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Abstract. We propose a new model for data processing programs. Our
model generalizes the data flow programming style implemented by sys-
tems such as Apache Spark, DryadLINQ, Apache Beam and Apache
Flink. The model uses directed acyclic graphs (DAGs) to represent the
main aspects of data flow-based systems, namely Operations over data
(filtering, aggregation, join) and Program execution defined by data de-
pendence between operations. We use Monoid Algebra to model opera-
tions over distributed, partitioned datasets and Petri Nets to represent
the data/control flow. This allows the specification of a data processing
program to be agnostic of the target Big Data processing system. Our
model has been used to design mutation test operators for big data pro-
cessing programs. These operators have been implemented by the testing
environment TRANSMUT-Spark.

Keywords: Big Data processing - Data flow programming models -
Petri Nets - Monoid Algebra

1 Introduction

The access to datasets with consequent volume, variety and velocity scales,
namely Big Data, calls for alternative parallel programming models. These mod-
els fit well to the implementation of data analytic tasks that can exploit the
potential of those datasets. These programming models have been implemented
by large scale data processing systems that provide execution infrastructures for
large scale computing and memory resources.

Large scale data processing systems can be classified according to their pur-
pose into general-purpose, SQL, graph processing, and stream processing sys-
tems [2]. These systems adopt different approaches to represent and process

* This study was financed in part by the Coordenagao de Aperfeicoamento de Pessoal
de Nivel Superior - Brasil (CAPES) - Finance Code 001.
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data. Examples of general-purpose systems are Apache Hadoop [9], Dryad [12],
Apache Flink [5], Apache Beam [3] and Apache Spark [23]. According to the
programming model adopted for processing data, general-purpose systems can
be based on control flow (like Apache Hadoop) or data flow (like Apache Spark).
In these systems, a program devoted to processing distributed datasets is written
by composing individual processing blocks. These processing blocks are defined
as operations that perform transformations on the data. The interaction between
these blocks defines the data flow that specifies the order in which operations
are performed. Datasets exchanged among the blocks are modeled by data struc-
tures such as key-value tuples or tables. The system infrastructure manages the
parallel and distributed processing of datasets transparently. This allows devel-
opers to avoid having to deal with low-level details inherent to the distributed
and parallel environments.

Yet, according to the dataset properties (velocity, volume), performance ex-
pectations and computing infrastructure characteristics (cluster, cloud, HPC
nodes), it is often an important programmers’ decision to choose a well-adapted
target system to be used for running data processing programs. Indeed, each
hardware/software facility has its particularities concerning the infrastructure
and optimizations made to run the program in a parallel and distributed way.
This means that the systems can have different performance scores depending on
their context or available resources. The choice of the specific resources depends
on non-functional requirements of the project, available infrastructure and even
preferences of the team that develops and execute the program. In order to tackle
these subjective criteria, we believe that data processing programs design must
be agnostic of the target execution platform.

This paper proposes a model for data processing programs that ab-
stracts the main aspects of data flow-based data processing systems: (i) op-
erations applied on data (e.g., filtering, aggregation, join); (i) representation
of programs execution through directed acyclic graphs (DAGs) where vertices
represent operations on datasets and edges the I/O of data. According to the
proposed model, a program is defined as a DAG composed of successive trans-
formations (i.e., operations) on the dataset that is being processed.

Our model represents the DAG of the data flow and transformations (i.e.,
operations) separately. We use Petri Nets [17] to represent the data flow, and
Monoid Algebra [7], an algebra for processing distributed data, to model trans-
formations. This allows the same program to be implemented independently
of target Big Data processing systems, requiring adjustments about the pro-
gramming language and API when deployed on a target system (Apache Spark,
DryadLINQ, Apache Beam and Apache Flink.).

The originality of our model is to provide a formal and infrastructure ag-
nostic specification of data processing programs implemented according to data
flow-based programming models. For the time being works addressing Big Data
processing, programming have merely concentrated efforts on technical and engi-
neering challenging aspects. Yet, few approaches have addressed on formal speci-
fications that can reason about their execution abstractly. This can be important
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for comparing infrastructures, for pipelines for testing parallel data processing
programs, and eventually verifying programs properties (like correctness, com-
pleteness, concurrent access to data). This paper shows how we used our formal
specification for comparing data processing systems and developing a testing
method and an associated tool.

The remainder of the paper is organised as follows. Section 2 introduces
the background concepts of the model, namely, Petri Nets and Monoids Alge-
bra. Section 3 introduces the model for formally expressing big data processing
programs. Section 4 describes experiments we conducted where we applied the
model. Section 5 introduces related work addressing approaches that generalise
control and data flow parallel programming models. Section 6 concludes the
paper and discusses future work.

2 Background

This section briefly presents Petri Nets and Monoid Algebra, upon which our
model is built. For a more detailed presentation, the reader can refer to to [17,
7.

Petri Nets [19] is a formal tool that allows to model and analyze the behavior
of distributed, concurrent, asynchronous, and/or non-deterministic systems [17].
A Petri Net is defined as a directed bipartite graph that contains two types
of nodes: places and transitions. Places represent the system’s state variables,
while transitions represent the actions performed by the system. These two com-
ponents are connected through directed edges that connect places to transitions
and transitions to places. With these three components it is possible to represent
the different states of a system (places), the actions that take the system from
one state to another (transitions) and how the change of state is made due to
actions (edges). This is done by using tokens to decorate places of the net. The
distribution of the tokens among places indicates that the system is in a given
state. The execution of an action (transition) takes tokens from one state (place)
to another.

Formally, a Petri net is a quintuple PN = (P, T, F, W, My) where PNT = ),
PUT # 0 and:

P ={p1,p2,...,pm} Iis a finite set of places,
T ={t1,t2,...,t,} is a finite set of transitions,
FC(PxT)U(T x P) is a finite set of edges,
W:F —{1,2,3,...} isaset of weights associated to edges,
My: P —1{0,1,2,3,...} isa function defining the initial marking of a net,
The execution of a system is defined by firing transitions. Firing a transition ¢

consumes W (s, t) tokens from all its input places s, and produces W (¢, s’) tokens
to each of its output places s’.
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Monoid Algebra was proposed in [7] as an algebraic formalism for data-centric
distributed computing operations based on monoids and monoid homomorphisms.
A monoid is a triad (S, ®, eq) formed by a set S, an associative operation @ in
S and a neutral element eg (consider that @ identifies the monoid). A monoid
homomorphism is a function H over two monoids, from ® to @, which respects:

HX®Y)=H(X)®H(Y) forall X and Y of type S
H(eg) = eq

Monoid algebra uses the concepts of monoid and monoid homomorphism to
define operations on distributed datasets, which are represented as monoid col-
lections. One type of monoid collection is the bag, an unordered data collection
of type a (denoted as Bag[a]) that has the unit injection function Uy, which
generates the bag {#}} from the unitary element x (Uy(z) = {z}}), the associa-
tive operation W, which unites two bags ({z} w{y}} = {z,y}), and the neutral
element {}}, which is an empty bag. Another type of monoid collection is the
list, which can be considered an ordered bag (List[a] denotes a list of type ),
with U4y as the unit injection function, 4+ as the associative operation and []
as the neutral element.

Monoid algebra defines distributed operations as monoid homomorphisms
over monoid collections (which represent distributed datasets). These homomor-
phisms are defined to abstractly describe the basic blocks of distributed data
processing systems such as map/reduce or data flow systems.

The flatmap operation receives a function f of type @« — Bag[f] and a
collection X of type Bag[a] as input and returns a collection Bag[3] resulting
from the union of the results of applying f to the elements of X. This operation
captures the essence of parallel processing since f can be executed in parallel
on different data partitions in a distributed dataset. Notice that flatmap f is
a monoid homomorphism since it is a function that preserves the structure of
bags.

The operations groupby and cogroup capture the data shuffling process by
representing the reorganization and grouping of data. The groupby operation
groups the elements of Bag[k x a] through the first component (key) of type x
and results in a collection Bag[k x Bag[a]], where the second component is a
collection containing all elements of type a to which were associated with the
same key k in the initial collection. The cogroup operation works similarly to
groupby, but it operates on two collections that have a key of the same type k.

The reduce operation represents the aggregation of the elements of Bag[«]
into a single element of type « from the application of an associative function
f of type @« — a — «. The operation orderby represents the transformation
of a bag Bag[k x «] into a list List[k x «] ordered by the key of type x which
supports the total order <.

In addition, monoid algebra also supports the use of lambda expressions
(A\z.e), if-then-else, and the union operation on bags ().
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In our work, we combine Petri Nets with Monoid Algebra to build abstract
versions of the primitives present distributed in Big Data processing applications.
The main goal of our approach is to have a common representation of data-centric
programs. This representation may be used to compare different frameworks, as
well as to translate or optimize programs.

3 Modeling Big Data Processing Programs

In this section we present a formal model for big data processing. Our model is
organized in two levels: data flow, and transformations. Data flow in our model
is defined by means of Directed Acyclic Graphs (DAG), while transformations
are modeled as monoid homomorphisms on datasets.

3.1 Data Flow

To define the DAG that represents the data flow of a data processing program,
we rely on the data flow graph model presented in [14], which was formalized
using Petri Nets [17].

A program P is defined as a bipartite directed graph where places stand
for the distributed datasets (D) of the program, and transitions stand for its
transformations (77). Datasets and transformations are connected by edges (E):

P=(DUT,E)

To exemplify the model, let us consider the Spark program shown in Figure 1.
This program receives as input two datasets (RDDs) containing log messages
(line 1), makes the union of these two datasets (line 2), removes duplicate logs
(line 3), and ends by filtering headers, removing logs which match a specific
pattern (line 4) and returning the filtered RDD (line 5).

1 def unionLogsProblem(firstLogs: RDD[String], secondLogs: RDD[String])
: RDD[String] = {
2 val aggregatedLogLines = firstLogs.union(secondLogs)
3 val uniqueloglLines = aggregatedlLogLines.distinct()
val cleanLoglLines = uniquelLoglLines.filter((line: String) => !(line.
startswWith("host") && line.contains("bytes")))
5 return cleanLoglLines

Fig. 1: Sample log union program in Spark.

In this program we can identify five RDDs, that will be referred to by using
short names for conciseness. So, D = {d;,da, d3,dy, ds}, where d; = firstLogs,
dy = secondLogs, d3 = aggregatedLoglLines, d4 = uniqueLoglLines, and ds =
cleanlLoglLines.
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We can also identify the application of three transformations in P, thus the
set T in our example is defined as T = {t1,t2, 3}, where the transformations in
T are t; = union(d;, ds), to = distinct(ds), and t3 = filter((line: String)
=> !(line.startsWith(‘“host’’) && line.contains(‘“bytes’”)),dy).

Each transformation in 7T receives one or two datasets belonging to D as
input and produces a dataset also in D as output. In addition, the sets D and
T are disjoint and finite.

Datasets and transformations are connected through edges. An edge may
either be a pair in D x T, representing an input dataset of a transformation, or
a pair in T x D, representing an output dataset of a transformation. In this way,
the set of edges of P is defined as E C (D xT)U (T x D) .

The set E in our example program is, then:

E = {(di,t1), (d2,t1), (t1,d3), (d3,t2), (t2, da), (da, t3), (t3,d5)}

Using these sets, the DAG representing the Spark program in Figure 1 can
be seen in Figure 2. The distributed datasets in D are represented as circle nodes
and the transformations in T are represented as thick bar nodes of the graph. The
edges are represented by arrows that connect the datasets and transformations.
The token marking in dy and dy indicate that the program is ready to be executed
(initial marking).

dq

Fig. 2: Data flow representation of the program in Figure 1.

3.2 Data Sets and Transformations

The data flow model presented above represents the datasets and transforma-
tions of a program P, as well as the order in which these transformations are
processed when P is executed. To define the contents of datasets in D and the se-
mantics of transformations in 7', we make use of Monoid Algebra |7,8|. Datasets
are represented through monoid collections and transformations are defined as
operations supported by monoid algebra. These representations are detailed in
the following.

Distributed Datasets A distributed dataset in D can either be represented
by a bag (Bag|a]) or a list (List[a]). Both structures represent collections of
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distributed data [8], capturing the essence of the concepts of RDD in Apache
Spark, PCollection in Apache Beam, DataSet in Apache Flink and DryadTable
in Dryad LINQ.

We define most of the transformations of our model in terms of bags, consid-
ering lists only in the sorting transformations, which are the only ones in which
the order of the elements in the dataset is relevant.

In monoid algebra, bags and lists can either represent distributed or local
collections. These two kind of collections are treated by monoid homomorphisms
in a unified way [8]. In this way, we will not distinguish distributed and local
collections when defining our transformations.

Transformations In our model, transformations on datasets taking one or
two datasets as input and producing one dataset as output. Transformations
may also receive other types of parameters such as functions, which represent
data processing operations defined by the developer, as well as literals such as
boolean constants. A transformation ¢ in the transformation set T' of a program
P is characterized by the operation it carries out, the types of its input and
output datasets, and its input parameters.

We define the transformations of our model in terms of the operations of
monoid algebra defined in Section 2. We group transformations into categories,
following the types of operations that were observed in the systems of processing
of large volumes of data studied.

Mapping Transformations Mapping transformations transform values of an in-
put dataset into values of an output dataset through the application of a mapping
function. Our model provides two mapping transformations: flatMap and map.
Both transformations apply a given function f to every element of the input
dataset to generate the output dataset, the only difference being the require-
ments on the type of f and its relation with the type of the generated dataset.
The map transformation accepts any f : « — Bag[f] and generates an output
dataset of type Bag|[8], while the flatMap transformation requires f to directly
produce Bag|[f] elements.

The definition of flatMap in our model is just the monoid algebra operation
defined in Section 2:

flatMap :: (o = Bag|B]) — Bag|a] — Bagl8]
flatMap(f, D) = flatmap(f, D)
The map transformation derives data of type Bag[8] when given a function
f :a — pB. For that to be modeled with the flatmap from monoid algebra, we
create a lambda expression that receives an element x from the input dataset

and results in a Bag[f] collection containing only the result of applying f to x
(Az.{ f(z)}). Thus, map is defined as:

map :: (&« = B) — Bag[a] — Bag[f]
map(f, D) = flatmap(Az.{ f(x)}}, D)
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Filter Transformation. This transformation uses a boolean function to define
whether or not a data item should be mapped to the output dataset. As in the
case of map, we use a lambda expression to build a singleton bag:

filter :: (o — boolean) — Bag[a] — Bagla]
filter(p, D) = flatmap(\x. if p(z) then {z}} else {}}, D)

For each element x of a Bag, the filter function checks the condition p(x). It
forms the singleton bag {z}} or the empty bag ({}}), depending on the result of
that test. This lambda expression is then applied to the input dataset using the
flatmap operation.

For instance, consider the boolean function p(xr) = = > 3 and a bag D =
{1,2,3,4,5}. then, filter(p, D) = {3,4,5}.

Grouping Transformations group the elements of a dataset with respect to a
key. We define two grouping transformations in our model: groupByKey and
groupBy.

The groupByKey transformation is defined as the groupBy operation of
Monoid Algebra. It maps a key-value dataset into a dataset associating each key
to a bag. Our groupBy transformation uses a function k£ to map elements of the
collection to a key before grouping the elements with respect to that key:

groupBy :: (& = k) = Bag|a] — Bag[k x Bag|a]]
groupBy(k, D) = groupby (latmap(\z.{(k(x),x)}}, D))

groupByKey :: Baglk x o] = Bag|k x Bagla]]
groupByKey(D) = groupby (D)

For example, let us consider the identity function to define each key, and the
datasets D1 = {{1,2,3,2,3,3}}, and D2 = {(1,a),(2,b), (3,¢),(1,e), (2, ) }}. Ap-
plying groupBy and groupByKey to these sets results in:

groupBy(Ak.k, D1) = {(1, {11), (2, {2,2}}), 3, 3, 3,3}) }
groupByKey(D2) = {(1, {a, e}}), (2, {0, /1), (3, {{c}) }

Set Transformations corresponds to binary mathematical set operations on
Bags. They operate on two sets of data of the same type and result in a new
set of the same type. The definition of these transformations is based on the
definitions in [8].

The union transformation represents the union of elements from two datasets
into a single dataset. This operation is represented in a simple way using the
bags union operator (W):

union :: Bagla] — Bagla] — Bag|a]
union(Dy, Dy) = D, W D,
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We also define bag intersection and subtract operations:

intersection :: Bagla] — Bagla] — Bagla]
intersection(Dy, D,) = flatmap(A\z. if some(\y.x =y, D,)

then {2} else {}}), D)

subtract :: Bagla] — Bag[a] — Bagla]
subtract(Dy, Dy) = flatmap(Az. if all(A\y.x # y, D,)

then {z}} else {}}), D.)

where the auxiliary functions some and all are defined in [20].

The intersection of bags D, and D, selects all elements of D, appearing at
least once in D,. Subtracting D,, from D, selects all the elements of D, that
differ from every element of D,.

Aggregation Transformations collapses elements of a dataset into a single ele-
ment. The most common aggregations apply binary operations on the elements
of a dataset to generate a single element, resulting in a single value, or on groups
of values associated with a key. We represent these aggregations with the trans-
formations reduce, which operates on the whole set, and reduceByKey, which
operates on values grouped by key. The reduce transformation has the same
behavior as the reduce operation of monoid algebra. The definition of reduce-
ByKey is also defined in terms of reduce, but since its result is the aggregation
of elements associated with each key rather than the aggregation of all elements
of the set, we first need to group the elements of the set by their keys:

reduce :: (¢ = a = o) = Bagla] = «
reduce(f, D) = reduce(f, D)

reduceByKey :: (¢ = a — a) = Bag[k x o] = Bag[k X o]
reduceByKey(f, D) = flatmap(A(k, g). { (K, reduce(f, 4))}}, groupby(D))

Join Transformations implement relational join operations between two datasets.
We define four join operations, which correspond to well-known operations in re-
lational databases: innerJoin, leftOuterJoin, rightOuterJoin, and fullOuterJoin.
The innerJoin operation combines the elements of two datasets based on a join-
predicate expressed as a relationship, such as the same key. LeftOuterJoin and
right OuterJoin combine the elements of two sets like an innerJoin adding to the
result all values in the left (right) set that do not match to the right (left) set.
The fullOuterJoin of two sets forms a new relation containing all the information
present in both sets.
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See below the definition of the innerJoin transformation:

innerJoin :: Baglk x a] — Bag[k x B8] — Baglk x (a x )]
innerJoin(Dy, Dy) = flatmap(A(k, (dz, dy)).t2(k, dz, dy), t1(Dz, Dy))
t1(Dg, D) = cogroup(D,, D,)
to(k,ds, dy) = latmap(Ax.ts(k, z,d,), d;)
ts(k, x,dy) = flatmap(\y.{(k, (z,y)) } dy)

The definition of the other joins follows a similar logic, but conditionals are
included to verify the different relationships.
The types for our other join transformations are:

leftOuterJoin :: Bag[k x a] — Bag[k x ] = Bag[r x (a x Bag[f])]
rightOuterJoin :: Bag[k x o] — Bag[k x 5] — Bag[r x (Bag[a] x 8)]
fullOuterJoin :: Bag|k x o] — Bag[k x ] — Baglk x (Bagla] x Bag|[f])]

The full definition of our join operations is not included here due to lack of
space. It can be found in [20].

Sorting Transformations add the notion of order to a bag. In practical terms,
these operations receive a bag and form a list, ordered in accordance of some
criteria. Sort transformations are defined in terms of the orderby operation of
monoid algebra, which transforms a Bag[x X o] into a List[x x a] ordered by the
key of type x that supports the total order <. (We will also use the inv function,
which reverses the total order of a list, thus using > instead of <). The types
for our sorting transformations are:

order By :: boolean — Bagla] — List|a]
orderByKey :: boolean — Baglk X o] — List[k x ]

The boolean value used as first parameter defines if the direct order < or its
inverse is used. The full definition of these operations can be found in [20].

To exemplify the use of sorting transformations let us consider D; = {1, 3,2,5,4}
and Dy = {(1,0a),(3,¢),(2,a),(5,€),(4,d)}}. Then:

orderBy(false, D)
orderBy(true, D)
order ByKey(false, D)
order ByKey(true, Ds)

2,3,4,5]
4, 3,2,1]
1,a),(2,0),(3,¢),(4,d),(5,¢)]
5,¢),(4,d),(3,¢),(2,0), (1,a)]

(1,
(

1,
[5
[
[
This model is used as a common representation for defining mutation test

operators for big data processing program. In the next section we briefly present
how this is done in a test tool we are developing.
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4 Applications of the model

The model proposed in the previous section can be as an abstraction of ex-
isting data flow programming models used by processing systems. It provides
abstractions of the data flow programming models that can be applied to spec-
ify parallel data processing programs independently of target systems. Finally,
the abstract and formal concepts provided by the model, make it quite suitable
for the automation of software development process, such as it is done by IDE
tools.

We first applied the model to formalize the mutation operators presented
in [21], where we explored the application of mutation testing in Spark pro-
grams, and in the tool TRANSMUT-SPARK* that we developed to automate
this process.

Mutation testing is a fault-based testing technique that relies on simulat-
ing faults to design and evaluate test sets [1|. Faults are simulated by applying
mutation operators, which are rules with modification patterns for programs (a
modified program is called a mutant). In [21], we presented a set of mutation op-
erators designed for Spark programs that are divided into two groups: mutation
operators for the data flow and mutation operators for transformations.

Mutation operators for the data flow model changes in the DAG that defines
the program. In general, we define three types of modifications in the data flow:
replacement of one transformation with another (both existing in the program);
swap the calling order of two transformations, and delete the call of a transfor-
mation in the data flow. These modifications involve changes to the edges of the
program. In addition, the type consistency of the program must be maintained,

e., if one transformation is replaced by another, then both must receive and
return datasets of the same type. In Figure 3 we exemplify these mutations in
the data flow that was presented in Figure 2.

WW

) Transformation Replacement. ) Transformations Swap.

4 t3

(¢) Transformation Deletion.
Fig. 3: Examples of mutants created with mutation operators for data flow.

4 TRANSMUT-SPARK is  publicly  available at https://github.com/
jbsneto-ppgsc-ufrn/transmut-spark.
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Mutation operators for transformations model changes in specific groups
of transformations, such as operators for aggregation transformations or set
transformations. In general, we model two types of modifications: replacement
of the function passed as a parameter for the transformation; and replace-
ment of a transformation by another of the same group. In the first type, we
defined specific substitution functions for each group of transformations. For
example, for aggregation transformation we define five substitution functions
(fm) to replace an original function. Considering the aggregation transforma-
tion t; = reduceByKey(max(z,y),d), which receives as input a function that
returns the greater of the two input parameters and an integer dataset, the
mutation operator for aggregation transformation replacement will generate the
following mutants:

t1 = reduce( fm(x,

t1 = reduce( f(x,

(fm(z,y
(fm(z,y
t1 = reduce(fm(z,y
t1 = reduce(fm(x,y

(fm(z,y

t1 = reduce( f(x,

In the other type of modification, we replace a transformation with others
from the same group. For example, for set transformations (union, intersection
and subtract), we replace one transformation with the remaining two, in addition
we also replace the transformation for the identity of each of the two input
datasets and we also invert the order of the input datasets. Considering the
set transformation t; = subtract(dy,dz), which receives two integer datasets a
input, the set transformation replacement operator will generate the following
mutants:

t1 = union(dy, ds)

t1 = intersection(dy, ds)
t1 = identity(dy)

t; = identity(ds)

t1 = subtract(dsy, dy)

The mutation operators for the other groups of transformations follow these
two types of modifications, respecting the type consistency and the particularities
of each group. The model was used in the tool TRANSMUT-SPARK as an
intermediate representation. The tool reads a Spark program and translates it
into an implementation of the model, so the mutation operators are applied to
the model. We use the model as an intermediate representation in the tool in
order to expand it in the future to apply the mutation test to programs in Apache
Flink, Apache Beam and DryadLINQ.
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5 Related Work

Data flow processing that defines a pipeline of operations or tasks applied on
datasets, where tasks exchange data, has been traditionally formalised using
(coloured) Petri Nets [15]. They seem well adapted for modeling the organiza-
tion (flow) of the processing tasks that receive and produce data. In the case of
data processing programs based on data flow models, in general, proposals use
Petri Nets to model the flow and they use other formal tools for modeling the
operations applied on data. For example, [10,11] uses nested relational calculus
for formalizing operations applied to non first normal form compliant data. Next
we describe works that have addressed the formalization of data processing par-
allel programming models. The analysis focuses the kind of tools and strategies
used for formalizing either control/data flows and data processing operations.

The authors in [22] formalize MapReduce using CSP [4]. The objective is to
formalize the behaviour of a parallel system that implements the MapReduce
programming model. The system is formalized with respect to four components:
Master, Mapper, Reducer and FS (file system). The Master manages the exe-
cution process and the interaction between the other components. The Mapper
and Reducer components represent, respectively, the processes for executing the
map and reduce operations. Finally, the F'S represents the file system that stores
the data processed in the program. These components implement the data pro-
cessing pipeline implemented by these systems which loading data from an FS,
executing a map function (by a number of mappers), shuffling and sorting, and
then executing a reduce function by reducers. The model allows the analysis of
properties and interaction between these processes implemented by MapReduce
systems.

In [18] MapReduce applications are formalized with Cog, an interactive the-
orem proving systems. As in [22], the authors also formalized the components
and execution process of MapReduce systems. The user-defined functions of the
map and reduce operations are also formalized with Coq. Then these formal
definitions are used to prove the correctness of MapReduce programs. This is
different from the work presented in [22] (described above) that formalizes only
the MapReduce system.

More recent work have proposed formal models for data flow programming
models, particularly associated to Spark. The work in [6] introduces PureSpark,
a functional and executable specification for Apache Spark written in Haskell.
The purpose of PureSpark is to specify parallel aggregation operations of Spark.
Based on this specification, necessary and sufficient conditions are extracted to
verify whether the outputs of aggregations in a Spark program are deterministic.

The work [16] presents a formal model for Spark applications based on tem-
poral logic. The model takes into account the DAG that forms the program,
information about the execution environment, such as the number of CPU cores
available, the number of tasks of the program and the average execution time of
the tasks. Then, the model is used to check time constraints and make predictions
about the program’s execution time.
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6 Conclusions and Future Work

This paper introduced a model of data flow processing programs that formally
specifies the data flow using Petri Nets and operations performed on data us-
ing Monoid Algebra. The paper gave the specification of data processing op-
erations (i.e., transformations) provided as built-in functions in Apache Spark,
DryadLINQ, Apache Beam and Apache Flink.

The model combines existing proposals. Monoid Algebra is an abstract way
to specify operations over partitioned datasets and Petri nets are widely used to
specify parallel computation. Our proposal simply combines these to models to
have an intermediate representation of data flow based programs so that we can
safely manipulate them.

This paper showed how these operations can be combined into data flows for
implementing data mutation operations in mutation testing approaches. Beyond
the interest of providing a formal model for data flow based programs, the model
can be a comparison tool of target systems and a way of defining programs testing
pipelines.

The model was used for specifying mutation operators that were then imple-
mented in TRANSMUT-Spark, a software engineering tool for mutation testing.
A natural extension to this work would be to instantiate the tool for other sys-
tems of the data flow family (DryadLINQ, Apache Beam, Apache Flink). This
can be done by adapting TRANSMUT-Spark’s front and back ends so that a pro-
gram originally written in any of them can be tested with the mutation testing
proposed in [21].

This line of work, where the model is only used as the internal format, is
suited for users not willing to see the formality behind their tools. However,
still exploring the similarities between these systems, the model may be used as
a platform-agnostic form of formally specifying and analyzing properties of the
program before implementation in one of those systems. Coloured Petri Nets and
tools such as CPN Tools [13], can be powerful allies in the rigorous development
process of such programs. As future work, we intend to study the mapping of our
model into the input notation of CPN Tools for model simulation and analysis.
As a further goal, we can also envision the use of this specification for code
generation in those similar systems.
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