ment in the vertical plane (no transverse motion), that’s why there remain only the state vector
X = {M, α, q, θ, h} and the control vector U = {δe, δx} (states presented in the middle of fig-
ure 2 and two controls including elevator deflection δe of the horizontal tail and thrust throttle
δx) and besides the other variables are fixed to zero.

The equations of flight dynamics follow the formalism of [4]. The six first ones describe
the physics and come from the Newton law (forces and moments), the six last ones are linked
to the dynamics of the Euler angles (φ, θ, ψ) and of the position components (x, y, h) and
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Figure 2: Flight dynamics variables: Euler orientation angles (φ, θ, ψ), aerodynamic angles
(α, β), angular velocities (p, q, r), flight-path angle γ and airspeed V [6]

traduce some kinematic relations between the variables:

Ṁ =
1

mvs

[
Tmδx cosα cos β −CD

1
2
ρ(vsM)2S − mg sin γ

]
α̇ = q −

1
cos β

[
(p cosα + r sinα) sin β

+
1

mvsM

(
Tmδx sinα + CL

1
2
ρ(vsM)2S − mg cos µ cos γ

)]
β̇ =

1
mvsM

[
−Tmδx cosα sin β + CY

1
2
ρ(vsM)2S + mg sin µ cos γ

]
ṗ =

Iy − Iz

Ix
qr +

1
2Ix

ρ(vsM)2S bCl

q̇ =
Iz − Ix

Iy
pr +

1
2Iy

ρ(vsM)2S cCm

ṙ =
Ix − Iy

Iz
pq +

1
2Iz

ρ(vsM)2S bCn

φ̇ = p + q sin φ tan θ + r cos φ tan θ
θ̇ = q cos φ − r sin φ
ψ̇ = (q sin φ + r cos φ) sec θ
ẋ = vsM cos γ cos χ
ẏ = vsM cos γ sin χ

ḣ = −vsM sin γ

(3)

The aerodynamic coefficients of drag CD, side force CY , lift CL, roll moment Cl, pitch
moment Cm and yaw moment Cn are piecewise polynomial functions of the angles of attack
α, sideslip β and deflection angles of elevator δe, aileron δa, rudder δr and rates of roll p,
pitch q and yaw r. More precisely the aerodynamic coefficients are functions of the following
variables:
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CD(α),CY (β, α, δr, δa) ,CL (α, δe) ,Cl (α, β, p, r, δa, δr) ,Cm (α, q, δe) ,Cn (α, β, r, δa, δr) (4)

In the aforementioned equations (3), χ, γ, µ are the wind axes orientation angles (between
the aerodynamic and body frames) whereas φ, θ, ψ are the Euler orientation angles (between
the body and Earth frames). Moreover the speed of sound vs and the air density ρ depend
on the altitude h. Some data correspond to characteristic dimensions of the aircraft such as
the wing span b, the mean aerodynamic chord c, the mass m, the reference area S (wing
surface) and the principal moments of inertia Ix, Iy, Iz. Besides the thrust throttle δx is here
the percentage of maximum available thrust (T = Tmδx).

The steps of the analysis methodology are the following ones. The locus of equilibrium
points (bifurcation diagram) is first determined. Then the values of critical control param-
eters (bifurcation values) are calculated and afterwards potentially the locus of bifurcation
points. Finally the link is made between the mathematical results (bifurcation theory) and
the physical interpretation from the flight dynamics viewpoint. Beneath time simulations are
performed so as to illustrate concretely the results of the nonlinear analysis.

2.2. Longitudinal flight

In this section, the longitudinal flight is studied that is to say only the flight in the vertical
plane is considered and there are no sideslip and no lateral rotations (for the equilibria of the
nominal flight). A classical result of flight dynamics is that for one elevator deflection angle
and one thrust throttle position, there is only one (longitudinal) equilibrium. Especially since
for a longitudinal equilibrium the sum of the pitching moments must be zero, one elevator
deflection δe correspond to one angle-of-attack α [8]. But for this F-18 aircraft, several critical
behaviours are observed.

2.2.1. Mathematical analysis and numerical results

In order to conduct the analysis, the bifurcation diagram is plotted in figure 3. It presents the
angles-of-attack α (equilibria and limit cycles) versus elevator deflection angle δe for a thrust
throttle fixed at δx ≈ 40%. A Hopf bifurcation [5] is diagnosed at δe ≈ −14.9 deg and creates
limit cycles.

Another classical diagram is the locus of bifurcation points presented in figure 4 which
shows the critical controls of elevator deflection δe and thrust throttle δx for which a bifurca-
tion occurs.

There are Hopf bifurcations and branch points. The generalized Hopf bifurcation (where
the first Lyapounov coefficient vanishes [2]) at the critical control parameters δx ≈ 53%, δe ≈

−14.3 deg changes the way periodic orbits are created i.e. for lower or higher elevator deflec-
tions than the bifurcation value. The branch points indicates a new phenomenon. Indeed there
is a range of elevator deflections (δe ∈

[
−12 deg,−9 deg

]
, δx ≥ 50%) with multiple equilibria

(two stable and one unstable). Besides the two distinct curves intersect at a zero Hopf bifur-
cation (corresponding to a pair of purely imaginary eigenvalues and a zero eigenvalue [2]) at
δx ≈ 82%, δe ≈ −11.3 deg.
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Figure 3: Bifurcation diagram for the longitudinal flight of a F-18 aircraft showing angle-of-
attack α in function of elevator deflection angle δe

Figure 4: Locus of the bifurcation points for the (δe, δx) controls

We will next consider the case of a thrust throttle fixed at δx ≈ 70% and study the dif-
ferent bifurcations appearing and especially which physical variables and aircraft mode are
involved.

On the one hand, the Hopf bifurcation at the elevator deflection δe ≈ −11.9 deg involves
the variables (M, α, q, θ) and is associated to the (pair of complex conjugate) eigenvalues
λH = ±0.298i. The aircraft begins suddenly to oscillate at a flight path angle of γ = 3.7 deg
after this destabilization. This is a similar phenomenon as the one illustrated figure 3.

On the other hand, the branch point at the elevator deflection δe ≈ −10.9 deg involves
the lateral variables (β, p, r, φ) and is associated to the real eigenvalue λBP = 0 (the whole
model of flight dynamics is exploited for this calculation). That’s why from this equilibrium
point, it is possible to have stable equilibria with nonzero bank angle φ in an asymmetric
configuration.

The following time simulations (figures 5 and 6) illustrates both behaviours. Figure 5
shows the behaviour for elevator deflections δe higher and lower than the critical Hopf bi-
furcation value. A stable limit cycle exist for δe = −13 deg and a stable equilibrium for
δe = −11.5 deg.

Besides between the two branch point values at elevator deflection angles of δe = −9.1 deg
and δe = −10.9 deg, the classical longitudinal equilibrium becomes unstable and the air-
craft stabilizes itself at a nonzero bank angle. Figure 6 shows time simulations for an ini-
tial bank angle φ = −0.3 rad and different elevator deflection angles of δe = −12 deg and
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Figure 5: Time simulations for elevator deflection angles δe higher and lower than the critical
Hopf bifurcation value

Figure 6: Time simulations for different elevator deflection angles δe (between and outside
the critical branch point values)

δe = −10.5 deg.
Near the bifurcation point, a small change of the elevator deflection angle δe can render

the classical equilibrium unstable (at a zero bank angle) and leads to a stabilization at a
nonzero bank angle φ.

Figure 7 is the bifurcation diagram associated to the longitudinal flight. The bank angle
φ at equilibrium is given in function of the elevator deflection angle δe for a throttle δx ≈

70%. In particular, there is a range of elevator deflection angles δe with two stable equilibria
(nonzero bank angles) and one unstable equilibrium.

Pitchfork bifurcations occur for α ≈ 0.1rad ≈ 5.8 deg and α ≈ −0.037rad ≈ −2.1 deg
and give rise to several branches of equilibria.

2.2.2. Physical interpretation

In the longitudinal flight dynamics of the F-18 fighter, Hopf bifurcations and pitchfork bifur-
cations are met. A practical consequence of the existence of a Hopf bifurcation is that the
pilot can be astonished by the sudden apparition of peridic orbits during a seemingly normal
flight at equilibrium. For example, during a phase with a nonzero flight-path angle γ such as
a landing, this sudden change of behaviour can be very hazardous. The loss of stability of the
phugoid mode (exchange of airspeed and altitude [8]) seems to be responsible for that.

Moreover there exist also pitchfork bifurcations implying the existence of multiple equi-
libria for a range of elevator deflection angles δe: two stable equilibria with nonzero bank
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Figure 7: Bifurcation diagram for the longitudinal flight of a F-18 aircraft showing bank angle
φ in function of the elevator deflection angle δe

angle φ besides the classical symmetric longitudinal equilibrium (unfortunately unstable).
Thus the aircraft can stabilize itself in an unusual asymmetric configuration. Since this mo-
tion is very slow and is recoverable by a reverse control action, it seems manageable by a
pilot. Nevertheless this propensity of the aircraft to engage itself in a turn due to the loss of
stability of the so-called spiral mode [8] may be unpleasant for a pilot.

After analysing the longitudinal flight dynamics and showing some interesting bifurca-
tions and unusual behaviours, the next examined flight phase will be the turn.

2.3. Turn
The effect of aileron deflections on the turn properties (and especially on the roll rate p) are
studied here. We will see that it may give rise to nonlinear phenomena and to unexpected
behaviour.

The bifurcation diagram is first plotted in figure 8 with the thrust throttle fixed at δx = 0.5
and the elevator deflection angle at δe = −15◦. Limit points (also called fold or saddle-
node bifurcation [5]) appear. Theses last ones lead to a jump of roll rate p near the aileron
deflections δa = ±32 deg and is illustrated in the time simulations of figure 9. Nevertheless
at an aileron deflections δa = ±18 deg, the high roll rate may suddenly disappear.

From the physical point of view, at the mechanical limits of the authorized aileron de-
flection range, the pilot must be careful since the flight dynamics meets some jumps and
hysteresis phenomena. The irreversible, quick and unexpected nature of such phenomenona
can lead to a hazardous situation with a high roll rate. Thus an advice for the the pilot is to
avoid using the ailerons too closely of their mechanical limits.

After examining the flight dynamics of a F-18 fighter aircraft during the phases of longi-
tunal flight and turn thus revealing the existence of diverse types of bifurcations and of unin-
tuitive behaviours, we will next treat the case of nonlinear aeroelasticity of a two-dimensional
airfoil.

§3. Airfoil aeroelasticity

After describing the classical model for the aeroelasticity of a 2D airfoil section and its non-
linear terms, the influence of these last ones on the global system behaviour is assessed.
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Figure 8: Bifurcation diagram associated to a F-18 turn whose roll rate p is piloted with the
control δa of aileron deflection

Figure 9: Time simulations for different aileron deflections (δa = 32 deg, δa = 33 deg and
δa = −17.9 deg, δa = −17 deg)

3.1. Airfoil aeroelasticity model
The classical mathematical model is based on a force equation (including lift force, plunge
stiffness) and a moment equation (including pitching moment, pitch stiffness) [3]:(

mT mW xαb
mW xαb Iα

) (
ḧ
α̈

)
+

(
ch 0
0 cα

) (
ḣ
α̇

)
+

(
kh(h) 0

0 kα(α)

) (
h
α

)
=

(
−L
M

)
(5)

Writing the second order ordinary differential equation under the canonical form, the state
vector is X =

{
h, α, ḣ, α̇

}
and the control vector is U = {V, β} (variables of airspeed and flap

deflection angle intervening in the calculation of lift and pitching moment).
The aeroelasticity of an airfoil may present nonlinear features. The ones which are con-

sidered here come from the pitch (torsional spring kα) or plunge stiffness (translational spring
kh). As far as the overall behaviour is considered, apart from the classical change of equi-
librium stability at the critical flutter speed, they impact the way limit cycle oscillations are
created near the corresponding Hopf bifurcation point.

In order to perform the concrete analysis, the different diagrams of bifurcation theory are
plotted and allow to determine the underlying dynamics and the structural changes. Generally
in order to determine the Hopf bifurcation type, the algebraic expressions (normal forms) are
used and allows to calculate the Lyapounov coefficient [5]. Here numerical simulations are
performed so as to see the behaviours linked to the different situations e.g. periodic orbits,
equilibria which are stable or unstable.

Nevertheless for the aeroelasticity problem, since the main equilibrium state value is
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clearly known to be zero, the most important points consist in determining the critical flutter
speed, the Hopf bifurcation type that is to say whether it is supercritical with stable limit cy-
cles or subcritical with unstable limit cycles and potentially the enveloppe of periodic orbits.
It implies respectively slowly growing oscillations or oscillations of large amplitude even be-
fore reaching the bifurcation critical speed. From the practical point of view, the last situation
is quite dangerous and must be avoided [3].

3.2. Sensitivity to physical parameters

Several conclusions can be drawn concerning the sensitivity to physical parameters. The
plunge stiffness seems to be favourable that is to say to imply a supercritical Hopf bifurcation.
On the contrary, the pitch stiffness seems to be unfavourable in the sense that they induce a
subcritical Hopf bifurcation. These statements will be illustrated in the following section.

In the model furnished in [9] and [7], the stiffness is hardened towards either plunge or
pitch. The plunge stiffness comes from the spring constant for plunge degree of freedom. A
nonlinear law is taken into account kh : h 7→ Kh

(
1 + ξhh2

)
h with ξh = 0.09 and ξh = 50

instead of the standard linear kh : h 7→ Khh. The Hopf bifurcation associated to ξh = 0.09 is
subcritical and the one associated to ξh = 50 is supercritical as can be seen in the bifurcation
diagrams (figure 10). As a consequence, the plunge stiffness hardening seems to have a nefast
effect on the overall behaviour.

For the the second case study, the benchmark described in [1] is exploited for the linear
part and the pitch stiffness follows the chosen nonlinear law

kα : α 7→ Kα

(
1 + 10α2

)
α (6)

In figure 11, the bifurcation diagram is plotted and contains two bifurcations. There are
a classical Hopf bifurcation which is supercritical and also a branch point (pitchfork bifurca-
tion), this last one is linked to a real negative eigenvalue which becomes positive (the system
remains globally unstable). The linear frame would only determine the respective flutter
speed and divergence speed of the zero equilibrium. But in the nonlinear frame, the presence
of stable limit cycles created at the Hopf bifurcation reduces the negative impact of the unsta-
ble equilibrium since the amplitude of the oscillations are limited. If the destabilization due
to flutter is managed thanks to a feedback loop, then the presence of stable equilibria after the
pitchfork bifurcation limits also the amplitudes of plunge and pitch. Thus the pitch stiffness
hardening (kα : α 7→ Kα

(
1 + ξαα

2
)
α instead of kα : α 7→ Kαα) seems to have a beneficial

effect.

Conclusion

The bifurcation theory allows to show and to explain some phenomena of aircraft flight dy-
namics and airfoil aeroelasticity. The sudden apparitions of periodic orbits and of multiple
equilibria are diagnosed. The characterisation of the associated bifurcations in terms of type
and control parameter values permits to assess their level of hazardousness from the practical
point of view.
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Figure 10: Bifurcation diagrams with airspeed V as control parameter presenting limit cycles
and equilibria for nonlinear plunge stiffness with ξh = 50 (left) and ξh = 0.09 (right)

Figure 11: Bifurcation diagrams with airspeed V as control parameter presenting limit cycles
and equilibria for nonlinear pitch stiffness with ξα = 10

Concerning the longitudinal flight dynamics, the existence of periodic orbits and of equi-
libria at a nonzero bank angle present a risk for the flight safety in a situation which seems
apparently completely normal. For the aircraft turns, the fold bifurcations and associated
jumps reveal the effective range of the lateral control which can be used without any prob-
lem.

As far as the airfoil aeroelasticity is concerned, the hardening of the stiffness in pitch or in
plunge can have a positive or a negative effect. Determining the type of the associated Hopf
bifurcation that is to say supercritical or subcritical is the main feature so as to evaluate the
dangerousness of the configuration and especially the sufficiency of the determination of the
classical critical flutter speed.

Nomenclature

Common
U control vector X state vector
L lift (N) M pitching moment (N.m)
V airspeed (m/s)
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Flight dynamics Aeroelasticity
α angle-of-attack (rad) mT total mass of the wing (kg)
β sideslip angle (rad) mW wing mass alone (kg)
δa aileron deflection angle (deg) Iα mass moment of inertia about the elas-

tic axis
δe elevator deflection angle (deg) b half chord length (m)
δr rudder deflection angle (deg) xα nondimensionalized distance between

the center of mass and the elastic axis
δx thrust throttle (%) h plunge (m)
γ flight-path angle (rad) α angle-of-attack/pitch angle (rad)
φ bank angle (rad) β flap deflection angle (rad)
θ pitch angle (rad) ρ air density (kg/m3)
ψ heading angle (rad) ch plunge structural damping coefficient
x, y aircraft position coordinates (m) cα pitch structural damping coefficient
h altitude (m) kh plunge stiffness
p roll rate (rad/s) kα pitch stiffness
q pitch rate (rad/s)
r yaw rate (rad/s)
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PERIODIC SOLUTIONS IN THE
HÉNON-HEILES ROTATING SYSTEM

Víctor Lanchares, Manuel Iñarrea, Jesús Palacián, Ana Isabel
Pascual, José Pablo Salas and Patricia Yanguas

Abstract. We consider a generalized Hénon-Heiles system in a rotating frame. Our aim
is to prove the existence of periodic orbits in a neighborhood of the origin for appropri-
ate values of the rotating frequency. To this end, we use classical averaging theory to
demonstrate that the number of periodic orbits is in correspondence with the equilibrium
solutions of the original system, with the same type of stability.

Keywords: Generalized Hénon-Heiles system, periodic orbits, averaging.

AMS classification: 70H08, 70H09, 70H12, 70H15, 34C25, 37C27.

§1. Introduction

Equilibrium points and periodic orbits of dynamical systems are of special interest to under-
stand its dynamics. They organize the phase structure and, some times, the appearance of
heteroclitic connections allows migration of orbits giving rise to a kind of transport phenom-
ena. For instance, this is what happens in Celestial Mechanics in the framework of the three
body problem [6, 10], but also in the context of galactic dynamics, where the existence of
heteroclitic connections are proposed as a way to explain the formation of spiral arms [12].
The model considered in [12] is based on a logarithmic potential. However, many galactic
models consider cubic or quartic polynomial potentials [3]. This is the case of the well known
Hénon-Heiles system, used to describe stellar orbits under the action of the galaxy’s core [7].
Although this model has been considered as a paradigmatic system to study chaos and other
properties of planar dynamical systems in many different fields, it does not take into account
the effect of a rotating framework. In this way, de Zeeuw & Merritt [5] consider the cubic
potential of the Hénon-Heiles system for a rotating galaxy and other authors consider a sim-
ilar model in the context of atomic physics [2, 9]. The presence of the rotating frequency
makes the system more interesting, from a dynamics point of view, with the appearance of
Lagrangian type equilibrium points. In [8], a detailed analysis of the stability of these points
is performed. One of the remarkable facts of this system is the existence of a critical value of
the rotating frequency in such a way that the nature of the critical points, as critical points of
the effective potential, reverses. This is an interesting situation that deserves more insight. In
particular, the existence of periodic orbits is the next step in understanding the dynamic of the
system. To prove the existence of periodic orbits, we will use the classical averaging theory
[13] used successfully to find periodic orbits in many different dynamical systems [1, 4, 11].
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§2. The system

Let us consider the Hamiltonian system defined by

H =
1
2

(X2 + Y2) − ω(xY − yX) +
1
2

(x2 + y2) + ayx2 + by3, (1)

which can be viewed as a generalized Hénon-Heiles system in a rotating reference frame
with angular velocity ω, where we assume, without loss of generality, a > 0 and ω > 0. The
equations of the motion are given by

ẋ =
∂H

∂X
= X + ωy, Ẋ = −

∂H

∂x
= −x + ωY − 2axy,

ẏ =
∂H

∂Y
= Y − ωx, Ẏ = −

∂H

∂y
= −y − ωX − ax2 − 3by2.

(2)

It is clear that the origin is always an equilibrium point. Moreover, three more equilibrium
points can appear, depending on the values of the parameters a and b. An interesting fact is
that if

E0 ≡ (x0, y0, X0,Y0)

is an equilibrium point for ω = ω0, then

Ê0 ≡ (−x0/ω
2
0,−y0/ω

2
0,−X0/ω

4
0,−Y0/ω

4
0)

is also a critical point for ω = 1/ω0. In this way, there is a correspondence between the cases
0 < ω < 1 and ω > 1. However, there is a slight difference. Indeed, equilibrium points are
related to the critical points of the effective potential

Φeff = H −
1
2

(ẋ2 + ẏ2) =
1
2

(x2(2ay − ω2 + 1) + y2(2by − ω2 + 1)), (3)

in such a way that if E0 is an equilibrium point of the system (1), then (x0, y0) is a critical
point of the effective potential Φeff . In this way, if E0 is a minimum (maximum) of the
effective potential, then Ê0 is a maximum (minimum) of Φeff . In the case E0 is a saddle point,
the same happens for Ê0. As a consequence, linear stability properties cannot be extended
directly from the case 0 < ω < 1 to the case ω > 1 if the corresponding critical point is a
minimum (maximum). While a minimum of Φeff is always a linear stable equilibrium, the
same cannot be said for a maximum. Nevertheless, if the critical point is the origin, then it is
always a linear stable equilibrium, it does not matter a minimum or a maximum. Indeed, the
associated eigenvalues are

λ1,2 = ±i(ω − 1), λ3,4 = ±i(ω + 1). (4)

For a detailed study of equilibrium points and their stability properties the reader is referred
to [8].

It is worth noting that in the transition case, ω = 1, the origin loses its elliptic charac-
ter, as two zero eigenvalues appear, precisely those coming from ±i(ω − 1). Moreover, the
origin is the unique equilibrium point of the system and a bifurcation occurs when all the
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equilibria come into coincidence. Thus, what happens in the vicinity of the origin as ω → 1
deserves some analysis. In particular, we focus on the existence of periodic orbits and their
bifurcations, assuming that ab , 0, in order to avoid degenerate situations, when non iso-
lated equilibria appear. To begin with, we observe that, being the origin an elliptic point with
associated eigenvalues given by (4), the Hamiltonian function can be transformed into an
equivalent one made of two coupled harmonic oscillators with frequencies 1 − ω and 1 + ω.
To this end, we transform the system by means of the canonical change of variables

x = −
x1
√

2
+

x2
√

2
, X = −

X1
√

2
+

X2
√

2
,

y =
X1
√

2
+

X2
√

2
, Y = −

x1
√

2
−

x2
√

2
.

(5)

The new Hamiltonian is given by

H2 =
1
2

(1 − ω)(x2
1 + X2

1) +
1
2

(1 + ω)(x2
2 + X2

2) +
X1 + X2

2
√

2
(a(x1 − x2)2 + b(X1 + X2)2). (6)

§3. Averaging and periodic orbits

Taking into account that ω ≈ 1, one of them oscillates with high frequency with respect to
the other one and the theory of averaging is suitable to study the system. In particular, the
following Theorem [13] can be applied

Theorem 1. Let us consider the differential system

ẋ = ε f (t, x) + ε2g(t, x, ε), (7)

with x ∈ D ⊆ Rn, t ≥ 0. Moreover f , g, ∂ f /∂x, ∂2 f /∂x2, ∂g/∂x are defined, continuous and
bounded by a constant M independent of ε in [0,∞) × D, 0 ≤ ε ≤ ε0. In addition f and g
are T-periodic in t (T independent of ε). Then, if p is a non degenerate critical point of the
system

ẏ = ε f 0(y),

where

f 0(y) =
1
T

∫ T

0
f (t, y) dt,

there exists a T-periodic solution φ(t, ε) of (7) which is close to p such that

lim
ε→0

φ(t, ε) = p.

The key point is to transform the Hamiltonian differential system defined by (6) into a
system in the form (7). This can be done in several steps. First of all, taking into account that
we are considering ω ≈ 1, we scale the variables and the frequency according to

x j, X j → εx j, εX j, j = 1, 2, 1 − ω→ εν.
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Substituting into the Hamiltonian function, and taking out the common factor ε2, we arrive to

H2 = x2
2 + X2

2 +
ε

2
√

2

[√
2ν(x2

1 + X2
1 − x2

2 − X2
2) + b(X1 + X2)3 + a(X1 + X2)(x1 − x2)2

]
.

The equations of the motion are given by

ẋi =
∂H2

∂X j
, Ẋ j = −

∂H2

∂x j
, j = 1, 2.

Now, we introduce polar coordinates for the pair of variables (x2, X2) in the form

x2 = r cos θ, X2 = r sin θ.

Thus, the differential equations for r and θ turn to be

ṙ =

(
∂H2

∂X
cos θ −

∂H2

∂x
sin θ

)
, θ̇ = −

1
r

(
∂H2

∂x
cos θ +

∂H2

∂X
sin θ

)
.

Explicitly, these equations read as

ṙ =
ε

4
√

2
(a(x1 − r cos θ)(r + 2x1 cos θ − 3r cos 2θ − 4X1 sin θ)+

6b cos θ(X1 + r1/2 sin θ)2
)
,

θ̇ = −2 +
ε

2
√

2r

(
2
√

2νr + a(x1 − r cos θ)(2X1 cos θ − (x1 − 3r cos θ) sin θ)−

3b(X1 + r sin θ)2 sin θ
)
,

(8)

whereas for the variables x1, X1 we obtain
ẋ1 =

ε

4

(
4νX1 + 3

√
2b(X1 + r1/2 sin θ)2 +

√
2a(y − r1/2 cos θ)2

)
,

Ẋ1 =
ε

2
√

2

(√
2νx1 − a(x1 − r1/2 cos θ)(X1 + r1/2 sin θ)

)
.

(9)

On the other hand, the Hamiltonian function is expressed as

H2 = r2+
ε

2
√

2

(√
2ν(x2

1 + X2
1 − r2) + a(X1 + r sin θ)(x1 − r cos θ)2 + b(X1 + r sin θ)2

)
. (10)

From this expression, the radial variable can be obtained as a power series in ε. Up to the first
order we get

r ≈
√

h +
ε

4
√

2h

(√
2ν(h − x2

1 − X2
1)

− a(X1 + h1/2 sin θ)(x1 − h1/2 cos θ)2 − b(X1 + h1/2 sin θ)3
)
.

(11)
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Now, we introduce the variable θ as a new time in the differential equations for x1 and X1.
After replacing r by (11), and expanding in power series of ε up to the second order, we get

dx1

dθ
= −

ε

4
√

2

(
2
√

2νX1 + a(x1 − h1/2 cos θ)2 + 3b(X1 + h1/2 sin θ)2
)

+ ε2F(x1, X1, θ; h, ε),

dX1

dθ
=

ε

2
√

2

(√
2νx1 + a(x1 − h1/2 cos θ)(X1 + h1/2 sin θ)

)
+ ε2G(x1, X1, θ; h, ε),

where F and G are 2π-periodic in θ and satisfy the conditions of Theorem 1 for h > 0. Thus,
according to this Theorem, the non degenerate equilibrium points of the averaged system give
rise to periodic orbits. The equations of the averaged system are given by

x1

dθ
= −

ε

8
√

2

(
4
√

2νX1 + a(h + 2x2
1) + 3b(h + 2X2

1)
)
,

dX1

dθ
=

ε

2
√

2

(√
2νx1 + ax1X1

)
.

By equating to zero these equations, we obtain the equilibrium points

E1,2 ≡

±
√

4ν2(2a − 3b) − a2h(1 + 3b)
2a3 ,−

√
2ν
a

 ,
E3,4 ≡

0, −2ν ±
√

4ν2 − 3bh(a + 3b)

3
√

2b

 .
Consequently, based on Theorem 1, we can establish the following result

Theorem 2. For ε , 0 sufficiently small and at energy level h > 0 of the Hamiltonian H
given in (1) and ω close to one, we find for its associated Hamiltonian system (2) periodic
solutions bifurcating from the origin. The number of these periodic solutions depends on the
parameters a, b, h and ν. Assuming a > 0

1. If 4ν2(2a − 3b) − a2h(1 + 3b) > 0 and 4ν2 − 3bh(a + 3b) > 0, there are four periodic
solutions.

2. If (4ν2(2a−3b)−a2h(1 + 3b))(4ν2 −3bh(a + 3b)) < 0, there are two periodic solutions.

3. If 4ν2(2a − 3b) − a2h(1 + 3b) < 0 and 4ν2 − 3bh(a + 3b) < 0, there are not periodic
solutions.

Even more, the linear stability of these orbits follows from the stability character of the
equilibrium points, which is summarized in Figure 1. A remarkable fact is that, for h small
enough, the number of periodic orbits, their bifurcations and stability match with the number
of critical points, bifurcations and character of the critical points of the effective potential
associated to the original Hamiltonian system given by (1).

The periodic orbits can be computed by inverting the process of averaging. Thus, starting
with a value of h and ν and the coordinates of an equilibrium points, once fixed a and b, we
recover r from (11) to obtain the original set of coordinates (x, y, X,Y), after using (5). As
an example, we depict the four periodic orbits when ω = 0.9, h = 0.08 and a and b are the
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Figure 1: Stability character of the equilibrium points of the averaged system, when a = 1, in
terms of b and h.

classical Hénon-Heiles parameters (a = 1, b = −1/3), that can be viewed in the left panel of
Figure 2. There are four periodic orbits, a stable one centered at the origin and three unstable
orbits that are at the same energy level. As a consequence, there is a heteroclitic connection
between the three unstable orbits, allowing a mechanism of transport between different zones
of the phase space (see the right panel of Figure 2).
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LIPSCHITZ SPACES ASSOCIATED TO THE
HARMONIC OSCILLATOR

Marta de León-Contreras and José L. Torrea

Abstract.
We define Lipschitz classes adapted to the Harmonic Oscillator

H = −∆ + |x|2, x ∈ Rn.

These classes will be defined either through a pointwise condition or through some in-
tegral conditions, in this case by using a semigroup approach. We will prove that the
different definitions are equivalent. The semigroup approach will allow us to prove regu-
larity properties of some Bessel operators associated toH .

Keywords: Harmonic Oscillator, Lipschitz Hölder spaces, Semigroups.
AMS classification: 35R11, 35R09, 34A08, 26A33.

§1. Introduction

Along this note, we shall denote byH the Harmonic Oscillator

H = −∆ + |x|2, x ∈ Rn.

Our purpose is to define Lipschitz classes adapted to H . These classes will be defined ei-
ther through a pointwise condition or through some integral conditions, in this case by us-
ing a semigroup approach. We will prove that the different definitions are equivalent. The
semigroup approach will allow us to prove regularity properties of some Bessel operators
associated toH . Several of the results contained in this note can be found in [1] and [2].

Lipschitz (also called Hölder) spaces are classes of smooth functions which are basic in
functional analysis, Fourier analysis and partial differential equations. Roughly speaking, for
certain k ∈ N ∪ {0} and k < α < k + 1, the space Lipschitz-α is the class of functions that are
more regular than Ck (the space of functions whose k-order derivatives are continuous) and
less regular than Ck+1. Lipschitz spaces are usually defined through pointwise estimates but
this approach is not convenient when we want to prove regularity results of some differential
operators, because in most of cases it leads to quite involved computations. However, the
semigroup description of Lipschitz spaces is really useful for this purpose. This approach was
introduced by Taibleson and Stein in the 60’s, see [8, 13, 14, 15]. They characterized classical
Lipschitz spaces through the heat semigroup, ey∆ and the Poisson semigroup e−y

√
−∆. These

characterizations raise the question of analyzing some Hölder spaces associated to different
Laplacians and to find the pointwise and semigroup estimate characterizations. In the case
of the Ornstein-Ulhenbeck operator O = − 1

2 ∆ + x · ∇, in [3] some Lipschitz classes were
defined by means of its Poisson semigroup, e−y

√
O, and in [4] a pointwise characterization
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was obtained for 0 < α < 1. In the case of the classical parabolic operator ∂t − ∆, in [12]
Lipschitz classes adapted to this operator were characterized through the Poisson semigroup.
In the case of the Hermite operator on Rn, n ≥ 1, H = −∆ + |x|2, adapted Hölder classes
were defined pointwise in [11]. These last spaces were characterized in [1] by means of the
Poisson semigroup, e−y

√
H , also in the parabolic case. Laplacians More recently, see [2],

some spaces have been defined in the case of Schrödinger operatorsL = −∆+V in Rn, n ≥ 3,
where V is a nonnegative potential satisfing(

1
|B|

∫
B

V(y)qdy
)1/q

≤
C
|B|

∫
B

V(y)dy, q > n/2, for every ball B. (1)

It could be said that the breakdown of the analysis of Schrödinger operators was the paper by
Shen, [7]. It relays on estimates of the heat kernel of e−tL. However this method only covers
the range n ≥ 3.

The Harmonic Oscillator is probably the most important example among the family of
Schrödinger operators. It has the advantage that the kernel of the heat semigroup, e−tH f (x) is
known explicitly. Along this note we shall show how this fact allows us to built a satisfactory
theory of Lipschitz spaces for all n ≥ 1. In this way we shall complement some results of
[1] and [2]. We do not want to be exhaustive in this presentation. However we shall remark
those results that are new. Sometimes the proofs will be only suggested.

Definition 1 (Hermite Hölder spaces). Let 0 < α < 2. We consider the space of functions

Cα
H

(Rn) =
{
f : (1 + | · |)α f (·) ∈ L∞(Rn), and sup

|z|>0

‖ f (· + z) + f (· − z) − 2 f (·)‖∞
|z|α

< ∞.
}

with associated norm
‖ f ‖Cα

H
= [ f ]Mα + [ f ]Cα

H
.

Where [ f ]Mα = ‖(1 + | · |)α f (·)‖∞ and [ f ]Cα
H

= sup
|z|>0

‖ f (· + z) + f (· − z) − 2 f (·)‖∞
|z|α

.

Remark 1. This definition was already considered for Schrödinger operators L, where the
function 1 + |x| was substituted by the inverse of the so called critical radius ρ(x), see (4). It
can be seen that, if 0 < α < 1, the last space coincides with the space such that [ f ]Mα < ∞
and sup|z|>0

‖ f (·+z)− f (·)‖∞
|z|α . This space was defined in [10], [11].

Definition 2. Let e−yH = Wy and e−y
√
H = Py be the heat and Poisson semigroups associated

toH . For α > 0 we define the spaces ΛW
α/2 and ΛP

α as

(A) ΛW
α/2 =

{
f : [ f ]Mα < ∞ and

∥∥∥∂k
yWy f

∥∥∥
L∞(Rn)

≤ Cky
−k+α/2, k = [α/2] + 1

}
. We shall

denote by S W
α [ f ] the infimum of the constants Ck above.

(B) ΛP
α =

{
f : MP[ f ] =

∫
Rn

| f (x)|
(1+|x|)n+1 dx < ∞, and

∥∥∥∂k
yPy f

∥∥∥
L∞(Rn)

≤ Bky
−k+α, k = [α] + 1

}
.

We shall denote by S P
α[ f ] the infimum of the constants Bk above.

We observe that condition [ f ]Mα < ∞ implies that in particular the function f must be
bounded. Moreover, if f ∈ ΛP

α then ρ(·)−α f ∈ L∞(Rn), see [2] Theorem 1.9. For H it is
known that ρ(x) = 1

1+|x| . Therefore we get that f ∈ L∞(Rn), so ΛP
α coincides with the space
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defined in [1]. We will also see that this condition is natural as soon as either S P
α[ f ] < ∞ or

S W
α [ f ] < ∞.

The main Theorem of this note is the following

Theorem 1. Let 0 < α < 2, n ≥ 1. The following statements are equivalent:

(1) f ∈ Cα
H

(Rn), (2) f ∈ ΛW
α/2, (3) f ∈ ΛP

α/2.

Moreover, the norms of the function f in these spaces are equivalent.

The Theorem was proved to be true in the case L for n ≥ 3 and 0 < α ≤ 2 − n
q , where q

is the exponent in (1). In [1] it was proved that (1) is equivalent to (3). On the other hand, the
proof of (2) implies (3) was given in [2] and it remains valid in this case for any α > 0. We
include it here as Theorem 6, we believe that is of independent interest. Finally, we sketch
the proof of (1) implies (2) at the end of Section 2.

Our second aim is to study the regularity of operators in the Lipschitz spaces. As example
of the technique we shall present here the Bessel potential of order β > 0,

(Id +H)−β/2 f (x) =
1

Γ(β/2)

∫ ∞

0
e−te−tH f (x)tβ/2

dt
t
.

Theorem 2. Let α, β > 0. Then, the Bessel potential satisfies

(i) ‖(Id +H)−β/2 f ‖ΛW
α+β

2

≤ C‖ f ‖ΛW
α/2
.

(ii) ‖(Id +H)−β/2 f ‖ΛW
β/2
≤ C‖ f ‖∞.

All the results in this note have been proved for the elliptic operator H but they can be
done in the parabolic case parallely, as we did in [1] for the Poisson case.

§2. Proof of Theorem 1.

It is well-known that, for f ∈ Lp(Rn), 1 ≤ p ≤ ∞, see [9], the heat semigroup associated to
H is given by the Mehler’s formula

e−yH f (x) = Wy f (x) =

∫
Rn

Wy(x, z) f (x − z)dz =

∫
Rn

e−
|z|2 coth y

4 e−
|2x−z|2 tanh y

4

(2π sinh(2y))n/2 f (x − z)dz, (2)

In addition, by Bochner subordination, for f ∈ Lp(Rn), 1 ≤ p ≤ ∞, the Poisson semigroup is
given by

e−y
√
H f (x) = Py f (x) =

y

2
√
π

∫ ∞

0

∫
Rn

e−y
2/4τ e−

|x−z|2
4 coth τe−

|x+z|2
4 tanh τ

(2π sinh 2τ)n/2 f (z) dz
dτ
τ3/2 . (3)

See [1] for more details.
Remark 2. The following results will be use along the paper. Let τ > 0.

(1) If τ < 1, then sinh τ ∼ τ, cosh τ ∼ C, coth τ ∼ 1
τ

and tanh τ ∼ τ.

(2) If τ > 1, then sinh τ ∼ eτ, cosh τ ∼ eτ, coth τ ∼ C and tanh τ ∼ C.
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(3) Let z ≥ 0 and α ≥ 0 there exist a constant Cα > 0 such that zαe−z ≤ Cαe−z/2.

As usual, by A ∼ B we mean there exist constants C1,C2 such that C1A ≤ B ≤ C2A.
We shall also need some expressions of hat kernel acting over constants functions. The

reader can be found the proofs of the following formulas in [1].

Lemma 3. For each x ∈ Rn and τ > 0, we have:

(1) e−yH1(x) =
e−

tanh(2y)
2 |x|2

(cosh(2y))n/2 .

(2) |∂ye−yH1(x)| ≤ C(min{y, 1} + |x|2)
e−

tanh(2y)
2 |x|2

(cosh(2y))n/2 .

Lemma 4. Let k ∈ N. Then for every x ∈ Rn and y > 0,∣∣∣∣ ∫
Rn
∂k
yWy(x, z)dz

∣∣∣∣ ≤ Ck

yk .

Proof. For k = 1, the proof follows easily by using Remark 2 and the estimate

|∂yWy(x, z)| ≤ C
e−

|2x−z|2 tanh y
c e−

|z|2 coth y
c

(sinh(2y))n/2y
.

For k ≥ 1 the proof is parallel. �

Remark 3. Observe that for bounded functions f , Lemma 4 assures that∥∥∥∂yWy f
∥∥∥

L∞(Rn) ≤ C‖ f ‖∞y−1. Therefore we can assume in the definition of ΛW
α/2 that y < 1.

By subordination the same fact occurs for ΛP
α .

Proposition 5. Let α > 0,

• If k = [α/2] + 1 and f is a function satisfying Mα[ f ] < ∞, then ‖∂k
yWy f ‖L∞(Rn) ≤

Cαy
−k+α/2 if, and only if, for m ≥ k, ‖∂m

y Wy f ‖L∞(Rn) ≤ Cmy
−m+α/2. Moreover, for each

m, Cm and Cα are comparable.

• If k = [α] + 1 and f is a function satisfying MP[ f ] =
∫
Rn

| f (x)|
(1+|x|)n+1 dx < ∞, then,

‖∂k
yPy f ‖L∞(Rn) ≤ Cky

−k+α if, and only if, for m ≥ k, ‖∂m
y Py f ‖L∞(Rn) ≤ Cmy

−m+α.

Proof. Let m ≥ [α/2] + 1 = k. By the semigroup property and Lemma 4 we have∣∣∣∣∂m
y Wy f (x)

∣∣∣∣ = C
∣∣∣∣∂m−k
y Wy/2(∂k

uWu f (x)
∣∣∣
u=y/2)

∣∣∣∣ ≤ C′α
1

ym−k y
−k+α/2 = Cmy

−m+α/2.

For the converse, the fact |∂`yWy f (x)| → 0 as y → ∞, allows us to integrate on y as many
times as we need to get ‖∂k

yWy f ‖L∞(Rn) ≤ Cα y
−k+α/2.

For the Poisson semigroup the proof is parallel. �

The following result appears for the first time in [2] in the case of Schrödinger operators.

Theorem 6. Let α > 0 . If f ∈ ΛW
α/2, then f ∈ ΛP

α . Moreover, S P
α[ f ] ≤ CS W

α [ f ].
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Proof. Let k = [α/2]+1 and f ∈ ΛW
α/2, then [α]+1 = [α/2+α/2]+1 ≤ [α/2]+[α/2]+2 = 2k.

By Proposition 5 it is enough to prove that ‖∂2k
y Py f ‖∞ ≤ Cy−(2k)+α.

Since ∂2
y

(
ye−

y2
4τ

τ3/2

)
= ∂τ

(
ye−

y2
4τ

τ3/2

)
, k-times integration by parts give

|∂2k
y Py f (x)| =

∣∣∣∣∣∣∣∣ 1
2
√
π

∫ ∞

0
∂2k
y

ye−
y2

4τ

τ3/2

 e−τH f (x)dτ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ 1
2
√
π

∫ ∞

0
∂k
τ

ye−
y2

4τ

τ3/2

 e−τH f (x)dτ

∣∣∣∣∣∣∣∣
=

1
2
√
π

∣∣∣∣∣∣∣∣
∫ ∞

0
(−1)k

ye−
y2

4τ

τ3/2

 ∂k
τe
−τL f (x)dτ

∣∣∣∣∣∣∣∣ ≤ C S W
α [ f ]

∫ ∞

0

ye−
y2

4τ

τ3/2 τ−k+α/2dτ

≤ C S W
α [ f ]y−2k+α.

�

Remark 4. It is clear that if f is a function such that (1 + | · |)α f ∈ L∞(Rn), then f ∈ L∞(Rn).
Therefore, the following Remark 5 establishes that in the definition of ΛW

α/2, we can consider
indistinctly f ∈ L∞(Rn) or (1 + |x|)α f ∈ L∞(Rn). The proposition was proved in the case L in
[2].
Remark 5. Let α > 0. If f is a bounded function such that ‖∂m

y Wy f ‖L∞(Rn) ≤ Cmy
−m+α/2,

m = [α/2] + 1, then |x|α f ∈ L∞(Rn).

Proof. We shall do the proof only in the case 0 < α < 1, for the other cases see [2]. Now for
|x| > 1 and 0 < α < 1 we have

|x|α| f (x)| ≤ |x|α sup
0<y< 1

|x|

|Wy f (x)| ≤ |x|α sup
0<y< 1

|x|

(
|Wy f (x) −W 1

|x|
f (x)| + |W 1

|x|
f (x)|

)

≤ |x|α sup
0<y< 1

|x|

∣∣∣∣∣∣∣
∫ 1

|x|

y

∂z1 Wz1 f (x)dz1

∣∣∣∣∣∣∣ + C‖ f ‖
Λ

Wy
α/2

≤ C|x|α sup
0<y< 1

|x|

∣∣∣∣∣∣∣
∫ 1

|x|

y

z−1+α
1 dz1

∣∣∣∣∣∣∣ + C‖ f ‖
Λ

Wy
α/2
≤ C.

�

Now we shall prove that (1) implies (2) in Theorem 1.
Suppose that f is a function that satisfies the conditions in (1). Let y < 1. By using that∫

Rn
∂yWy(x, z) f (x + z)dz =

∫
Rn
∂yWy(x,−z) f (x − z)dz, we can write

∂yWy f (x) =
1
2

∫
Rn
∂yWy(x, z)( f (x − z) + f (x + z) − 2 f (x))dz

+
1
2

∫
Rn

(
∂yWy(x, z) − ∂yWy(x,−z)

)
f (x − z)dz + f (x)∂ye−yH1(x)

= I + II + III.
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On the one hand, by using Remark 2 and Lemma 4 we have that

|I| ≤ C
∫
Rn

e−
|z|2 coth y

c e−
|2x−z|2 tanh y

c |z|α

(sinh(2y))n/2y
dz ≤ Cy−1+α/2.

Regarding II, observe that

∣∣∣∣ ∂yWy(x, z) − ∂yWy(x,−z)
∣∣∣∣ =

∣∣∣∣∣∣ ∂y
 e−

|z|2 coth y
4

(2π sinh(2y))n/2

[
e−

|2x−z|2 tanh y
4 − e−

|2x+z|2 tanh y
4

]
∣∣∣∣∣∣

=

∣∣∣∣∣∣ ∂y
 e−

|z|2 coth y
4

(2π sinh(2y))n/2

 [e− |2x−z|2 tanh y
4 − e−

|2x+z|2 tanh y
4

]

+
e−

|z|2 coth y
4

(2π sinh(2y))n/2 ∂y

[
e−

|2x−z|2 tanh y
4 − e−

|2x+z|2 tanh y
4

] ∣∣∣∣∣∣
≤ Ce−

|z|2 coth y
4

(
|z|2

(sinh(y))2(sinh(2y))n/2 +
coth(2y)

(sinh(2y))n/2

) ∣∣∣∣∣e− |2x−z|2 tanh y
4 − e−

|2x+z|2 tanh y
4

∣∣∣∣∣
+

e−
|z|2 coth y

4

(2π sinh(2y))n/2

∣∣∣∣∣∣
∫ 1

−1
∂θ∂y

(
e−

|2x−θz|2 tanh y
4

)
dθ

∣∣∣∣∣∣
= IIa + IIb.

Observe that

∣∣∣∣∣e− |2x−z|2 tanh y
4 − e−

|2x+z|2 tanh y
4

∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

−1
∂θe−

|2x−θz|2 tanh y
4 dθ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

−1
∇z(e−

|2x−θz|2 tanh y
4 ) · z dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

−1
e−

|2x−θz|2 tanh y
4 (

θ tanh y
2

(2x − θz) · z)dθ

∣∣∣∣∣∣
≤ C|z|(tanh y)1/2.

Therefore, by using Remark 2 we have that

|IIa| ≤ Ce−
|z|2 coth y

4

(
|z|3(tanh y)1/2

(sinh(y))2(sinh(2y))n/2 +
coth(2y)|z|(tanh y)1/2

(sinh(2y))n/2

)

≤ Ce−
|z|2
cy

(
|z|3

y3/2+n/2 +
|z|

y1/2+n/2

)
≤ C

e−
|z|2
cy

yn/2 .
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On the other hand, since

∣∣∣∣ ∫ 1

−1
∂θ∂y

(
e−

|2x−θz|2 tanh y
4

)
dθ

∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

−1
∇z∂y

(
e−

|2x−θz|2 tanh y
4

)
· z dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

−1
∂y

(
e−

|2x−θz|2 tanh y
4

θ tanh y
2

(2x − θz) · z
)

dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

−1
e−

|2x−θz|2 tanh y
4

(
−
θ tanh y

2
|2x − θz|2

4 cosh2(y)
(2x − θz) · z +

θ(2x − θz) · z
2 cosh2 y

)
dθ

∣∣∣∣∣∣
≤ C

|z|

(tanh y)1/2 cosh2 y
,

we have that |IIb| ≤ C e−
|z|2 coth y

4

(2π sinh(2y))n/2
|z|

(tanh y)1/2 cosh2 y
≤ C e−

|z|2
cy

yn/2 . Estimates IIa and IIb and the fact

that y < 1 allow us to get |II| ≤ C‖ f ‖∞y−1+α/2.
Finally, by using Remark 2 and Lemma 3 (2) we get

|III| ≤ C| f (x)|(1 + |x|2)
e−

tanh(2y)|x|2

2

(cosh(2y))n/2 ≤ C| f (x)|(1 + |x|2)e−cy|x|2

≤ C([ f ]Mα + ‖ f ‖∞)y−1+α/2.

This is the end of the proof of Theorem 1.

§3. Proof of Theorem 2.

Since ‖Wy f ‖∞ ≤ C‖ f ‖∞ and ‖∂`yWy f ‖∞ ≤ C ‖ f ‖∞
y`

for ` ∈ N, we can apply Fubini’s Theorem
and the derivatives and the integral commute.

Let f ∈ ΛW
α/2 and ` = [α/2 + β/2] + 1. Then

|∂`yWy((Id +H)−β/2 f (x))| =
∣∣∣∣∣ 1
Γ(β/2)

∫ ∞

0
e−t∂`yWy(Wt f )(x)tβ/2

dt
t

∣∣∣∣∣
≤ C

∫ ∞

0
e−t(∂`wWw f (x)

∣∣∣∣
w=y+t

)tβ/2
dt
t

≤ C
∫ ∞

0
e−t(y + t)−`+α/2tβ/2

dt
t

t
y=u
≤ Cyα/2+β/2−`

∫ ∞

0

uβ/2e−yu

(1 + u)`−α/2
du
u

≤ Cyα/2+β/2−`.

When f ∈ L∞(Rn) we proceed analogously by using that, for ` = [β/2]+1, ‖∂`yWyWν f ‖∞ ≤
C ‖ f ‖∞

y`
.
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§4. Remarks about Schrödinger operators

It can be checked that the Harmonic Oscillator, V(x) = |x|2, satisfies condition (1) for all
q < ∞. On the other hand, one of the fundamental tools in the theory of the operator L is the
so called “critical radius” ρ(x), x ∈ Rn, defined as

ρ(x) := sup
{
r > 0 :

1
rn−2

∫
B(x,r)

V(y)dy ≤ 1
}
. (4)

In the caseH , ρ(x) = 1
1+|x| . The function 1

1+|x| , appeared before the paper by Shen, [7], in the
historical work of Muckenhoupt, [6]. It was related with the Ornstein-Uhlenbeck operator on
the line. For the interested reader we refer to the paper [5]. In that paper it is shown that 1

1+|x| ,
n ≥ 1, shares all the properties of ρ(x). Of particular interest is the existence of a covering of
the space with balls of type B(x, 1

1+|x| ). All these remarks together say that Theorem 1 could
also be proved by changing in an appropriated way the proof given for the operator L in [2].
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ACCURATE LEAST SQUARES FITTING
WITH A GENERAL CLASS OF SHAPE

PRESERVING BASES
Esmeralda Mainar, Juan Manuel Peña and Beatriz Rubio
Abstract. In this paper we consider the problem of least squares fitting with a very general
class of bases with interest in Computer Aided Geometric Design and Approximation
Theory. We compute a factorization of the collocation matrix A of these bases that allows
us to obtain a QR decomposition of A. Then the triangular system corresponding to
the matrix factor R is solved using a bidiagonal factorization of this matrix. Numerical
experiments show the accuracy of this procedure.

Keywords: B-basis, Bidiagonal decompositions, Least Squares, Accurate computations.
AMS classification: 65D17, 65F05, 65D05, 41A05, 42A10.

§1. Introduction

The accurate computation with structured classes of matrices is an important issue in Numeri-
cal Linear Algebra and it is receiving increasing attention in the recent years (cf. [10, 23, 7]).
For this purpose, a parametrization adapted to the structure of the considered matrices is
needed. Let us recall that an algorithm can be performed with high relative accuracy (HRA)
when it only uses products, quotients, additions of numbers with the same sign or subtractions
of initial data (cf. [11]). Performing an algorithm with HRA is a very desirable goal because
it implies that the relative errors of the computations are of the order of the machine precision,
independently of the size of the condition number of the considered problem. Bidiagonal fac-
torizations provide a parametrization that has played a crucial role to derive algorithms with
HRA for some classes of totally positive (TP) matrices. In this case, the mentioned bidi-
agonal factorizations can be explicitly computed by means of an elimination process called
Neville elimination (cf. [12]). When the bidiagonal factorization of the considered matrix
is obtained with HRA, the computation of the inverse matrix, its eigenvalues and singular
values, the solutions of some linear systems or the computation of its QR factorization can
be also performed with HRA using the algorithms presented by Koev in [17] and [16]. Up
to now, this has been achieved with some relevant subclasses of TP matrices with applica-
tions to Computer Aided Geometric Design (cf. [22, 6, 7, 23, 19]), to Finance (cf. [5]) or to
Combinatorics (cf. [8]).

In Computer Aided Geometric Design shape preserving representations are associated
with normalized totally positive (NTP) bases because parametric curves inherit the geometric
properties of their control polygons with respect to these bases. Among all NTP bases of a
given space of functions, there exists a unique normalized B-basis, which is the basis with op-
timal shape preserving properties (cf. [24], [4]). The Bernstein bases and the B-spline bases
are the normalized B-bases of their corresponding spaces. The matrices considered in [6, 9]
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are collocation matrices of polynomial rational functions. However the rational model has
several drawbacks (see [20]). Rational curves require additional parameters (weights), which
do not have an evident geometric meaning and whose selection is often unclear. In addi-
tion, the behavior of rational bases with respect to differentiation and integration operations,
is particularly unpleasant and the exact integration of rational curves is hard and requires
(whenever possible) involved non rational forms. On the other hand, the rational model can-
not encompass transcendental curves such as the helix or the cycloid, which are of interest in
many applications. Furthermore the parametrization of conic sections does not correspond to
the natural arc-length parametrization, so given uniform partitions in the parameter space we
can get unevenly spaced points. Therefore, non-polynomial basis functions (such as trigono-
metric functions, hyperbolic functions or their mixtures with polynomials) are often used to
represent some typical curves or surfaces without rational forms. In [19] algorithms for the
computation of the bidiagonal decomposition of square collocation matrices of a very gen-
eral class of non-polynomial bases with interest in Computer Aided Geometric Design and
Approximation Theory are provided. The obtained algorithms are used in [19] to perform
accurate algebraic computations, such as the calculation of their inverses, their eigenvalues
or their singular values. In this paper, following the approach of [21] for a polynomial case,
we generalize the mentioned bidiagonal factorizations to the case of rectangular collocation
matrices. Using their QR decompositions, we focus on the problem of least squares fitting
in the spaces generated by the general class of bases defined in [19]. By computing the bidi-
agonal decomposition of the coefficient matrix of the least squares problem, an algorithm
for the computation of its QR decomposition is then applied. Finally, using the bidiagonal
decomposition of the matrix factor R, a triangular system is solved.

The layout of the paper is as follows. Section 2 includes matrix notations basic concepts
and tools. We also recall the Neville elimination procedure, which allows us to introduce the
bidiagonal factorization of a square strictly totally positive matrix. Section 3 introduces the
class of fg-Bernstein bases and recalls the bidiagonal factorization of the collocation matrices
associated to these bases derived in [19]. In Section 4, we generalize these decompositions
to the case of rectangular matrices. Then a procedure for computing the solution of the least
squares problems in the space generated by fg-Bernstein bases is obtained. Finally, Section
5 shows numerical examples with accurate results obtained when we apply the explained
procedure.

§2. Basic notations and auxiliary results

A matrix is totally positive (TP) if all its minors are nonnegative and strictly totally positive
(STP) if they are positive (see [1]). A system of functions (u0, . . . , un) defined on I ⊆ R is TP
if all its collocation matrices(

u j−1(ti)
)

1≤i≤l+1;1≤ j≤n+1
, t1 < · · · < tl+1 in I

are TP. A TP system of functions on I is normalized (NTP) if
∑n

i=0 ui(t) = 1, for all t ∈ I. NTP
bases are commonly used in Computer Aided Geometric Design due to their shape preserving
properties (see [3], [24]).
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Among all NTP bases of a space, we can find a unique normalized B-basis, which is the
optimal shape preserving basis (cf. [4]). For instance, the Bernstein bases and the B-spline
bases are the normalized B-bases of their corresponding spaces. The following characteriza-
tion of a B-basis is a consequence of Corollary 3.10 of [4] and Proposition 3.11 of [4].

Theorem 1. Let (u0, . . . , un) be a TP basis of a spaceU. Then (u0, . . . , un) is a B-basis if for
any other TP basis (v0, . . . , vn) of U the matrix K of change of basis such that (v0, . . . , vn) =

(u0, . . . , un)K is TP.

Let us now recall some basic matrix notations and results on Neville elimination. Our
notation follows the notation used in [12, 15]. Given n ∈ N and k ∈ {1, . . . , n}, let Qk,n be the
set of increasing sequences of k positive integers less than or equal to n. If α, β ∈ Qk,n, we
denote by A[α|β] the k × k submatrix of A containing rows of places α and columns of places
β.

Neville elimination is a procedure to make zeros in a column of a matrix by adding to a
given row an appropriate multiple of the previous one (see [12, 15]). For a given nonsingular
matrix A = (ai, j)1≤i, j≤n, let us present this elimination procedure for the case that no row
exchanges are necessary. Neville elimination consists of at most n−1 successive major steps,
resulting in the sequence of matrices:

A(1) := A→ A(2) → · · · → A(n) = U.

For 1 ≤ k ≤ n − 1, A(k+1) = (a(k+1)
i, j )1≤i, j≤n is obtained from A(k) = (a(k)

i, j )1≤i, j≤n by defining

a(k+1)
i, j := a(k)

i, j −
a(k)

i,k

a(k)
i−1,k

a(k)
i−1, j if a(k)

i−1,k , 0, k + 1 ≤ i, j ≤ n,

so that A(k+1) has zeros below its main diagonal in the k first columns. Finally, U is an upper
triangular matrix. The element pi, j := a( j)

i, j , 1 ≤ j ≤ i ≤ n, is called the (i, j) pivot of the
Neville elimination of A. The pivots pi,i are called diagonal pivots. The Neville elimination
can be performed without row exchanges if all the pivots are nonzero and, in this case, Lemma
2.6 of [12] implies that pi,1 = ai,1, 1 ≤ i ≤ n, and

pi, j =
det A[i − j + 1, . . . , i|1, . . . , j]

det A[i − j + 1, . . . , i − 1|1, . . . , j − 1]
, 1 < j ≤ i ≤ n. (1)

Furthermore, the (i, j) multiplier of the Neville elimination of A is

mi, j :=
a( j)

i, j

a( j)
i−1, j

=
pi, j

pi−1, j
, 1 ≤ j < i ≤ n. (2)

Neville elimination has been used to characterize TP and STP matrices (see [12, 15]). From
Theorem 4.1 of [12] and p. 116 of [15], a given matrix A is STP if and only if the Neville
elimination of A and AT can be performed without row exchanges, all the multipliers of
the Neville elimination of A and AT are positive and all the diagonal pivots of the Neville
elimination of A are positive.
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Bidiagonal factorizations have played a crucial role to derive, for TP matrices, algorithms
with HRA (cf. [16]). According to the arguments of p.116 of [15], an STP matrix A ∈
R(n+1)×(n+1) can be factorized, in a unique way under certain conditions, in the form

A = FnFn−1 · · · F1DG1 · · ·Gn−1Gn, (3)

where Fi and Gi are the lower and upper triangular bidiagonal matrices

Fi =



1
0 1

. . .
. . .

0 1
mi+1,1 1

. . .
. . .

mn+1,n+1−i 1


,

GT
i =



1
0 1

. . .
. . .

0 1
m̂i+1,1 1

. . .
. . .

m̂n+1,n+1−i 1


, (4)

and D = diag
(
p1,1, . . . , pn+1,n+1

)
. The entries mi, j and m̂i, j are the multipliers of the Neville

elimination of A and AT , respectively, and the diagonal entries pi,i are the diagonal pivots of
the Neville elimination of A. In fact a unique bidiagonal factorization can be obtained for
nonsingular TP matrices (see [14, 15]).

§3. The class of fg-Bernstein bases

Let us suppose that I = [a, b] and f , g : I → R are nonnegative continuous functions. For a
given n ∈ N, the corresponding fg-Bernstein basis of order n was defined in [19] as

(un
0, . . . , u

n
n), un

k(t) :=
(
n
k

)
f k(t)gn−k(t), t ∈ [a, b], k = 0, . . . , n. (5)

The following result corresponds to Proposition 19 of [18] and characterizes when the fg-
Bernstein basis defined in (5) is a B-basis.

Proposition 2. The system given in (5) is a B-basis if and only if the function f /g defined on
I0 := {t ∈ I | g(t) , 0} is increasing and satisfies

inf
{

f (t)
g(t)
| t ∈ I0

}
= 0, sup

{
f (t)
g(t)
| t ∈ I0

}
= +∞. (6)
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Theorem 2 of [19] proves that, given nonnegative f , g : I → R such that f (t) , 0, g(t) , 0,
∀t ∈ (a, b) and f /g is a strictly increasing function, then

A :=
((

n
j−1

)
f j−1(ti)gn− j+1(ti)

)
1≤i, j≤n+1

, a < t1 < · · · < tn+1 < b, (7)

is STP. Moreover, in Theorem 3 of [19], the following bidiagonal decomposition (3) of the
collocation matrices (7) was deduced

A = FnFn−1 · · · F1DG1 · · ·Gn−1Gn, (8)

where Fi and Gi, 1 ≤ i ≤ n, are the lower and upper triangular bidiagonal matrices of the
form (4) and D = diag

(
p1,1, . . . , pn+1,n+1

)
. The entries mi, j, m̂i, j and pi,i are given by

mi, j =
gn− j+1(ti)g(ti− j)
gn− j+2(ti−1)

∏ j−1
k=1

(
f (ti)g(ti−k) − f (ti−k)g(ti)

)∏ j
k=2

(
f (ti−1)g(ti−k) − f (ti−k)g(ti−1)

) ,
m̂i, j =

n − i + 2
i − 1

f (t j)
g(t j)

, 1 ≤ j < i ≤ n + 1,

pi,i =

(
n

i − 1

)
gn−i+1(ti)∏i−1

k=1 g(tk)

i−1∏
k=1

(
f (ti)g(tk) − f (tk)g(ti)

)
, 1 ≤ i ≤ n + 1. (9)

Let us observe that a sufficient condition to obtain the bidiagonal decomposition of A with
HRA is that the expressions f (ti), g(ti) and f (ti)g(tk)− f (tk)g(ti), for all k < i, can be computed
with HRA.

There are many interesting choices of functions f and g satisfying conditions (6) and
allowing us the definition of B-bases whose STP collocation matrices can be factorized as in
(8). For example, if

f (t) :=
t − a
b − a

, g(t) :=
b − t
b − a

, t ∈ [a, b],

the basis (5) is the Bernstein basis of the space of polynomials of degree not greater than n
on the compact interval [a, b]. Let us observe that, in this case, the computation of f (ti), g(ti)
and f (ti)g(tk) − f (tk)g(ti) = (ti − tk)/(b − a), k < i, can be performed with HRA because it
only requires quotients and subtractions of the initial data. Therefore we can also guarantee
that the bidiagonal decomposition (8) of the corresponding collocation matrices (7) can be
obtained with HRA. We can also consider

f (t) := t2, g(t) := 1 − t2, t ∈ [0, 1].

Taking into account Proposition 2, we deduce that the system (5) is the normalized B-basis
of the space 〈1, t2, . . . , t2n〉 of even polynomials of degree less than or equal to 2n on [0, 1].
Let us also observe that the computation of f (ti), g(ti) and f (ti)g(tk) − f (tk)g(ti) = t2

i − t2
k =

(ti + tk)(ti− tk), k < i, requires additions, products and subtractions of the initial data, therefore
it can be done with HRA. Again, we can guarantee that the bidiagonal decomposition (8) of
the corresponding collocation matrices (7) can be obtained with HRA.

Another particular case can be given by considering the functions

f (t) := sin2 (t/2) = (1 − cos t)/2, g(t) := cos2 (t/2) = (1 + cos t)/2, t ∈ I = [0, π]. (10)
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In [24] it was proved that the system (5) is the normalized B-basis of the space of even
trigonometric polynomials 〈1, cos t, cos 2t, . . . , cos nt〉 on I. On the other hand, if we consider
0 < ∆ < π/2 and

f (t) := sin ((∆ + t)/2) , g(t) := sin ((∆ − t)/2) , t ∈ I = [−∆,∆], (11)

for a given n = 2m, the system (5) is a basis that coincides, up to a positive scaling, with the
normalized B-basis of the space 〈1, cos t, sin t, . . . , cos mt, sin mt〉 of trigonometric polynomi-
als of degree less than or equal to m on I (see Section 3 of [25]). Finally, for any ∆ > 0, we
can also consider

f (t) := sinh ((∆ + t)/2)) , g(t) := sinh ((∆ − t)/2) , t ∈ I = [−∆,∆]. (12)

For n = 2m, the system (5) is a B-basis of the space 〈1, et, e−t, . . . , emt, e−mt〉 of hyperbolic
polynomials of degree less than or equal to m on I.

In the last three cases, taking into account that f (ti)g(tk) − f (tk)g(ti) is equal to (cos(tk) −
cos(ti))/2, for the functions f and g defined in (10), sin (∆) sin ((ti − tk)/2), for the functions f
and g defined in (11) and sinh (∆) sinh ((ti − tk)/2), for the functions f and g defined in (12),
the computation with HRA of the corresponding bidiagonal decomposition (8) should require
the evaluation with HRA of the involved trigonometric or hyperbolic functions. Although this
cannot be guaranteed, Section 5 and the numerical experiments in [19] show that accurate al-
gebraic computations with the collocation matrices associated to these non-polynomial bases
functions can be performed.

§4. Accurate least squares fitting with fg-Bernstein bases

Let us suppose that f and g are functions defined on [a, b] such that f (t) , 0, g(t) , 0,
∀t ∈ (a, b), and f /g is a strictly increasing function. Given a set of parameters a < t1 < · · · <
tl+1 < b and real values p1 < · · · < pl+1, for some n ≤ l, we want to compute a function

p(t) :=
n+1∑
j=1

c j

(
n

j − 1

)
f j−1(t)gn− j+1(t), t ∈ [a, b],

minimizing the sum of the squares of the deviations from the data
∑l+1

i=1 |pi − p(ti)|2. In order
to compute the coefficients of p(t) with respect to the considered fg-Bernstein basis we have
to solve, in the least square sense, the overdeterminated linear system Ac = p, where

A :=
((

n
j−1

)
f j−1(ti)gn− j+1(ti)

)
1≤i≤l+1;1≤ j≤n+1

is the rectangular collocation matrix of the fg-Bernstein basis corresponding to the nodes
t1 < · · · < tl+1, p = (p1, . . . , pl+1)T is the data vector and c = (c1, . . . , cn+1)T is the vector with
the coefficients we want to compute. Using Theorem 2 of [19], we can easily deduce that A
is STP and so has maximal rank n + 1. Therefore this problem has a unique solution, which
is given by the solution of the linear system

AT Ac = AT p.
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Solving the previous normal equations is a worse conditioned problem than computing the
solution through the QR decomposition of the coefficient matrix A, which is the usual ap-
proach. In [16] an efficient algorithm for computing the QR decomposition of an STP matrix
A is presented. In [17] the Matlab or Octave library TNQR, containing an implementation of
the mentioned last algorithm, is available. Assuming that the bidiagonal factorization of A
is known, TNQR computes the matrix Q and the bidiagonal factorization of the matrix R with
HRA. Now, following the approach of [21], we shall describe how to solve our least squares
problem by means of a bidiagonal decomposition for rectangular matrices that generalizes
the bidiagonal factorization described, for the square case, in the previous section and the QR
decomposition provided by TNQR.

In order to compute the solution of the least squares problem, we define the (l+1)×(n+1)
matrix M such that

Mi,i := pi,i, i = 1, . . . , n + 1,
Mi, j := mi, j, j = 1, . . . , n + 1; i = j + 1, . . . , l + 1,
Mi, j := m̂i, j, i = 1, . . . , n; j = i + 1, . . . , n + 1,

where the mi, j, m̂i, j and pi,i are obtained as in (9). Then, using TNQR, we can obtain the QR
decomposition of A such that

A = Q
(

R
0

)
,

where Q ∈ R(l+1)×(l+1) is an orthogonal matrix and R ∈ R(n+1)×(n+1) is an upper triangular
matrix with positive diagonal entries. Following Section 1.3.1 in [2], the solution of the least
squares problem is obtained from(

d1
d2

)
= QT p, Rc = d1, r = Q

(
0
d2

)
, (13)

where d1 ∈ R
n+1, d2 ∈ R

l−n and r = f − Ac. The matrices Q and R have an special structure
described in [13]. In particular, R is nonsingular and TP. In order to obtain the solution of the
upper triangular system Rc = d1, we have used the routine TNSolve of [16], which uses the
bidiagonal decomposition of the upper triangular TP matrix R.

§5. Numerical experiments

Now let us illustrate the accuracy of the method explained in the previous section for the com-
putation of the solution of the least squares minimization problem with fg-Bernstein bases.
For different choices of f and g, we have considered fg-Bernstein bases of order n defined
on [a, b] and computed with Matlab two approximations of the vector c = (c1, . . . , cn+1) such
that the function

p(t) =

n+1∑
j=1

c j

(
n

j − 1

)
f j−1(t)gn− j+1(t), t ∈ [a, b],

minimizes
∑100

k=1(pk−p(tk))2, where p1, . . . , p100 are given integer values and t1, . . . , t100, l > n,
are equidistant parameters in (a, b). One approximation has been obtained using the proce-
dure explained in the previous section and the other approximation has been obtained using
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n+1 TNQR A \ p TNQR A \ p̃
15 4.89151 × 10−15 8.09049 × 10−13 8.18912 × 10−15 4.57057 × 10−13

20 2.97354 × 10−15 1.95465 × 10−12 2.68153 × 10−15 4.60592 × 10−12

25 4.20615 × 10−15 9.55201 × 10−10 3.864845 × 10−15 9.49291 × 10−10

30 8.16195 × 10−16 2.56043 × 10−8 9.15474 × 10−16 4.55599 × 10−8

Table 1: Relative errors with f (t) = (1 + t)/2, g(t) = (1 − t)/2, t ∈ [−1, 1].

n+1 TNQR A \ p TNQR A \ p̃
15 8.4759 × 10−16 1.31186 × 10−12 1.80073 × 10−15 4.36905 × 10−14

20 1.74157 × 10−15 3.8791 × 10−13 1.77785 × 10−15 1.39799 × 10−13

25 7.41971 × 10−15 4.14554 × 10−10 1.92262 × 10−14 2.00229 × 10−10

30 2.36573 × 10−15 1.67828 × 10−9 1.10435 × 10−14 1.18769 × 10−8

Table 2: Relative errors with f (t) = t2, g(t) = 1 − t2, t ∈ [0, 1].

the Matlab command \. We have also computed the solution of these least squares problems
using the Mathematica command LeastSquares with a precision of 100 digits and consid-
ered this solution c as the exact solution of the problem. Let us recall that in general we
cannot guarantee HRA. However the numerical experiments show great accuracy in all the
considered cases.

We have computed the relative error of every approximation c̃ = (c̃1, . . . , c̃n+1) of the
solution c of the least squares problems by means of the formula

e =
‖c − c̃‖2
‖c‖2

.

We have considered pk := k × (−1)k, k = 1, . . . , 100 and also p̃k := k, k = 1, . . . , 50,
p̃k := −k, k = 51, . . . , 100. The obtained errors are included in Table 1 (for the choice
f (t) = (1 + t)/2, g(t) = (1− t)/2, t ∈ [−1, 1]), in Table 2 (for the choice f (t) = t2, g(t) = 1− t2,
t ∈ [0, 1]), in Table 3 (for the choice f (t) = (1 − cos t)/2, g(t) = (1 + cos t)/2, t ∈ [0, π]), in
Table 4 (for the choice f (t) = sin((1 + t)/2), g(t) = sin((1 − t)/2), t ∈ [−1, 1]) and, finally, in
Table 5 (for the choice f (t) = sinh((1+t)/2), g(t) = sinh((1−t)/2), t ∈ [−1, 1]). The computed
results confirm the accuracy of the proposed method that, clearly, keeps the accuracy when
the dimension of the problem increases.

In conclusion, we have presented a method for solving least squares problems with col-
location matrices of fg-Bernstein bases that can be performed, in some cases, with HRA. We
think that the proposed method exploits the structural properties of totally positive matrices
and this could explain the great accuracy, even though HRA cannot be guaranteed, providing
results much more accurate than those obtained by Matlab using the standard method for the
resolution of least squares problems.
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n+1 TNQR A \ p TNQR A \ p̃
15 2.95136 × 10−14 1.99703 × 10−12 1.2823 × 10−14 4.93654 × 10−13

20 1.81561 × 10−14 6.64461 × 10−11 1.7008 × 10−15 1.64829 × 10−12

25 4.61364 × 10−14 1.72592 × 10−9 1.15137 × 10−14 7.41444 × 10−10

30 7.88557 × 10−14 4.34384 × 10−8 4.88251 × 10−15 6.41024 × 10−9

Table 3: Relative errors with f (t) = (1 − cos t)/2, g(t) = (1 + cos t)/2, t ∈ [0, π].

n+1 TNQR A \ p TNQR A \ p̃
15 1.23029 × 10−15 2.63437 × 10−12 1.05317 × 10−14 3.25159 × 10−12

20 4.79405 × 10−15 4.12448 × 10−11 1.34693 × 10−15 3.39137 × 10−11

25 6.14711 × 10−16 1.05147 × 10−9 1.57822 × 10−14 3.70748 × 10−10

30 6.47177 × 10−15 6.98518 × 10−8 9.14979 × 10−15 1.6299 × 10−7

Table 4: Relative errors with f (t) = sin((1 + t)/2), g(t) = sin ((1 − t)/2), t ∈ [−1, 1].
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§1. Introduction

In the 50’s Berger [3] obtained the list of possible holonomy groups of simply connected,
irreducible and non-symmetric Riemannian manifolds. In that list for the particular case of
7-dimensional manifolds appeared the exceptional holonomy Lie group G2. A first tool in
order to describe manifolds with holonomy G2 is the concept of G2-structure introduced by
Bonan in [4]. A G2-structure on a 7-dimensional manifold M can be characterized by the
existence of a certain globally defined 3-form σ which is called the fundamental 3-form. The
presence of such a structure on a manifold defines a metric gσ on it, a volume form, and hence
a Hodge star operator, namely ∗. Fernández and Gray in [12] gave a characterization for a
manifold endowed with a G2-structure to have holonomy restricted to the group G2.

Theorem 1. [12]. Let M be a manifold endowed with the G2-structure σ. Denote by ∇σ

the Levi-Civita connection of the metric induced by the G2-structure. Then, the following
conditions are equivalent:

• Hol(∇σ) ⊆ G2.

• ∇σσ = 0.

• dσ = d ∗ σ = 0.

The problem of obtaining manifolds with holonomy group G2 was not a straightforward
task and until the 80’s the first examples were not described. In particular the first local
example is due to Bryant [5], and later in a joint work with Salamon [6] obtained the first
complete examples. These examples are obtained by considering 7-dimensional manifolds
endowed with SO(3) or SO(4)-structures and a splitting of type 3+4. On those manifolds can
be described a G2-structure σ such that dσ = 0 and d ∗σ = 0. Concerning compact examples
with holonomy G2 the first ones were described by Joyce in [20] using the Kümmer con-
struction for K3 surfaces. Later, Kovalev [22] and more recently Corti, Haskins, Nordstrom
and Pacini have obtained new compact examples of manifolds with holonomy G2 with the
twisted connected sum construction and an extension of that technique respectively.

The torsion of a G2-structure can be identified with the covariant derivative of the fun-
damental form σ and, as it is described in [12], it can be decomposed into four G2 irre-
ducible components, namely X1, X2, X3 and X4. Thus, a G2-structure is said to be of type



194 Víctor Manero, Antonio Otal, and Raquel Villacampa

P,Xi,Xi⊕X j,Xi⊕X j⊕Xk orX if the covariant derivative∇σσ lies in {0}, Xi, Xi⊕X j, Xi⊕X j⊕Xk

or X = X1⊕X2⊕X3⊕X4, respectively. Hence, there exist 16 different classes of G2-structures.
Another technique that allows to obtain examples of manifolds with holonomy in the

group G2 is via the study of flows of G2-structures. These flows consist on one-parameter
families of G2-structures with certain initial conditions and such that satisfy an appropriated
evolution equation. If this evolution equation is chosen appropriately, a solution for that flow
is such that the initial value for the G2-structures, which can have torsion, evolves to a G2-
structure without torsion. In this note we summarize some known results concerning the
study of flows of G2-structures, concretely we focus our attention on the Laplacian flow and
the Laplacian coflow of a G2-structure.

§2. Preliminars

We start explainning the basics about SU(3) and G2-structures which are helpful for a brief
introduction to the topic.

2.1. G2-structures
A G2-structure on a 7-dimensional manifold M consists of a reduction of the structure group
of its frame bundle to the Lie group G2. The existence of such structure on a manifold M
can also be characterized by the presence of a global non-degenerate 3-form σ which can be
locally written as

σ = e127 + e347 + e567 + e135 − e146 − e236 − e245, (1)

where {e1, . . . , e7} is a local basis of 1-forms on M which we call the adapted basis. As usual
in the related literature the notation ei1...ik stands for the wedge product ei1 ∧ · · · ∧ eik .

A manifold M endowed with a G2-structure σ is called a G2 manifold and the correspond-
ing structure defines also a volume form vol7 and a Riemannian metric gσ satisfying

gσ(X,Y)vol7 =
1
6
ιXσ ∧ ιYσ ∧ σ,

for every X,Y vector fields on M.
In order to describe the different classes of G2-structures we consider first the G2 type

decomposition of the space of forms (see [5] for details). Let (M, σ) be a G2 manifold,
consider the action of the group G2 on the space of differential p-forms on the manifold M,
namely Ωp(M). This action is irreducible on Ω1(M) and Ω6(M), but it is reducible for Ωp(M)
with 2 ≤ p ≤ 5. The G2 irreducible decompositions for p = 2 and 3 are

Ω2(M) = Ω2
7(M) ⊕Ω2

14(M),

where those irreducible spaces can characterized by

Ω2
7(M) = {∗7(α ∧ ∗7σ) | α ∈ Ω1(M)},

Ω2
14(M) = {β ∈ Ω2(M) | β ∧ σ = − ∗7 β} = {β ∈ Ω2(M) | β ∧ ∗7σ = 0},
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Class Torsion forms Condition Structure

P τ0 = τ1 = τ2 = τ3 = 0 dσ = d ∗7 σ = 0 Parallel

X2 τ0 = τ1 = τ3 = 0 dσ = 0 Closed

X4 τ0 = τ2 = τ3 = 0 dσ = 3τ1 ∧ σ, d ∗7 σ = 4τ1 ∧ ∗7σ Locally Conformal Parallel

X1 ⊕ X3 τ1 = τ2 = 0 d ∗7 σ = 0 Coclosed

X2 ⊕ X4 τ0 = τ3 = 0 dσ = 3τ1 ∧ σ Locally Conformal Closed

Table 1: Principal classes of G2-structures

and
Ω3(M) = Ω3

1(M) ⊕Ω3
7(M) ⊕Ω3

27(M),

with
Ω3

1(M) = { fσ | f ∈ C∞(M)},

Ω3
7(M) = {∗7(α ∧ σ) | α ∈ Ω1(M)},

Ω3
27(M) = {γ ∈ Ω3(M) | γ ∧ σ = 0, γ ∧ ∗7σ = 0},

where Ω
p
k (M) denotes a G2 irreducible space of p-forms of dimension k at every point. Note

that the description on the other degrees are obtained via the isomorphism described by the
Hodge star operator, i.e. ∗7 Ω

p
k (M) � Ω

7−p
k (M).

The G2 type decomposition of forms on M allows to express the exterior derivative of σ
and ∗7σ as follows

dσ = τ0 ∗7σ + 3 τ1 ∧ σ + ∗7 τ3,

d ∗7σ = 4 τ1 ∧ ∗7σ + τ2 ∧ σ,
(2)

where τ0 ∈ C
∞(M), τ1 ∈ Ω1(M), τ2 ∈ Ω2

14(M) and τ3 ∈ Ω3
27(M) are called the torsion forms

of the G2-structure.
Notice that all the information of the torsion of a G2-structure is encoded on the covariant

derivative of the fundamental formσ but also on the exterior derivatives ofσ and ∗σ. Thus the
different classes of G2-structures can be described in terms of their behavior or equivalently,
in view of (2), by the torsion forms τ0, τ1, τ2, τ3. In Table 1 some Fernández-Gray classes of
G2-structures are given.

The presence of certain G2-structures on a manifold give information concerning its ge-
ometrical properties. Manifolds endowed with a parallel G2-structure have holonomy con-
tained in G2, manifolds with a closed G2-structure have non-positive scalar curvature. How-
ever, the scalar curvature of a manifold endowed with a coclosed G2-structure has no sign
restrictions. Locally Conformal Parallel and Locally Conformal Closed G2-structures are
(locally) Parallel and Closed G2-structures which can be described by a conformal change of
the original G2-structure.

2.2. SU(3)-structures
An SU(3)-structure on a 6-dimensional manifold N consists of a triple (g, J,Ψ) such that g is
a Riemannian metric, J is an almost complex structure compatible with the metric, and Ψ is
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Class Condition Structure

{0} dω = dψ+ = dψ− = 0 Calabi-Yau

W−
1 dω = 3ψ+, dψ− = −2ω2 Nearly Kähler

W−
2 dω = dψ+ = 0 Symplectic half-flat

W−
1 ⊕W

−
2 ⊕W3 dω2 = dψ+ = 0 Half-flat

Table 2: Principal classes of SU(3)-structures

a complex volume form satisfying

3
4

i Ψ ∧ Ψ = ω3,

where ω is the fundamental form associated to the almost Hermitian structure (g, J). Note
that an SU(3)-structure on a 6-dimensional manifold N can be described by the pair (ω, ψ+),
where ψ+ is the real part of the complex volume form Ψ. Indeed, for the imaginary part ψ−
of the form Ψ one has that ψ− = Jψ+, so ψ− is determined by ψ+ and the almost complex
structure J (see [18]). We will denote by gω,ψ+

the Riemannian metric induced by the SU(3)-
structure.

Note that SU(3) and G2-structures are closely related, in particular the presence of an
SU(3)-structure (ω, ψ+), on a 6-dimensional manifold N induces a G2-structure on the 7-
dimensional manifold N × L with L = R or S 1 which can be defined by

σ = ω ∧ ds + ψ+,

being s the coordinate on L.
As it is described in [9] the torsion of an SU(3)-structure, namely T , is identified with the

covariant derivatives of ω and J and lies in a space of the form

T ∈ W±
1 ⊕W

±
2 ⊕W3 ⊕W4 ⊕W5,

whereWi are the irreducible components under the action of the group SU(3). Analogously
than for the G2 case, this torsion can also be given in terms of the derivatives of the forms ω,
ψ+ and ψ−. Equivalently the torsion forms of an SU(3)-structure can be defined (see [2] for
details), but we will not care about this description on this note.

There exist many different classes of SU(3)-structures but the most relevant in the con-
struction of G2-structures are given in Table 2.

Calabi-Yau manifolds have holonomy in the group SU(3). Concerning nearly Kähler
SU(3)-structures, not many examples of manifolds endowed with such structure are known,
see [8] for homogeneous examples or in [16] can be found complete inhomogeneous exam-
ples on S 6 and S 3 × S 3. Other well-known SU(3)-structures are the half-flat ones. These
structures were first considered in [19] (see also [9]) and can be evolved to a parallel G2-
structure. Symplectic half-flat structures have been considered for several authors (see, for
example, [10] and [13]) in order to obtain closed G2-structures.
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§3. Laplacian flow and coflow

The first author considering flows of G2-structures was Bryant in [5]. The objective of con-
sidering flows of G2-structures was to obtain examples of G2-structures without torsion as
the result of certain evolution of other G2-structures with torsion. Thus, Bryant considered
the so-called Laplacian flow of a G2-structure σ0 which is given by

d
dtσ(t) = ∆tσ(t),
σ(0) = σ0,
dσ(t) = 0,

(3)

where ∆t denotes the corresponding Hodge Laplacian operator. On compact manifolds short
time existence and uniqueness of solution for the Laplacian flow of a closed G2-structure has
been proved by Bryant and Xu in [7]. Xu and Ye in [29] proved long time existence and
convergence of solution of the Laplacian flow starting near a torsion-free G2-structure. In the
last years Lotay and Wei in the series of papers [25, 26, 27] have obtained important results
concerning long time existence and convergence of solution of the Laplacian flow.

On the other hand, in [21] Karigiannis, McKay and Tsui introduced the Laplacian coflow.
This latter flow can be considered as the analogue to the Laplacian flow in which the funda-
mental 3-form is claimed to be coclosed instead of closed. Thus, this flow is given by the
equations 

d
dtψ(t) = −∆tψ(t),
ψ(0) = ψ0,
dψ(t) = 0,

with ψ(t) = ∗tσ(t) and ∗t denoting the Hodge star operator. As far as the authors know, short
time existence and uniqueness of solution for this latter flow is not known. In [17] Grigorian
introduced a modified version of this flow called modified Laplacian coflow for which he
proved short time existence and uniqueness of solution.

3.1. Solutions of the Laplacian flow and coflow on Lie groups

The first examples of long time existence of solution for the Laplacian flow of closed G2-
structures were described in [11]. Concretely those examples are nilpotent Lie groups en-
dowed with a one parameter family of left-invariant closed G2-structures.

Theorem 2. [11]. Consider the simply connected Lie group with Lie algebra given by the
structure equations

de5 = e1 ∧ e2, de6 = e1 ∧ e3, and dei = 0 for all i = 1, 2, 3, 4, 7.

The family of closed G2 forms σ(t) on N given by

σ(t) = e147 + e267 + e357 + f (t)3e123 + e156 + e245 − e346, t ∈
(
−

3
10
,+∞

)
,
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where f (t) is the function

f (t) =
(10

3
t + 1

) 1
5
.

is the solution of the Laplacian flow (3) with initial value

σ0 = e147 + e267 + e357 + e123 + e156 + e245 − e346.

Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-back by
time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets, as t goes to
infinity.

More examples of long time solutions can also be found in [11] or in [23, 24]. Anal-
ogously in [1] have been given explicit long time solutions for the Laplacian coflow and
the modified Laplacian coflow. These examples consist of one-parameter families of left-
invariant coclosed G2-structures on the 7-dimensional Heisenberg Lie group H7 which is
given by the matrices of the form

a =


1 x1 x3 x5 x7

1 x2
1 x4

1 x6
1


with xi ∈ R for all i = 1, . . . 7. Then a global system of coordinates xi for H7 is defined by
xi(a) = xi. A standard calculation shows that a basis for the left invariant 1-forms on H7 can
be described by

e1 = dx1, e2 = dx2, e3 = dx3, e4 = dx4,

e5 = dx5, e6 = dx6, and e7 = dx7 − x1dx2 − x3dx4 − x5dx6.

Thus, the corresponding Lie algebra, namely h7 is given by the structure equations

de7 = −e1 ∧ e2 − e3 ∧ e4 − e5 ∧ e6, and dei = 0 for all i = 1, . . . , 6.

Theorem 3. [1]. Consider H7 the 7-dimensional Heisenberg Lie group. Then, the solution
of the Laplacian coflow on H7 with the initial coclosed G2 form,

σ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245,

is given by

σ(t) =
1

f (t)
(e127 + e347 + e567) + f (t)3(e135 − e146 − e236 − e245), t ∈

(
−∞,

3
5

)
where f (t) is the positive function

f (t) =
(
1 −

5
3

t
) 1

10
.
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Recently the study of the Laplacian flow and coflow of G2-structures on Lie groups
has been extended to different classes of G2-structures like Locally Conformal Parallel G2-
structures (LCP for short) or Locally Conformal Closed ones (LCC for short). In particular,
in [28] the authors consider the Laplacian flow, resp. coflow, of a LCP G2-structure which
can be defined as:



d
dt
σ(t) = ∆tσ(t),

σ(0) = σ0,

dσ(t) = 3 τ(t) ∧ σ(t),
d ∗t σ(t) = 4 τ(t) ∧ ∗tσ(t).



d
dt
ψ(t) = −∆tψ(t),

ψ(0) = ψ0,

dψ(t) = 4 τ(t) ∧ ψ(t),
d ∗t ψ(t) = 3 τ(t) ∧ ∗tψ(t),

obtaining the following results:

Theorem 4. [28]. Every 7-dimensional rank-one solvable extension of a nilpotent Lie group
with a Locally Conformal Parallel G2 form, σ0, admits a long time solution σ(t) to the Lapla-
cian flow, preserving the LCP condition along the flow, such that σ(0) = σ0.

Theorem 5. [28]. Every 7-dimensional rank-one solvable extension of a nilpotent Lie group
with a Locally Conformal Parallel G2 form admits a long time LCP solution to the Laplacian
coflow.

On the other hand the Laplacian flow of LCC G2-structures can be described by
d
dtσ(t) = ∆t σ(t),
dσ(t) = 3τ(t) ∧ σ(t),
σ(0) = σ0.

(4)

For this latter flow explicit examples of long time solutions are given in [14].

Theorem 6. [14]. Consider the simply connected, solvable Lie group whose Lie algebra has
structure equations

de1 =
1
2

e1 ∧ e7, de2 =
1
2

e2 ∧ e7, de3 =
1
2

e3 ∧ e7, de4 =
1
2

e4 ∧ e7,

de5 = e1 ∧ e4 + e2 ∧ e3 + e5 ∧ e7, de6 = e1 ∧ e3 − e2 ∧ e4 + e6 ∧ e7, and de7 = 0.

The family of locally conformal closed G2-structures σ(t) given by

σ(t) = (1 − 4t)3/4 e127 + (1 − 4t)3/4 e347 + e567 + e135 − e146 − e236 − e245, where t ∈
(
−∞, 1

4

)
is the solution for the Laplacian flow (4) of the G2 form

σ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245.

The Lee 1-form θ(t) of σ(t) is θ(t) = −e7. Moreover, the underlying metrics g(t) of this
solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat
metric, uniformly on compact sets, as t goes to −∞, and they blow-up as t goes to 1

4 .
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3.2. Solutions of the Laplacian flow and coflow on warped products

Solutions of the Laplacian flow and coflow have also been obtained using warped products.
The warped product of two Riemannian manifolds (F, gF) and (B, gB) is denoted by B × f F
and consists on the product manifold B × F endowed with the metric g = π∗1(gB) + f 2π∗2(gF)
with f a non-vanishing real differentiable function on B and π1, π2 the projections of B × F
onto B and F, respectively.

As it is described in [15] if we consider (ω, ψ±) an SU(3)-structure over a 6-dimensional
manifold M6 the 3-form

σ = fω ∧ ds + ψ+

defines a G2-structure on M7 = M6×L with L = R or S 1 where f is a non-vanishing function
on L and s the coordinate in L. This G2-structure is called warped G2-structure since the
induced metric, namely gσ, is exactly gω,ψ+

+ f 2ds2. Considering warped G2-structures Fino
and Raffero in [15] obtained sufficient conditions on the SU(3)-structure and the warping
function f that guarantee the existence of solution for the Laplacian flow of a closed G2-
structure.

Concerning the Laplacian coflow of a coclosed G2-structure Karigiannis, MacKay and
Tsui in [21] showed that using warped products solutions for this flow could be obtained
from 6-dimensional manifolds endowed with Nearly Kähler or Calabi Yau structures.

Let us finish by noticing that the Nearly Kähler or Calabi Yau conditions are very re-
strictive and thus not many examples of these classes are known. On the contrary with the
approach of Fino and Raffero in [15] solutions for the Laplacian flow of a closed G2-structure
can be obtained from less restrictive conditions on the SU(3)-structure (concretely symplectic
half-flat condition). Thus the following question naturally arises:

Question: Is it possible to obtain solutions for the Laplacian coflow as warped products of
6-dimensional manifolds endowed with less restrictive SU(3)-structures, like half-flat ones?
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ON SOME GENERALIZATIONS OF
B-SPLINES
Peter Massopust

Abstract. In this article, we consider some generalizations of polynomial and
exponential B-splines. Firstly, the extension from integral to complex orders
is reviewed and presented. The second generalization involves the construction
of uncountable families of self-referential or fractal functions from polynomial
and exponential B-splines of integral and complex orders. As the support of the
latter B-splines is the set [0,∞), the known fractal interpolation techniques are
extended in order to include this setting.

Keywords: B-splines, cardinal splines, exponential splines, self-referential func-
tion, fractal interpolation, fractal function.
AMS classification: 26A33, 28A80, 41A05, 46F05, 65D07.

§1. Introduction

Schoenberg’s polynomial B-splines [25] are a powerful tool in approximation the-
ory because of their favorable analytic and computational properties. Unfortunately,
polynomial B-splines also have some disadvantages. Amongst them, we list:

• Polynomial B-splines have only integer smoothness which is linked to the integer
order n. However, for approximation-theoretic purposes, it is useful to fill in the
gaps in the smoothness spectrum Cn, n ∈ N. There are many functions that are
elements of, for instance, Hölder spaces Cn,α, 0 ≤ α < 1.

• Polynomial B-splines do not contain phase information. The importance of
approximation functions to be able to provide phase information is exemplified
by the so-called Oppenheim-Lim Experiment [23]. In their paper, Oppenheim &
Lim showed that the Fourier reconstruction of an image using only the modulus
of the complex-valued Fourier coefficients results in less informative content
than a reconstruction from the phase of the Fourier coefficients (and setting the
modulus equal to 1). The reconstruction from phase showed singularities such
as corners and edges quite clearly but they were hard to see in the reconstruction
from the modulus.
In addition, there are sometimes requirements for a single-band frequency ana-
lysis. For some applications, e.g., for phase retrieval tasks, complex-valued
analysis bases are needed since real-valued bases can only provide a symmetric
spectrum.

• Polynomial splines are ill-suited for describing functions or data that exhibit
sudden growth or decay because of their oscillatory behavior near the points
where such an increase or decrease occurs [28].
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The first two items in the above list can be resolved by extending the order of
B-splines from integral n to complex z with Re z > 1. The thus obtained so-called
complex B-splines [7] generate a two-parameter family of functions with a continuous
smoothness spectrum and built-in phase information.

The third issue can be rectified by introducing exponential splines and B-splines.
These splines are employed to model phenomena that follow differential systems of
the form ẋ = Ax, where A is a constant matrix. For such equations the solutions are
linear combinations of functions of the type eax and xneax, a ∈ R. Like polynomial
B-splines, exponential B-splines can be defined as finite convolution products of ex-
ponential functions. See [1, 5, 19, 24, 27, 30, 31] for an incomplete list of references
for exponential splines. The extension of exponential B-splines to complex order [14]
adds the option of applying them for the retrieval of phase information.

Neither the original nor extended polynomial and exponential B-splines are ap-
propriate approximants when functions exhibit complex intrinsic characteristics such
as self-referential or fractal behavior. In these cases, one needs to resort to frac-
tal interpolation and approximation techniques to describe them. The extension of
polynomial B-splines to an uncountable family of self-referential or fractal functions
indexed by a finite tuple of real numbers αi ∈ (−1, 1) was presented in, i.e., [12, 13, 22].
Here we consider the case of exponential B-splines of integral order and also the frac-
tal generalization of polynomial and exponential B-splines of complex orders. The
latter requires extending fractal interpolation techniques to unbounded domains.

The structure of this article is as follows. For the sake of presentation and com-
pleteness, we briefly introduce polynomial and exponential B-splines and their com-
plex order extensions in Sections 2, respectively, 3. A brief introduction to self-
referential functions is provided in Section 4.1 and in the final Section 4 uncountably
many families of self-referential polynomial and exponential B-splines of complex or-
ders are constructed.

§2. Polynomial B-Splines

In this section, we briefly review polynomial splines and their basis functions, poly-
nomial B-splines. The interested reader may consult the large literature on splines
for more details and further results.

To this end, let X = {a = x0 < x1 < · · · < xk < xk+1 = b} be a set of points, called
knots, supported on the real line R.

Definition 1. A spline of order n on [a, b] with knot set X is a function s : [a, b]→ R
such that

(i) On each subinterval [xi−1, xi), s is a polynomial of order at most n (degree at
most n − 1);

(ii) s ∈ Cn−2[a, b].

s is called a cardinal spline if the knot set is a contiguous subset of Z.

The set SX,n of all spline functions s of order n over a knot set X forms an R-
vector space of dimension n + k. A convenient and powerful basis of SX,n is given
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Figure 1: Some graphs of polynomial B-splines: n = 1, 2, 3, 4.

by Schoenberg’s cardinal polynomial B-Splines [25]. They are recursively defined as
follows. Denote by χ the characteristic function on [0, 1] and set

B1(x) := χ(x),

Bn(x) := (Bn−1 ∗ B1)(x) =

∫ 1

0
Bn−1(x − t)dt, 2 ≤ n ∈ N, (2.1)

where ∗ denotes the convolution between functions. An immediate consequence of
this definition is that supp Bn = [0, n] and that Bn ∈ Cn−2, n ∈ N, with C−1 denoting the
family of piecewise continuous functions. Some graphs of these cardinal polynomial
B-splines are shown in Figure 1.

Taking the Fourier transform of (2.1) yields the Fourier representation of Bn, which
is sometimes used to define the B-splines.

B̂n(ω) := F (Bn)(ω) :=
∫
R

Bn(x)e−iωxdx =

(
1 − e−iω

iω

)n

. (2.2)

It can be shown, either using (2.1) or (2.2) that the n-order B-spline has an explicit
representation in the form

Bn(x) =
1

Γ(n)

∞∑
k=0

(−1)k
(
n
k

)
(x − k)n−1

+ , (2.3)

where x+ := max{0, x}.
The collection {Bn : n ∈ N} is thus a discrete family of functions with increasing

smoothness and support. Both the support and the smoothness are tied to the integral
order n.

The next result justifies the term B-spline with B standing for basis. For a proof,
see for instance [6].
Proposition 1. Every cardinal spline function s : [a, b] → of order n has a unique
representation in terms of a finite shifted sequence of cardinal B-splines of order n:

s(x) =

k∑
j=−n+1

c jBn(x − j),

where c j ∈ R.
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Hence, investigating properties of splines reduces to those of B-splines.

Terminology. As we are dealing exclusively with cardinal splines and B-splines in
the remainder of this paper, we will drop the adjective “cardinal.”

2.1. Some properties of polynomial B-splines
The polynomial B-splines enjoy among others the following properties.

(i) Recursion Relation:

∀n ∈ N ∀x ∈ R : Bn(x) =
x

n − 1
Bn−1(x) +

n − x
n − 1

Bn−1(x − 1)

(ii) Convolution Relation:

∀m, n ∈ N : Bm ∗ Bn = Bm+n

(iii) Convergence to Gaussians: As n → ∞, Bn converges in Lp-norm, 2 ≤ p ≤ ∞, to
a modulated Gaussian.

(iv) The Error of Approximation for an f ∈ Cn[a, b] on a uniform grid of mesh size
h by polynomial B-splines of order n is O(hn).

The interested reader may consult the extensive literature on B-splines to learn about
additional properties of this important family of functions in approximation theory.

2.2. Polynomial B-splines of complex orders
Both the first and second obstacle of polynomial B-splines mentioned in the intro-
duction can be overcome by extending them to include complex orders (or complex
degrees). This can be done in the Fourier domain as follows. (Cf. [7].)

Definition 2. Suppose z ∈ C with Re z > 1. The B-spline of complex order z, for
short complex B-spline, is given by B̂ : R→ C,

B̂z(ω) :=
(

1 − e−iω

iω

)z

, (2.4)

or more precisely,

B̂z(ω) = B̂Re z(ω)︸   ︷︷   ︸
continuous smoothness

ei Im z ln Ω(ω)︸      ︷︷      ︸
phase

e− Im z arg Ω(ω)︸        ︷︷        ︸
modulation

, (2.5)

where Ω(ω) := 1−e−iω

iω .

We remark that B̂z is well-defined as graph Ω does not intersect the real axis.
The first factor in the product appearing in (2.5) is the Fourier transform of a so-

called fractional B-spline [29]. Some graphs of such B-splines of real order are depicted
in Figure 2. The second and third factors in (2.5) are a modulating and a damping
factor. The presence of the imaginary part Im z causes the frequency components on
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Figure 2: A family of B-splines of real order for α = Re z = 0.6 + m · 0.2, m = 1, . . . , 17.

the negative and positive real axis to be enhanced with different signs. This has the
effect of shifting the frequency spectrum towards the negative or positive frequency
side, depending on the sign of Im z. The corresponding bases can be interpreted as
approximate single-band filters [7].

The time domain representation of a complex B-spline was derived in [7] and is
given in the next theorem.

Theorem 2 (Time domain representation).

Bz(x) =
1

Γ(z)

∞∑
k=0

(−1)k
(
z
k

)
(x − k)z−1

+ , Re z > 1. (2.6)

Equality holds point-wise for all x ∈ R and in the L2(R)–norm.

Complex B-splines enjoy among others the following properties.

1. Bz ∈ L1(R) ∩ L2(R), Re z > 1.

2.
∫
R

Bz(x)dx = B̂z(0) = 1.

3. Bz ∈ W p,2(R) for p < Re z − 1
2 .

4. Bz(x) = O(|x|−m), for m < Re z + 1 and |x| → ∞.

5. Bz converges in Lp-norm, 2 ≤ p ≤ ∞, to a modulated and shifted Gaussian as
Re z→ ∞.

6. BRe z reproduces polynomials up to order dRe ze.

7. For Re z > 1, BRe z is (Re z − 1)-Hölder continuous.

8. {Bz(· − k)}k∈Z is a Riesz sequence in L2(R). This allows the construction of spline
scaling functions and spline wavelets of complex order.

Some graphical examples of complex polynomial B-splines are shown in Figure 3.
In summary, complex B-splines are a continuous two-parameter family of functions

which enjoy the properties:

(a) Re z > 1 gives a continuous family of functions of increasing smoothness Re z;

(b) Im z contains phase information and can be used to describe and resolve singu-
larities in signals and images.
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Figure 3: Bz for z = (3 + k
4 ) + i, k = 0, 1, . . . , 4.

§3. Exponential B-Splines

Exponential B-splines can be used to interpolate or approximate data that exhibit
sudden growth or decay and for which polynomial B-splines are not well-suited be-
cause of their oscillatory behavior near the points where the sudden growth or decay
occurs [28]. The interested reader is referred to the following albeit incomplete list of
references on exponential B-splines [5, 19, 27, 30, 31].

To define the class of exponential B-splines, let N ∈ N and let a := (a1, . . . , aN),
where a1, . . . , aN ∈ R with ai , 0 for at least one i ∈ NN .

Definition 3. An exponential B-spline EN,a : R → R of order N for the N-tuple a is
a function of the form

EN := EN,a :=
N
∗

k=1
eak(·)χ.

To simplify notation, we set εa(·) := ea(·)χ. A closed formula for En was derived in
[4]. Note that supp EN = [0,N], N ∈ N.

For any a ∈ R, the Fourier transform of ε−a(·) is given by

F (ε−a(·))(ω) =
1 − e−ae−iω

iω + a
.

and, therefore,

F (En)(ω) =

n∏
k=1

1 − e−ak e−iω

iω + ak

ak=a
=

(
1 − e−ae−iω

iω + a

)n

. (3.1)

3.1. Exponential B-splines of complex order
Let z ∈ C>1 := {ζ ∈ C : Re ζ > 1} and a > 0. Taking the left-hand-side of (3.1) as a
starting point, we define an exponential B-spline of complex order z, for short complex
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Figure 4: Ez,a for z = (3 + k
4 ) + 3i, k = 0, 1, . . . , 4 and a = 1.7. Top right: Re Ez,a, top

left: Im Ez,a, bottom: Three-dimensional rendering of Ez,a.

exponential B-spline, by (see [14])

Êz,a(ω) :=
(

1 − e−(a+iω)

a + iω

)z

= ÊRe z,a(ω) ei Ωa(ω) Im z e− arg Ωa(ω) Im z, (3.2)

where Ωa(ω) := 1−e−(a+iω)

a+iω . An investigation of the function Ωa : R → C shows that Êz,a

is well-defined only if a > 0. (See [14].) The second and third terms in the product of
(3.2) play the same role as they did in the case of complex polynomial B-splines.

Using properties of the exponential difference operator and the definition of Ez,a,
the following time domain representation of Ez,a was proved in [14].

Theorem 3. Suppose z ∈ C>1 and a > 0. Then,

Ez,a(x) =
1

Γ(z)

∞∑
k=0

(−1)k
(
z
k

)
e−kae−a(x−k)

+ (x − k)z−1
+ ,

where e(·)
+ := χ[0,∞) e(·). The sum converges both point-wise in R and in the L2–sense.

Figure 4 depicts some graphs of exponential B-splines of complex order.
Remark 1. Complex polynomial and exponential B-splines of order z ∈ C>1 are two-
parameter families of functions assigning to each point x ∈ [0,∞) both a real value
and a single direction given by Im z. For several applications however, such as geo-
physical data processing or multichannel data, more than one independent direction
is required. For this purpose, the complex order is replaced by a quaternionic or more
generally a hypercomplex order. We refer the interested reader to [8, 9, 17] for these
extensions in the case of polynomial B-splines.
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§4. Self-Referential Polynomial and Exponential B-Splines

In this section, we consider some fractal extensions of the classical as well as the
complex polynomial and exponential B-splines.

4.1. Self-Referential Functions
First, we briefly review the concept of self-referential function. For more details and
proofs we refer the interested reader to, for instance, [2, 3, 10, 13, 18, 20] or any other
of the numerous publications in fractal interpolation theory.

In the following, the symbol NN := {1, . . . ,N} denotes the initial segment of length
N of N. Further, we assume that N ≥ 2.

Let I be a nonempty interval in R and suppose that {Ln : I → I : n ∈ NN} is a
family of bijections with the property that {Ln(I) : n ∈ NN} forms a partition of I, i.e.,

I =

N⋃
n=1

Ln(I), and Ln(I) ∩ Lm(I) = ∅, ∀n , m ∈ NN . (4.1)

Remark 2. Condition (4.1) cannot be relaxed without adding compatibility conditions
to guarantee the form (4.2) of the RB operator T . For more details, we refer the
interested reader to [26].

Denote by B(I) := B(I,R) the set

B(I) := { f : I → R : f bounded}.

(B(I), d) becomes a complete metric space when endowed with the metric

d( f , g) := sup
x∈I
| f (x) − g(x)|,

where | · | denotes the Euclidean norm on R.
Let f , b ∈ B(I) be arbitrary. Consider the Read-Bajraktarevíc (RB) operator

T : B(I)→ B(I) defined on each subinterval Ln(I) by

Tg = f + αn · (g − b) ◦ L−1
n , n ∈ NN , (4.2)

with αn ∈ R. Under the assumption that α := max{|αn| : n ∈ NN} < 1, it follows from
the Banach fixed point theorem that T has a unique fixed point f ∗ ∈ B(I). This fixed
point satisfies the self-referential equation

f ∗ = f + αn · ( f ∗ − b) ◦ L−1
n , on Ln(I), n ∈ NN . (4.3)

Any function in B(I) which satisfies an equation of the form (4.3) is termed a self-
referential function of type B(I). The functions f and b are called seed function,
respectively, base function.

Note that f ∗ can be iteratively obtained as the limit of the sequence {gk} defined
by

gk := Tgk−1 = f + αn · (gk−1 − b) ◦ L−1
n , on Ln(I), k ∈ N, (4.4)

for an arbitrary g0 ∈ B(I).



On some generalizations of B-splines 211

Remark 3. The fixed point f ∗ of an RB operator has the property that graph f ∗ is
made up of a finite number of copies of itself and is therefore, in general, a fractal set.
For this reason, f ∗ is also called a fractal function [2, 10, 18].
Remark 4. Self-referential functions defined on function spaces other than B(I) can
be constructed as well. Examples include, among others, the smoothness spaces
Cr(I), the Lebesgue spaces Lp(I), and the Besov spaces Bs

p,q(I). (Cf., for instance,
[3, 11, 15, 16, 18].) To ensure that the RB operator T maps a function space into
itself, additional conditions at the points {Ln(∂I)}, n ∈ NN , may have to be imposed.
Remark 5. For a given finite set of bijections {Ln} or, equivalently, a given partition
of I yielding a finite set of bijections, the fixed point f ∗ depends on the functions f
and b as well as the vertical scaling factors {αn}. The interested reader may want to
consult [21] in the former case.
Remark 6. For a varying N-tuple α := (α1, . . . , αN), the fixed point f ∗ actually defines
an uncountable family f α of self-referential functions indexed by α ∈ (−1, 1)N . Such
sets of self-referential functions were termed α-fractal functions and considered as the
image of an operator F α, f 7→ f α. (Cf., i.e., [20].)

4.2. Polynomial and exponential splines of integral order
For this purpose, let BN be the cardinal polynomial B-spline of order N ≥ 2 as in
(2.3). Let I := supp BN = [0,N] and define bijections Ln : I → I, n ∈ NN , by

Ln(I) :=

[n − 1, n), n ∈ NN−1;
[N − 1,N], n = N.

Now choose f := BN and b ≡ 0. The case where b is null is considered in [21]. Suppose
α := max{|αn| : n ∈ NN} < 1. Then the RB operator T reads

Tg = BN + αn · g ◦ L−1
n , on Ln(I), n ∈ NN ,

for any g ∈ B(I). As BN ∈ CN−2, we additionally require g ∈ CN−2(I) and impose the
join-up conditions

∀m ∈ NN−1 : (Tg)(ν)(m−) = (Tg)(ν)(m+), ν = 0, 1, . . . ,N − 2. (4.5)

Conditions (4.5) guarantee that Tg ∈ CN−2(I) and as CN−2(I) becomes a Banach space

under the norm
N−2∑
ν=0
‖(·)(ν)‖∞, the unique fixed point BN of T is an element of CN−2(I)

and a self-referential function:

BN = BN + αn ·BN ◦ L−1
n , on Ln(I), n ∈ NN . (4.6)

As the fixed pointBN depends continuously on the set of parameters α := (α1, . . . , αN) ∈
(−1, 1)N , we also write BN(α) should the need arise. Hence, (4.6) defines an uncount-
able family of functions parametrized by α. Clearly, α = 0 reproduces the seed
function BN . (See also [22].)



212 Peter Massopust

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1 1.5 2 2.5 3

0.05

0.1

0.15

0.2

0.25

Figure 5: A linear (left) and a quadratic (right) fractal polynomial B-spline.

Figure 5 depicts two such fractal polynomial B-splines: the linear B2(( 3
4 ,

3
4 )) and

the quadratic B3(( 1
4 ,

1
4 ,

1
4 )). Note that B3(( 1

4 ,
1
4 ,

1
4 )) is differentiable on [0, 3] and its

graph is made up of three copies of itself.
In a similar fashion, we can take I := [0,N], f := EN,a, and set again b ≡ 0

to generate an uncountable family of fractal analogues of the classical exponential
B-splines EN,a. The RB operator then reads

Tg = EN,a + αn · g ◦ L−1
n , on Ln(I), n ∈ NN ,

for any g ∈ C(I) (as the functions EN,a are continuous on I). As above, we choose
α ∈ (−1, 1)N and impose the continuity conditions

Tg(m−) = Tg(m+), m ∈ NN−1.

Under these conditions, T is well-defined and contractive from C(I) into itself. Its
unique fixed point EN,a := EN,a(α) satisfies the self-referential equation

EN,a = EN,a + αn · EN,a ◦ L−1
n , on Ln(I), n ∈ NN . (4.7)

In Figures 6 and 7, two fractal exponential B-splines are depicted.

4.3. Polynomial and exponential B-splines of complex order
In order to derive the fractal extensions of polynomial and exponential B-splines of
complex order, we need to take into account the fact that the support of Bz and Ez,a is
the unbounded interval I := [0,∞) and extend the above construction to this setting.

To be specific, suppose that the bijections Ln, n ∈ NN , are such that Ln(I), n ∈ NN−1,
is bounded on R and LN(I) unbounded. As before, we require that Eqn. (4.1) holds.
We note that this set-up is an important special case of a general approach investigated
in [16].

To this end, we introduce the Banach space (C0,0(R+
0 ), ‖ · ‖∞) given by

C0,0(R+
0 ) := C0,0(R+

0 ,R) :=
{

f ∈ C(R+
0 ,R) : f (0) = 0 ∧ lim

x→∞
f (x) = 0

}
.

As Bz and Ez,a are continuous functions of the time variable x, vanish at x = 0, and
satisfy lim

x→∞
Bz(x) = 0 = lim

x→∞
Ez,a(x), we need to impose conditions on the RB operator

T in Eqn. (4.2) to map C0,0(R+
0 ) into itself.
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These conditions read as follows. For n ∈ NN−1, denote

Ln(0) =: xn−1,

Ln(∞) =: xn,
(4.8)

and for n := N:
LN(0) =: xN−1,

LN(∞) = ∞.
(4.9)

Here, we used the shorthand notation f (∞) := lim
x→∞

f (x) for a function f .
As a base function, we choose again b ≡ 0 on [0,∞) and require that, for n ∈ NN−1,

Tg(xn−) = Tg(xn+) (4.10)

or, equivalently,
Tg(Ln(∞)) = Tg(Ln+1(0)), (4.11)

with the obvious modification for n = N.
Theorem 4. Suppose bijections Ln : R+

0 → R
+
0 are chosen such that {Ln(R+

0 )}n∈NN forms
a partition of [0,∞) subject to (4.8) and (4.9). Further suppose that T : C0,0(R+

0 ) →
C0,0(R+

0 ) is given by
Tg = f + αn · g ◦ L−1

n , (4.12)

and satisfies (4.10), where f ∈ C0,0(R+
0 ) is arbitrary and α := max{|αn| : n ∈ NN} < 1.

Then T is well-defined and contractive on (C0,0(R+
0 ), ‖ · ‖∞) with Lipschitz constant α.

Proof. The conditions on the bijections {Ln} and the join-up conditions (4.10) guar-
antee that T is well-defined and maps C0,0(R+

0 ) into itself. To establish that T is
contractive on (C0,0(R+

0 ), ‖ · ‖∞) with Lipschitz constant α is straightforward. �

The unique fixed point f ∗ ∈ C0,0(R+
0 ) of T as defined in Eqn. (4.12) is called a

self-referential function of class C0,0(R+
0 ).
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Remark 7. Note that Theorem 4 also holds for the Banach spaces (C0,0(R+
0 ,C), ‖ · ‖∞).

As noted above, for varying α = (α1, . . . , αN) subject to α := max{|αn| : n ∈ NN} <
1, f ∗ actually defines an uncountably infinite family f α of self-referential functions
containing the seed function f .

As two prominent examples of how to obtain the fractal extension of functions
in C0,0(R+

0 ), we consider f = Bz and f = Ez,a. For this purpose and the sake of
presentation, we choose N := 2 and define bijections Ln : R+

0 → R
+
0 by

L1(x) := 2 π−1 arctan x and L2(x) := x + 1.

Then [0,∞) = L1([0,∞)) ∪ L2([0,∞)) = [0, 1) ∪ [1,∞).
Now select f := Bz, respectively, f = Ez,a, choose αn ∈ (−1, 1), n = 1, 2, and define

RB operators
T1g := Bz + α1 g ◦ tan ( πx

2 )
∣∣∣
[0,1) + α2 g(x − 1)

∣∣∣
[1,∞).

and
T2g := Ez,a + α1 g ◦ tan ( πx

2 )
∣∣∣
[0,1) + α2 g(x − 1)

∣∣∣
[1,∞).

By Theorem 4 and Remark 7, we obtain the fractal extensions of Bz and Ez,a as the
fixed points Bz(α), respectively, Ez,a(α) of the RB operators T1 and T2:

Bz = Bz + α1Bz ◦ tan ( πx
2 )

∣∣∣
[0,1) + α2Bz(x − 1)

∣∣∣
[1,∞).

and
Ez,a = Ea

z + α1 Ez,a ◦ tan ( πx
2 )

∣∣∣
[0,1) + α2 Ez,a(x − 1)

∣∣∣
[1,∞).

In Figures 8 and 9, the graphs of Bπ+i( 3
4 ,−

1
2 ) and E√2+i,1( 3

4 ,−
1
2 ) are displayed.
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Remark 8. The families of self-referential functions supported on the interval I =

[0,∞) not only depend on α but also on the partition induced by the bijections Ln on
I. Denoting the collection of all such partitions by Π = ΠN , the set of fixed points f α

should more precisely be written as f α
Π
and regarded as a function (−1, 1)N ×Π→ f ∗.
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FRACTAL JACKSON APPROXIMATION ON
THE TORUS
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Abstract. In this article we generalize an approximation formula for three dimensional
periodic data on a grid using fractal techniques which helps us to construct both smooth
and non-smooth approximants depending on the choice of scale factors. We obtain bounds
of the approximation error and showed the convergence with very weak conditions, when
the sampling frequency is indefinitely increased. The density of the mappings involved in
the space of two-dimensional periodic and continuous functions is proved using certain
ranges of the scaling factors. A numerical example is presented to illustrate the proposed
approximation methods.

Keywords: Fractals, Fractal Interpolation Functions, Fractal Surfaces, Two Dimensional
Approximation.

AMS classification: 28A80, 42A10, 42A15.

§1. Introduction

Current major investigations in the theory of approximation concern smooth approximation.
However it would be good to have mathematical structures to describe real life models which
are non-smooth in nature. Such a structure is provided, for instance, by the theory of fractal
functions (see for instance cf. [1], [2], [3], [8], [9]). Barnsley (cf. [1], [2]) first introduced the
concept of fractal interpolation functions (FIFs) using the theory of iterated function system
(IFS) (cf. [5]). FIFs form the basis of iterative constructive approximation theory. Barnsley
and Harrington (cf. [3]) derived the calculus of FIF and showed that depending on the pa-
rameters of the IFS, one can construct smooth or non-smooth FIFs. Adapting the notion of
FIF, Navascués (cf. [10]) constructed an entire family of fractal functions f α, parameterized
by an appropriate vector α, beginning from a given continuous function f on a compact in-
terval I. This type of maps tend to bridge the gap between the smoothness of the classical
mathematical objects and the pseudo-randomness of experimental data.

In the theory of classical trigonometric approximation, D. Jackson (cf. [6], [7]) described
the degree of approximation of a continuous function by means of algebraic trigonometric
polynomials. For the one dimensional case, he introduced an approximation formula (cf. [6])
for 2π periodic continuous functions as

Σm f (x) = Hm

2m∑
i=1

f (xi)

 sin
(

m(xi−x)
2

)
m sin

(
xi−x

2

) 
4

, (1.1)
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where

xi+1 − xi =
π

m
, i = 1, 2, . . . , 2m − 1 and H−1

m =

2m∑
i=1

 sin
(

m(xi−x)
2

)
m sin

(
xi−x

2

) 
4

.

We generalize the previous formula (cf. [11]) using a positive exponent γ, and derive the con-
vergence properties with very weak conditions on the original function. Recently, (cf. [14]),
Navascués and Sebastián extended the approximation formula (1.1) for the two dimensional
case. The formula proposed in [14] has an explicit representation in terms of the sample data
on a two dimensional grid.

The approximation problem considered here is the representation of a prescribed periodic
continuous and real-valued function of two variables using fractal techniques. In addition,
we prove the density of the mappings involved in the space of two-dimensional periodic and
continuous functions using certain ranges of the scaling factors. Numerical examples are
given in the last section to illustrate the proposed process.

§2. Preliminaries

First we shall review the materials from the references (cf. [1], [7], [10], [13]) which will be
used in the sequel.

2.1. Construction of fractal functions
Let us recall the construction of fractal interpolation functions in this section. Consider an
interpolation data set {(xi, yi), i ∈ NN ∪ {0}}, where NN = {1, 2, . . . ,N}. Let ∆ := x0 < x1 <
· · · < xN be a partition of the interval I = [x0, xN]. Let Li : I → Ii = [xi−1, xi], i ∈ NN be
contractive homeomorphisms such that

Li(x0) = xi−1, Li(xN) = xi. (2.1)

Let K = I × R and N continuous mappings, Fi : K → R be satisfying

Fi(x0, y0) = yi−1, Fi(xN , yN) = yi, |Fi(x, y) − Fi(x, y′)| ≤ |ci||y − y
′|, (2.2)

where (x, y), (x, y′) ∈ K, ci ∈ (−1, 1), i ∈ NN . Now define functions wi : R2 → R2 as
wi(x, y) = (Li(x), Fi(x, y)) ∀ i ∈ NN .

Theorem 1. The Iterated Function System (IFS) I = {K;wi, i = 1, 2, . . . ,N} admits a unique
attractor G, which is the graph of a continuous function f : I → R which obeys f (xi) = yi

for i = 0, 1, 2, . . . ,N.

The previous function is called a Fractal Interpolation Function (FIF) corresponding to
the IFS I = {Li(x), Fi(x, y)}Ni=1, and it satisfies the following functional equation:

f (x) = Fi(L−1
i (x), f ◦ L−1

i (x)), x ∈ Ii, i ∈ NN . (2.3)

In this paper we choose Li(x) = aix + bi satisfying (2.1) and Fi(x, y) = αiy + qi(x), where
qi : I → R are continuous functions verifying (2.2). The vector α = (α1, . . . , αN) is called a
vertical scaling factor and it must satisfy the inequality |α|∞ = max{|αi|; i = 1, 2, . . . ,N} < 1.
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2.2. α-fractal function
Let f : I → R be a continuous function. Consider qi(x) = f ◦ Li(x) − αib(x), where b is
defined from f through a linear map L (L f = b) satisfying b(x0) = f (x0), b(xN) = f (xN). The
fixed point function associated with the above IFS is known as the α-fractal function f α, and
it enjoys the following equation:

f α(x) = f (x) + αi( f α − b)(L−1
i (x)), x ∈ Ii, i ∈ NN . (2.4)

The previous equation provides the inequality

‖ f α − f ‖∞ ≤
|α|∞

1 − |α|∞
‖ f − b‖∞ =

|α|∞
1 − |α|∞

‖ f − L f ‖∞, (2.5)

which bounds the uniform distance between f α and f . Navascués (cf. [10]) proposed the
linear and continuous operator F α defined by F α( f ) = f α.

§3. One dimensional fractal Jackson approximant

Let C(T 1) denote the set of all continuous periodic function on [−π, π]. Let ∆m : −π = x0 <
· · · < x2m−1 < x2p = π be such that xi+1 = xi +

π
m for all i = 0, 1, 2, . . . , 2m−1. Let us consider

the continuous and periodic basis
{

Pmiγ(x) =

∣∣∣∣∣ sin
( m(xi−x)

2

)
m sin

( xi−x
2

) ∣∣∣∣∣γ ; i = 0, 1, 2, . . . , 2m
}

. Let us define

the set τm = span{Pmiγ}
2m
i=0. Let us consider a Jackson type operator Tmγ : C(T 1) 7→ τm

assigning a periodic approximant belonging to τm for every g ∈ C(T 1) (with respect to the
data {(xi, g(xi))}2m

i=0), defined as

Tmγ(g)(x) = Hmγ(x)
2m∑
i=0

g(xi)Pmiγ(x),

where (Hmγ(x))−1 =
2m∑
i=0

∣∣∣∣∣ sin
( m(xi−x)

2

)
m sin

( xi−x
2

) ∣∣∣∣∣γ. It is easy to see that

‖Tmγg‖C(T 1) ≤ ‖g‖C(T 1).

In fact, the equality holds if we choose g(x) = 1. In the one dimensional case, the error
of discrete Jackson approximation was studied in cf. [12]. According to this reference, for
g ∈ C(T 1), and γ > 2, the error of the approximation can be bounded as

‖Tmγ(g) − g‖C(T 1) ≤

(
π

2

)γ
ωg

(
π

4m

)
(1 + 2γζ(γ − 1)) , (3.1)

where ζ is the Riemann zeta function. We define the α-fractal Jackson approximant of g ∈
C(T 1) as

T α
mγ(g)(x) = Hmγ(x)F α

 2m∑
i=0

g(xi)Pmiγ(x)

 = Hmγ(x)

 2m∑
i=0

g(xi)Pα
miγ(x)

 ,
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where Pα
miγ(x) is the α-fractal function of Pmiγ with respect to the partition ∆ of I = [−π, π]

and a linear bounded operator L. Let us denote Pmγ(g)(x) =
2m∑
i=0
g(xi)Pmiγ(x). Then

‖Pmγ(g)‖∞ ≤ ‖g‖∞‖
2m∑
i=0

Pmiγ(x)‖∞. (3.2)

Thus ‖Pmγ(g)‖∞ ≤ ‖g‖∞‖H−1
mγ‖∞ which provides the inequality ‖Pmγ‖ ≤ ‖H−1

mγ‖∞, where
‖Pmγ‖ represents the norm of the operator with respect to the supremum norm ‖.‖∞ in C(T 1).
Here H−1

mγ represents the inverse with respect to the product. For the operator T α
mγ,

‖T α
mγ(g)‖∞ ≤‖Hmγ‖∞‖F

α(Pmγ)‖∞

≤ ‖F α‖‖Hmγ‖∞‖H−1
mγ‖∞‖g‖∞

= Rmγα‖g‖∞, (3.3)

where Rmγα = ‖F α‖‖Hmγ‖∞‖H−1
mγ‖∞. Then ‖T α

mγ‖ ≤ Rmγα. Let us consider the error term
T α

mγ(g) − g:

T α
mγ(g)(x) − g(x) =Hmγ

2m∑
i=0

g(xi)Pα
miγ(x) − Hmγ

2m∑
i=0

g(xi)Pmiγ(x) + Hmγ

2m∑
i=0

g(xi)Pmiγ(x) − g(x)

= HmγP
α
mγ(g)(x) − HmγPmγ(g)(x) + HmγPmγ(g)(x) − g(x),

where

Pαmγ(g)(x) =

2m∑
i=0

g(xi)Pα
miγ(x) = F α(Pm,γ(g))(x).

Thus, using the above computations we obtain

‖T α
mγ(g) − g‖∞ ≤ ‖Hmγ‖∞‖P

α
mγ(g) − Pmγ(g)‖∞ + ‖Tmγ(g) − g‖∞. (3.4)

Using (2.5), the first term of the above inequality can be bounded as

‖Pαmγ(g) − Pmγ(g)‖∞ ≤
|α|∞

1 − |α|∞
‖Pmγ(g) − LPmγ(g)‖∞

≤
|α|∞

1 − |α|∞
‖I − L‖‖Pmγ(g)‖∞

≤
|α|∞

1 − |α|∞
‖I − L‖‖H−1

mγ‖∞‖g‖∞.

(3.5)

Finally, using (3.1) and (3.5) in (3.4) we get

‖T α
mγ(g) − g‖C(T 1) ≤ ‖Hmγ‖∞

|α|∞‖I − L‖
1 − |α|∞

‖H−1
mγ‖∞‖g‖∞ +

(
π

2

)γ
ωg

(
π

4m

)
(1 + 2γζ(γ − 1)) .

(3.6)
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§4. Fractal Jackson approximation on T 2

In this section, the approximation process described above is extended to data on a two di-
mensional torus. Let be given two partitions ∆1

m : −π = x0 < x1 < · · · < x2m−1 < x2m = π
and ∆2

n : −π = y0 < y1 < · · · < y2n−1 < y2n = π of the circle. Let us consider the grid
∆ = ∆1

m × ∆2
n of T 2 = T 1 × T 1 and data {(xi, y j, zi j) : i = 0, 1, 2, . . . , 2m; j = 0, 1, 2, . . . , 2n}

with 2π-periodicity condition in both variables. Let α ∈ (−1, 1)2m and β ∈ (−1, 1)2n be scale
vectors for ∆1

m and ∆2
n respectively. Let us define the operator using different exponents γ1, γ2

for both single functions as

Jmnγ1γ2 ( f )(x, y) = Kmnγ1γ2 (x, y)
2m∑
i=0

2n∑
j=0

f (xi, y j)Pmiγ1 (x)Qn jγ2 (y),

where xi+1 − xi = π
m ; i = 0, 1, 2, . . . , 2m − 1, y j+1 − y j = π

n ; j = 0, 1, 2, . . . , 2n − 1,

Pmiγ1 (x) =

∣∣∣∣∣∣∣ sin
(m(xi−x)

2
)

m sin
( xi−x

2
) ∣∣∣∣∣∣∣
γ1

,

Qn jγ2 (y) =

∣∣∣∣∣∣∣ sin
( n(y j−y)

2
)

n sin
( y j−y

2
)
∣∣∣∣∣∣∣
γ2

,

and

K−1
mnγ1γ2

(x, y) =

2m∑
i=0

2n∑
j=0

∣∣∣∣∣∣∣ sin
(m(xi−x)

2
)

m sin
( xi−x

2
) ∣∣∣∣∣∣∣
γ1

∣∣∣∣∣∣∣ sin
( n(y j−y)

2
)

n sin
( y j−y

2
)
∣∣∣∣∣∣∣
γ2

.

Lemma 2. (cf. [11]) For all k = 1, 2, . . . , γ and z ∈ R:∣∣∣∣∣ sin(kz)
k sin(z)

∣∣∣∣∣γ ≤ 1.

Definition 1. (cf. [4]) Let f be a continuous function defined on T 2. The modulus of conti-
nuity of f is defined as

ω f (δ) := sup
‖x1−x2‖≤δ

{| f (x1) − f (x2)| : x1, x2 ∈ T 2}.

We will use the following properties of the modulus of continuity:

1. ω f (δ1 + δ2) ≤ ω f (δ1) + ω f (δ2).

2. ω f (λδ) ≤ λω f (δ) for λ ∈ N.

Lemma 3. For any γ1, γ2 > 0, the norm of Kmnγ1γ2 can be bounded as

‖Kmnγ1γ2‖∞ ≤
1
4

(
π

2

)2γmax

,

where γmax = max{γ1, γ2}.
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Proof. From the definition of Kmnγ1γ2 we have

K−1
mnγ1γ2

(x, y) =

2m∑
i=0

2n∑
j=0

∣∣∣∣∣∣∣ sin( m(xi−x)
2 )

m sin( xi−x
2 )

∣∣∣∣∣∣∣
γ1

∣∣∣∣∣∣∣ sin( n(y j−y)
2 )

n sin( y j−y

2 )

∣∣∣∣∣∣∣
γ2

= H−1
mγ1

(x)H−1
nγ2

(y)

≤
1
2

(
π

2

)γ1 1
2

(
π

2

)γ2

≤
1
4

(
π

2

)2γmax

,

where H−1
mγ(x) is defined in Section 3 and considering that H−1

mγ(x) ≥ 2
(

2
π

)γ
for any γ > 0

(cf. [12]). �

Theorem 4. Let f ∈ C(T 2). Then for any γ1, γ2 > 2, the approximant Jmnγ1γ2 ( f ) converges
uniformly to f whenever m, n tend to infinity.

Proof. Consider the approximation error as Emnγ1γ2 ( f )(x, y) = Jmnγ1γ2 ( f )(x, y) − f (x, y).
Applying the definition of Kmnγ1γ2 , modulus of continuity of f , and the changes xi − x =

2ui, y j − y = 2v j we obtain

|Emnγ1γ2 ( f )(x, y)| ≤ 2Kmnγ1γ2 (x, y)
2m∑
i=0

2n∑
j=0

(ω f (ūi) + ω f (v̄ j))
∣∣∣∣∣ sin mūi

m sin ūi

∣∣∣∣∣γ1
∣∣∣∣∣∣ sin nv̄ j

n sin v̄ j

∣∣∣∣∣∣γ2

,

where ūi, v̄ j are constructed as increasing order in |ui|, |v j| respectively. From the inequalities
(15) and (16) of the reference [14], for all i, j ≥ 2,∣∣∣∣∣∣∣ sin

(m(xi−x)
2

)
m sin

( xi−x
2

) ∣∣∣∣∣∣∣
γ1

≤

(
2
i

)γ1

and

∣∣∣∣∣∣∣ sin
( n(y j−y)

2
)

n sin
( y j−y

2
)
∣∣∣∣∣∣∣
γ2

≤

(
2
j

)γ2

. (4.1)

Using (4.1) and similar lines as given in [14], we obtain an error bound as

|Emnγ1γ2 ( f )(x, y)| ≤ ω f

(
π

4m
+
π

4n

)
F(γ1, γ2),

where F(γ1, γ2) is independent of m, n. Thus the error term tends to zero when the partition
is indefinitely refined. �

Definition 2. The fractal operator of Jackson approximation of a continuous f on the torus
is defined as

J
αβ
mnγ1γ2 ( f )(x, y) = Kmnγ(x, y)

2m∑
i=0

2n∑
j=0

f (xi, y j)Pα
miγ1

(x)Qβ
n jγ2

(y).

Theorem 5. Let f ∈ C(T 1 × T 1) and γ1, γ2 > 2, then

‖J
αβ
mnγ1γ2 ( f )− f ‖∞ ≤ mn

(
π

2

)2γmax
(
|α|∞

1 − |α|∞
‖I − L‖‖F β‖∞ +

|β|∞
1 − |β|∞

‖I − L∗‖
)
+ω f

(
1
m

+
1
n

)
F(γ1, γ2),

where α, β are suitable scaling vectors used to construct the fractal perturbation of the basis
functions Pmiγ1 and Qn jγ2 .
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Proof. To attain the prescribed upper bound we will use

‖J
αβ
mnγ1γ2 ( f ) − f ‖∞ ≤ ‖J

αβ
mnγ1γ2 ( f ) − Jmnγ1γ2 ( f )‖∞ + ‖Jmnγ1γ2 ( f ) − f ‖∞.

According to the definition of Jαβ
mnγ1γ2 ( f ) and Kmnγ1γ2 ,

‖J
αβ
mnγ1γ2 ( f )−Jmnγ1γ2 ( f )‖∞ ≤ ‖Kmnγ1γ2‖∞

∥∥∥∥∥∥∥∥
2m∑
i=0

2n∑
j=0

f (xi, y j)
(
Pα

miγ1
(x)Qβ

n jγ2
(y) − Pmiγ1 (x)Qn jγ2

)∥∥∥∥∥∥∥∥
∞

.

The norm of the sum in the previous expression can be bounded as∥∥∥∥∥∥∥∥
2m∑
i=0

2n∑
j=0

f (xi, y j)
(
Pα

miγ1
Qβ

n jγ2
− Pmiγ1 Qn jγ1

)∥∥∥∥∥∥∥∥
∞

≤ ‖ f ‖∞
2m∑
i=0

2n∑
j=0

‖Pα
miγ1

Qβ
n jγ2
− Pmiγ1 Qn jγ2‖∞

≤ ‖ f ‖∞
2m∑
i=0

2n∑
j=0

(
‖Pα

miγ1
Qβ

n jγ2
− Pmiγ1 Qβ

n jγ2
‖∞ + ‖Pmiγ1 Qβ

n jγ2
− Pmiγ1 Qn jγ2‖∞

)
.

(4.2)

Now the first norm of the expression (4.2) in the parenthesis can be bounded as

‖Pα
miγ1

Qβ
n jγ2
− Pmiγ1 Qβ

n jγ2
‖∞ ≤‖Pα

miγ1
− Pmiγ1‖∞‖Q

β
n jγ2
‖∞

≤
|α|∞

1 − |α|∞
‖Pmiγ1 − LPmiγ1‖∞‖F

β‖ ‖Qn jγ2‖∞

≤
|α|∞

1 − |α|∞
‖I − L‖‖Pmiγ1‖∞‖F

β‖ ‖Qn jγ2‖∞,

(4.3)

where we have assumed bmiγ1 = LPmiγ1 for a bounded linear operator L. But ‖Pmiγ1‖∞ ≤

1, ‖Qn jγ2‖∞ ≤ 1 due to Lemma 2. Similarly, the second norm of (4.2) in the parenthesis can
be bounded as

‖Pmiγ1 Qβ
n jγ2
− Pmiγ1 Qn, j,γ2‖∞ ≤‖Pmiγ1‖∞‖Q

β
n jγ2
− Qn, j,γ2‖∞

≤
|β|∞

1 − |β|∞
‖I − L∗‖,

(4.4)

where b∗n jγ2
= L∗Qn jγ2 for a bounded linear operator L∗. Finally, using (4.3), (4.4) in (4.2) we

obtain∥∥∥∥∥∥∥∥
2m∑
i=0

2n∑
j=0

f (xi, y j)
(
Pα

m,i,γ1
Qβ

n, j,γ2
− Pm,i,γ1 Qn, j,γ2

)∥∥∥∥∥∥∥∥
∞

≤
|α|∞

1 − |α|∞
‖I − L‖ ‖F β‖ +

|β|∞
1 − |β|∞

‖I − L∗‖.

Using Lemma 3, Theorem 4 and the above expression, the final bound for the error is

‖J
αβ
mnγ1γ2 ( f ) − f ‖∞ ≤ mn

(
π

2

)2γmax
(
|α|∞

1 − |α|∞
‖I − L‖ ‖F β‖ +

|β|∞
1 − |β|∞

‖I − L∗‖
)
+
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ω f

(
1
m

+
1
n

)
F(γ1, γ2).

�

Corollary 6. If f ∈ C([−π, π] × [−π, π]), γ1, γ2 > 2 and if we choose scaling vectors α, β
such that mn|α|∞, mn|β|∞ have the same rate of convergence as that of ω f , then the discrete
fractal approximant Jαβ

mnγ1γ2 ( f ) converges uniformly to f as m, n tend to infinity. The order of
convergence does not depend on γ1, γ2.

Remark 1. The present approach may be extended to high-dimensional settings, for functions
defined on hypertori. The convergence results would remain qualitatively equal to those
exposed in this paper.

§5. Example

In this section we give the numerical explanation of the proposed approximants for different
exponents and scale vectors. Figure 1(a) represents the graph of the smooth function f (x, y) =

2 sin2(x) + 3 cos2(y) over the interval [−π, π] × [−π, π]. Figure 1(b) represents the surface
corresponding to the discrete approximant Jmnγ1γ2 ( f ) for the values of m = n = 10 and
γ1 = γ2 = 4. In order to get the fractal surface Jαβ

mnγ1γ2 ( f ) corresponding to the discrete
surface data, we consider a uniform partition of [−π, π] in both directions with M = N = 10.
Figure 1(c) depicts the fractal surface corresponding to αi = βi = 0.12 for i = 1, 2, . . . ,N and
γ1 = γ2 = 4. Figure 1(d) represents another periodic fractal surface for αi = 0.08, βi = 0.1
for i = 1, 2, . . . ,N and γ1 = 3, γ2 = 4. Usually, we tend to think that the sample points come
from a smooth function, but in practice this is not always the case. Thus for non-smooth
periodic surface data, these procedures may help to provide a better approximation.
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NON-ASSOCIATIVE ALGEBRAIC
HYPERSTRUCTURES AND ITS

APPLICATIONS TO BIOLOGICAL
INHERITANCE

Oyeyemi O. Oyebola and Temitope G. Jaiyeola

Abstract. In this paper, we investigate non-associative properties in algebraic hyperstruc-
tures as it plays out in the biological inheritance which is expressed in the genotypic and
phenotypic information that are passed to the progenies from the parental traits. This is
with the intention to valuate with precision the non-associativity of weak associative prop-
erties in algebraic structures derived from some biological inheritance crossing. Examples
of biological inheritance crossing which obey the WASS condition x · (y · z)∩ (x · y) · z , ∅
for the 1, 2, 3-variable forms were found (though the corresponding identities were not
obeyed). The structures (H,⊗) were found to be hypergroupoids or hyperquasigroups
which obey 1-variable identity (3-power associativity) or 2-variable identities (LAP, RAP
or flexibility) or 3-variable identities (extra-1 or extra-2 or extra-3). Such hyperstructures
can be termed to be 3-power associative, flexible, left (right) alternative or extra; in their
precise measure of weakness in associativity.

Keywords: hypergroup, hypersemigroup, Hv-group, Hv-semigroup, Hv-structures, Filial
generations.
AMS classification: 20N20.

§1. Introduction

The study of algebraic hyperstructures was born in 1934 by F. Marty [6] when he gave
the definitions of hypergroups and illustrated with some applications. It had since been a
motivating platform for further studies in hyperstructures and its applications to other issues
of life. Hyperstructures are algebraic structures equipped with at least one multi-valued op-
eration, called a hyperoperation. The largest classes of hyperstructures are the ones called
Hv-structures. Algebraic hyperstructures are suitable generalizations of classical algebraic
structures. In a classical algebraic structure, the composition of two elements is an element,
while in an algebraic hyperstructure, the composition of two elements is a set. Algebraic
hyperstructure theory has a multiplicity of applications to other disciplines such as geom-
etry, graphs and hypergraphs, binary relations, lattices, groups, fuzzy sets and rough sets,
automata, cryptography, codes, median algebras, relation algebras, C-algebras, artificial in-
telligence and probability theory.

Etherington presented Genetic algebras in 1939, Non-associative algebra and the sym-
bolism of genetics in 1941. Schafer published Structure of genetic algebras in 1949. Mendel
authored Experiments in Plant-Hybridization in 1866.
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In this work, our main objective is to showcase that non-associativity in hyperstructures
is associated with biological inheritance. We explore some properties in algebraic hyper-
structures that naturally occur as genetic information gets passed down through generations.
Mathematically, the algebraic hyperstructures that arise in genetics are very interesting ones.
They are generally commutative but not associative. It is noteworthy that the order in which
genes interact in a given filial generation matters, thus, this necessitated the idea of non-
associativity. Hence, the need to valuate with precision the relationship that exist between
the progenies of each crosses. Thus, the import of the idea of weak associativity property
which the study of hyperstructures availed us. Interestingly, many of the algebraic properties
of these hyperstructures have genetic import. This work is furtherance to ideas presented by
Davvaz et al. [4], contributions made by Al-Tahan and Davvaz [2, 1], Anvariyeh and Momeni
[3] and recent compilations of reports in Davvaz and Vougiouklis [5]

§2. Preliminaries and Basic Definitions

In this section, some basic definitions related to hyperstructures and biological inheritance
are presented. It is known that an operation (◦) on a set H is any map from H × H to H. In
other words, to any two elements x, y ∈ H there correspond an element of H which we denote
x ◦ y. This map is written as follows

◦ : H × H → H : (x, y) 7→ x ◦ y ∈ H

Usual operations are the addition (+) and the multiplication (·). Hyperoperation or multival-
ued operation in a set is any operation which maps to two elements x, y of H into a subset
x ∗ y of H. Thus, we write

∗ : H × H → P(H)\ : (x, y) 7→ x ∗ y ⊂ H

where P is the power set of H.

A pair (H, ∗), consisting of a set equipped with a hyperoperation, is called an hypergroupoid.
This is the hyperstructure or multivalued structure. Hyperstructure is every algebraic structure
in which at least one hyperoperation is defined.

Definition 1. A hypergroup is a pair (H, ◦), where ◦ : H × H −→ P∗(H), such that the
following conditions hold for all x, y, z of H:

1. (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H which means that⋃
u∈ x◦y

u ◦ z =
⋃
v∈ y◦z

x ◦ v

2. H ◦ x = x ◦ H = H, where

H ◦ x =
⋃
h∈H

h ◦ x and x ◦ H =
⋃
h∈H

x ◦ h

This condition is called the reproduction axiom.
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A commutative hypergroup (H, ◦) is a join space if for all x, y, z of H, the following
implication holds:

x/y ∩ z/w , ∅ =⇒ x ◦ w ∩ y ◦ z , ∅ (transposition axiom).

where x/y = {u ∈ H|x ∈ u ◦ y}.

In 1934, Marty introduced the concept of a hypergroup. The motivation example was the
following: Let G be a group and H be any subgroup of G. Then G/H = {xH | x ∈ G} becomes
a hypergroup where the hyperoperation is defined in a usual manner:

xH ◦ yH = {zH | z ∈ xH · yH},

for all x, y ∈ G.

Definition 2. Let (H, ◦) be a hypergroupoid.

(i) An element e ∈ H is called an identity if, for all x ∈ H, x ∈ x ◦ e ∩ e ◦ x.
An identity e is called scalar identity if, for all x ∈ H, x ◦ e = e ◦ x = x.
An identity e is called partial identity if, for any x ∈ H, x ∈ x ◦ e or x ∈ e ◦ x.

(ii) An element x′ ∈ H is called an inverse of x ∈ H if there is an identity e ∈ H, such that
e ∈ x ◦ x′ ∩ x′ ◦ x.

Definition 3. Let H be a non-empty set and · : H × H −→ P∗(H) be a hyperoperation.

(i) Then, the hypergroupoid (H, ·) is said to be weak associative if

x · (y · z) ∩ (x · y) · z , ∅

WASS: the weak associativity

(ii) Then, the hypergroupoid (H, ·) is said to be weakly commutative if

x · y ∩ y · x , ∅

COW: the weak commutativity

(iii) Then, the hypergroupoid (H, ·) is said to be strongly commutative if

x · y = y · x

Remark 1. If (H, ·) is an hypergroupoid with WASS, then, it is called an Hv-semigroup. In
addition, if (H, ·) has the reproduction axiom, then it is called an Hv-group.

Definition 4. Let (H, ·) be an hypergroupoid and let x, y, z ∈ H.

(i) (H, ·) is said to have the 3-power associativity property (3-PA) if it obeys the identity
(x · x) · x = x(̇x · x).

(ii) (H, ·) is said to have the left alternative property (LAP) if it obeys the identity x · (x · y) =

(x · x) · y.
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⊗ RY Ry rY ry

RY RRYY RRYy RrYY RrYy

Ry RRYy RRyy RrYy Rryy

rY RrYY RrYy rrYY rrYy

ry RrYy Rryy rrYy rryy

Table 1: Dihybrid crosses with Pea plants

(iii) (H, ·) is said to have the right alternative property (RAP) if it obeys the identity (y·x)·x =

y(̇x · x).

(iv) (H, ·) is said to have the flexibility or elasticity if it obeys the identity (x · y) · x = x(̇y · x).

(v) (H, ·) is said to have the extra-1 law if obeys the identity ((x · y) · z) · x = x · (y · (z · x)).

(vi) (H, ·) is said to have the extra-1 law if it obeys the identity ((x · y) · z) · x = x · (y · (z · x)).

(vii) (H, ·) is said to have the extra-2 law if it obeys the identity (y · x) · (z · x) = (y · (x · z)) · x.

(viii) (H, ·) is said to have the extra-3 law if it obeys the identity (y · x) · (z · x) = x · ((y · x) · z).

(ix) (H, ·) is called an hyperquasigroup if it has the reproduction axiom.

Remark 2. For any other weak law (aside WASS and COW), an hypergroupoid (H, ·) with
such weak law will be called an Hv-structure.

§3. Examples of Different Genetic Inheritance

In his dihybrid crosses with pea plants, Gregor Mendel simultaneously examined two dif-
ferent genes that controlled two different traits. For instance, in one series of experiments,
Mendel began by crossing a plant that was homozygous for both round seed shape and yellow
seed color (RRYY) with another plant that was homozygous for both wrinkled seed shape and
green seed color (rryy). Then, when Mendel crossed two of the F1 (First Filial generation)
progeny plants with each other (RrYy × RrYy), he obtained an F2(Second Filial generation).

P : (Round and yellow) RRYY ⊗ (wrinkled and green) rryy

F1 : RrYy

F2 : F1 ⊗ F1

F2 : RrYy ⊗ RrYy

Theorem 1. Let H = {RY,Ry, rY, ry} with ⊗ defined on H as given in Table 1. Then,

(i) (H,⊗) is a non-associative hyperquasigroup and Hv-group.

(ii) (H,⊗) is an Hv-structure which does not satisfy the left alternative property.

(iii) (H,⊗) is an Hv-structure which does not satisfy the right alternative property.

(iv) (H,⊗) is an Hv-structure which does not satisfy the flexibility property.
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(v) (H,⊗) is an Hv-structure which is a 3-power associative hyperquasigroup

Proof. (H,⊗) is an hyperquasigroup based on the multiplication Table 1.
(i) Let us check if (H,⊗) is associative or not:

(Ry ⊗ rY) ⊗ ry , Ry ⊗ (rY ⊗ ry)

RrYy ⊗ ry , Ry ⊗ rrYy

{RrYy,Rryy, rrYy, rryy} , {RrYy,Rryy} but, (Ry ⊗ rY) ⊗ ry ∩ Ry ⊗ (rY ⊗ ry) , ∅.

Hence, (H,⊗) is a non-associative hyperquasigroup and Hv-group.
(ii) Let us check if the left alternative property is satisfied:

x · xy = xx · y

Then,
Ry ⊗ (Ry ⊗ ry) , (Ry ⊗ Ry) ⊗ ry

Ry ⊗ Rryy , RRyy ⊗ ry

{RRyy,Rryy} , {Rryy,Rryy} but, Ry ⊗ (Ry ⊗ ry) ∩ (Ry ⊗ Ry) ⊗ ry , ∅.

Hence, (H,⊗) is an Hv-structure which does not satisfy the left alternative property.
(iii) Let us check if the right alternative property is satisfied:

x · yy = xy · y

Then,
rY ⊗ (ry ⊗ ry) , (rY ⊗ ry) ⊗ ry

rY ⊗ rryy , rrYy ⊗ ry

rrYy , {rrYy, rryy} but, rY ⊗ (ry ⊗ ry) ∩ (rY ⊗ ry) ⊗ ry , ∅.

Hence, (H,⊗) is an Hv-structure which does not satisfy the right alternative property.
(iv) Let us check if the flexibility property is satisfied:

x · yx = xy · x

Ry ⊗ (rY ⊗ Ry) , (Ry ⊗ rY) ⊗ Ry

Ry ⊗ RrYy , RrYy ⊗ Ry

{RRYy,RRyy,Rryy} , {RRYy,RRyy,RrYy,Rryy} but,Ry⊗(rY⊗Ry)∩(Ry⊗rY)⊗Ry , ∅.

Hence, (H,⊗) is an Hv-structure which does not satisfy the flexibility property.
(v) It can be deduced from the multiplication Table 1 that the 3-power associativity property

holds:
x · xx = xx · x ∀ x ∈ H.

For instance, Ry ⊗ (Ry ⊗ Ry) = (Ry ⊗ Ry) ⊗ Ry

Ry ⊗ RRyy = RRyy ⊗ Ry

RRyy = RRyy. �

Remark 3. Therefore, (H,⊗) is an Hv-structure, which is a 3-power associative hyperquasi-
group whose weakness in associativity is 1-variable measurable and not 2-variable measur-
able because it failed LAP, RAP and flexibility property.
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⊗ AA Aa aa

AA AA {AA, Aa} Aa

Aa {AA, Aa} {AA, Aa, aa} {Aa, aa}

aa Aa {Aa, aa} aa

Table 2: Hereditary information inherited from crosses

3.1. Simple Mendelian Inheritance
The zygotes AA and aa are called homozygous, since they carry two copies of the same

allele. In this case, simple Mendelian inheritance means that there is no chance involved as
to what genetic information will be inherited in the next generation; i.e., AA will pass on
the allele A and aa will pass on a. However, the zygotes Aa and aA (which are equivalent)
each carry two different alleles. These zygotes are called heterozygous. The rules of simple
Mendelian inheritance indicate that the next filial generation will inherit either A or a with
equal measure. So, when two gametes reproduce, a multiplication is induced which indi-
cates how the hereditary information will be passed down to the next filial generation. This
multiplication is given by the following rules:

1. A × A = A

2. A × a = {A, a}

3. a × A = {a, A}

4. a × a = a

In 1. and 4. above, both gametes carry the same allele, while there is equal presence of the
two alleles in 2. and 3.

Theorem 2. Let H = {AA, Aa, aa} with ⊗ defined on H as given in Table 2. Then,

(i) (H,⊗) is a non-associative hypergroupoid, not a hyperquasigroup and a Hv-semigroup.

(ii) (H,⊗) is an Hv-structure which does not satisfy the left alternative property.

(iii) (H,⊗) is an Hv-structure which does not satisfy the right alternative property.

(iv) (H,⊗) is an Hv-structure which satisfies the flexibility property.

(v) (H,⊗) is an Hv-structure which is a 3-power associative hypergroupoid.

(vi) (H,⊗) is an Hv-structure which satisfies the extra-1 identity.

(vii) (H,⊗) is an Hv-structure which does not satisfy the extra-2 identity.

(viii) (H,⊗) is an Hv-structure which does not satisfy the extra-3 identity.

Proof. (H,⊗) is an hypergroupoid and not a hyperquasigroup based on the multiplication
Table 2.

(i) We shall show that the hypergroupoid (H,⊗) is non-associative:

(AA ⊗ Aa) ⊗ aa , AA ⊗ (Aa ⊗ aa)
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{AA, Aa} ⊗ aa , AA ⊗ {Aa, aa}

{Aa, aa} , {AA, Aa} but, (AA ⊗ Aa) ⊗ aa ∩ AA ⊗ (Aa ⊗ aa) , ∅

Hence, (H,⊗) is non-associative and an Hv-semigroup.

(ii) Let us check if the left alternative property (LAP) is satisfied:

xx · y = x · xy

(Aa ⊗ Aa) ⊗ aa , Aa ⊗ (Aa ⊗ aa)

{AA, Aa, aa} ⊗ aa , Aa ⊗ {Aa, aa}

{Aa, aa} , {AA, Aa, aa} but, (Aa ⊗ Aa) ⊗ aa ∩ Aa ⊗ (Aa ⊗ aa) , ∅

Hence, LAP is not satisfied by (H,⊗). So, (H,⊗) is an Hv-structure.

(iii) Let us check if the right alternative property (RAP) is also satisfied:

xy · y = x · yy

(AA ⊗ Aa) ⊗ Aa , AA ⊗ (Aa ⊗ Aa)

{AA, Aaa} ⊗ Aa , AA ⊗ {AA, Aa, aa}

{AA, Aa, aa} , {AA, Aa} but, (AA ⊗ Aa) ⊗ Aa ∩ AA ⊗ (Aa ⊗ Aa) , ∅

Hence, RAP is not satisfied by (H,⊗). So, (H,⊗) is an Hv-structure.

(iv) We shall show that flexibility property holds in (H,⊗) by considering the following and
others:

x · yx = xy · x ∀x, y ∈ H.

(a) AA ⊗ (aa ⊗ AA) = (AA ⊗ aa) ⊗ AA

AA ⊗ Aa = Aa ⊗ AA

{AA, Aa} = {AA, Aa}.

(b) AA ⊗ (Aa ⊗ AA) = (AA ⊗ Aa) ⊗ AA

AA ⊗ {AA, Aa} = {AA, Aa} ⊗ AA

{AA, Aa} = {AA, Aa}.

(c) Aa ⊗ (aa ⊗ Aa) = (Aa ⊗ aa) ⊗ Aa

Aa ⊗ {Aa, aa} = {Aa, aa} ⊗ Aa

{AA, Aa, aa} = {Aa, Aa, aa}.

Hence, we see that (H,⊗) satisfies the flexibility property.
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(v) We shall now show that the 3-power associative property is true:

x · xx = xx · x

Then,
(d) AA ⊗ (AA ⊗ AA) = (AA ⊗ AA) ⊗ AA

AA = AA

(e) Aa ⊗ (Aa ⊗ Aa) = (Aa ⊗ Aa) ⊗ Aa

Aa ⊗ {Aa, Aa, aa} = {AA, Aa, aa} ⊗ Aa

{AA, Aa, aa} = {AA, Aa, aa}

(e) aa ⊗ (aa ⊗ aa) = (aa ⊗ aa) ⊗ aa

aa = aa

Hence, by (d), (e) and (f), we see that (H,⊗) satisfies the 3-power associative property.

(vi) We shall show that extra-1 identity holds in (H,⊗) by considering the following and
others:

(xy · z)x = x(y · zx) ∀ x, y, z ∈ H

Then,
((AA ⊗ Aa) ⊗ aa) ⊗ AA = AA ⊗ (Aa ⊗ (aa ⊗ AA))

({AA, Aa} ⊗ aa) ⊗ AA = AA ⊗ (Aa ⊗ Aa)

{Aa, aa} ⊗ AA = AA ⊗ {AA, Aa, aa}

{AA, Aa} = {AA, Aa}

Hence, (H,⊗) satisfies extra-1 identity.

(vii) Let us check if (H,⊗) satisfies extra-2 identity:

yx · zx = (y · xz)x

Then,
(Aa ⊗ AA) ⊗ (aa ⊗ AA) , (Aa ⊗ (AA ⊗ aa)) ⊗ AA

{AA, Aa} ⊗ Aa , (Aa ⊗ Aa) ⊗ AA

{AA, Aa, aa} , {AA, Aa} but, (Aa ⊗ AA) ⊗ (aa ⊗ AA) ∩ (Aa ⊗ (AA ⊗ aa)) ⊗ AA , ∅

Hence, (H,⊗) does not satisfy extra-2 identity.

(viii) Let us check if (H,⊗) satisfies extra-3 identity:

xy · xz = x(yx · z)

Then,
(AA ⊗ Aa) ⊗ (AA ⊗ aa) , AA ⊗ ((Aa ⊗ AA) ⊗ aa)

{AA, Aa} ⊗ Aa ⊗ AA ⊗ (({AA, Aa}) ⊗ aa)

{AA, Aa, aa} , AA ⊗ {AA, Aa, aa}

{AA, Aa, aa} , {AA, Aa} but, (AA ⊗ Aa) ⊗ (AA ⊗ aa) ∩ AA ⊗ ((Aa ⊗ AA) ⊗ aa) , ∅

Hence, (H,⊗) does not satisfy extra-3 identity. �
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Remark 4. Therefore, (H,⊗) is an Hv-structure, which is a 3-power associative, flexible
and extra-1 hyperqroupoid. Its weakness in associativity is 1, 2, 3-variable measurable even
though it failed LAP and RAP. Depending on the algebraic properties that are satisfied, these
can be used to categorise each cross mating that takes place. It can also be used as counsel to
guide in experimentation procedures in cross breeding, in order to cut cost, manage time, en-
ergy and materials. It gives an added advantage over being probabilistic in experimentation.

3.2. Combs in Chicken
The research conducted by the British geneticists, William Bateson and R. C. Punnett (4)

showed that the shape of the comb in chickens was caused by the interaction between two
different genes. Bateson and Punnett were aware of the fact that different varieties of chickens
possess distinctive combs. For instance, Wyandottes have a “rose" comb, Brahmas have
a “pea" comb, and Leghorns have a “single" comb. When Bateson and Punnett crossed a
Wynadotte chicken with a Brahma chicken, all of the F1 progeny had a new type of comb,
which the duo termed a “walnut" comb. In this case, neither the rose comb of the Wyandotte
nor the pea comb of the Brahma appeared to be dominant, because the F1 offspring had their
own unique phenotype.

P : RRpp ⊗ rrPP

F1 : RrPp

F2 : RrPp ⊗ RrPp

Moreover, when two of these F1 progeny were crossed with each other, some of the mem-
bers of the resulting F2 generation had walnut combs, some had rose combs, some had pea
combs, and some had a single comb. Because the four comb shapes appeared in a 9:3:3:1
ratio (i.e., nine walnut chickens per every three rose chickens per every three pea chick-
ens per every one single-comb chicken), it seemed that two different genes must play a role
in comb shape. Through continued research, Bateson and Punnett deduced that Wyandotte
(rose-combed) chickens must have the genotype RRpp, while Brahma chickens must have
the genotype rrPP. A cross between a Wyandotte and a Brahma would yield offspring that
all had the RrPp genotype, which manifested as the walnut-comb phenotype. Indeed, any
chicken with at least one rose-comb allele (R) and one pea-comb allele (P) would have a
walnut comb. Thus, when two F1 walnut chickens were crossed, the resulting F2 genera-
tion would yield rose-comb chickens (RRpp), pea-comb chickens (rrPP), and walnut-comb
chickens (RrPp), as well as chickens with a new, fourth phenotype—the single-comb phe-
notype. Based on the process of elimination, it could be assumed that these single-comb
chickens had the rrpp genotype (Bateson & Punnett, 1905; 1906; 1908).

Lemma 3. Let H = {RP,Rp, rP, rp} with ⊗ defined on H as given in Table 3. Then, (H,⊗) is
a non-associative hyperquasigroup and an Hv-group.

Proof. (H,⊗) is an hyperquasigroup based on the multiplication Table 3.

(RP ⊗ rP) ⊗ rp , RP ⊗ (rP ⊗ rp)

RrPP ⊗ rp , RP ⊗ rrPp
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⊗ RP Rp rP rp

RP RRPP RRPp RrPP RrPp

Rp RRPp RRpp RrPp Rrpp

rP RrPP RrPp rrPP rrPp

rp RrPp Rrpp rrPp rrpp

Table 3: Crosses of Combs in Chicken

{RrPp, rrPp} , {RrPP,RrPp} but, (RP ⊗ rP) ⊗ rp ∩ RP ⊗ (rP ⊗ rp) , ∅

Hence, (H,⊗) is a non-associative hyperquasigroup and an Hv-group. �

§4. Non-associativity of Genetic Inheritance

Algebraic hyperstructure with genetic realization are not necessarily associative but may be
weakly associative. It seems logical that the order in which populations mate is significant.
i.e., if parents A and B mate and then the resulting progenies mates with C, the resulting
progeny is not the same as the offsprings resulting from A mating with the progenies obtained
from mating parents B and C originally. Symbolically, (A×B)×C is not equal to (A× (B×C).
Epistasis: One set of alleles (a gene) may mask or inhibit the expression of another gene’s
alleles.

4.1. Epistasis of Dominant Traits in Eye Color
The two allelomorphs responsible for eye color, christened OCA2 and HERC2 may be

represented by Oo and Hh. O and H are dominant over o and h. The alleles interact as shown
below:
Omhh and oomn have phenotype blue and OmHn has phenotype brown.
In this case, m = O or o and n = H or h. Hence, we have the result as stated below:

P : OOHH ⊗ oohh

F1 : OoHh

and
F1 ⊗ F1 : OoHh ⊗ OoHh

F2 : Brown, Blue, Blue

Brown is represented by D1, Blue by D2 and Blue by D3.
Remark 5. Note that, phenotypically there is no distinction between D2 and D3 but there is
a clear distinction between their genotypic composition. Hence, the genotypic representation
of the resulting offsprings in F2 is given as:

F2 : D̂1(o f genotypeOOHH), D̂2(o f genotypeOOhh), D̂3(o f genotypeoohh)
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OOHH (Brown)

OOHh (Brown)

OOhh (Blue)

OoHH (Brown)

OoHh (Brown)

Oohh (Blue)

ooHH (Blue)

ooHh (Blue)

oohh (Blue)

Table 4: Different genetic combinations of eye colors

⊗ OH Oh oH oh

OH OOHH (Brown) OOHh (Brown) OoHH (Brown) OoHh (Brown)

Oh OOHh (Brown) OOhh (Blue) OoHh (Brown) Oohh (Blue)

oH OoHH (Brown) OoHh (Brown) ooHH (Blue) ooHh (Blue)

oh OoHh (Brown) Oohh (Blue) ooHh (Blue) oohh (Blue)

Table 5: Genes that are far apart or on different chromosomes

Genes come in different versions (or alleles). OCA2 comes in brown (O) and blue (o)
versions. HERC2 also comes in two different versions, brown (H) and blue (h). Since people
have two copies of each gene, there are nine different possible genetic combinations. This is
expressed in Table 4.

Thus, from the result of above experiment, we have that:

(D̂1 ⊗ D̂2) ⊗ D̂3 , D̂1 ⊗ (D̂2 ⊗ D̂3)

and
(D1 ⊗ D2) ⊗ D3 , D1 ⊗ (D2 ⊗ D3)

Since genes come in different versions, resulting in epistatic representation of the phenotypes,
we have that:

(D̂1 ⊗ D̂2) ⊗ D̂3 ∩ D̂1 ⊗ (D̂2 ⊗ D̂3) , ∅

and
(D1 ⊗ D2) ⊗ D3 ∩ D1 ⊗ (D2 ⊗ D3) , ∅

Based on Table 4, we have the multiplication table given in Table 5.

Lemma 4. Let H = {OH,Oh, oH, oh} with ⊗ defined on H as given in Table 5. Then, (H,⊗)
is a non-associative hyperquasigroup and an Hv-group.
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Proof. (H,⊗) is an hyperquasigroup based on the multiplication Table 3. Now,

(OH ⊗ oH) ⊗ oh , OH ⊗ (oH ⊗ oh)

OoHH ⊗ oh , OH ⊗ ooHh

{OoHh, ooHh} , {OoHH,OoHh}

Hence, (H,⊗) is a non-associative hyperquasigroup. In fact,

(OH ⊗ oH) ⊗ oh
⋂

OH ⊗ (oH ⊗ oh) , ∅

because {OoHh, ooHh}
⋂
{OoHH,OoHh} = {OoHh}.

Thus, considering other triplets as well, (H,⊗) is a Hv-group. �

§5. Summary and Conclusion

After the introduction of the notion of hyperstructures about 80 years ago, a number of
researches, including its applications have been carried out. Vougiouklis (1990) introduced
and studied weak hyper-algebraic structures (Hv−group) for a pair (H, ·) where H is a set and
“· ” is an hyperoperation, with the axiom

x · (y · z) ∩ (x · y) · z , ∅ for all x, y, z ∈ H (5.1)

some other authors have found the genotypes of F2−offspring to be a cyclic Hv-semigroup
and relationship between algebraic hyperstructures and biological inheritance have been es-
tablished (Al-Tahan et al. 2017).

The main objective of this paper was to valuate with precision the non-associativity of weak
associative properties in algebraic structures derived from some biological inheritance cross-
ing. In this work, examples of biological inheritance crossing which obey axiom (5.1) in the
2, 3-variable forms were found. Though the corresponding identities were not obeyed. The
structure (H,⊗) were found to be hypergroupoids or hyperquasigroups which obey 1-variable
identity (3-power associativity) or 2-variable identities (LAP. RAP or flexibility) or 3-variable
identities (extra-1 or extra-2 or extra-3). Such hyperstructures can be termed to be 3-power
associative, flexible, left (right) alternative or extra; in their precise measure of weakness in
associativity.
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Abstract. Given a vector field U(x) and a nonnegative potential V(x) on a smooth open
bounded set Ω of IRn, we shall discuss some regularity results for the following equation

−∆ω + U · ∇ω + Vω = f in Ω (0.1)

whenever δ f is a bounded Radon measure with δ(x) is the distance between x and the
boundary ∂Ω.

§1. Introduction

To explain the origin of our study, let us recall some recent results concerning the very weak
solution in the sense of Brezis concerning the Laplacian operator, (say U = V = 0 in the
above equation)
and when f belongs to L1

+(Ω, δ)\L1(Ω; δ(1 + | ln δ|))) with δ(x) = dist (x, ∂Ω), then (see [10])

ω < W1
0 L(Log L) =

{
v ∈ W1,1

0 (Ω) : ∇v ∈ L(Log L)n
}
,

and ∫
Ω

|∇ω| |Log δ|dx = +∞.

More, we have (see [11]) the

Theorem 1. Let
W+ =

{
ψ ∈ W2,n (Ω) ∩ H1

0(Ω) : −∆ψ > 0
}

and
L+ =

{
f ∈ L1

+(Ω; δ) : ∃ψ ∈ W+ s.t
∫

Ω

f (x)ψ(x)dx = +∞
}
.

Then the unique solution u ∈ Ln′,∞(Ω) of∫
Ω

u∆ϕ =

∫
Ω

fϕ, ∀ϕ ∈ C2
0(Ω) =

{
ϕ ∈ C2(Ω) : ϕ = 0 on ∂Ω

}
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verifies ∫
Ω

|∇u|dx = +∞ : u < W1,1(Ω).

But we know (see [1]), that

W1(L(Log L)
)
⊂ Ln′ (Log L)β(n′−1) ∀ β > 1, n′ =

n
n − 1

.

and this last set is included in the so called small Lebesgue spaces

L(n′,1 ⊂ L(n′,α, 0 < α < 1.

Nevertheless, we have shown in [6] that if f is in L1(Ω; δ(1 + |Log δ|)α),
1
n′
< α 6 1 then the

unique solution u of the equation (0.1) belongs to L(n′,θ(Ω) for some θ.
More precisely, we have shown in [4, 6] the following

Theorem 2. Let Ω be a bounded open set of class C2 of IRn, |Ω| = 1, α >
1
n′

where n′ =

n
n − 1

, f ∈ L1(Ω; δ). Consider u ∈ Ln′,∞(Ω), the v.w.s. of

−

∫
Ω

u∆ϕdx =

∫
Ω

fϕdx ∀ϕ ∈ C2(Ω), ϕ = 0 on ∂Ω. (1.1)

Then,

1. if f ∈ L1
(
Ω; δ(1 + |Log δ|)α

)
, and α >

1
n′

u ∈ L(n′,nα−n+1(Ω) = GΓ(n′, 1;wα), wα(t) = t−1(1 − Log t)α−1− 1
n′

and
||u||GΓ(n′,1;wα) 6 K0| f |L1(Ω;δ(1+|Log δ|)α) (1.2)

2. if α =
1
n′

then

u ∈ Ln′ (Ω) and similar estimate as (1.2) holds.

In a recent paper [5], we improve the inequality (1.2) namely for the dimension 2 by

getting similar information for α 6
1
2

. Here, we want to extend those results replacing the
Laplacian operator by a more general one as it is given in (0.1). Namely, we shall prove the
following:

Theorem 3. Let U be in Lp(Ω)n, p > n, div (U) = 0 inD′(Ω), U · ν = 0 on ∂Ω, V ∈ Lp(Ω),

V > 0, β >
n − 1

n
, f ∈ L1(Ω; δ(1 + |Log δ|)β), β =

n − 1 + θ

n
, θ = nβ − n + 1.

Then the unique solution u ∈ Ln′,∞(Ω) of∫
Ω

u
[
− ∆ϕ − U · ∇ϕ + Vϕ

]
dx =

∫
Ω

fϕdx ∀ϕ ∈ C2
0(Ω) (1.3)
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belongs to L(n′,θ(Ω) and there exists a constant c (depending only of the data U V and Ω)
such that

||u||L(n′ ,θ 6 c
∫

Ω

| f |δ(1 + |Log |)βdx.

When f is in L(Log L)β, we may obtain a similar result concerning the gradient of u but

under weaker assumptions on the operator, we will show for β >
1
n′

||∇u||L(n′ ,nβ−n+1 6 c|| f ||L(Log L)β . (1.4)

§2. Notation Primary results

For a measurable function f : Ω→ IR, we set for t > 0

D f (t) = measure
{
x ∈ Ω : | f (x)| > t

}
and f∗ the decreasing rearrangement of | f |, for s ∈

(
0, |Ω|

)
f∗(s) = inf

{
t : D f (t) 6 s

}
, |Ω| is the measure of Ω,

that we shall assume to be equal to 1 for simplicity.
If A1 and A2 are two quantities depending on some parameters, we shall write

A1 . A2 if there exists c > 0 (independent of the parameters) such that A1 6 cA2

A1 ' A2 if and only if A1 . A2 and A2 . A1

We recall also the following definition of interpolation spaces. Let (X0, || · ||0), (X1, || · ||1)
two Banach spaces contained continuously in a Hausdorff topological vector space (that is
(X0, X1) is a compatible couple). For g ∈ X0 + X1, t > 0 one defines the so called K functional
K(g, t; X0, X1)=̇K(g, t) by setting

K(g, t) = inf
g=g0+g1

(
||g0||0 + t||g1||1

)
. (2.1)

For 0 6 θ 6 1, 1 6 p 6 +∞, α ∈ IR we shall consider

(X0, X1)θ,p;α =
{
g ∈ X0 + X1, ||g||θ,p;α = ||t−θ−

1
p
(
1 − Log t

)αK(g, t)||Lp(0,1) is finite
}
.

Here || · ||V denotes the norm in a Banach space V . The weighted Lebesgue space Lp(0, 1;ω),
0 < p 6 +∞ is endowed with the usual norm or quasi norm, where ω is a weight function
on (0, 1), Lp

+(0, 1, ω) =
{
f ∈ Lp(0, 1;ω), f > 0}. Our definition of the interpolation space is

different from the usual one (see [2, 13]) since we restrict the norms on the interval (0, 1).
If we consider ordered couple, i.e. X1 ↪→ X0 and α = 0,

(X0, X1)θ,p;0 = (X0, X1)θ,p

is the interpolation space as it is defined by J. Peetre (see [2, 13, 3]).

C2
0(Ω) =

{
ϕ : Ω→ IR, twicely differentiable and vanishing at the boundary}

W1V =
{
ϕ ∈ L1

loc(Ω) : ∇ϕ ∈ Vn
}
.



246 Jean Michel Rakotoson

2.1. A few description of GΓ(p,m;w1, w2)

Definition 1 (of a Generalized Gamma space with double weights). Let w1, w2 be two
weights on (0, 1), m ∈ [1,+∞], 1 6 p < +∞. We assume the following conditions:

c1) There exists K12 > 0 such that w2(2t) 6 K12w2(t) ∀ t ∈ (0, 1/2). The space Lp(0, 1;w2)
is continuously embedded in L1(0, 1).

c2) The function
∫ t

0
w2(σ)dσ belongs to L

m
p (0, 1;w1).

A generalized Gamma space with double weights is the set

GΓ(p,m;w1, w2) =

{
v : Ω→ IR measurable

∫ t

0
v

p
∗ (σ)w2(σ)dσ is in L

m
p (0, 1;w1)

}
.

A similar definition has been considered in [8]. They were interested in the embeddings
between GΓ-spaces.

Properties. Let GΓ(p,m;w1, w2) be a Generalized Gamma space with double weights and
let us define for v ∈ GΓ(p,m;w1, w2)

ρ(v) =

∫ 1

0
w1(t)

(∫ t

0
v

p
∗ (σ)w2(σ)dσ

) m
p

dt


1
m

with the obvious change for m = +∞.
Then,

1. ρ is a quasinorm.

2. GΓ(p,m;w1, w2) endowed with ρ is a quasi-Banach function space.

3. If w2 = 1
GΓ(p,m;w1, 1) = GΓ(p,m;w1).

Example 1 (of weights). Let w1(t) = (1 − Log t)γ, w2(t) = (1 − Log t)β wit (γ, β) ∈ IR2.
Then

w2 satisfies condition c1) and w1 and w2 are in Lmax(γ;β)
exp

(
]0, 1[

)
.

Definition 2 (of the small Lebesgue space). The small Lebesgue space associated to the
parameter p ∈]1,+∞[ and θ > 0 is the set

L(p,θ(Ω) =

{
f : Ω→ IR measurable such that

‖ f ‖(p,θ =

∫ 1

0
(1 − Log t)−

θ
p +θ−1

(∫ t

0
f p
∗ (σ)dσ

)1/p dt
t
< +∞

}
.

Let us notice that the small Lebesgue space is a G-gamma space.
Definition 3 (of the Grand Lebesgue space). The associate space of the small Lebesgue space
is denoted by Lp),θ(Ω) for 1 < p < +∞, θ > 0 and is defined as

Lp),θ(Ω) =

{
f : Ω→ IR measurable such that ‖ f ‖p),θ = sup

0<ε<p−1

(
εθ

∫
Ω

| f |p−εdx
) 1

p−ε

is finite
}
.
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Properties of small and Grand Lebesgue spaces.

1. They are rearrangement invariant Banach function spaces. One has the following
equivalent norm :

||u||L(p,θ(Ω) = inf
u=

∑
k uk

∑
k

inf
0<ε<p′−1

ε−
θ

(p′−ε)

(∫
Ω

|uk |
(p′−ε)′dx

) 1
(p′−ε)′


||u||p),θ ≈ sup

0<t<|Ω|

(
1 − Log t

)− θ
p

(∫ |Ω|

t
u∗(s)pds

) 1
p

.

2.
⋃
ε>0

Lp+ε(Ω)
⊂

,
⋃
β>1

Lp(Log L)
βθ

p′−1 (Ω)
⊂

, L(p,θ(Ω) ⊂ Lp(Log L)
θ

p′−1 .

3. Lp(Ω)
⊂

,
Lp

Log θL
(Ω)

⊂

, Lp),θ(Ω)
⊂

,
⋂
α>1

Lp

Log αθL
(Ω)

⊂

,
⋂

0<ε<p−1

Lp−ε

4.
∫

Ω

u · vdx 6 ||u||L(p′ ,θ ||v||Lp),θ ,
1
p

+
1
p′

= 1.

V MO(Ω) =

{
f ∈ L1(Ω) : lim

R→0
sup

r<R,x0∈Ω

1
rn

∫
B(x0,r)∩Ω

| f − fr |dx = 0
}

here fr =
1

|B(x0; r) ∩Ω|

∫
B(x0;r)∩Ω

f (x)dx.

§3. Proof of Theorem 3

The proof of Theorem 3 follows the same scheme as in [6] by considering the following dual
problem

Lemma 4. For any g ∈ Ln),θ
+ (Ω), V ∈ Ln),θ(Ω) and θ > 0 the unique solution ϕ ∈ H1

0(Ω) ∩
L∞(Ω) of

−∆ϕ + U · ∇ϕ + V ϕ = g in H−1(Ω) (3.1)

satisfies ϕ ∈ W2Ln),θ(Ω) and there exists a constant cn > 0 independent of θ such that

||ϕ||W2Ln),θ(Ω) 6 cn||g||Ln),θ(Ω).

Here, we assume the same integrability for U as in Theorem 3.

Proof. The existence, uniqueness of ϕ is given in [4]. Indeed, we have for n > 2,

Ln),θ(Ω) ⊂ Ln−ε(Ω), ∀ 0 < ε <
1
2
.

Thus g ∈ L
n
2 ,1(Ω) ⊂ H−1(Ω).

To obtain the W2Ln),θ regularity, we may assume first V and g bounded. Then following
Proposition 11 of [4], we have ϕ ∈ W2Lp(Ω), p > n.
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Let us show that, we have ε0 > 0 and a constant c0 > 0 depending only on the data U, V, Ω

such that ∀ε ∈ [0, ε0]
||ϕ||W2Ln−ε 6 c0||g||Ln−ε . (3.2)

Let 0 < ε <
1
2

. Then from the equation satisfied by ϕ, one has :

||∆ϕ||Ln−ε 6 ||U · ∇ϕ||Ln−ε + ||V ϕ||Ln−ε + ||g||Ln−ε . (3.3)

Since ϕ ∈ L∞(Ω) and
||ϕ||L∞ 6 cn||g||L

n
2 ,1
6 cn||g||Ln),θ . (3.4)

So that
||V ϕ||Ln−ε 6 c||V ||Ln−ε ||ϕ||L∞ 6 c||V ||Ln−ε ||g||Ln),θ . (3.5)

By Hölder inequality, for p > n,

||U · ∇ϕ||Ln−ε 6 ||U ||Lp ||∇ϕ||
L

p(n−ε)
p−n+ε
6 c||U ||Lp ||∇ϕ||Lp(n) where p(n) =

pn
p − n

. (3.6)

We shall choose ε0 > 0 : (n−ε0)∗ > p(n) i.e 0 < ε < min
(1
2

;
n(p − n)
2p − n

)
. In that case, we have

the compact embedding W2Ln−ε0 (Ω) ⊂> W1Lp(n)(Ω). Therefore ∀ η > 0, there exists cη > 0
such that

||∇ϕ||Lp(n) 6 η||ϕ||W2Ln−ε0 + cη||ϕ||L2 . (3.7)

From Agmon-Douglis-Niremberg’s theorem and Marcienkiewicz interpolation’s theorem,
one has a constant cn > 0 such that

||ϕ||W2Ln−ε 6 cn||∆ϕ||Ln−ε ∀ϕ ∈ W2Ln−ε(Ω) ∩ H1
0(Ω) and ∀ ε ∈ [0, ε0]. (3.8)

Combining relations (3.3) to (3.8), we deduce for all η > 0, one has a constant cη > 0, for all
ε ∈ [0, ε0]

||ϕ||W2Ln−ε 6 η||U ||Lp ||ϕ||W2Ln−ε + cη||U ||Lp ||ϕ||L∞ + c′||V ||Ln−ε ||g||Ln),θ + ||g||Ln−ε . (3.9)

Since we have

||g||Ln),θ ' sup
0<ε< n−1

2

(
εθ

∫
Ω

|g|n−ε(x)dx
) 1

n−ε

;

we deduce from relation (3.9) :

||ϕ||W2Ln),θ (1 − η||U ||Lp ) 6 cη||U ||Lp ||g||Ln),θ + c(1 + ||V ||Ln),θ )||g||Ln),θ .

Choosing η||U ||Lp 6
1
2

, we then have a constant c depending only on U and Ω.

||ϕ||W2Ln),θ 6 c(1 + ||V ||Ln),θ )||g||Ln),θ . (3.10)

We conclude by usual density argument, say

replacing g by gk(x) = min
(
k; |g(x)|

)
sign (g(x)), Vk = min(V; k).

the solution of ϕk of

−∆ϕk + U · ∇ϕk + Vk ϕ = gk

ϕk ∈ H1
0(Ω) ∩ L∞(Ω)

satisfies (3.10).

Let k → ∞, the uniqueness of solution (1.3) gives the result. �
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§4. Regularity for data in L(Log L)α for a full linear operator

In [6], we have shown the following

Theorem 5. Let Ω be a bounded open set of IRn, n > 3 of class C1,1, A(x) = (ai j(x))i, j, x ∈ Ω

a bounded coercitive matrix. Assume that ai j ∈ V MO(Ω) and let f be in L(Log L)α, α >
n − 1

n
. Then, the weak solution of

div (A(x)∇u) = f in Ω

u ∈ W1
0 Ln′ (Ω)

satisfies
||∇u||L(n′ ,nα−n+1 6 c(n;α)|| f ||L(Log L)α . (4.1)

We want to extend the above result replacing the main operator by

Lu=̇ − div
(
A(x)∇u

)
+ B(x) · ∇u − div

(
C(x)u

)
+ V(x)u.

For this, we will assume that

H1. C(x) = (ci(x))i∈{1,...,n}, B(x) = (bi(x)) are such that ci, bi are in Ln(Ω) for all i and
V ∈ L

n
2 (Ω), A is symmetric.

H2. There exists a constant c0 > 0: V − div (C) > c0 > 0 inD′(Ω)

We recall the following results (see [9]).

Lemma 6. Under the above assumptions on A, B, C and V, F ∈ Lp(Ω)n, 1 < p < n. There
exists an unique solution u ∈ W1,p

0 (Ω) of

Lu = −div (F) inD′(Ω).

Moreover, there exists a constant k(p) > 0 (independent of f and u) such that

||∇u||
L

np
n−p (Ω)

6 k(p)||F||Lp(Ω)n . (4.2)

Lemma 7 (see [7]). Let 1 < p < n, f ∈ Lp(Ω) and v the unique solution of −∆v = f in
D′(Ω), v ∈ W1,p

0 (Ω). Then there exist a constant cn independent of p, f and v such that

||∇v||
L

np
n−p (Ω)

6
cn

(p − 1)
n−1

n

|| f ||Lp(Ω). (4.3)

Lemma 8. Let f ∈ Lp(Ω), 1 < p <
n(n − 1)

n2 − n − 1
, p∗ =

pn
n − p

.

Then, there exist a constant c′n independent of p, f such that the unique solution u ∈ W1,p
0 (Ω)

of Lu = f inD′(Ω) satisfies

||∇u||Lp∗ 6
c′n

(p − 1)
n−1

n

|| f ||Lp(Ω). (4.4)
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Proof. Let r ∈
[

n
n − 1

= n′,
n − 1
n − 2

= (n − 1)′
]

and v ∈ W1,r
0 (Ω) : −∆v ∈ Lm(Ω) with

1
m

=

1
r

+
1
n

. From Lemma 6 for any solution u ∈ W1,n′
0 (Ω) of Lu = −∆v, one has

||∇u||Ln′ (Ω) 6 k(n′)||∇v||Ln′ (Ω). (4.5)

and
||∇u||L(n−1)′ (Ω) 6 k((n − 1)′)||∇v||L(n−1)′ (Ω). (4.6)

Applying the Marcinkiewicz real interpolation method, we deduce that we have

||∇u||Lr(Ω) 6 Max (k(n′); k(n − 1)′)||∇v||Lr(Ω). (4.7)

Taking 1 < p <
n(n − 1)

n2 − n − 1
, we have n′ < p∗ < (n − 1)′ and choosing v such that −∆v = f ∈

Lp(Ω), v ∈ W1,p(Ω) then applying Lemma 7, relation (4.7) leads to :

||∇u||Lp∗ (Ω) 6
cn

(p − 1)
n−1

n

|| f ||Lp(Ω). �

Theorem 9. Let f ∈ L(Log L)α, α >
n − 1

n
, u satisfying Lu = f in D′(Ω), u ∈ W1

0 Ln′,∞(Ω).
Then

1. |∇u| ∈ L(n′,nα−n+1(Ω).

2. ||∇u||L(n′ ,nα−n+1(Ω) 6 c(n;α)|| f ||L(Log L)α .

Proof. Its follows the same arguments as in [6] using relation (4.4) and a suitable decompo-
sition of f , whenever f > 0. We drop the details. �

We may weaken hypothesis H2. on V and C(x) by assuming
H3. V − div (C) > 0 inD′(Ω).

But we shall add an assumption as

H4. V −
1
2

div (C + B) > 0 inD′(Ω).

Hypothesis H4. ensures that for all T ∈ H−1(Ω) the problem Lu = T in D′(Ω) (resp.
L∗u = T ) possesses an unique solution u ∈ H1

0(Ω), L∗ is the adjoint operator of L. As a
by product of such result and Lemma 6 one has :

Lemma 10. Let r ∈
[

2n
n + 2

,
2n

n − 2

]
, n > 3, F ∈ Lr(Ω)n. Then, there exists an unique

u ∈ W1,r
0 (Ω) of Lu = −div (F) inD′(Ω). Moreover,

∃c(r) > 0 : ||∇u||Lr 6 c(r)||F||Lr . (4.8)

Proof. Let F ∈ Lr(Ω)n, r ∈
[
2,

2n
n − 2

]
. Since F ∈ L2(Ω)n, we may use hypothesis H4. to

deduce that the problem Lu = −div (F) has an unique solution u ∈ H1
0(Ω). Let F0 ∈ L2∗ (Ω)n

such −div (F0) = u and

||F0||L2∗ 6 c||u||L2 6 c||F||L2 6 c||F||Lr . (4.9)
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We may write the equation Lu = −div (F) as

−div
(
A(x)∇u

)
+ B(x)∇u − div

(
C(x)u

)
+ (V + 1)u = −div (F0 + F), F0 + F ∈ Lr(Ω)n

One has V + 1 − div (C) > 1 > 0.
Applying Lemma 6, we deduce that u ∈ W1,r

0 (Ω) and

||∇u||Lr 6 c(r)||F0 + F||Lr 6 c(r)||F||Lr . (4.10)

For r ∈
[

2n
n + 2

, 2
]
, we argue by duality to conclude that one has an unique function u ∈

W1,r
0 (Ω) such that Lu = −div (F) inD′(Ω)

||∇u||Lr 6 c(r)||F||Lr . � (4.11)

Thank to the above Lemma, we have:

Lemma 11. Let r ∈ [n′, (n − 1)′] then there exists a constant k(n) > 0

||∇u||Lr 6 k(n)||F||Lr

whenever u satisfies: Lu = −div (F) inD′(Ω).

We conclude as before to derive the following:

Lemma 12. Let f ∈ Lp(Ω), 1 < p <
n(n − 1)

n2 − n − 1
, p∗ =

pn
n − p

= −p(n). Then the unique

solution u of Lu = f , u ∈ W1,p
0 (Ω) satisfies

||∇u||Lp∗ 6
cn

(p − 1)
n−1

n

|| f ||Lp(Ω).

Theorem 13. Assume H1. H3. and H4. Then for f ∈ L(Log L)α, α >
n − 1

n
, n > 3. There

exists an unique solution u ∈ L(n′,nα−n+1(Ω) satisfying Lu = f in D′(Ω). Moreover, there
exists a constant c(n;α) > 0 such that:

||∇u||L(n′ ,nα−n+1(Ω) 6 c(n;α)|| f ||L(Log L)α .

Proof. The proof follows the same argument as in [6]. �

Recent developments concerning equation (2.1) but with singular potential as Colomb’s
potential is given in [12].
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STOCHASTIC p-LAPLACE EQUATION

WITH L1 INITIAL DATA
Niklas Sapountzoglou and Aleksandra Zimmermann

Abstract. For 1 < p < ∞, we consider a stochastic p-Laplace equation on a bounded
domain with homogeneous Dirichlet boundary conditions. The technical difficulties arise
from the L1 random initial data under consideration. We introduce the notion of renor-
malized solutions.
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§1. Introduction

Let (Ω,F , P, (Ft)t∈[0,T ], (βt)t∈[0,T ]) be a stochastic basis with a complete, countably generated
probability space (Ω,F , P), a filtration (Ft)t∈[0,T ] ⊂ F satisfying the usual assumptions and a
real valued, Ft-Brownian motion (βt)t∈[0,T ]. Let D ⊂ Rd a bounded Lipschitz domain, T > 0,
QT = (0,T ) × D and 1 < p < ∞. Furthermore, let u0 : Ω → L1(D) be F0-measurable and
Φ ∈ L2(Ω × QT ) be progressively measurable. In this contribution, we study the nonlinear
evolution problem:

du − div (|∇u|p−2∇u) dt = Φ dβ in Ω × QT ,

u = 0 on Ω × (0,T ) × ∂D, (1.1)

u(0, ·) = u0 ∈ L1(Ω × D).

The diffusion operator in our equation is the p-Laplace operator for 1 < p < ∞, i.e.,

∆p(u) := div (|∇u|p−2∇u).

Obviously, ∆2 = ∆, while ∆p is a nonlinear monotone operator for p , 2. In the last decades,
there has been an extensive study on (1) (see, e.g., [16], [15], [17], [14] and [4]). In our case,
the main technical difficulty arises from the random initial data in L1(Ω × D). In this setting,
variational solutions are out of range and therefore we consider the more general notion of
renormalized solutions which has been introduced by [11] for the study of global existence
and weak stability of the Boltzmann equation. Renormalized solutions of (1) with a determin-
istic right hand side have been studied by many authors, (see, e.g., [7], [5], [8]). Later, this
solution concept has been extended to more general problems of parabolic, elliptic-parabolic
and hyperbolic type (see, e.g., [9],[10], [6], [1]). For stochastic conservation laws the notion
of entropy solutions has been considered in [3]. For a quasilinear, degenerate hyperbolic-
parabolic SPDE with L1 random initial data, the well-posedness and regularity of kinetic
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solutions has been studied in [13], but, to the best of our knowledge, these results do not
apply in the situation of (1). Our aim is to extend the notion of renormalized solutions for the
stochastic setting. The well-posedness of (1.1) in the framework of renormalized solutions is
the subject of a forthcoming research article.

The well-posedness for F0-measurable initial data u0 ∈ L2(Ω×D) is an easy consequence
of classical well-posedness results:
Theorem 1. Let the conditions in the introduction be satisfied. Furthermore, let u0 ∈

L2(Ω × D). Then there exists a unique strong solution to (1.1), i.e., there is an Ft-adapted
stochastic process u : Ω × [0,T ] → W1,p

0 (D) such that u ∈ Lp(Ω; Lp(0,T ; W1,p
0 (D))) ∩

L2(Ω;C([0,T ]; L2(D))), u(0, ·) = u0 in L2(Ω × D) and

u(t) − u0 −

∫ t

0
div (|∇u|p−2∇u) ds =

∫ t

0
Φ dβ

in W−1,p′ (D) + L2(D) for all t ∈ [0,T ] and a.s. in Ω.

Remark 1. Since we know from all terms except the term
∫ t

0 div (|∇u|p−2∇u) ds that these

terms are elements of L2(D) for all t ∈ [0,T ] and a.s. in Ω it follows that
∫ t

0 div(|∇u|p−2∇u) ds ∈
L2(D) for all t ∈ [0,T ] and a.s. in Ω. Therefore this equation is an equation in L2(D).

Proof. This result is a consequence of [14], Chapter II, Theorem 2.1 and Corollary 2.1. We
only have to check the assumptions of this theorem. Following the notations therein, we set
V = W1,p

0 (D) ∩ L2(D) in the case 1 < p < 2 and V = W1,p
0 (D) in the case p ≥ 2, H = L2(D),

E = R, A : V → V∗, A(u) = − div (|∇u|p−2∇u), B = Φ, f (t, ω) = 2 + ‖B(t, ω)‖22 for almost
each (t, ω) ∈ (0,T ) ×Ω and z = 0. Then we have LQ(E; H) = L2(R, L2(D)) = L2(D).
We remark that A does not depend on (t, ω) ∈ [0,T ]×Ω and that B does not depend on u ∈ V .
Obviously, conditions (A1), (A2) and (A5) in [14] are satisfied. Moreover, in the case p ≥ 2
the validity of conditions (A3) and (A4) is well known in the theory of monotone operators.
Therefore we only consider the case 1 < p < 2.
In this case we check condition (A3). Using the norms

‖v‖V :=
(
‖v‖

p

W1,p
0 (D)

+ ‖v‖
p
2

) 1
p

, ‖v‖W1,p
0 (D) := ‖∇v‖Lp(D)d

we have

|B|2Q + 2‖v‖pV = ‖B‖22 + 2‖v‖pV = f − 2 + 2‖v‖pV
= f − 2 + 2‖v‖p

W1,p
0 (D)

+ 2‖v‖p2 = f − 2 + 2‖v‖p2 + 2〈Av, v〉V∗,V

≤ f + ‖v‖22 + 2〈Av, v〉V∗,V

for all v ∈ V since xp ≤ 1 + x2 for all x ≥ 0. This proves condition (A3) for α = K = 2.
Now we check condition (A4). We estimate

‖A(u)‖V∗ ≤ ‖A(u)‖W−1,p′ (D) ≤ ‖∇u‖p−1
Lp(D)d ≤ ‖u‖

p−1
V .

Therefore [14], Chapter II, Theorem 2.1, Corollary 2.1 and Theorem 2.2 provide the existence
of a strong solution to (1.1). �
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§2. Itô formula and renormalization

For two Banach spaces X, Y , let L(X; Y) denote the Banach space of bounded, linear operators
from X to Y .
In order to find an appropriate notion of renormalized solutions to (1.1), we use the methods
of [12] to prove a particular version of the Itô formula. For the sake of completeness, we
recall the following regularization procedure:
Lemma 2. Let D ⊂ Rd be a bounded domain with Lipschitz boundary, 1 ≤ p < ∞ and
r = min {p, 2}. There exists a sequence of operators

Πn : W−1,p′ (D) + Lr(D)→ W1,p
0 (D) ∩ L2(D), n ∈ N

such that
i.) Πn(v) ∈ W1,p

0 (D) ∩ L2(D) ∩C∞(D) for all v ∈ W−1,p′ (D) + Lr(D) and all n ∈ N

ii.) For any n ∈ N and any Banach space

F ∈ {W1,p
0 (D), L2(D), W−1,p′ (D), W1,p

0 (D) ∩ L2(D), W−1,p′ (D) + L2(D)}

Πn : F → F is a bounded linear operator such that limn→∞ Πn |F = IF in L(F; F),
where IF is the identity on F.

Proof. We follow the ideas of [12], p. 200, Exemple 2.1 and let Πn(v) := (φn · v) ∗ ρn be the
convolution of the multiplication of v ∈ W−1,p′ (D)+ Lr(D) with an appropriate cutoff function
φn and a standard mollifier ρn with support in B1/n(0) for n ∈ N. Then, the assertion follows
using Hardy and Young inequality. �

Proposition 3. Let G ∈ Lp′ (Ω × QT )d, Φ ∈ L2(Ω × QT ) be progressively measurable, u0 ∈

L2(Ω × D) be F0-measurable and u ∈ L2(Ω;C([0,T ]; L2(D))) ∩ Lp(Ω; Lp(0,T ; W1,p
0 (D)))

satisfying the equality

u(t) − u0 −

∫ t

0
div G ds =

∫ t

0
Φ dβ (2.1)

in L2(D) for all t ∈ [0,T ] and a.s. in Ω.
Then, for all ψ ∈ C∞([0,T ]×D) and all S ∈ C2(R) with supp(S ′′) compact such that S ′(0) = 0
or ψ(t, x) = 0 for all (t, x) ∈ [0,T ] × ∂D we have∫

D
S (u(t))ψ(t) − S (u0)ψ(0) dx +

∫ t

0

∫
D

S ′′(u)∇uGψ dx ds +

∫ t

0

∫
D

S ′(u)G∇ψ dx ds

=

∫ t

0

∫
D

S ′(u)ψΦ dx dβ +

∫ t

0

∫
D

S (u)ψt dx ds +
1
2

∫ t

0

∫
D

S ′′(u)ψΦ2 dx ds (2.2)

for all t ∈ [0,T ] and a.s. in Ω.
Especially for ψ ∈ C∞(D) not depending on t we get∫

D
(S (u(t)) − S (u0))ψ dx +

∫ t

0

∫
D

S ′′(u)∇uGψ dx ds +

∫ t

0

∫
D

S ′(u)G∇ψ dx ds

=

∫ t

0

∫
D

S ′(u)ψΦ dx dβ +
1
2

∫ t

0

∫
D

S ′′(u)ψΦ2 dx ds
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for all t ∈ [0,T ] and a.s. in Ω.

Proof. We choose the regularizing sequence (Πn) according to Lemma 2 and set un := Πn(u),
un

0 := Πn(u0), (div G)n := Πn(div G) and Φn := Πn(Φ). We apply the operator Πn to both
sides of this equality. Since Πn ∈ L(W−1,p′ (D) + L2(D); W1,p

0 (D) ∩ L2(D)), we may conclude

un(t) − un
0 −

∫ t

0
(div G)n ds =

∫ t

0
Φn dβ

in D, for all t ∈ [0,T ] and a.s. in Ω. Now we apply pointwise in x ∈ D the classic Itô formula
for h(t, u) := S (u)ψ(t, x) with respect to the time variable t. Integration over D afterwards
yields ∫

D
S (un(t))ψ(t) − S (un

0)ψ(0) dx −
∫ t

0
〈(div G)n, S ′(un)ψ〉W−1,p′ (D),W1,p

0 (D) ds

=

∫ t

0

∫
D

S ′(un)ψΦn dx dβ +

∫ t

0

∫
D

S (un)ψt dx ds +
1
2

∫ t

0

∫
D

S ′′(un)ψΦ2
n dx ds

for all t ∈ [0,T ] and a.s. in Ω. Again by [12] we may pass to the limit with n→ ∞. Thus, we
get ∫

D
S (u(t))ψ(t) − S (u0)ψ(0) dx −

∫ t

0
〈div G, S ′(u)ψ〉W−1,p′ (D),W1,p

0 (D) ds

=

∫ t

0

∫
D

S ′(u)ψΦ dx dβ +

∫ t

0

∫
D

S (u)ψt dx ds +
1
2

∫ t

0

∫
D

S ′′(u)ψΦ2 dx ds

for all t ∈ [0,T ] and a.s. in Ω. This concludes the equality∫
D

S (u(t))ψ(t) − S (u0)ψ(0) dx +

∫ t

0

∫
D

S ′′(u)∇uGψ dx ds +

∫ t

0

∫
D

S ′(u)G∇ψ dx ds

=

∫ t

0

∫
D

S ′(u)ψΦ dx dβ +

∫ t

0

∫
D

S (u)ψt dx ds +
1
2

∫ t

0

∫
D

S ′′(u)ψΦ2 dx ds

for all t ∈ [0,T ] and a.s. in Ω. �

§3. Renormalized solution

Let us assume that there exists a strong solution u to (1.1) in the sense of Theorem 1. We
observe that for initial data u0 merely in L1, the Itô formula for the square of the norm (see,
e.g., [15]) can not be applied and consequently the natural a priori estimate for ∇u in Lp(Ω ×
QT )d is not available. Choosing ψ ≡ 1 and

S (u) =

∫ u

0
Tk(r) dr

in (2.2), where Tk : R→ R is the truncation function at level k > 0 defined by

Tk(r) =

r , |r| ≤ k,
k sign(r) , |r| > k,
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we find that there exists a constant C(k) ≥ 0 depending on the truncation level k > 0, such
that

E

∫ T

0

∫
D
|∇Tk(u)|p dx ds ≤ C(k).

As in the deterministic case, the notion of renormalized solutions takes this information into
account :
Definition 1. Let the assumptions in the introduction be fulfilled with u0 ∈ L1(Ω × D). Then
u ∈ L1(Ω;C([0,T ]; L1(D))) is called a renormalized solution to (1.1) with initial value u0, if
and only if

(i) Tk(u) ∈ Lp(Ω; Lp(0,T ; W1,p
0 (D))) for all k > 0.

(ii) For all ψ ∈ C∞([0,T ] × D̄) and all S ∈ C2(R) such that S ′ has compact support with
S ′(0) = 0 or ψ(t, x) = 0 for all (t, x) ∈ [0,T ] × ∂D the equality∫

D
S (u(t))ψ(t) − S (u0)ψ(0) dx +

∫ t

0

∫
D

S ′′(u)|∇u|pψ dx ds

+

∫ t

0

∫
D

S ′(u)|∇u|p−2∇u · ∇ψ dx ds

=

∫ t

0

∫
D

S ′(u)ψΦ dx dβ +

∫ t

0

∫
D

S (u)ψt dx ds +
1
2

∫ t

0

∫
D

S ′′(u)ψΦ2 dx ds (3.1)

holds true for all t ∈ [0,T ] and a.s. in Ω.

(iii) The following energy dissipation condition holds true:

lim
k→∞
E

∫
{k<|u|<k+1}

|∇u|p dx dt = 0.

Several remarks about Definition 1 are in order: Let u be a renormalized solution in
the sense of Definition 1. Since supp (S ′) ⊂ [−M,M], it follows that S is constant outside
[−M,M] and for all k ≥ M, S (u(t)) = S (Tk(u(t))) a.s. in Ω×D for all t ∈ [0,T ]. In particular,
we have

S (u) ∈ Lp(Ω; Lp(0,T ; W1,p(D))) ∩ L∞(Ω × QT ).

From the chain rule for Sobolev functions it follows that

S ′(u)(|∇u|p−2∇u) = S ′(u)χ{|u|<M}(|∇u|p−2∇u) = S ′(TM(u))(|∇TM(u)|p−2∇TM(u)) (3.2)

a.s. in Ω × QT and therefore from (i) it follows that all the terms in (3.1) are well-defined.
In general, for the renormalized solution u, ∇u may not be in Lp(Ω × QT )d and therefore (iii)
is an additional condition which can not be derived from (ii). However, for u ∈ L1(Ω × QT )
satisfying (i), we can define a generalized gradient (still denoted by ∇u) by setting

∇u(ω, t, x) := ∇Tk(u)χ{|u|<k}

a.s. in Ω × QT . From (ii) it follows that u satisfies the equation

S (u(t)) − S (u(0)) −
∫ t

0
div (S ′(u)|∇u|p−2∇u) ds

= −

∫ t

0
S ′′(u)|∇u|p ds +

∫ t

0
ΦS ′(u) dβ +

1
2

∫ t

0
S ′′(u)Φ2 ds, (3.3)
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or equivalently the SPDE

dS (u) − div (S ′(u)|∇u|p−2∇u) dt + S ′′(u)|∇u|p dt

= ΦS ′(u) dβ +
1
2

S ′′(u)Φ2 dt (3.4)

in L1(D) for all t ∈ [0,T ], a.s. in Ω and for any S ∈ C2(R) such that S ′(0) = 0 with supp(S ′)
compact.
Remark 2. Let u be a renormalized solution to (1.1) with ∇u ∈ Lp(Ω×QT )d. For fixed l > 0,
let hl : R→ R be defined by

hl(r) =


0 , |r| ≥ l + 1
l + 1 − |r| , l < |r| < l + 1
1 , |r| ≤ l.

Taking S (u) =
∫ u

0 hl(r) dr as a test function in (3.5), we may pass to the limit with l→ ∞ and
we find that u is a strong solution to (1.1).

3.1. The Itô product rule

In the well-posedness theory of renormalized solutions in the deterministic setting (see, e.g.,
[7]), the product rule is a crucial part. In the following Lemma, we propose an Itô product rule
for strong solutions to (1.1). In the following, we will call a function f : R → R piecewise
continuous, iff it is continuous except for finitely many points.

Proposition 4. For 1 < p < ∞, u0, v0 ∈ L2(Ω×D) F0-measurable let u be a strong solution to
(1.1) with initial datum u0 and v be a strong solution to (1.1) with initial datum v0 respectively.
Then, for any H ∈ C2

b(R) and any Z ∈ W2,∞(R) with Z′′ piecewise continuous such that
Z(0) = Z′(0) = 0

(Z((u − v)(t)),H(u(t)))2 = (Z(u0 − v0),H(u0))2

+

∫ t

0
〈∆p(u) − ∆p(v),H(u)Z′(u − v)〉W−1,p′ (D),W1,p

0 (D) ds

+

∫ t

0
〈∆p(u),H′(u)Z(u − v)〉W−1,p′ (D),W1,p

0 (D) ds +

∫ t

0
(ΦH′(u),Z(u − v))2 dβ

+
1
2

∫ t

0

∫
D

Φ2H′′(u)Z(u − v) dx ds (3.5)

for all t ∈ [0,T ] a.s. in Ω.

Proof. We fix t ∈ [0,T ]. Since u, v are strong solutions to (1.1), it follows that

u(t) = u0 +

∫ t

0
∆p(u) ds +

∫ t

0
Φ dβ, (3.6)
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v(t) = v0 +

∫ t

0
∆p(v) ds +

∫ t

0
Φ dβ

and consequently

(u − v)(t) = u0 − v0 +

∫ t

0
∆p(u) − ∆p(v) ds (3.7)

holds in L2(D), a.s. in Ω. For n ∈ Nwe define Πn according to Lemma 2 and set Φn := Πn(Φ),
un

0 := Πn(u0), vn
0 := Πn(v0), un := Πn(u), vn := Πn(v), gn := Πn(∆p(u)), hn := Πn(∆p(v)).

Applying Πn on both sides of (3.7) yields

(un − vn)(t) = un
0 − v

n
0 +

∫ t

0
gn − hn ds (3.8)

and applying Πn on both sides of (3.6) yields

un(t) = un
0 +

∫ t

0
gn ds +

∫ t

0
Φn dβ

(3.9)

in W1,p
0 (D) ∩ L2(D) ∩ C∞(D) a.s. in Ω. The pointwise Itô formula in (3.8) and (3.9) leads to

Z(un − vn)(t) = Z(un
0 − v

n
0) +

∫ t

0
(gn − hn)Z′(un − vn) ds (3.10)

and

H(un)(t) = H(un
0) +

∫ t

0
gnH′(un) ds +

∫ t

0
ΦnH′(un) dβ +

1
2

∫ t

0
Φ2

nH′′(un) ds (3.11)

in D, a.s. in Ω. From (3.10), (3.11) and the product rule for Itô processes, which is just and
easy application of the two-dimensional classical Itô formula (see, e.g., [2], Proposition 8.1,
p. 218), applied pointwise in t for fixed x ∈ D it follows that

Z(un − vn)(t)H(un)(t) = Z(un
0 − v

n
0)H(un

0)

+

∫ t

0
(gn − hn)Z′(un − vn)H(un) ds +

∫ t

0
gnH′(un)Z(un − vn) ds

+

∫ t

0
ΦnH′(un)Z(un − vn) dβ +

1
2

∫ t

0
Φ2

nH′′(un)Z(un − vn) ds (3.12)

in D, a.s. in Ω. Integration over D in (3.12) yields

I1 = I2 + I3 + I4 + I5 + I6 (3.13)
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where

I1 = (Z((un − vn)(t)),H((un)(t))2

I2 = (Z(un
0 − v

n
0),H(un

0))2

I3 =

∫ t

0

∫
D

(gn − hn)Z′(un − vn)H(un) dx ds

I4 =

∫ t

0

∫
D
gnH′(un)Z(un − vn) dx ds

I5 =

∫ t

0
(ΦnH′(un),Z(un − vn))2 dβ

I6 =
1
2

∫ t

0

∫
D

Φ2
nH′′(un)Z(un − vn) dx ds

a.s. in Ω. For any fixed s ∈ [0, t] and almost every ω ∈ Ω, un(ω, s) → u(ω, s) and vn(ω, s) →
v(ω, s) for n→ ∞ in L2(D). Since Z, H, H′ are continuous and bounded functions, it follows
that

lim
n→∞

I1 = (Z((u − v)(t)),H′(u(t))2, (3.14)

lim
n→∞

I2 = (Z(u0 − v0),H′(u0))2 (3.15)

in L2(Ω) and a.s. in Ω. Note that

I3 =

∫ t

0
〈(gn − hn),Z′(un − vn)H(un)〉W−1,p′ (D),W1,p

0 (D) ds

a.s. in Ω and from the properties of Πn it follows that

lim
n→∞

gn(ω, s) − hn(ω, s) = ∆p(u(ω, s)) − ∆p(v(ω, s))

in W−1,p′ (D) for all s ∈ [0, t] and a.e. ω ∈ Ω. Recalling the convergence result for (Πn) from
Lemma 2, there exists a constant C1 ≥ 0 not depending on s, ω and n ∈ N such that

‖gn(ω, s) − hn(ω, s)‖W−1,p′ (D) = ‖Πn(∆p(u(ω, s)) − ∆p(v(ω, s)))‖W−1,p′ (D)

≤ C1‖∆p(u(ω, s)) − ∆p(v(ω, s))‖W−1,p′ (D).

Since the right-hand side of the above equation is in Lp′ (Ω × (0, t)), from Lebesgue’s domi-
nated convergence theorem it follows that

lim
n→∞

gn − hn = ∆p(u) − ∆p(v)

in Lp′ (Ω × (0, t); W−1,p′ (D)) and, with a similar reasoning, also in Lp′ (0, t; W−1,p′ (D)) a.s. in
Ω. From the chain rule for Sobolev functions it follows that

∇(Z′(un − vn)H(un)) = Z′′(un − vn)∇(un − vn)H(un) + Z′(un − vn)H′(un)∇un (3.16)
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a.s. in (0, t) ×Ω. Moreover, there exists a constant C2 = C2(‖Z′‖∞, ‖Z′′‖∞, ‖H‖∞, ‖H′‖∞) ≥ 0
such that ∫ t

0
‖∇(Z′(un − vn)H(un))‖pp ds ≤ C2

∫ t

0
(‖∇u‖pp + ‖∇v‖

p
p) ds (3.17)

a.s. in Ω. Consequently, for almost every ω ∈ Ω there exists χ(ω) ∈ Lp(0, t; W1,p
0 (D)) such

that, passing to a not relabeled subsequence that may depend on ω ∈ Ω,

Z′(un − vn)H(un) ⇀ χ(ω) (3.18)

weakly in Lp(0, t; W1,p
0 (D)). Since in addition,

lim
n→∞

Z′(un − vn)H(un)→ Z′(u − v)H(u)

in Lp((0, t) × D) a.s. in Ω, we get

χ(ω) = Z′(u − v)H(u) (3.19)

in Lp(0, t; W1,p
0 (D)) a.s. in Ω and the weak convergence in (3.18) holds for the whole se-

quence. Therefore,
Z′(un − vn)H(un) ⇀ Z′(u − v)H(u)

for n → ∞ weakly in Lp(0, t; W1,p
0 (D)) for almost every ω ∈ Ω. Resuming the above results

it follows that

lim
n→∞

I3 =

∫ t

0
〈∆p(u) − ∆p(v),Z′(u − v)H(u)〉W−1,p′ (D),W1,p

0 (D) ds (3.20)

a.s. in Ω. With analogous arguments we get

lim
n→∞

I4 =

∫ t

0
〈∆p(u),H′(u)Z(u − v)〉W−1,p′ (D),W1,p

0 (D) ds (3.21)

a.s. in Ω. By Itô isometry,

E

∣∣∣∣∣∣
∫ t

0

∫
D

ΦnH′(un)Z(un − vn) − ΦH′(u)Z(u − v) dx dβ

∣∣∣∣∣∣2
= E

∫ t

0

∫
D
|ΦnH′(un)Z(un − vn) − ΦH′(u)Z(u − v)|2 dx ds.

From the convergence

ΦnH′(un)Z(un − vn)→ ΦH′(u)Z(u − v)

in L2(D) for n → ∞ a.s. in Ω × (0, t) and since, for almost any (ω, s), there exists a constant
C3 ≥ 0 not depending on the parameters n, s, ω such that

‖Φn(ω, s)H′(un(ω, s))Z(un(ω, s) − vn(ω, s))‖2 ≤ C3‖Φ(ω, s)‖2
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for all n ∈ N, a.s. in Ω × (0, t), it follows that

lim
n→∞

ΦnH′(un)Z(un − vn) = ΦH′(u)Z(u − v)

in L2(Ω × (0, t) × D) and consequently

lim
n→∞

I5 =

∫ t

0

∫
D

ΦH′(u)Z(u − v) dx dβ (3.22)

in L2(Ω) and, passing to a subsequence if necessary, also a.s. in Ω. According to the proper-
ties of (Πn), Φ2

n → Φ2 in L1((0, t) × D) for n → ∞ a.s. in Ω. From the boundedness and the
continuity of H′′ and Z we get

lim
n→∞

H′′(un)Z(un − vn) = H′′(u)Z(u − v)

in Lq((0, t) × D) for all 1 ≤ q < ∞ and weak-∗ in L∞((0, t) × D) a.s. in Ω, thus it follows that

lim
n→∞

I6 =
1
2

∫ t

0

∫
D

Φ2H′′(u)Z(u − v) dx ds (3.23)

a.s. in Ω. Passing to a subsequence if necessary, taking the limit in (3.12) for n → ∞ a.s. in
Ω the assertion follows from (3.14)-(3.23). �

Corollary 5. Proposition 4 still holds true for H ∈ W2,∞(R) such that H′′ is piecewise
continuous.

Proof. There exists an approximating sequence (Hδ)δ>0 ⊂ C
2
b(R) such that ‖Hδ‖∞ ≤ ‖H‖∞,

‖H′δ‖∞ ≤ ‖H
′‖∞, ‖H′′δ ‖∞ ≤ ‖H

′′‖∞ for all δ > 0 and Hδ → H, H′δ → H′ uniformly on compact
subsets, H′′δ → H′′ pointwise in R for δ → 0. With this convergence we are able to pass to
the limit with δ→ 0 in (3.5). �
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THE MATROID STRUCTURE OF VECTORS
OF THE MORDELL-WEIL LATTICE AND
THE TOPOLOGY OF PLANE QUARTICS

AND BITANGENT LINES
Ryutaro Sato and Shinzo Bannai

Abstract. In this paper, we introduce the terminology of matroids into the study of
Zariski-pairs related to rational elliptic surfaces, aiming to simplify the presentation and
arguments involved. As an application, we provide new examples of Zariski N-ples of
relatively low degree. Namely we show that a Zariski 102-ple of degree 18 exists.

Keywords: Elliptic Surfaces, Mordell-Weil lattice, Matroids, Zariski-pairs.
AMS classification: 14J27, 14E20, 05B35.

§1. Introduction

In this paper, we study the embedded topology of plane curves. We are interested in the
following situation. Let C1,C2 ⊂ P

2 be plane curves. Then (P2,C1) and (P2,C2) form a
Zariski-pair if the following conditions are satisfied

1. There exist tubular neighborhoods T (Ci) of Ci (i = 1, 2) such that the pairs (T (C1),C1)
and (T (C2),C2) are homeomorphic as pairs.

2. The pairs (P2,C1) and (P2,C2) are not homeomorphic as pairs.

The notion of a Zariski-pair was first defined in [1] by E. Artal–Bartolo and has been an
object of interest to many mathematicians. The key in studying Zariski pairs is finding a
suitable method to distinguish the curves. Many invariants have been used, such as the fun-
damental groups of the complements π1(P2 \ Ci), the Alexander polynomials ∆Ci (t) and the
existence/non-existence of certain Galois covers branched along Ci (see [2] for a survey on
these topics). More recently, newer types of invariants such as “linking invariants" and “split-
ting invariants" have been developed in studying reducible plane curves ([3, 7, 12]). How-
ever, as the number of irreducible components of Ci increases, these invariants become more
increasingly complex, and it becomes hard to grasp the situation clearly. Hence, we are espe-
cially interested in formulating a method in order to present the differences in the curves and
the classification comprehensively.

An attempt at this was done in [5],[4] where the second author together with colleagues
considered invariants of subsets of the set of irreducible components. This approach proved
to be effective and was able to produce new examples of Zariski pairs. However the examples
produced were relatively simple, maybe too simple, to appreciate the usefulness of the ap-
proach fully. In this paper, we introduce the terminology of matroids into our setting in order
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to make the results more accessible to a wider audience and also to present more complex
examples to demonstrate the usefulness of considering subarrangements more fully.

We introduce some notation to explain the kind of arrangements that we will study. Let
Q be a smooth quartic curve and zo ∈ Q be a general point of Q. It is known that a rational
elliptic surface S Q,z0 can be associated to Q and zo as follows (see [14, 5] for details): Let
f̃Q : S̃ Q → P

2 be the double cover of P2 branched along Q, and let µ : S Q → S̃ Q be the
canonical resolution of singularities. Also, let Λzo be the pencil of lines through zo. Then the
inverse image Λzo of Λzo in S Q gives rise to a pencil of curves with genus 1. Next, the base
points of Λzo can be resolved by two consecutive blow-ups, whose composition is denoted by
νzo : S Q,zo → S Q. The morphism φzo : S Q,zo → P

1 induced by Λzo gives a genus 1 fibration,
and the exceptional divisor of the second blow-up in µzo gives a section denote by O. Hence,
we have an elliptic surface φzo : S Q,zo → P

1 associated to Q and zo. Note that the covering
transformation of Ŝ Q induces an involution on S Q,zo which we will denote by σ.

Ŝ Q
µ

←−−−−−− S Q
νzo

←−−−−−− S Q,zo

f̂Q

y y f Q

yφzo

P2 ←−−−−−−
q

P2 P1

We denote the set of sections of φzo by MW(S Q,zo ). The sections will be identified with
their images and considered as curves on S Q,zo . It is known that MW(S Q,zo ) can be endowed
with an abelian group structure with a pairing 〈, 〉 : MW(S Q,zo )→ Q called the height pairing
(see [10]). When considering the height pairing, MW(S Q,zo ) is called the Mordell-Weil lattice
of S Q,zo .

Let f = f̂Q ◦ µ ◦ νzo . For a section s ∈ MW(S Q,zo ), let Cs = f (s), the image of s under f .
The curve Cs is a rational curve in P2 whose local intersection numbers with Q become even.
Such curves are called contact curves of Q. Note that f (s) = f (−s) where −s is the negative
of s with respect to the group structure of MW(S Q,zo ). The curves C that we will study are
reducible curves of the form

C = Q + Cs1 + · · · + Csr

for some choice of s1, . . . , sr ∈ MW(S Q,zo ). The additional data related to MW(S Q,zo ) allows
us to distinguish the curves.

Assume for simplicity that MW(S Q,zo ) is torsion free. Let Ei = {si
1, . . . , s

i
r} ⊂ MW(S Q,zo )

(i = 1, 2) be subsets of MW(S Q,zo ) such that Csi
j
, Csi

k
for j , k. We will consider the

matroid structure on E1, E2 induced by the linear dependence relations in MW(S Q,zo ) ⊗ Q.
Let Ci = Q + Csi

1
+ · · · + Csi

r
(i = 1, 2).

Theorem 1. Under the above settings, if MW(S Q,zo ) is torsion free and E1, E2 have distinct
matroid structures, then there exist no homeomorphisms h : P2 → P2 with h(C1) = C2 and
h(Q) = Q.

Moreover, if h(C1) = C2 implies h(Q) = Q necessarily and the combinatorics of C1,C2
are the same, then (P2,C1) and (P2,C2) form a Zariski-pair.

Theorem 1 allows us to distinguish Zariski pairs and Zariski N-ples by simply calculating
the matroid structures of the subsets of MW(S Q,zo ). However, to actually construct Zariski
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pairs, we need to choose the subsets {si
1, . . . , s

i
r} so that they have the same combinatorics,

which is a somewhat delicate matter. Fortunately, we were able to use classical results on
smooth quartics and bitangent lines, which can be found in [6], to overcome this difficulty.

In the case where Q is a smooth quartic, it is known that MW(S Q,zo ) � E∗7. The E∗7
lattice has 28 pairs of minimal vectors ±l1, . . . ,±l28 of height 3

2 . Furthermore, Li = Cli = C−li
become bitangent lines of Q, and there is a bijection between the set of pairs ±li and the set of
bitangent lines Li. The combinatorics of these bitangent lines are known, as in the following
proposition which will be proved later in Section 4.2.

Proposition 2. For a general smooth quartic Q, its bitangent lines L1, . . . , L28 and a fixed
value r = 1, . . . , 28, the combinatorics of curves of the form

Q + Li1 + · · · + Lir

are the same for any {i1, . . . , ir} ⊂ {1, . . . , 28}. Namely, all Lik are true bitangents, i.e. they
are tangent to Q at two distinct points, and any three of Li1 , . . . , Lir are non-concurrent.

For curves C1, C2 of the form above, it is immediate that h(C1) = C2 implies h(Q) = Q

necessarily. Now, Proposition 2 together with Theorem 1 gives us the following theorem.

Theorem 3. Let Nr be the number of distinct matroid structures on subsets of the form
{li1 , . . . , lir }, where lik is a representative of the pair ±lik . Then there exists a Zariski Nr-ple of
curves having the combinatorics as in Proposition 2.

At present, we have not been able to calculate the exact value of Nr due to a lack of
computer skills of the authors. However, we have a lower bound as follows:

Proposition 4. For r = 1, . . . , 28, the value of Nr is greater than or equal to nr given in the
following table.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14
nr 1 1 1 2 2 4 6 11 19 37 52 80 95 102
r 15 16 17 18 19 20 21 22 23 24 25 26 27 28
nr 100 90 70 54 37 23 16 10 5 3 2 1 1 1

We remark that Zariski-pairs involving smooth quartics and its bitangent lines have al-
ready been studied by E. Artal-Bartolo and J. Vallès. They gave an example of a pair consist-
ing of a smooth quartic and three bitangent lines. The results were privately communicated
to the authors. Also, the second author together with H. Tokunaga and M. Yamamoto have
studied the case of four bitangent lines where a Zariski triple exists. Our approach using
matroids fails to detect these examples but we think that our work is still worthwhile as it
is easy to increase the number of bitangent lines involved and can be applied to non-smooth
quartic curves. It also introduces a new point of view that is possibly relatively easier for a
wider audience to access and hopefully will connect to other research areas.

The organization of this paper is as follows. In Section 2, we review the basic terminology
of matroids and results concerning elliptic surfaces and dihedral covers, which will give the
connection between the matroid structure of sections and the topology of the curves. In
Section 3, we will prove Theorem 1. In Section 4, we will discuss the case where Q is a
smooth quartic and prove Theorem 3 and also give the proof of Proposition 4.
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§2. Preliminaries

2.1. Matroids
As will be seen later, the (in)dependence of elements of MW(S Q,zo ) is deeply related to the
(non)existence of certain Galois covers of P2, hence it is important to understand the structure
of (in)dependence. Here, Matroid Theory provides a nice framework as it was precisely
designed to study generalizations of the notion of linear independence in vector spaces. In
this section we briefly review the basic terminology of matroids. We refer to [9] for more
details.

There are many different cryptomorphic definitions of Matroids. In our paper, we are
interested in the dependence of elements of MW(S Q,zo ), hence we adopt the definition based
on independent sets. Let E be a finite set and 2E be the set of subsets of E.

Definition 1. A matroid structure (or simply a matroid) on E is a pair (E,I), where I ⊂ 2E

satisfies

1. I , ∅. (nontriviality)

2. For any I1, I2 ⊂ E, if I1 ⊂ I2 and I2 ∈ I, then I1 ∈ I. (descending)

3. For every I1, I2 ∈ I, if |I1| < |I2|, then there exists x ∈ I2 − I1 such that I1 ∪ {x} ∈ I.
(augmentation)

Elements of I will be called independent sets and the other subsets will be said to be depen-
dent.

Example 1. Let V be a vector space, and E = {v1, . . . , vr} ⊂ V . Let I = {I ⊂ E |
I is linearly independent}. Then I clearly satisfies the conditions (1), (2), (3) in Definition
1. Hence (E,I) is a matroid structure on E.

Definition 2. Let (E,I) be a matroid. A subset C ⊂ E is called a circuit if C < I and all
proper subsets of C are independent sets. Moreover, C is a minimal dependent set.

Example 2. Let V = R3 and v1 =

 1
0
0

, v2 =

 0
1
0

, v3 =

 0
0
1

 and v4 =

 1
1
1

. Let

E = {v1, v2, v3, v3} and consider the matroid structure induced by linear independence. Then
E itself forms a circuit.

§3. Proof of Theorem 1

In this section, we use the criterion for the existence of dihedral covers given in Section 3.2 to
connect the data of matroids of subsets of MW(S Q,zo ) to the data of the embedded topology
of the curves in P2, and prove Theorem 1.

Let Ei = {si
1, . . . , s

i
r} ⊂ MW(S Q,zo ) (i = 1, 2) be subsets of MW(S Q,zo ) such that Csi

j
, Csi

k

for j , k. Consider the matroid structure (Ei,Ii) on Ei (i = 1, 2) induced by the linear
dependence relation in MW(S Q,zo ) ⊗ Q. Let Ci = Q + Csi

1
+ · · · + Csi

r
(i = 1, 2).

Proposition 5. If there exists a homeomorphism h : P2 → P2 such that h(C1) = C2 and
h(Q) = Q, then (E1,I1) and (E2,I2) are equivalent as matroids.



Matroids and the topology of quartic and bitangents 269

Proof. By the assumption that h is a homeomorphism such that h(C1) = C2 and h(Q) = Q,
h induces a bijection {Cs1

1
, . . . ,Cs1

r
} → {Cs2

1
, . . . ,Cs2

r
} which in turn induces a bijection h∗ :

E1 → E2. Let I1 ∈ I1 be an independent set. Then by Lemma 10, there exists only a
finite number of primes such that a D2p cover branched at 2Q + p(

∑
s∈J1

Cs) for some subset
J1 ⊂ I1 exists. Since h is a homeomorphism, the same is true for h∗(I1) which implies that
h∗(I1) ∈ I2, by Lemma 9. The converse is also true so we have I1 ∈ I1 if and only if
h∗(I1) ∈ I2. Therefore (E1,I1) and (E2,I2) are equivalent as matroids. �

The contrapositive of Proposition 5 gives Theorem 1.
Remark 1. The statement of Proposition 5 concerns the matroid structure over Q. However,
from the proof, it is evident that if we consider the matroid structures of the sections in
MW(S ) ⊗ Z/pZ for all p we would be able to distinguish the arrangements in more detail.

Definition 3. Let (E1,I1), (E2,I2) be matroids. The matroids (E1,I1), (E2,I2) are said to
be equivalent as matroids if there exists a bijection ϕ : E1 → E2 such that I1 ∈ I1 if and only
if ϕ(I1) ∈ I2.

3.1. Elliptic surfaces and the Mordell-Weil lattice
In this subsection, we list the basic facts about quartics, rational elliptic surfaces and the
Mordell-Weil lattice. We refer the reader to [10], [8] for more details.

In this paper, an elliptic surface is a smooth projective surface S , with a relatively minimal
genus 1 fibration φ : S → C over a smooth projective curve C having a section O : C → S .
We identify O with its image in S . We also assume that S has at least one singular fiber. Let
Sing(φ) = {v ∈ C | φ−1(v) is singular }. For v ∈ Sing(φ), we put Fv = φ−1(v) and denote its
irreducible decomposition by Fv = Θv,0 +

∑mi−1
i=1 av,iθv,i, where mv,i is the number of irreducible

components and Θv,0 is the unique irreducible component with Θv,0.O = 1. The subset of
Sing(φ) that corresponds to reducible singular fibers will be denoted by R. Let MW(S ) be the
set of sections of φ : S → C.

The set MW(S ) can be endowed with a group structure as follows. Let ES be the generic
fiber of φ and C(C) be the function field of C. It is known that there is a bijection between
C(C) rational points ES (C(C)) of ES and MW(S ). Furthermore, since we have O ∈ MW(S ),
(E(S ),O) can be considered as an elliptic curve over C(C) and has a group structure where O
acts as the identity element.

Furthermore, under these circumstances, MW(S ) becomes a finitely generated abelian
group with a pairing 〈, 〉 : MW(S )→ Q called the height pairing ([10]). The explicit formula
to calculate the pairing for s1, s2 ∈ MW(S ) is given by

〈s1, s2〉 = χ(S ) + s1.O + s2.O − s1.s2 −
∑
v∈R

contrv(s1, s2).

The formulas for calculating contrv(s1, s2) can be found in [10]. In the following we will only
need the values of contrv(s1, s2) for singular fibers of type I2 of the form Fv = Θv,0 + Θv,1. In
this case we have

contrv(s1, s2) =

1/2 (s1.Θv,1 = s2.Θv,1 = 1)
0 otherwise

.
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3.2. Criterion for existence of dihedral covers
Let D2n be the dihedral group of order 2n. We present a criterion for the existence of certain
dihedral covers of P2 in terms of MW(S ). The existence/non-existence of the dihedral covers
will enable us to distinguish the topology of the curves.

Let Q be a quartic plane curve, zo ∈ Q be a general point of Q, s1, . . . , sr ∈ MW(S Q,zo ) be
sections such that Csi , Cs j , where Csi = f (si) as in the Introduction.

Theorem 6 ([5, Corollary 4]). Let p be an odd prime. Under the above setting, there exists
a D2p-cover of P2 branched at 2Q + p(Cs1 + · · · + Csr ) if and only if there exists integers
ai ∈ {1, . . . , p − 1} for i = 1, . . . r such that

∑r
i=1 aisi ∈ p MW(S ).

Corollary 7. If there exists a D2p cover branched at 2Q + p(Cs1 + · · ·+ Csr ), then the images
of s1, . . . , sr in MW(S ) ⊗ Z/pZ become linearly dependent.

Note that the converse of Corollary 7 is not true, as it is necessary for the images of
s1, . . . , sr to have a linear dependence relation where all coefficients are non-zero for there
to exist a dihedral cover. If there does not exist such linear dependence relation, the branch
locus will not be the whole of 2Q + p(Cs1 + · · · + Csr ). To exclude such cases, the notion of
circuits is useful.

Corollary 8. If the images of s1, . . . , sr in MW(S )⊗Z/pZ forms a circuit, then there exists a
D2p-cover branched at 2Q + p(Cs1 + · · · + Csr ).

If s1, . . . , sr form a circuit over Q, then their images in MW(S ) ⊗ Z/pZ form a circuit for
infinitely many prime numbers p. Hence we have:

Lemma 9. If s1, . . . , sr are linearly dependent, then there are infinitely many prime numbers
p such that there exists a D2p-cover branched at 2Q + p(Csi1

+ · · · + Csit
) for some nonempty

subset {i1, . . . , it} ⊂ {1, . . . , r}.

On the other hand, if s1, . . . , sr are independent over Q, then they are independent over
Z/pZ except for a finite number of primes. This implies the following.

Lemma 10. If s1, . . . , sr are independent over Q, then there are only a finite number of prime
numbers p such that there exists a D2p-cover branched at 2Q + p(Csi1

+ · · · + Csit
) for some

nonempty subset {i1, . . . , it} ⊂ {1, . . . , r}.

§4. The smooth case

In this section, we will consider the case where Q is a smooth quartic.

4.1. The bitangents of Q and sections of S Q,zo

We will use the notation given in the Introduction. Let Q be a smooth plane quartic and
zo ∈ Q be a general point of Q. Since Q is smooth, Ŝ Q = S Q. In this case S Q,zo has only one
reducible singular fiber F0 = Θ0,0 + Θ0,1 of type I2. The component Θ0,0 is the exceptional
divisor of the first blow up of µzo in the introduction, and Θ0,1 is the strict transform of the
preimage of the tangent line of Q at zo. All other singular fibers are irreducible. By [8], we
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have MW(S Q,zo ) � E∗7 where E∗7 is the dual lattice of the root lattice E7. It is known that the
E∗7 lattice has 56 minimal vectors ±l1, . . . ,±l28 of height 3

2 . It is also well known that Q has
28 bitangent lines L1, . . . , L28. The correspondence between the 28 pairs of minimal vectors
and the 28 bitangent lines is given in [11], but we describe the relation below for the readers
convenience.

Lemma 11. Let l ∈ MW(S Q,zo ) be a minimal vector of height 3
2 . Then L = f (l) is a bitangent

line of Q, where f is the morphism f : S Q,zo → P
2 given in the Introduction.

Proof. By the explicit formula for the height pairing, and since χ(S Q,zo ) = 1 and l.l = −1, we
have

〈l, l〉 = 2 + 2l.O − contr(l, l) =
3
2
.

Where contr(l, l) is the contribution from the unique reducible singular fiber F0. Since the
possible values of contr(l, l) = 0, 1

2 , we have l.O = 0 and contr(l, l) = 1
2 which implies that

l.Θ0,1 = 1. This implies that l is disjoint with the exceptional set of νzo . Also, if we consider
the section −l = σ∗(l), the preimage of l under the involution σ, we have

〈l,−l〉 = 1 + l.O + (−l).O − l.(−l) − contr(l,−l) = −
3
2

Hence we obtain l.(−l) = 2. Let l̂ = νzo (l) and −̂l = νzo (−l). The above implies that l̂.−̂l =

l̂.Q̂ = 2, where Q̂ is the ramification locus of f̂Q. Now since ( f̂Q)∗(L) = l̂ + −̂l we have
2L.L = (̂l + −̂l).(̂l + −̂l). Hence we obtain L.L = 1 which implies that L is a line in P2.
Also, the local intersection numbers of L and Q must be even by construction, hence L is a
bitangent line. �

Remark 2. Note that the two points of tangency may coincide to give a line L intersecting Q
at a single point with multiplicity 4, which we will still consider to be a bitangent line.

Lemma 12. Let L be a bitangent line of Q and let f ∗(L) = l + l′. Then l, l′ become minimal
sections with height 3

2 and l′ = σ∗l = −l.

Proof. By following through the proof of Lemma 11 backwards, we have the desired result.
�

The above two lemmas give us the following propositon.

Proposition 13. There is a bijection between the set of 28 bitangent lines of Q and the set of
28 pairs of minimal vectors of the E∗7 lattice.

4.2. The configuration of bitangents
In this subsection we explain the proof of Proposition 2. In [6], an explicit set of equations for
computing the equations of the 28 bitangents, called Riemann’s Equations, is given. Using
these equations, it is possible to calculate the equations of all 28 bitangents provided that one
has the data of seven bitangent lines L1, . . . , L7 of Q, which form an Aronhold set (i.e. a
septuple of bitangents such that, for any subset of three bitangents the six points of tangency
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do not lie on a conic.). We can assume that L1, . . . , L7 are given by the following equations
for a suitable choice of coordinates where [t0, t1, t2] are homogeneous coordinates of P2:

L1 = V(t0), L2 = V(t1), L3 = V(t2), L4 = V(t0 + t1 + t2)
L4+i = V(a0it0 + a1it1 + a2it2), (i = 1, 2, 3)

Reimann’s Equations gives us the explicit equations of the bitangent lines in terms of the
coefficients ai j. It also allows us to recover the equation of Q similarly. Once we have
explicit equations it is possible to calculate the combinatorics of the quartic and bitangent
lines. We used the open-source mathematics software system SageMath [13] for the actual
calculations.

Lemma 14. Let L1, . . . , L7 be lines defined as above. Then, for a general choice of a0i, a1i, a2i

(i = 1, 2, 3) the following hold:

1. There exists a smooth quartic Q having L1, . . . , L7 as an Aronhold set of bitangents.

2. Any three bitangent lines of Q are non-concurrent.

3. Every bitangent line of Q is a true bitangent, i.e. it is tangent to Q at two distinct
points.

Proof. The equations of Q, and its bitangents L1, . . . , L28 are given in terms of ai j by Rie-
mann’s equation as in [6]. Since all three condition in the statements are closed conditions on
a0i, a1i, a2i (i = 1, 2, 3), it is enough to find one example where the statements hold. Almost
any choice will serve our purpose. We omit the details of the equations and calculations do
to lack of space. �

Lemma 14 immediately implies Proposition 2.

4.3. The proof of Proposition 4

In this subsection, we describe the method we used to distinguish the matroid structures of
minimal vectors of the E∗7 lattice in order to calculate nr. We used SageMath [13] for the
actual calculations.

The object that we want to classify are the matroid structures on the sets of the form
{li1 , . . . , lir } where lir are representatives of pairs ±lir of minimal vectors of height 3

2 . It is
known that the E∗7 lattice can be representation in Q8 in a way so that the minimal vectors are
of the form

±
1
4

(1, 1, 1, 1, 1, 1,−3,−3)

and its permutations. We use this representation in our calculations.
We used an inductive argument on the number of vectors r. For each subset E ⊂ {l1, . . . , l28}

having r-elements, we assign an (nr−1 + 1)-ple of integers inductively as follows. The values
of nr will also be determined inductively along the way.

• Step (1)
For every subset with a single element, we assign the pair α1,1 = (1; 1).
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• Step (k + 1)
Suppose that every subset having k elements has been assigned an (nk−1 + 1)-ple of
integers. We set nk to be the number of distinct (nk−1 + 1)-ples that have been assigned
and label them by αk,1, . . . , αk,nk . Next, to each subset E ⊂ {l1, . . . , l28} having k + 1
elements, we assign an (nk + 1)-ple as follows:

(i) Consider the linear dependence/independence of E. Put i = 0 if it is dependent
and i = 1 if it is independent.

(ii) Let mk
j be the number of subsets of E of k elements that have the (nk−1 + 1)-ple

αk, j assigned.
(iii) Assign the (nk + 1)-ple (i; mk

1, . . . ,m
k
nk

) to E.

Lemma 15. Let E1, E2 be subsets of {l1, . . . , l28} and |E1| = |E2| = r. If E1 and E2 have the
same matroid structure, then the (nr−1 + 1)-ples of integers assigned above are equivalent.

Proof. We use induction on r to prove this lemma. The case for r = 1 is trivial as every subset
having a single element has the same pair assigned and has the same matroid structure.

Assume the statement holds for r = k. If |E1| = |E2| = k + 1 and E1, E2 have equivalent
matroid structure, there exists a bijection ϕ : E1 → E2 that preserves independent sets. Hence
E1 is independent if and only if E2 is independent and the value of i must be equal. Also,
ϕ induces a bijection from {E ⊂ E1 | |E| = k} to {E ⊂ E2 | |E| = k} and an equivalence of
matroid structures among the corresponding subsets. Hence the values of mk

j must be equal
do to the hypothesis of induction, and the assigned (nk + 1)-ple are equivalent. �

Lemma 15 and calculations done by computer using SageMath gives Proposition 4.
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SPARSE POLYNOMIAL SURROGATES FOR
UNCERTAINTY QUANTIFICATION IN
COMPUTATIONAL FLUID DYNAMICS

Éric Savin

Abstract. This paper is concerned with the construction of polynomial surrogates of
complex models typically arising in computational fluid dynamics for the purpose of
propagating uncertainties pertaining to geometrical and/or operational parameters. Poly-
nomial chaos expansions are considered and different techniques for the intrusive and non
intrusive reconstruction of the polynomial expansion coefficients are outlined. A sparsity-
based reconstruction approach is more particularly emphasized since it benefits from the
"sparsity-of-effects" trend commonly observed on global quantities of interest such as the
aerodynamic coefficients of a profile.

Keywords: Computational fluid dynamics, polynomial chaos, stochastic Galerkin method,
stochastic collocation method, compressed sensing.
AMS classification: 76H05, 74F10, 65C20, 65K05.

§1. Introduction

The polynomial chaos or Wiener-Hermite expansion consists in the decomposition of a second-
order random variable in a series of multivariate Hermite polynomials in a countable sequence
of independent Gaussian random variables [3, 22]. Specifically, truncations of such an ex-
pansion are considered as approximations of random vectors, tensors or fields for the purpose
of quantifying uncertainties in complex models. They have been intensively used in recent
years in computational methods for solving ordinary or partial differential equations with
poorly known, indeed random data or parameterized by Gaussian random parameters. As
the solutions of these equations are stochastic processes indexed by spatial and/or time co-
ordinates, which are typically second-order random fields from physical considerations (they
have finite energy), polynomial chaos expansions are used to approximate them along the
stochastic dimension. Mean-square convergence is guaranteed by the Cameron-Martin the-
orem [3] and is optimal (i.e. exponential) for Gaussian probability measures. For random
fields parameterized by non Gaussian, arbitrary random variables the numerical study in [24]
has shown that the convergence rates of Hermite polynomial chaos are not optimal. This
observation has prompted the development of generalized polynomial chaos expansions in-
volving other families of polynomials which are orthogonal with respect to the probability
measures of the random parameters [9, 24].Optimal convergence rates can be achieved once
this substitution has been done.

The earlier approach of using polynomial chaos to numerically solve differential equa-
tions proposed truncated expansions as trial functions in a Galerkin formulation, resulting
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in the spectral stochastic finite element method, or stochastic Galerkin method [20] sub-
sequently developed in [10, 13]. More precisely, the chaos expansions of the sought so-
lutions are substituted in the model equations, which in turn yield evolution equations for
their expansion coefficients from Galerkin projections using the orthogonal polynomials as
test functions. The stochastic Galerkin method is intrusive in that it may require significant
alterations of the existing deterministic codes utilized for solving the differential equations
of interest. Generally it also yields coupled equations for the expansion coefficients. This
situation has prompted the development of non intrusive approaches, which require only
repetitive executions of existing deterministic codes. Stochastic collocation and regression
methods [2, 14, 23] have become widely popular in computational fluid dynamics (CFD),
for the applicability and precision of these uncertainty quantification techniques is not af-
fected by the complexity and high nonlinearity of the existing flow solvers so long as they
achieve a reasonable accuracy. Complex aerodynamic analysis and design of aircraft make
use of such high-fidelity CFD tools for shape optimization for example, whereby some ro-
bustness is achieved by considering uncertain operational, environmental, or manufacturing
parameters represented by random variables.

Both the intrusive and non intrusive approaches yield polynomial representations of the
solution processes, known as surrogate models or response surfaces in the space of random
parameters. They approximate the original stochastic processes solving the differential equa-
tions of interest accurately (in the mean-square sense), while being many orders faster to
evaluate. One can thus consider these surrogates to compute the probability measures, mo-
ments, and/or sensitivities of the solutions or output quantities of interest related to them
such as integrals, supremum norms, etc. The robust and most popular way to quantify un-
certainties is Monte-Carlo estimation, but it may become intractable for complex models in
which a simulation for one single value of the parameters may take several hours or days
and a large number of model outputs have to be evaluated. Polynomial chaos is essentially a
spectral representation in the random space, which typically exhibits fast convergence when
the expended processes depend smoothly on the random parameters. Exponentially fast con-
vergence can even be achieved under certain circumstances [24]. This rest of the paper is
organized as follows. In section 2 we formulate our problem and introduce the probabilistic
framework, focusing on the polynomial chaos expansion methodology. The actual methods
for computing the polynomial chaos expansion coefficients are outlined in section 3. Here
we also briefly review how these polynomial surrogates are used for uncertainty quantifica-
tion. In the last section 4 we discuss the different approaches for their implementation in
computational fluid dynamics with applications in aerodynamics and aeroelasticity, where
complex configurations have been considered in recent works. We more particularly stress
the "sparsity-of-effects" trend observed there that favors regression techniques benefitting
from the sparsity of the output quantities of interest, such as compressed sensing.

§2. Problem setup

2.1. Model equations
Let D ⊂ R3 be a fixed domain with a boundary ∂D and x ∈ D the physical coordinates. Let
(Ω,A,P) be a probability space where Ω is the abstract set of elementary events, A is a σ-
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algebra of subsets of Ω, and P is a probability measure onA. Our aim is to approximate the
random field u(x;ξξξ) : D×Γ→ Rm satisfying the parameterized partial differential equations:

L(x, ξξξ; u) = 0 in D ,

B(x, ξξξ; u) = 0 on ∂D ,
(2.1)

where L is a linear or non linear differential operator and B is a boundary operator. Here
ξξξ(ω) = (ξ1(ω), ξ2(ω), . . . , ξd(ω)) : Ω→ Γ ⊆ Rd is a vector of d random parameters defined on
(Ω,A,P) with probability distribution PΞΞΞ, of which components ξ1, ξ2, . . . , ξd are mutually
independent random variables with values in subsets of R, Γ1,Γ2, . . .Γd respectively. We
consider without loss of generality that the random field u has scalar values, i.e. m = 1. In
practice one may also be interested in quantities:

y = F(u(·;ξξξ)) , (2.2)

that are functions of the solution u of the boundary value problem (2.1), in addition to the
solution itself. In CFD for instance, u may be the pressure field satisfying the compressible
Navier-Stokes equations about a fixed profile, and y may be the aerodynamic forces (e.g.
drag, lift) exerted by the flow on that profile. In this latter case, the differential operator L
may also depend on time t, and the boundary value problem (2.1) needs be supplemented with
initial conditions. We do not consider that more general situation in the following discussion,
for its main features basically extend to time-dependent problems.

2.2. Probabilistic framework
The vector of random parameters ξξξ is representative of variable geometrical characteristics,
boundary conditions, loads, physical or mechanical properties, or combinations of them. It
can be discrete, continuous, or a combination of both. In the continuous case, it is understood
that its probability distribution PΞΞΞ admits a probability density function ξξξ 7→ WΞΞΞ(ξξξ) with
values in R+ = [0,+∞[ such that PΞΞΞ(B) =

∫
B WΞΞΞ(ξξξ)dξξξ for any subset B of Rd. In addition,

PΞΞΞ(dξξξ) = P1(dξ1)×P2(dξ2)×· · ·×Pd(dξd) owing to the assumption of mutual independence.
In the present setting, it is further assumed that the random parameters are exponentially
integrable, that is there exists β > 0 such that:

E{eβ‖ξξξ‖} =

∫
Rd

eβ‖ξξξ‖PΞΞΞ(dξξξ) < +∞ , (2.3)

where ‖ξξξ‖ = (
∑d

n=1 ξ
2
n)

1
2 is the usual Euclidean norm in Rd, and E{·} is mathematical expecta-

tion. Together with mutual independence, it ensures that each random variable ξn possesses
finite moments of all orders, that is E{|ξn|

k} =
∫
R
|ξ|k Pn(dξ) < +∞ for all k ∈ N. This uniquely

defines a sequence of univariate orthonormal polynomials {ψ(n)
j } j∈N associated with the prob-

ability measure Pn for all 1 ≤ n ≤ d, and a sequence of multivariate orthonormal polynomials
{ψj}j∈Nd associated with the probability measure PΞΞΞ given by:

ψj(ξξξ) =

d∏
n=1

ψ(n)
jn

(ξn) , j = ( j1, j2, . . . , jd) ∈ Nd , (2.4)
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such that {ψj(ξξξ)}j∈Nd constitutes an orthonormal sequence of random variables in the space
L2(Ω,σ(ξξξ),P) of second-order random variables defined on the probability space endowed
with the σ-algebra σ(ξξξ) generated by the random parameters ξξξ; see [9, Theorem 3.6]. Alter-
natively, the polynomial set {ψj}j∈Nd constitutes an orthonormal basis of the functional space
L2(Rd, σB(Rd),PΞΞΞ(dξξξ)) of square-integrable functions with respect to PΞΞΞ, where σB(Rd) is
the Borel σ-algebra on Rd.

Consequently, any random variable u in L2(Ω,σ(ξξξ),P) can be expanded in a series of
multivariate orthonormal polynomials in the random parameters ξξξ as:

u =
∑
j∈Nd

ujψj(ξξξ) , uj = E{uψj(ξξξ)} =

∫
Rd

uψj(ξξξ)PΞΞΞ(dξξξ) . (2.5)

This is the so-called generalized polynomial chaos expansion. Likewise, the random field
x 7→ u(x;ξξξ) satisfying (2.1) has finite energy from physical considerations, so it belongs to
L2(Rd, σB(Rd),PΞΞΞ(dξξξ)) and can be expanded as:

u(x;ξξξ) =
∑
j∈Nd

uj(x)ψj(ξξξ) , uj(x) = E{u(x;ξξξ)ψj(ξξξ)} =

∫
Rd

u(x;ξξξ)ψj(ξξξ)PΞΞΞ(dξξξ) . (2.6)

In practical numerical applications the foregoing expansions are truncated up to a total order
p such that |j| = j1 + j2 + · · · + jd ≤ p. Denoting by Pp[·] the orthogonal projection onto
the space of d-variate polynomials of total degree p in ξ1, ξ2, . . . , ξd, say V p

d , we seek for an
approximate solution Pp[u] of (2.1) in V p

d as:

u(x;ξξξ) ' Pp[u](x;ξξξ) =
∑
|j|≤p

uj(x)ψj(ξξξ) =

P−1∑
j=0

u j(x)ψ j(ξξξ) , P =

(
p + d

d

)
, (2.7)

by reordering the P multi-indices j such that |j| ≤ p. From [9, Theorem 2.2], the sequence
Pp[u] converges to u in the mean-square sense in L2(Ω,σ(ξξξ),P) as p → +∞ provided that
the condition (2.3) is fulfilled.

Now the deterministic functional coefficients x 7→ u j(x) in the truncated series remain
unknown since the random field u is unknown. Collocational or weighted versions of (2.1)
together with the above approximation are considered in order to determine them.

§3. Construction of the polynomial chaos expansion

The different methods considered for computing the polynomial expansion coefficients are
quoted as intrusive or non intrusive in the mechanical engineering literature. The stochastic
Galerkin method is intrusive in that it may require significant alterations of the existing deter-
ministic codes utilized for solving numerically the boundary value problem (2.1). Generally it
also yields coupled equations for the expansion coefficients of its solution. Hence new codes
need be developed to handle the larger and coupled systems of equations arising from the
Galerkin formulation. The stochastic collocation and regression methods are non intrusive in
that they require only repetitive executions of the existing deterministic codes for carefully
selected parameter sets. They are the preferred methodologies in CFD, for their applicability
is not affected by the complexity and high nonlinearity of the existing flow solvers.



Sparse polynomial surrogates for uncertainty quantification in computational fluid dynamics 279

3.1. Stochastic Galerkin method
Similarly to the weak formulation of deterministic problems, on can form the weak form of
(2.1) and seek an approximate solution up ∈ V p

d such that:

E{L(x, ξξξ; up)v(ξξξ)} = 0 ∀v(ξξξ) ∈ V p
d , x ∈ D ,

E{B(x, ξξξ; up)v(ξξξ)} = 0 ∀v(ξξξ) ∈ V p
d , x ∈ ∂D .

(3.1)

The resulting system becomes a deterministic one in the physical domain D for the func-
tional coefficients u j(x), and may be solved by standard discretization techniques e.g. finite
elements, finite volumes, finite differences, boundary elements, etc.; see [13] and references
therein for an extensive presentation of this method.

3.2. Stochastic collocation method
Alternatively, one may seek an approximate solution formed by interpolation between solu-
tions of (2.1) for Q particular choices of the random parameters ξξξ, namely the sampling set
{ξξξl}1≤l≤Q of so-called nodes, such that:

L(x, ξξξl; u(x;ξξξl)) = 0 ∀l = 1, 2, . . . ,Q , x ∈ D ,

B(x, ξξξl; u(x;ξξξl)) = 0 ∀l = 1, 2, . . . ,Q , x ∈ ∂D .
(3.2)

Then the approximate solution IQ[u] to (2.1) reads as the Lagrange interpolation [14, 23]:

u(x;ξξξ) ' IQ[u](x;ξξξ) =

Q∑
l=1

u(x;ξξξl)Ll(ξξξ) , (3.3)

where {Ll}1≤l≤Q is the set of d-variate Lagrange polynomials based on the nodes {ξξξl}1≤l≤Q

chosen so that uniqueness of the interpolation is ensured.

3.2.1. Link with polynomial chaos

Choosing the nodes within a quadrature rule ΘΘΘ(d,Q) = {ξξξl, wl}1≤l≤Q tailored such that
∑Q

l=1 w
l f (ξξξl)

is a good approximation of the d-dimensional integral
∫
Rd f (ξξξ)PΞΞΞ(dξξξ) = E{ f (ξξξ)} for suf-

ficiently smooth functions f , the collocation approach may be considered to compute an
approximate solution Pp

Q[u] defined by:

P
p
Q[u](x;ξξξ) =

P−1∑
j=0

 Q∑
l=1

wlu(x;ξξξl)ψ j(ξξξl)

ψ j(ξξξ) =

Q∑
l=1

u(x;ξξξl)

wl
P∑

j=0

ψ j(ξξξl)ψ j(ξξξ)


=

Q∑
l=1

u(x;ξξξl)L̃l(ξξξ)

(3.4)

in view of (2.7); that is, the quadrature set ΘΘΘ(d,Q) is used to evaluate the coefficients u j(x)
in (2.7). Provided that the quadrature rule ΘΘΘ(d,Q) integrates exactly all d-variate polyno-
mials of total order 2p and Ll ∈ V p

d , one has L̃l ≡ Ll owing to the orthonormalization of the
polynomials {ψ j}0≤ j≤P−1 which are such that E{ψ j(ξξξ)ψk(ξξξ)} = δ jk, the Kronecker symbol.
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3.2.2. Choices of nodal set

The key issue of stochastic collocation is the selection of appropriate sampling sets. A
straightforward choice is quadrature nodes and weights as in (3.4). Multi-dimensional quadra-
ture sets ΘΘΘ(d,Q) = {ξξξl, wl}1≤l≤Q, where ξξξl is the l-th node in Γ =

∏d
n=1 Γn and wl is the corre-

sponding weight, may be constructed from one-dimensional (univariate) quadrature sets by
full tensorization or sparse tensorization, following Smolyak’s algorithm [18].

Univariate Gauss quadratures Θ(1, q1) based on q1 integration points are tailored to inte-
grate a smooth function ξ 7→ f (ξ) on Γ1 ≡ [a, b] by:∫

Γ1

f (ξ)WΞ(ξ)dξ '
q1−r∑
l=1

wl f (ξl) +

r∑
m=1

wq1−r+m f (ξq1−r+m) , (3.5)

such that this rule turns to be exact for univariate polynomials up to the order 2q1 − 1 − r.
Here r is the number of fixed nodes of the rule, typically the bounds a, b. Depending on the
choice of r, different terminologies are used:
• r = 0 is the classical Gauss rule;
• r = 1 is the Gauss-Radau rule, choosing ξq1 = a or ξq1 = b for instance;
• r = 2 is the Gauss-Lobatto (GL) rule, choosing ξq1−1 = a and ξq1 = b for instance.
Multivariate quadratures may subsequently be obtained by full or sparse tensorization of these
one-dimensional rules. Firstly, a fully tensorized grid is obtained by the product rule:

ΘΘΘ(d,Q) =

d⊗
n=1

Θ(1, qn) , (3.6)

which contains Q =
∏d

n=1 qn grid points in Γ. Secondly, a sparse quadrature rule can be de-
rived thank to the Smolyak algorithm [18]. The so-called k-th level, d-dimensional Smolyak
sparse rule Θ̂ΘΘ(d, k) is obtained by the following linear combination of product formulas:

Θ̂ΘΘ(d, k) =

k−1∑
l=k−d

∑
q1+···+qd=d+l

Θ(1, q1) ⊗ · · · ⊗ Θ(1, qd) . (3.7)

Clearly, the above sparse grid is a subset of the full tensor product grids. It typically contains
Q ∼ (2d)k/k! nodes in Γ whenever d � 1 and k is fixed. By a direct extension of the argu-
ments divised in [15], it can be shown that provided the univariate quadrature rules Θ(1, q)
are exact for all univariate polynomials of order up to 2q − 1 (Gauss rules) or 2q − 3 (GL
rules), the foregoing rule is exact for all d-variate polynomials of total order up to 2k − 1 or
2k−3, respectively. In [17] it has been observed that sparse quadratures outperform tensorized
quadratures with non-nested underlying one-dimensional rules whenever d ≥ 4, though. If
Θ(1, qi) is now Clenshaw-Curtis univariate quadrature of i-th level for i > 1, such that:

ξl = − cos
(l − 1)π
qi − 1

, 1 ≤ l ≤ qi = 2i−1 + 1 ,

then Θ(1, qi) ⊂ Θ(1, qi+1), that is the univariate Clenshaw-Curtis rules Θ(1, qi) are nested.
Consequently the multivariate rules are nested as well, Θ̂ΘΘ(d, k) ⊂ Θ̂ΘΘ(d, k + 1). The total num-
ber of nodes is significantly reduced compared to non nested rules. Nested Clenshaw-Curtis
rules are however exact at least for all multivariate polynomials of total order k [1].
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3.3. Regression methods
In regression approaches, the P expansion coefficients in (2.7) are determined on the basis of
a set of observations {u(·;ξξξl}1≤l≤Q, obtained by computations or measurements, of the random
variable or field u for some particular choices of the random parameters ξξξ, again the sampling
set {ξξξl}1≤l≤Q. They consist in solving a weighted least-squares minimization problem:

U ' U? = arg min
V∈RP

1
2

(y −ΦΦΦV)T W (y −ΦΦΦV) , (3.8)

where y = (u(·;ξξξ1), u(·;ξξξ2), . . . , u(·;ξξξQ))T is the vector of observations, [ΦΦΦ]l j = ψ j(ξξξl) is the
so-called Q×P measurement matrix, W is a Q×Q weighting matrix, and U = (u0, u1, . . . , uP−1)T

is the sought vector of coefficients. This is the approach retained in e.g. [2], for which numer-
ous methods are available to solve this optimization problem whenever Q ≥ P. Alternatively,
one may consider the situation whereby Q < P and more particularly Q � P, that is, un-
derdetermined systems. This can be achieved thanks to some recent results pertaining to the
resolution of under-sampled linear systems promoting sparsity of the sought solution, known
as compressed sensing or compressive sampling [4, 8]. A review of the application of this
approach to generalized polynomial chaos expansions is proposed in [11]; see also [12, 17]
for applications in aerodynamics and aeroelasticity. The compressed sensing approach con-
sists in reformulating the least-squares minimization problem (3.8) as a convex minimization
problem with some sparsity constraint, namely:

U ' U? = arg min
V∈RP

{
‖V‖1 ; ‖y −ΦΦΦV‖2 ≤ ε

}
, (3.9)

for some tolerance 0 ≤ ε � 1 on the polynomial chaos truncation (2.7). Here the `m-norm
is ‖a‖m = (

∑P−1
j=0

∣∣∣a j

∣∣∣m)
1
m for m > 0, and ‖a‖0 = #{ j; a j , 0} otherwise. Sparsity means that

only a small fraction of the sought coefficients U are non negligible. The latter problem is
known as basis pursuit denoising [6]. It is uniquely solvable thanks to some ad hoc mixing
properties of the measurement matrix ΦΦΦ.

One of them is the restricted isometry property (RIP) or uniform uncertainty principle.
For each integer S ∈ N∗, the isometry constant δS of ΦΦΦ is defined as the smallest number
such that:

(1 − δS ) ‖US ‖
2
2 ≤ ‖ΦΦΦUS ‖

2
2 ≤ (1 + δS ) ‖US ‖

2
2

for all S -sparse vectors US ∈ {V ∈ RP; ‖V‖0 ≤ S }. Then ΦΦΦ is said to satisfy the RIP of
order S if, say, δS is not too close to 1. This property amounts to saying that all S -column
submatrices of ΦΦΦ are numerically well-conditioned, or S (or less) columns selected arbitrarily
in ΦΦΦ are nearly orthogonal. Consequently, they form a near isometry so that ΦΦΦ approximately
preserves the Euclidean norm of S -sparse vectors. The following theorem by Candès et
al. [4, 5] then states that (3.9) can be solved efficiently:

Theorem 1. Assume δ2S <
√

2 − 1. Then the solution U? to (3.9) satisfies:∥∥∥U? − U
∥∥∥

2 ≤ C0
‖US − U‖1
√

S
+ C1ε

for some C0,C1 > 0 depending only on δ2S . Here US is U with all but the S largest entries
set to zero.
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This result calls for several comments. First, the coefficients U are actually nearly sparse,
rather than strictly sparse, in the sense that only a small fraction of them contribute signifi-
cantly to the output statistics while the others are not strictly null. Opportunely, the foregoing
theorem deals with all signals and not only the S -sparse ones. In addition, it also allows
noiseless recovery if ε = 0. Second, it is deterministic and does not involve any probabil-
ity for a successful recovery. Lastly, the `1-minimization strategy is non adapted because
it identifies the sparsity pattern, that is the order (location) of the negligible coefficients in
the polynomial chaos basis, and the leading coefficients at the same time. The algorithm
can therefore efficiently capture the relevant information of a sparse vector without trying to
comprehend that vector [5]. This is clearly a much desirable feature for practical industrial
applications. Additionally, the RIP prompts the use of unstructured observation sets {ξξξl}1≤l≤Q,
typically selected randomly, for an efficient recovery by basis pursuit. Structured sets may
also be considered, though, as proposed in [21].

3.4. Application to uncertainty quantification
Once the polynomial expansion (2.7) has been derived, the first moments and/or cumulants
of the random field u can be computed with this expansion. Owing to the orthonormality of
the polynomials, the mean and variance for example are:

µ(x) = E{u(x;ξξξ)} = u0(x) , σ2(x) = E{(u(x;ξξξ) − µ(x))2} =

P−1∑
j=1

u2
j (x) .

Sensitivity indices may be computed alike [19]. They quantify the fraction of variance of
the solution u which can be related to the variation of each random parameter. Denoting by
Jn the set of indices corresponding to the polynomials depending only on the n-th variable
parameter ξn, the main-effect Sobol’ indices are given by:

Sn(x) =
VarE{u(x;ξξξ)|ξn}

Var u(x;ξξξ)
=

1
σ2(x)

∑
j∈Jn

u2
j (x) . (3.10)

More generally, if Jn1n2...ns is the set of indices corresponding to the polynomials depending
only on the parameters ξn1 , ξn2 , . . . ξns , the s-fold joint sensitivity indices are:

Sn1n2...ns (x) =
VarE{u(x;ξξξ)|ξn1 , ξn2 , . . . ξns }

Var u(x;ξξξ)
=

1
σ2(x)

∑
j∈Jn1n2 ...ns

u2
j (x) .

§4. Discussion

Because of the high complexity of fluid flow solvers, non intrusive uncertainty quantification
techniques have been primarily developed in aerodynamic and aeroelastic simulations. They
are used to compute the sensitivities of output quantities of interest that are required to eval-
uate the objective function of an optimization process, for example. Polynomial surrogate
models have commonly been considered in this respect. In most applications the polyno-
mial expansion coefficients are evaluated by Gauss quadratures (see section 3.2.2). However
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this approach becomes computationally very demanding for parametric spaces of high dimen-
sions, even if sparse rules are utilized: this is the so-called curse of dimensionality. Observing
that the output quantities of interest of complex systems depend only weekly on the multiple
cross-interactions between the variable inputs, one may argue that only low-order polynomi-
als significantly contribute to their surrogates. This feature favors reconstruction techniques
benefiting from such a sparse structure, as compressed sensing (see section 3.3). It should be
noted that the "sparsity-of-effects" principle invoked here has already been outlined in [16]. It
may be established rigorously for parameterized, possibly non linear elliptic-parabolic equa-
tions in the framework analyzed in [7]. The results obtained with aerodynamic and aeroelastic
simulations involving complex fluid flows solved by Reynolds-averaged Navier-Stokes equa-
tions (RANS) with turbulence transport closure models corroborate to a large extend this
expected trend. Such examples are described in [17] for the case of a two-dimensional rigid
profile with random Mach number, angle-of-attack, and thickness-to-chord ratio; and in [12]
for the case of a three-dimensional flexible wing-fuselage configuration with random Mach
number, lift force, and wing structural stiffness. Efficient non-adapted polynomial recon-
structions with sampling sets orders of magnitude smaller than the ones required by the usual
techniques are achieved. The (global) quantities of interest considered in these applications
are typically the drag force and pitching moment of the profiles, which integrate the (local)
pressure fields along them.
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TOOLS TO PROVE A PARABOLIC
LEWY-STAMPACCHIA’S INEQUALITY

Yassine Tahraoui

Abstract. We studied a quasilinear parabolic variational inequality of Lewy-Stampacchia
type governed by a pseudomonotone operator of Leray-Lions type in a joint work with O.
Guibé, A. Mokrane and G. Vallet [11]. We propose here some tools and techniques used
to deal with the difficulties, which appear in the study of the problem.

Keywords: Variational inequalities, penalization, pseudomonotone operator, Lewy-Stampacchia’s
inequality.
AMS classification: 35K86, 35R35.

§1. Introduction

We are interessted in a nonlinear parabolic problem with contraint and homogeneous Dirich-
let boundary conditions. More precisely, we prove the existence of a solution satisfying the
following Lewy-Stampacchia’s inequality

0 ≤ ∂tu − div[a(·, ·, u,∇u)] − f ≤ g− = ( f − ∂tψ + div[a(·, ·, ψ,∇ψ)])−,

associated with the following problem∫ T

0
〈∂tu, v − u〉dt +

∫
Q

a(t, x, u,∇u)∇(v − u)dxdt ≥
∫ T

0
〈 f , v − u〉dt, u0(0) = u0

where u 7→ −div[a(t, x, u,∇u)] is a pseudomomotone operator under the constraint u ≥ ψ. We
propose to present tools to show the existence of a solution for the above mentioned problem.

After the first results of H. Lewy and G. Stampacchia [7] concerning inequalities in the
context of superharmonic problems, many authors have been interested in the so-called Lewy-
Stampacchia’s inequality associated with obstacle problems. Without exhaustiveness, let us
cite the papers of A. Mokrane and F. Murat [9] for pseudo-monotone elliptic problems, A.
Mokrane and G.Vallet [10] in the context of Sobolev spaces with variable exponents. The
literature on Lewy-Stampacchia’s inequality is mainly aimed at elliptic problems, or close to
elliptic problems and fewer papers are concerned with other type of problems. Let us cite
J. F. Rodrigues [12] for hyperbolic problems, F. Donati [4] for parabolic problems with a
monotone operator or L. Mastroeni and M. Matzeu [8] in the case of a double obstacle.

The aim of O. Guibé, A. Mokrane, Y. Tahraoui and G. Vallet [11] was to extend F. Do-
nati’s work [4] to pseudo-monotone parabolic problems with a Leray-Lions operator. The
authors proposed a result with very general assumptions on the Carathéodory function a, by
using a method of penalization of the constraint associated with a suitable perturbation of
the operator. As proposed e.g. by [6, p.102], this perturbation is one of the main new point
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of the proof. Indeed, without it, one is usually only concerned by Lewy-Stampacchia’s in-
equality in the elliptic case, and one needs to assume, as in [9], some additional, now useless,
holder-continuity assumptions with respect to u and ∇u. Thus, this perturbation allows us
on the one hand to prove Lewy-Stampacchia’s inequality in the pseudomonotone parabolic
case, and on the other hand to reduce significantly the list of assumptions. Let us mention
also that, with this method, one is able to revisit Lewy-Stampacchia’s inequality proposed
in [9, 10] by assuming only basic assumptions. The second essential result is an extension
of the formula of time-integration by parts of Mignot-Bamberger[2] & Alt-Luckhaus[1] to
non-classical situations. Some information are also given too about the time-continuity of an
element u when u and ∂tu are not in spaces in duality relation. We propose in this paper to
present tools and techniques used by the authors to deal with the difficulties in the study of
some terms in [11].

First of all, we need to precise the functional setting and the assumptions on the data.
Denote by D ⊂ Rd, d ≥ 1 a Lipshitz bounded domain, T > 0, Q = D×]0,T [and p, p′ ∈
]1,+∞[ such that 1

p + 1
p′ = 1. V = W1,p

0 (D) if p ≥ 2 and V = W1,p
0 (D) ∩ L2(D) with the

graph-norm else. Then, V ′ = W−1,p′ (D) if p ≥ 2 and V ′ = W−1,p′ (D) + L2(D) else and the
Lions-Guelfand triple V ↪→

d
H ↪→

d
V ′ holds.

W(0,T ) = {u ∈ Lp(0,T,V), ∂tu ∈ Lp′ (0,T,V ′)} and K(ψ) := {u ∈ W(0,T ), u ≥ ψ}.
Assume in the sequel the following:

H1 :

A : W1,p(D)→ W−1,p′ (D) v 7→ A(v) = − div
[
a(t, x, v,∇v)

]
,

where

H1,1 a : (t, x, u, ξ) ∈ Q × R × Rd 7→ a(t, x, u, ξ) ∈ Rd is a Carathéodory function on
Q × Rd+1,

H1,2 ∀(t, x) ∈ Q a.e., u ∈ R, ∀ξ, η ∈ Rd,

ξ , η⇒ [a(t, x, u, ξ) − a(t, x, u, η)].(ξ − η) > 0.

H1,3 ∃ᾱ > 0, β̄ > 0 and γ̄ ≥ 0, functions h̄ ∈ L1(Q), k̄ ∈ Lp(Q) and two exponents
q, r < p such that, for a.e. (t, x) ∈ Q, ∀u ∈ R,∀ξ ∈ Rd,

a(t, x, u, ξ).ξ ≥ᾱ|ξ|p −
[
γ̄|u|q + |h̄(t, x)|

]
,

|a(t, x, u, ξ)| ≤β̄
[
|k̄(t, x)| + |u|r/p + |ξ|

]p−1
.

H2 : ψ ∈ Lp(0,T,W1,p(D)) ∩ Lp(0,T, L2(D)); that ∂tψ belongs to Lp′ (0,T,V ′) and ψ ≤ 0
on ∂D.

H3 : the right hand side f , which is assumed to be such that g = f − ∂tψ − A(ψ) = g+ − g−

belongs to the order dual Lp(0,T,V)∗ = (Lp′ (0,T,V ′))+ − (Lp′ (0,T,V ′))+, i.e. g+, g− ∈
(Lp′ (0,T,V ′))+ the non-negative elements of Lp′ (0,T,V ′).

H4 : u0 ∈ L2(D) satisfies the constraint, i.e. u0 ≥ ψ(0).

Let us now recall the main result in [11].
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Theorem 1. Under the above assumptions (H1)-(H4), there exists at least u ∈ K(ψ) with
u(t = 0) = u0 and such that, for any v ∈ Lp(0,T,V), v ≥ ψ∫ T

0
〈∂tu, v − u〉dt +

∫
Q

a(t, x, u,∇u)∇(v − u)dxdt ≥
∫ T

0
〈 f , v − u〉dt.

Moreover, the following Lewy-Stampacchia’s inequality holds

0 ≤ ∂tu − div[a(·, ·, u,∇u)] − f ≤ g− = ( f − ∂tψ + div[a(·, ·, ψ,∇ψ)])−.

§2. Strong continuity in L2(D)

Let us denote by V(D) (V0(D) resp.) the following space W1,p(D) ∩ L2(D) (W1,p
0 (D) ∩ L2(D)

resp.) and V ′(D) = W−1,p′ (D) + L2(D). We have the following result.

Lemma 2. If u ∈ Lp(0,T ; V(D)) and ∂tu ∈ Lp′ (0,T ; V ′(D)) then u ∈ C([0,T ], L2(D)).

Remark 1. This result is not the usual one since u and ∂tu are not in spaces being in duality
relation and few words are needed concerning the time-derivative. Note that both V(D) and
V0(D) are dense subspaces of the chosen pivot space L2(D) so that it can be identify to a sub-
space of V ′(D) or (V(D))′. Therefore, u, as an element of Lp(0,T ; V(D)) ↪→ LP(0,T ; L2(D)),
has a time derivative in the sense of D′(0,T ; L2(D)) ↪→ D′(0,T ; V ′(D)) and it is assumed to
belong to Lp′ (0,T ; V ′(D)).
Remark 2. Note that Lemma 2 ensures that the obstacle ψ ∈ C([0,T ], L2(D)) and therefore
u0 ≥ ψ(0) has a sense as elements of L2(D).

Sketch of the proof. This result is based on a classical method: first in Rd , then in the half-
space Rd

+ and finally in D thanks to an atlas of charts.
For D = RN , we have W1,p

0 (RN) = W1,p(RN), therefore we can identify V ′(RN) with the
dual of V(RN). By considering the triple V(RN) ↪→

d
L2(RN) ↪→

d
V ′(RN), thanks to [14] (Prop.

1.2 p. 106), one has u ∈ C([0,T ], L2(RN)).
If D = RN

+/resp.− = {(x′, xd) ∈ Rd; xd > 0 (resp. xd < 0}, the method is based on a
suitable extension of u to Rd. Following a recommendation of F. Murat, we consider the
following extension, used e.g in [5]

ũ(t, x′, xd) =

{
u(t, x′, xd); xd > 0
−3u(t, x′,−xd) + 4u(t, x′,−2xd); xd < 0.

Note that ũ ∈ Lp(0,T ; V(Rd)) and, thanks to a change of variables, that for any ϕ ∈ C∞c (]0,T [×Rd)
one gets∫ T

0

∫
Rd

ũ(t, x)∂tϕ(t, x) dx dt =

∫ T

0

∫
Rd
−

(−3u(t, x′,−xd) + 4u(t, x′,−2xd))∂tϕ(t, x′, xd) dx dt

+

∫ T

0

∫
Rd

+

u(t, x)∂tϕ(t, x) dx dt.
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Then ∫ T

0

∫
Rd

ũ(t, x)∂tϕ(t, x) dx dt

=

∫ T

0

∫
Rd

+

(∂t(ϕ(t, x′, xd) − 3ϕ(t, x′,−xd) + 2ϕ(t, x′,−
xd

2
))u(t, x, xd) dx dt.

Remark that ψ(t, x) = ϕ(t, x′, xd) − 3ϕ(t, x′,−xd) + 2ϕ(t, x′,−
xd

2
) = 0 i f xd = 0 and

∂tψ(t, x) = 0 if xd = 0, which implies ψ ∈ W1,∞(0,T ; V0(Rd
+)).

Note that ‖ψ‖Lp(0,T ;V0(Rd
+)) ≤ 8‖ϕ‖Lp(0,T ;V(Rd)). Therefore,

|

∫ T

0
〈∂tũ, ϕ〉dt| = |

∫ T

0

∫
Rd

+

u∂tψ dx dt| ≤ ‖∂tu‖Lp′ (0,T ;V ′(Rd
+))‖ψ‖Lp(0,T ;V0(Rd

+)) ≤ C‖ϕ‖Lp(0,T ;V(Rd))

Thus ∂tũ ∈ Lp′ (0,T ; V ′(Rd)).Then, one concludes that ũ ∈ C([0,T ], L2(Rd)) i.e u ∈ C([0,T ], L2(Rd
+)).

Finally, the result holds in the general case by considering an atlas of charts as proposed e.g
in [5]. �

§3. Penalization and perturbation of the operator

Denote by q̃ = min(p, 2) and let us define the function Θ

Θ : R→ R, x 7→ −[x−]q̃−1,

and the perturbed operator

ã(t, x, u, ξ) : Q × R × Rd → Rd (x, t, u, ξ) 7→ ã(t, x, u, ξ) = a(t, x,max(u, ψ(t, x)), ξ). (3.1)

Remark 3. We wish to draw the reader’s attention to the fact that with the proposed pertur-
bation: ã(t, x, u, ξ) = a(t, x,max(u, ψ), ξ), the idea is to make formally the operator monotone
and not pseudomonotone any more on the free-set where the constraint is violated.

We defineA : Lp(0,T ; V)→ Lp′ (0,T ; V ′) such that [A(u)](t) := Ã(u(t)) = − div[ã(t, x, u,∇u)]
and note that, the above assumption H1 still holds.
For any positive ε, a cosmetic modification of [13, Section 8.4 ] yields the following result.
Theorem 3. There exists uε ∈ W(0,T ) such that uε(t = 0) = u0 and

∂tuε − div
[
ã(t, x, uε ,∇uε)

]
+

1
ε

Θ(uε − ψ) = f . (3.2)

§4. From regular to general case

To prove the main result. On the one hand, we need some estimate for the penalization term.
For that we impose an additional regularity on some data to get the desired estimate which
permits to prove that the solution satisfies the constraint. On the other hand, we need some
additional regularity to use an integration by part formula given in Section 5 to prove Lewy-
Stampacchia’s inequality. Then, we obtain the general case thanks the following density
lemma.
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Lemma 4. The positive cone of Lp(0,T ; V) ∩ L2(Q) is dense in the positive cone of V′, the
dual set ofV = Lp(0,T,V).

Note that by truncation argument, the same result holds for the positive cone of Lp(0,T ; V)∩
Lp′ (Q) when p < 2. This result is given in [4, Lemma p.593]. We propose in [11] a sketch of
a proof following the idea of [9].

§5. Mignot-Bamberger / Alt -Luckhaus integration by part formula

Note that µε := ∂tuε − div[ã(·, ·, uε,∇uε)] − f = 1
ε
[(uε − ψ)−]q̃−1 ≥ 0, so that the limit

µ := ∂tu− div[ã(·, ·, u,∇u)]− f is a non-negative Radon measure which is also an element of
Lp′ (0,T ; V ′).

Using an idea from A. Mokrane and F. Murat [9], denote by zε := g− − 1
ε
[(uε − ψ)−]q̃−1,

we have

∂tuε + A(uε) + zε = g+ + ∂tψ + A(ψ) i.e. ∂t(uε − ψ) + A(uε) − A(ψ) + zε = g+.

Observing that
∂tuε + A(uε) − f = −zε + g−.

as in [9] in the elliptic case and under more restrictive assumptions on the operator a, proving
that z−ε converges to 0 in an appropriate space leads to the Lewy-Stampacchia’s inequality.
Due to the time variable and the weak assumption on a we have to face to additional difficul-
ties. For technical reasons, we will assume only that, on top of g− ∈ Lp′ (Q) ∩ Lp(0,T ; V),
g− ≥ 0, that ∂tg

− ∈ Lq̃′ (Q). Roughly speaking it allows one to use a test function depending
on g− and together with Lemma 5 to perform an integration by part formula and then the
convergence analysis of z−ε .
Lemma 5. Consider u ∈ Lp(0,T,W1,p(D)) ∩ Lp(0,T, L2(D)) such that ∂tu ∈ Lp′ (0,T,V ′).
Let Ψ : Q × R → R be a function such that (t, x) 7→ Ψ(t, x, λ) is measurable, λ 7→
Ψ(t, x, λ) is non-decreasing (càdlàg1, or càglàd2) and denote by Λ : Q × R → R, (t, x, λ) 7→∫ λ

a Ψ(t, x, τ)dτ where a is any arbitrary real number. Assume moreover that |Ψ(t = 0)| ≤
h + |λ|α and that ∂tΨ exists with |Ψ(λ = 0)| + |∂tΨ| ≤ h where h ∈ L2(Q) and α ∈ [0, 1]. If
Ψ(t, x, u) ∈ Lp(0,T,V), then, for any β ∈ W1,∞(0,T ) and any 0 ≤ s < t ≤ T,∫ t

s
< ∂tu,Ψ(σ, x, u) > βdσ =

∫
D

Λ(t, x, u(t))β(t)dx −
∫

D
Λ(s, x, u(s))β(s)dx

−

∫ t

s

∫
D

Λ(σ, x, u)β′dxdσ −
∫ t

s

∫
D
∂tΛ(σ, x, u)βdxdσ.

Proof. We propose here to present the proof introduced in [11].Thanks to the assumptions,
Ψ is a measurable function on Q × R and Λ is a Carathéodory function on Q × R. Moreover,

|Ψ(t, x, λ)| ≤|Ψ(t = 0)| +
∫ t

0
|∂tΨ(s, x, λ)|ds ≤ (T + 1).h(t, x) + |λ|α,

|Λ(t, x, λ)| ≤|λ − a|
[
(T + 1).h(t, x) + |λ|α

]
≤ C(T, a)

[
|λ|2 + h2(t, x) + h(t, x) + 1

]
1right continuous with left limit
2left continuous with right limit
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so that Λ,Ψ ∈ L2
loc(R, L2(Q)) and the Nemitskii operator associated with Λ is continuous

from L2(Q) to L1(Q). Concerning the time-derivation of Λ, for any ϕ ∈ D(Q × R), Fubini’s
theorem yields

−

∫
Q×R

Λ(t, x, λ)∂tϕ(t, x, λ)dtdxdλ = −

∫
Q×R

∫ λ

a
Ψ(t, x, τ)dτ∂tϕ(t, x, λ)dtdxdλ

=

∫
Q×R

∫ λ

a
∂tΨ(t, x, τ)dτϕ(t, x, λ)dtdxdλ.

As a consequence,

∂tΛ(t, x, λ) =

∫ λ

a
∂tΨ(t, x, τ)dτ,

∣∣∣∣∂tΛ(t, x, λ)
∣∣∣∣ ≤ |λ − a|h(t, x) ≤ |λ|2 + h2(t, x)/4 + |a|h(t, x)

so that the Nemitskii operator associated with ∂tΛ is continuous from L2(Q) to L1(Q).

Thanks to the assumptions, u ∈ C([0,T ], L2(D)) and one extends u to ū in R by ū(t) = u0
if t < 0 and ū(t) = u(T ) si t > T . Therefore, if I1 := (−1,T + 1), ū ∈ Lp(I1,W1,p(D)) ∩
L∞(I1, L2(D)) ∩C(Ī1, L2(D)) such that ∂tū ∈ Lp′ (I1,V ′) with ∂tū = 0 when t < 0 or t > T .
Similarly to u, denote by Ψ̄ the extension to I1 of Ψ in the same way and by Λ̄ the corre-
sponding integral as introduced in the Lemma.

For any fixed 0 < h << 1, let us denote by

vh : t 7→
ū(t + h) − ū(t)

h
, wh : t 7→

ū(t) − ū(t − h)
h

.

Consider β ∈ D(I1) and h, small enought so that suppβ + [−h, h] ⊂ I1. Then,∫
I1

vh(t)β(t)dt =
1
h

∫
I1

[ū(t + h) − ū(t)]β(t)dt

=
1
h

∫
I1

ū(t)β(t − h)dt −
1
h

∫
I1

ū(t)β(t)dt =
1
h

∫
I1

ū(t)[β(t − h) − β(t)]dt

−→ −

∫ T+1

−1
ū(t)β′(t)dt = −

∫ T

0
u(t)β′(t)dt + u(T )β(T ) − u0β(0) in L2(D);

similarly,∫
I1

wh(t)β(t)dt =
1
h

∫
I1

[ū(t) − ū(t − h)]β(t)dt

=
1
h

∫
I1

ū(t)β(t)dt −
1
h

∫
I1

ū(t)β(t + h)dt =
1
h

∫
I1

ū(t)[β(t) − β(t + h)]dt

−→ −

∫ T+1

−1
ū(t)β′(t)dt = −

∫ T

0
u(t)β′(t)dt + u(T )β(T ) − u0β(0) in L2(D),

so that vh and wh converge to ∂tū inD′[I1, L2(D)], thus inD′[I1,V ′]; and to ∂tu inD′[0,T, L2(D)]
and D′[0,T,V ′]. Moreover, by [3, Corollary A.2 p.145], the properties of Bochner integral



Tools to prove a parabolic Lewy-Stampacchia’s inequality 291

and since ∂tū = 0 outside (0,T ),∫
I1

‖vh(t)‖p
′

V ′dt =

∫
I1

1
hp′ ‖

∫ t+h

t
∂tū(s)ds‖p

′

V ′dt ≤
∫

I1

1
h

∫ t+h

t
‖∂tū(s)‖p

′

V ′dsdt

≤
1
h

∫
I1

∫ t+h

−1
‖∂tū(s)‖p

′

V ′dsdt −
1
h

∫
I1

∫ t

−1
‖∂tū(s)‖p

′

V ′dsdt =

∫ T

0
‖∂tu(s)‖p

′

V ′ds.

Since vh already converges in the sense of Distributions, as a consequence of the above
estimate, one may conclude that vh converges weakly to ∂tū in Lp′ [I1,V ′] and to ∂tu in
Lp′ [0,T,V ′]. Similarly, wh converges weakly to ∂tū in Lp′ [I1,V ′] and to ∂tu in Lp′ [0,T,V ′].

For any β ∈ D(I1), one has that Ψ(·, ū)β ∈ Lp(I1,V), since L2(D) is identified with its dual,
one gets that∫

I1×D
vhΨ̄(·, u(t))β dx dt =

∫
I1

< vh, Ψ̄(·, ū(t)) > βdt →
∫

I1

< ∂tū, Ψ̄(·, ū) > βdt,∫
I1×D

whΨ̄(·, ū(t))β dx dt =

∫
I1

< wh, Ψ̄(·, ū(t)) > βdt →
∫

I1

< ∂tū, Ψ̄(·, ū) > βdt.

Let us recall that a is a given real and Λ̄(t, x, λ) =
∫ λ

a Ψ̄(t, x, τ)dτ. Since Ψ̄ is a non-
decreasing function of its third variable, for any real numbers u and v, one has

(v − u)Ψ̄(t, x, u) ≤ Λ̄(t, x, v) − Λ̄(t, x, u) =

∫ v

u
Ψ̄(t, x, τ)dτ ≤ (v − u)Ψ̄(t, x, v).

Thus, assuming moreover that β is non-negative,

[ū(t + h, x) − ū(t, x)]Ψ̄(t, x, ū(t))β ≤ [Λ̄(t, x, ū(t + h)) − Λ̄(t, x, ū(t))]β
≤ [ū(t + h, x) − ū(t, x)]Ψ̄(t, x, ū(t + h))β,

[ū(t, x) − ū(t − h, x)]Ψ̄(t, x, ū(t − h))β ≤ [Λ̄(t, x, ū(t)) − Λ̄(t, x, ū(t − h))]β
≤ [ū(t, x) − ū(t − h, x)]Ψ̄(t, x, ū(t))β.

and, for h small enough to have supp β + [−h, h] ⊂ I1,∫
I1×D

vhβΨ̄(·, u(t)) dx dt ≤
∫

I1×D

Λ̄(·, ū(t + h)) − Λ̄(·, ū(t))
h

β dx dt

≤

∫
I1×D

vhβΨ̄(·, ū(t + h)) dx dt,∫
I1×D

whβΨ̄(·, ū(t − h)) dx dt ≤
∫

I1×D

Λ̄(·, ū(t)) − Λ̄(·, ū(t − h))
h

β dx dt

≤

∫
I1×D

whβΨ̄(·, ū(t)) dx dt,
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so that

lim inf
∫

I1×D

Λ̄(·, ū(t + h)) − Λ̄(·, ū(t))
h

β dx dt ≥
∫

I1

< ∂tū, Ψ̄(·, ū) > βdt

=

∫ T

0
< ∂tu,Ψ(·, u) > βdt,

lim sup
∫

I1×D

Λ̄(·, ū(t)) − Λ̄(·, ū(t − h))
h

β dx dt ≤
∫

I1

< ∂tū, Ψ̄(·, ū) > βdt

=

∫ T

0
< ∂tu,Ψ(·, u) > βdt.

Moreover,∫
I1×D

Λ̄(t, x, ū(t + h)) − Λ̄(t, x, ū(t))
h

β(t) dx dt

=
1
h

∫
I1×D

Λ̄(t − h, x, ū(t))β(t − h) dx dt −
1
h

∫
I1×D

Λ̄(t, x, ū(t))β(t) dx dt

=

∫
I1×D

Λ̄(t − h, x, ū(t)) − Λ̄(t, x, ū(t))
h

β(t − h) dx dt +

∫
I1×D

β(t − h) − β(t)
h

Λ̄(t, x, ū(t)) dx dt

and∫
I1×D

Λ̄(t, x, ū(t)) − Λ̄(t, x, ū(t − h))
h

β(t) dx dt

=

∫
I1×D

Λ̄(t, x, ū(t)) − Λ̄(t + h, x, ū(t))
h

β(t + h) dx dt +

∫
I1×D

β(t) − β(t + h)
h

Λ̄(t, x, ū(t)) dx dt

one gets, by passing to the limit, and thanks to the time-extension procedure,

lim inf
∫

I1×D

Λ̄(t − h, x, ū(t)) − Λ̄(t, x, ū(t))
h

β(t − h) dx dt

≥

∫ T

0
< ∂tu,Ψ(·, u) > βdt +

∫
I1×D

Λ̄(·, ū)β′dt

≥ lim sup
∫

I1×D

Λ̄(t, x, ū(t)) − Λ̄(t + h, x, ū(t))
h

β(t + h) dx dt

Note that∫
I1×D

Λ̄(t − h, x, ū(t)) − Λ̄(t, x, ū(t))
h

β(t − h) dx dt

= −

∫
I1×D

1
h

∫ t

t−h
∂tΛ̄(s, x, ū(t))β(t − h)ds dx dt.
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Since, |∂tΛ̄(s, x, ū(t))β(t−h)| ≤ ‖β‖∞|ū(t, x)−a|h(s, x) is an integrable function, the properties
of the point of Lebesgue (steklov average) yields∫

I1×D

Λ̄(t − h, x, ū(t)) − Λ̄(t, x, ū(t))
h

β(t − h) dx dt →−
∫

I1×D
∂tΛ̄(t, x, ū(t))β(t) dx dt

= −

∫
Q
∂tΛ(t, x, u(t))β(t) dx dt.

Since the same holds for lim sup
∫

I1×D

Λ̄(t, x, ū(t)) − Λ̄(t + h, x, ū(t))
h

β(t + h) dx dt, and if β is

regular and non negative, one gets that, for all β ∈ D+([0,T ]),

∫ T

0
< ∂tu,Ψ(·, u) > βdt =

∫
D

Λ(T, x, u(T ))β(T )dx −
∫

D
Λ(0, x, u0)β(0)dx

−

∫
Q

Λ(·, u)β′dt −
∫

Q
∂tΛ(t, x, u(t))β(t) dx dt.

Since β is involved in linear integral terms, a classical argument of regularisation yields
the result for any non-negative elements of W1,∞(0,T ), then for any elements of W1,∞(0,T ).

Since T is arbitrary, the result holds for any t and s = 0, then for any t and s by subtracting
the integral from 0 to s to the one from 0 to t. �

A priori, following Lemma’s 5 notations, one should denote by Ψ(t, x, λ) = −(g− −
1
ε
[λ−]q̃−1)− and Λ(t, x, λ) =

∫ λ

0 Ψ(t, x, σ)dσ. For that, we need Ψ(t, x, u) to be a test-function.
Since x 7→ [x−]q̃−1 is not a priori a Lipschitz-continuous function (e.g. if p < 23), therefore,
for any positive k, we will denote by

ηk(x) = (q̃ − 1)
∫ x+

0 min(k, sq̃−2)ds, Ψk(t, x, λ) = −(g− − 1
ε
ηk(λ−))− and Λk(t, x, λ) =∫ λ

0 Ψk(t, x, σ)dσ. Note that Ψk(t, x, 0) = 0 and ∂tΨk(t, x, λ) = ∂tg
−1{g−− 1

ε ηk(λ−)<0} so that, since
Ψk(t, x, u) is a test-function, by Lemma 5, for any t,

−

∫ t

0

∫
D
∂tΛk(s, x, uε − ψ)dxds +

∫
D

Λk(t, x, uε(t) − ψ(t))dx −
∫

D
Λk(0, x, uε(0) − ψ(0))dx

−

∫ t

0
〈A(uε) − A(ψ), (g− −

1
ε
ηk[(uε − ψ)−])−〉ds −

∫
Q

zε(g− −
1
ε
ηk[(uε − ψ)−])−dxds

= −

∫ t

0
〈g+, (g− −

1
ε
ηk[(uε − ψ)−])−〉ds ≤ 0.

Remark 4. Note that the perturbation of the operator will play a main role in the study of the

3q̃ = min(2, p)



294 Yassine Tahraoui

principal term. Indeed, denote by E the set {g− − 1
ε
ηk[(uε − ψ)−] < 0}

−

∫ T

0
〈A(uε) − A(ψ), (g− −

1
ε
ηk[(uε − ψ)−])−〉dt

=

∫
Q

1E

[
ã(t, x, uε,∇uε) − ã(t, x, ψ,∇ψ)

]
∇[g− −

1
ε
ηk[(uε − ψ)−]] dx dt

=

∫
Q

1E

[
ã(t, x, ψ,∇uε) − ã(t, x, ψ,∇ψ)

]
∇[g− −

1
ε
ηk[(uε − ψ)−]] dx dt,

therefore,

−

∫ T

0
〈A(uε) − A(ψ), (g− −

1
ε
ηk[(uε − ψ)−])−〉dt

≥ −

∫
Q

∣∣∣∣ã(t, x, ψ,∇uε) − ã(t, x, ψ,∇ψ)
∣∣∣∣|∇g−|1{uε<ψ} dx dt.

We prove that the last term goes to zero and by analysing the other terms, we obtain Lewy-
Stampacchia inequality with regular data.

Finally, we present remark concerning the uniqueness of the solution.
Remark 5. Note that the pseudomonotone assumption of the operator doesn’t ensure the
uniqueness of the solution. Observe that under additional assumptions on the operator a,
namely a local Lipschitz continuity with respect to the third variable, standard arguments
allow one to prove the uniqueness of the solution obtained in Theorem 1.
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[3] Brézis, H. Opérateurs maximaux monotones et semi-groupes de contractions dans les
espaces de Hilbert. North-Holland Publishing Co., New York, 1973.

[4] Donati, F. A penalty method approach to strong solutions of some nonlinear parabolic
unilateral problems. Nonlinear Analysis, Th. Meth & App. 6, 6 (1982), 585–597.

[5] Droniou, J. Inégalité de necas et quelques applications [online]. Available from: http:
//users.monash.edu.au/~jdroniou/polys/polydroniou_ineg-necas.pdf.

[6] Hess, P. On a second-order nonlinear elliptic boundary value problem. In Nonlinear
analysis (collection of papers in honor of Erich H. Rothe) Academic Press, New York
(1978), 99–107.

[7] Lewy, H., and Stampacchia, G. On the smoothness of superharmonics which solve a
minimum problem. J. Analyse Math. 23 (1970), 227–236.



Tools to prove a parabolic Lewy-Stampacchia’s inequality 295

[8] Mastroeni, L., and Matzeu, M. Strong solutions for two-sided parabolic variational
inequalities related to an elliptic part of p-Laplacian type. Z. Anal. Anwend. 31, 4
(2012), 379–391.

[9] Mokrane, A., and Murat, F. A proof of the lewy-stampacchia’s inequality by a penal-
ization method. Potential Analysis 9 (1998), 105–142.

[10] Mokrane, A., and Vallet, G. A Lewy-Stampacchia inequality in variable sobolev
spaces for pseudomonotone operators. Differential Equations and Applications 6, 2
(2014), 233–254.
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PERIODIC SOLUTIONS FOR IMPULSIVE
DIFFERENTIAL EQUATIONS

José Manuel Uzal
Abstract. In this note we present some results on the existence of periodic solutions for
some impulsive differential equations. Two different problems will be considered. First,
a first order differential equations with the possible presence of singularities and impulses
is studied. The impulses are assumed to happen on the position and at instants of time
fixed beforehand. Second, a second order differential equation is considered with state-
dependent impulses at both the position and its derivative. This means that the instants of
impulsive effects depend on the solutions and they are not fixed beforehand, making the
study of this problem more difficult.

Keywords: impulsive differential equations, periodic solutions.
AMS classification: 34B37, 34A37.

§1. Introduction

Some evolutions processes are subject to sudden changes. The mathematical description of
these processes leads to impulsive differential equations. The changes are assumed to be in-
stantaneous, since their length is negligible in comparison with the duration of the process.
Thus, solutions of impulsive differential equations are, in general, piecewise continuous func-
tions. Furthermore, the existence of impulsive effects could cause complicated phenomena.
This type of differential equations can describe population dynamics, biological phenomena
or several physical situations [12]. Moreover, impulses can be introduced on a system to
generate a particular dynamic (for example periodic motions) or to control a process.

There are two large classes of impulsive differential equations, with impulses at fixed
times or with state-dependent impulses. On the first class, the moments of impulsive effect
are known beforehand. Techniques and tools used on the classical theory of differential equa-
tions can sometimes be generalized and applied to this case rather easily. On the second case,
the times of impulsive effect change depending on the solution, making its study much more
difficult, because the space of solutions does not have such good properties and some solu-
tions could have unexpected behaviors. We refer the reader to [1, 7, 11, 12] for some results
and applications of the impulsive differential equations.

In this note we will study two different problems. First, we consider a first order impulsive
problem with impulses at fixed times and singularities. For example, the following problem
could be considered

x′(t) = −
1

(x(t))α
+ e(t), t , tk;

∆x(tk) = Ik(x(tk));
x(0) = x(T ).

(1.1)
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Here ∆x(tk) = x(t+k ) − x(t−k ) and x(t−k ), x(t+k ) denote the limits of x as t approaches tk from
the left and right, respectively. The main difficulty of this problem is the presence of the
term 1/xα, because it makes it difficult to find a region where the possible solutions could be
located. Differential equations with singularities have been studied in recent years because
they appear in a lot of physical models [13], and the introduction of impulses makes the
number of applications even larger, although its study could become much more difficult.

We present a result on the existence of periodic solutions for a problem much more gen-
eral that (1.1) and including a large class of nonlinearities.

The second problem considered is a more classical second order differential equation. In
this case, the presence of state-dependent impulses is studied. This makes its study much
more difficult. Our aim is to guarantee the existence of periodic solutions of

x′′(t) + g(x(t)) = p(t, x(t), x′(t)), t , γi(x(t), x′(t));
x(t+) = x(t) + Ii(x(t), x′(t)), t = γi(x(t), x′(t)); (1.2)
x′(t+) = x(t) + Ji(x(t), x′(t)), t = γi(x(t), x′(t));

This type of problems is harder because the moments of impulse depend on the solution
of the differential equation. For example, the equation t = γi(x(t), x′(t)) could have no solu-
tions, one solution or infinitely many; and the solutions of this equation need not to depend
continuously on an initial data.

The rest of this note is organized as follows: in Section 2 we state some general facts about
impulsive differential equations. In Section 3 we state our existence result for problem (1.1)
and in Section 4 for problem (1.2).

§2. General facts about impulsive differential equations

Let A be a subset of Rn, f : R × A −→ Rn, γi : A −→ R and φi : A −→ A. An impulsive
differential equation is an expression of the form

x′(t) = f (t, x(t)), t , γi(x(t));
x(t+) = φi(x(t)), t = γi(x(t)). (2.1)

There are mainly two large classes of impulsive differential equations:

• Equations with fixed moments of impulsive effect: in this case, γi is a constant function,
i.e., γi(x) = ti. The moments of impulsive effect are fixed and they are the same for
every solution. Then, (2.1) can be written as

x′(t) = f (t, x(t)), t , ti;
x(t+i ) = φi(x(ti)).

A problem of this type will be considered in Section 3. The solutions of this problem
are piecewise continuous functions with (possible) discontinuities at ti.

• Equations with unfixed moments of the impulsive effect: these equations have the
form (2.1) with γi non-constant functions. The moments of the impulsive effect oc-
cur when the point (t, x) meets a “hypersurface” given by t = γi(x). The points of
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discontinuity depend on the solution, and sometimes solutions can not be extended
over a large interval, especially if the solution intersects a hypersurface t = γi(x) more
than once. Therefore, it is interesting to impose some hypotheses in order to ensure
that solutions intersect each hypersurface only once. For simplicity, in Section 4 we
consider the case with just one hypersurface.

We state some general results for equations with unfixed moments of the impulsive effect.
Consider

x′(t) = f (t, x(t)), t , γ(x(t));
x(t+) = φ(x(t)), t = γ(x(t)). (2.2)

The following hypotheses will be needed in Section 4:

1. f : R×Rn −→ Rn is a continuous function and locally Lipschitz in the second variable
and all the solutions of u′ = f (t, u) exist for all t ∈ R;

2. φ : Rn −→ Rn is a continuous function;

3. γ : Rn −→ R, γ ∈ C1(Rn,R), there exist γ−, γ+ ∈ (0,T ) such that γ− < γ+ and
0 < γ− ≤ γ(x) ≤ γ+ < T ∀ x ∈ Rn;

4. f (t, x) = f (t + T, x) ∀ (t, x) ∈ R × Rn;

5. γ(x) > γ(φ(x)) ∀ x ∈ Rn;

6. Dγ(x) · f (t, x) < 1 ∀ (t, x) ∈ R × Rn.

Under these hypotheses the following lemmas hold:

Lemma 1. For any x0 ∈ R
n, there is a unique solution x(·; 0, x0) of (2.2) satisfying x(0) = x0.

Lemma 2. For any x0 ∈ R
n, there is a unique tx0 ∈ (0,T ) such that tx0 = γ(x(tx0 )).

Lemma 3. The map Γ : x0 ∈ R
n −→ tx0 ∈ (0,T ) is continuous.

Lemma 4. The map P : x0 ∈ R
n −→ x(T ; x0) ∈ Rn is continuous.

Proof. Let

f1 : ζ ∈ Rn −→ (ζ, ζ) ∈ Rn × Rn;
f2 : (ζ, σ) ∈ Rn × Rn −→ (tζ , σ) ∈ [0,T ] × Rn;
f3 : (t, ζ) ∈ [0,T ] × Rn −→ (t, x(t; 0, ζ)) ∈ [0,T ] × Rn;
f4 : (t, ζ) ∈ [0,T ] × Rn −→ (t, ϕ(ζ)) ∈ [0,T ] × Rn;
f5 : (t, ζ) ∈ [0,T ] × Rn −→ x(T ; t, ζ) ∈ Rn.

Each of these functions is continuous and P(x0) = ( f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1)(x0). �

§3. A first order problem

In this section we study the existence of a T -periodic solution of

x′(t) = −
1

(x(t))α
+ e(t) (3.1)
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under impulsive effects
∆x(tk) = x(t+k ) − x(t−k ) = Ik(x(tk)), (3.2)

with α > 0, T > 0, e : R −→ R continuous and T -periodic, Ik : R −→ R continuous and 0 =

t0 < t1 < · · · < tk < tk+1 = T . We reduce the previous problem to a boundary value problem,
so by a T -periodic solution of (3.1)–(3.2) we understand a piecewise continuous function
u : [0,T ] −→ (0,∞), with discontinuities at the points tk, u(0) = u(T ) and satisfying (3.1)
and (3.2).

Instead of considering (3.1)–(3.2), we are going to study

x′(t) = f (x(t)) + e(t), t , tk;
∆x(tk) = Ik(x(tk));
x(0) = x(T ).

(3.3)

In this case, f : (0,∞) −→ (a, b) is a continuous function with a ∈ [−∞,∞) and b ∈ (−∞,∞].
In order to prove the existence of periodic solutions [8] we use a classical result due to

Mawhin [5]. We briefly present some definitions and results.

Definition 1. Let X and Y be two normed vector spaces and consider the linear mapping
L : D(L) ⊂ X −→ Y . L is called a Fredholm mapping of index 0 if Im(L) is a closed subset
of Y and dim(ker(L)) = codim(Im(L)) < ∞.

If L is a Fredholm mapping of index 0, there exist two projectors P : X −→ X and
Q : Y −→ Y such that Im(P) = ker(L) and Im(L) = ker(Q) = Im(I − Q). This implies that
L|D(L)∩ker(P) : (I − P)X −→ Im(L) is an invertible map, and its inverse will be denoted by KP.

Definition 2. Let N : X −→ Y be a continuous map between two normed spaces and Ω

an open bounded subset of X. We say that N is L-compact on Ω if QN(Ω) is bounded and
KP(I − Q)N : Ω −→ X is a compact map.

Theorem 5. Let X and Y be two Banach spaces, L : D(L) ⊂ X −→ Y a Fredholm mapping
of index 0, Ω an open bounded subset of X and N : Ω ⊂ X −→ Y L-compact on Ω. Suppose
that

1. Lx , λNx ∀ x ∈ ∂Ω ∩ D(L), ∀ λ ∈ (0, 1);

2. QNx , 0 ∀ x ∈ ∂Ω ∩ ker(L);

3. deg(JQN,Ω ∩ ker(L), 0) , 0, where J : Im(Q) −→ ker(L) is an isomorphism and deg
represents the Brouwer’s degree.

Then the equation Lx = Nx has at least one solution in D(L) ∩Ω.

We introduce the following hypotheses:

(H1) lim
s→0+

f (s) = a+, lim
s→∞

f (s) = b−.

(H2) There exist mk,Mk ∈ R such that mk ≤ Ik(s) ≤ Mk ∀ s > 0.

(H3) If c1 =
−m1 − · · · − mq

T
−

1
T

∫ T

0
e(t) dt and c2 =

−M1 − · · · − Mq

T
−

1
T

∫ T

0
e(t) dt, then

c1, c2 ∈ (a, b).
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(H4) For M̃k = max{|Mk |, |mk |} and r2 = inf{s > 0 : f (s) ≥ c2}, it holds that

r2 − 2
(
M̃1 + · · · + M̃q

)
−

∫ T

0
e(t) + |e(t)| dt > 0.

We define

X = {x : [0,T ] −→ R | x(0) = x(T ), x continuous except at tk,

there exist x(t−k ), x(t+k ) and x(tk) = x(t−k )};
‖x‖ = sup{|x(t)| : t ∈ [0,T ]}

Y = X × Rq;
Lx = (g1,∆x(t1), · · · ,∆x(tq)), with g1(t) = x′(t);
Nx = (g2, I1(x(t1)), · · · , Iq(x(tq))), with g2(t) = f (x(t)) + e(t).

Lemma 6. Suppose that hypotheses (H1)–(H4) are satisfied. Then there exist two positive
constants A1 and A2 such that A2 ≤ x(t) ≤ A1 for all t ∈ [0,T ], and for x any solution of the
equation Lx = λNx, λ ∈ (0, 1]. The constants A1 and A2 are independent of λ.

Proof. Let x ∈ X with min{x(t) : t ∈ [0,T ]} > 0 such that there exists λ ∈ (0, 1) withx′(t) = λ f (x(t)) + λe(t), t ∈ [0,T ], t , tk;
∆x(tk) = λIk(x(tk)), k ∈ {1, . . . , q}.

Integrating over [0,T ] we obtain∫ T

0
x′(t) dt = λ

∫ T

0
f (x(t)) dt + λ

∫ T

0
e(t) dt.

The first integral is equal to∫ T

0
x′(t) dt =

q+1∑
k=1

∫ t−k

t+k−1

x′(t) dt = −x(0) −
q∑

k=1

(x(t+k ) − x(t−k )) + x(T ) = −λ

q∑
k=1

Ik(x(tk)).

We can deduce

(m1 + · · · + mq) +

∫ T

0
e(t) dt ≤

∫ T

0
− f (x(t)) dt ≤ (M1 + . . . + Mq) +

∫ T

0
e(t) dt.

by using hypothesis (H2). We obtain that there exist ξ, η ∈ [0,T ] \ {t1, . . . , tq} such that

−T f (x(ξ)) ≤ (M1 + · · · + Mq) +

∫ T

0
e(t) dt, −T f (x(η)) ≥ (m1 + · · · + mq) +

∫ T

0
e(t) dt

by using the mean value theorem for definite integrals. Then f (x(ξ)) ≥ c2 and f (x(η)) ≤ c1,
so there exist r1, r2 > 0 such that x(ξ) ≥ r2 and x(η) ≤ r1 (r2 as defined by (H4) and r1
analogously). It can be checked that

x(t) ≤ r1 +
(
M̃1 + · · · + M̃q

)
+

∫ T

0
|x′(u)| du, x(t) ≥ r2 −

(
M̃1 + · · · + M̃q

)
−

∫ T

0
|x′(u)| du
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Furthermore, ∫ T

0
|x′(t)| dt ≤ M̃1 + · · · + M̃q +

∫ T

0
e(t) dt +

∫ T

0
|e(t)| dt

This implies that

A2 B r2 − 2
q∑

k=1

M̃k −

∫ T

0
e(t) + |e(t)| dt ≤ x(t) ≤ A1 B r1 + 2

q∑
k=1

M̃k +

∫ T

0
e(t) + |e(t)| dt

and A2 > 0 by hypothesis (H4). Therefore the lemma is proved. �

Theorem 7. Suppose that hypotheses (H1)–(H4) are satisfied. Then problem (3.3) has at
least one solution.

Proof. We define

Ω = {x ∈ X : min{x(t) : t ∈ [0,T ]} > A2 − σ2, A2 − σ2 < ‖x‖ < A1 + σ1},

with 0 < σ2 < A2 and σ1 > 0 two constants. The set Ω is bounded and open, QN(Ω) is
bounded and (KP(I − Q)N)(Ω) is relatively compact. Furthermore, for each λ ∈ (0, 1)

Lx = λNx =⇒ A2 ≤ x(t) ≤ A1 ∀ t ∈ [0,T ] =⇒ x < ∂Ω.

Define J : (b, 0, . . . , 0) ∈ Im(Q) −→ b ∈ ker(L) an isomorphism. We must prove that
QNx , 0 for every x ∈ ∂Ω ∩ ker(L) and deg(JQN,Ω ∩ ker(L), 0) is not equal to 0.

Let x ∈ ker(L) with QNx = 0. We must check that x < ∂Ω.

QNx = 0 =⇒
1
T

∫ T

0

[
f (x(t)) + e(t)

]
dt +

1
T

q∑
k=1

Ik(x(tk)) = 0,

x ∈ ker(L) =⇒ x constant =⇒ x(t) = x(0) ∀ t ∈ [0,T ].

We obtain from the previous equations that

− f (x(0)) =
1
T

∫ T

0
e(t) dt +

1
T

q∑
k=1

Ik(x(0)).

This implies that c2 ≤ f (x(0)) ≤ c1 by hypothesis (H3). Then we can conclude the following:
A2 − σ2 < A2 ≤ r2 ≤ x(t) ≤ r1 ≤ A1 < A1 + σ1, which implies that x < ∂Ω.

We identify ker(L)∩Ω with the interval (A2 −σ2, A1 +σ1) of R. Then the degree of JQN
in Ω ∩ ker(L) with respect to 0 is deg(ϕ, (p, q), 0), where (p, q) = (A2 − σ2, A1 + σ1) and the
function ϕ : [p, q] −→ R is given by

ϕ(x) = f (x) +
1
T

∫ T

0
e(t) dt +

1
T

q∑
k=1

Ik(x).

It can be proved that ϕ(p) < 0 < ϕ(q). Then deg(ϕ, (p, q), 0) , 0 using properties of the
Brouwer’s degree. Therefore we can use Theorem 5, so there exists x ∈ D(L) ∩ Ω such that
Lx = Nx, which implies that the impulsive boundary value problem (3.3) has one positive
T -periodic solution. �
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§4. A second order problem

In this section we study the following second order differential equation

x′′(t) + g(x(t)) = p(t, x(t), x′(t)) (4.1)

with g : R −→ R continuous and p : R3 −→ R bounded, continuous and T -periodic on the
first variable. We consider state-dependent impulses

x(t+) = x(t) + Ii(x(t), x′(t))
x′(t+) = x(t) + Ji(x(t), x′(t))

(4.2)

when t = γi(x(t), x′(t)), i ∈ {1, . . . , q}. Here Ii, Ji, γi ∈ C(R2,R). For simplicity we consider
q = 1.

There are few existence results for periodic problems with state-dependent impulses,
some examples include [2, 4, 10, 11].

In order to prove the existence of periodic solutions, the idea is to reduce (4.1)–(4.2) to a
first order planar system and to consider the map P defined in Lemma 4. Then a T -periodic
solution would be a fixed point of P.

The first idea was to use Poincaré-Birkhoff fixed point theorem, which states that ev-
ery area-preserving, orientation-preserving homeomorphism of an annulus that rotates the
boundaries in opposite directions has at least two fixed points. There are some extensions of
this result. It has been applied to second-order problems and to second order problems with
impulses at fixed times (see [3, 6, 9]). We were not able to apply it to our problem other than
in some trivial cases.

Consider the following simplification of a partial extension stated in [9]:

Theorem 8. Let Γ− and Γ+ be two closed and convex curves surrounding the origin, int(Γ+)
the interior of Γ+ in the sense of Jordan curve theorem,A the annulus bounded by Γ− and Γ+

and F : int(Γ+) −→ R2 a continuous map. We denote

E = {z ∈ A : |F(z)| ≤ |z|},

with U(O) a neighborhood of the origin and L a real orthogonal matrix with det(L) = 1.
If γ : [a, b] −→ R2 is a curve connecting Γ− and Γ+ and γ([a, b]) ∩ (J ∪ E) is nonempty,

then F has at least one fixed point.

The proof of this result is based on Brouwer’s degree and some of its properties. We
apply this result to our problem. First, we define a very important family of maps from R2 to
R2, which will be fundamental in the proof of our result.

Definition 3. Let F : R2 −→ R2 be a continuous map. We say that the map F has the
property of partial boundedness if there is a bounded set D ⊂ R2, a convex cone and a curve
Γ : λ ∈ [0,∞) −→ (x(λ), y(λ)) ∈ R2, contained in the cone, such that

lim
λ→∞

(|x(λ)| + |y(λ)|) = +∞ and (F ◦ Γ)([0,∞)) ⊂ D.
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The associated first-order planar system of (4.1) is

x′ = y

y′ = −g(x) + p(t, x, y).
(4.3)

This system has been widely studied. Suppose that g and p are locally Lipschitz and

lim
x→+∞

g(x) = +∞; lim
x→−∞

g(x) = −∞. (g0)

Consider the autonomous differential equation x′′ + g(x) = 0 and define

G(x) =

∫ x

0
g(s) ds.

We have that G is bounded from below, has an absolute minimum and G(x) goes to ∞ as
|x| −→ ∞.

It can be checked that if ζ > 0 is large enough and x(0) = ζ, y(0) = 0, then the solutions
are periodic and the least period of this solution, τ(ζ), is given by the expression

τ(ζ) =
√

2
∫ ζ

h(ζ)

1√
c −G(y)

dy,

where h(ζ) is a negative number such that G(h(ζ)) = G(ζ) and c = G(ζ). Assume the follow-
ing hypothesis:

lim
ζ→+∞

τ(ζ) = 0. (τ0)

We can use polar coordinates on (4.3) for sufficiently large r, soθ′ = − sin2 θ −
(g(r cos θ) − p(t, r cos θ, r sin θ)) cos θ

r
,

r′ = r cos θ sin θ − (g(r cos θ) − p(t, r cos θ, r sin θ)) sin θ.
(4.4)

Given an initial condition (r0, θ0), with r0 sufficiently large, let (r(t; r0, θ0), θ(t; r0, θ0)) be the
solution of (4.4) verifying the initial condition (r0, θ0) at time t = 0.

The proof of the following lemma is a consequence of results that can be found on [3].

Lemma 9. Suppose (g0) is satisfied. Then there exists d > 0 sufficiently large such that

r0 > d =⇒
d
dt
θ(t; r0, θ0) < 0 ∀ θ0 ∈ R.

Furthermore, there exists a continuous and non-decreasing function β from [d,∞) to (0,∞)
such that

r0 > d =⇒
d
dt
θ(t; r0, θ0) ≥ −β(r0) ∀ θ ∈ R.

Define n∗(r, t) and n∗(r, t) as the two non-negative integers such that for any solution
of (4.3) with initial values

√
x(0)2 + y(0)2 = r, the solution makes at least n∗(r, t) and at most

n∗(r, t) turns around the origin on the interval [0, t].
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Lemma 10. Let t ∈ (0,T ]. If (g0) and (τ0) are satisfied, then

lim
r→∞

n∗(r, t) = +∞.

Lemma 11. Suppose (g0) and (τ0) are satisfied and t ∈ (0,T ]. Then

∀N ∈ N, ∃ ρ > 0 : r0 > ρ =⇒ θ(t; r0, θ0) − θ0 < −2Nπ ∀ θ0 ∈ R.

Next, we state and prove the existence of T -periodic solutions for problem (4.1)–(4.2).

Theorem 12. Suppose (g0), (τ0) and the six hypotheses in Section 2 are satisfied and let

φ : (x, y) ∈ R2 −→ (x + I1(x, y), y + J1(x, y)) ∈ R2.

If φ has the property of partial boundedness, then P has at least one fixed point, that is, there
exists at least one T-periodic solution of

x′′(t) + g(x(t)) = p(t, x(t), x′(t)), t , γ(x(t), x′(t));
x(t+) = x(t) + I1(x(t), x′(t)), t = γ(x(t), x′(t)); (4.5)
x′(t+) = x(t) + J1(x(t), x′(t)), t = γ(x(t), x′(t)).

Proof. There exist D a compact subset R2, a convex cone and a curve Γ starting at the origin,
Γ : λ ∈ [0,∞) −→ (x(λ), y(λ)) ∈ R2 contained in the cone such that

lim
λ→∞

(|x(λ)| + |y(λ)|) = +∞ and (φ ◦ Γ)([0,∞)) ⊂ D.

The function f5 as defined in the proof of Lemma 4 is also continuous. There exists
MD > 0 such that | f5(t, x)| ≤ MD for all (t, x) ∈ [γ−, γ+] × D.

Take R1 and R2 sufficiently large with R2 > R1 > MD and satisfying

θ(γ+; θ0,R1) − θ(0; θ0,R1) > −a, θ(γ−; θ0,R2) − θ(0; θ0,R2) < −a − 4π.

for some a > 0. We can restrict ourselves to θ ∈ [0, 2π]. Then we have that

θ(t(θ0,R2); θ0,R2) − θ(t(θ1,R1); θ1,R1) < −2π (4.6)

for θ0, θ1 ∈ [0, 2π), with t(θi,R j) the unique impulsive point given by Lemma 2. Take the curves
Ci = {z ∈ R2 : |z| = Ri}, i ∈ {1, 2}. In order to use Theorem 8, let β : I ⊂ R −→ R2 a
curve connecting C1 and C2, with z1 and z2 its initial and final points. The associated curve
β̃(t) = (P2 ◦ f3 ◦ f2 ◦ f1 ◦ β)(t) makes at least one turn around the origin because of (4.6),
where P2 : [0,T ] × R2 −→ R2 denotes the projection. So the curves β̃ and Γ intersect at least
in one point. Let z be that point. Then φ(z) ∈ D and furthermore |P(z)| ≤ MD < |z|. This
implies that the map P satisfies the hypotheses of Theorem 8, so P : R2 −→ R2 has at least
one fixed point, which implies that there exists a T -periodic solution of (4.5). �
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