
HAL Id: hal-03039191
https://hal.science/hal-03039191v2

Submitted on 9 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ASGART: fast and parallel genome scale segmental
duplications mapping

Franklin Delehelle, Sylvain Cussat-Blanc, Jean-Marc Alliot, Hervé Luga,
Patricia Ballaresque

To cite this version:
Franklin Delehelle, Sylvain Cussat-Blanc, Jean-Marc Alliot, Hervé Luga, Patricia Ballaresque. AS-
GART: fast and parallel genome scale segmental duplications mapping. Bioinformatics, 2018, 34 (16),
pp.2708-2714. �10.1093/bioinformatics/bty172�. �hal-03039191v2�

https://hal.science/hal-03039191v2
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is a publisher’s version published in:
http://oatao.univ-toulouse.fr/22625

To cite this version: Delehelle, Franklin and Cussat-Blanc,
Sylvain and Alliot, Jean-Marc and Luga, Hervé and
Ballaresque, Patricia ASGART: fast and parallel genome scale
segmental duplications mapping. (2018) Bioinformatics, 34
(16). 2708-2714. ISSN 1367-4803

Official URL

DOI : https://doi.org/10.1093/bioinformatics/bty172

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Genome analysis

ASGART: fast and parallel genome scale
segmental duplications mapping

Franklin Delehelle1,2, Sylvain Cussat-Blanc1, Jean-Marc Alliot1,
Hervé Luga1 and Patricia Balaresque2,*
1

UMR5505 – CNRS-Université de Toulouse, Institut de Recherche en Informatique de Toulouse (IRIT), 31400
Toulouse, France and 2UMR 5288 – AMIS Université Paul Sabatier/CNRS, Faculté de Médecine Purpan, 31073

Abstract

Motivation: Segmental Duplications (SDs) are DNA fragments longer than 1 kbp, distributed within
and between chromosomes and sharing more than 90% identity. Although they hold a significant
role in genomic fluidity and adaptability, many key questions about their intrinsic characteristics
and mutability remain unsolved due to the persistent difficulty of sequencing highly duplicated
genomic regions. The recent development of long and linked-read NGS technologies will increase
the need to search for SDs in genomes newly sequenced with these technics. The main limitation of
SD analysis will soon be the availability of efficient detection software, to retrieve and compare SD
genomic component between species or lineages.
Results: In this paper, we present the open-source ASGART, ‘A Segmental duplications Gathering
And Refining Tool’, developed to search for segmental duplications (SDs) in any assembled
sequence. We have tested and benchmarked ASGART on five models organisms. Our results dem-

onstrate ASGART’s ability to extract SDs from any genome-wide sequence, regardless of genomic
size or organizational complexity and quicker than any other software available.
Availability and implementation: The online version of ASGART is available at http://asgart.irit.fr.
The source code of ASGART is available both on the ASGART website and at https://github.com/del
ehef/asgart.

Contact: patricia.balaresque@univ-tlse3.fr

1 Introduction

Segmental duplications (SDs) are key reservoirs of genomic innova-

tion. These segments of DNA are greater than 1 kb in length, are dis-

tributed within and between chromosomes, and share more than

90% sequence identity (Eichler, 2001). SDs represent approximately

5% of the human genome and 0.1 to 16% of human chromosomes

(Samonte and Eichler, 2002). Their abundance in the human

genome and association with Copy Number Variation (CNV)

(Fredman et al., 2004) have important implications for genome

dynamics (Goidts et al., 2006). SDs have been particularly well

studied in great apes (Marques-Bonet et al., 2009) and human

Y-chromosomes (Hallast et al., 2013; Rozen et al., 2003; Skaletsky

et al., 2003), and these large duplications are also recognized as

being involved in massive and complex genomic events in other

organisms such as Arabidopsis thaliana (Cannon et al., 2004).

Despite their potential implications for genomic evolutionary

dynamics, many key questions about the intrinsic characteristics or

mutability of SDs remain unsolved due to the persistent difficulty of

sequencing large duplicated regions. The recent development of

long-read sequencing technologies such as PacBio (Rhoads and Au,

2015) or Oxford Nanopore (Laver et al., 2015), and linked-read

sequencing technology such as 10� Chromium Genomics, represent

an opportunity to generate de novo assemblies for any genome

(Zheng et al., 2016). These techniques, and the possibility to com-

bine them with well-known short-read sequencing techniques

(Mostovoy et al., 2016; Tomaszkiewicz et al., 2016), have consider-

ably changed the perspective of studying SDs. The primary

limitation to the study of SDs will soon be the availability of compu-

tational tools dedicated to gathering and retrieving SDs from any

assembled genome. At least three tools have already been used to this

end by the bioinformatics community: MUMmer (Kurtz et al., 2004),

LAST (Kiełbasa et al., 2011) and Red (Girgis, 2015). MUMmer is pre-

cise, but its tool officially recommended for duplication detection

(nucmer) falls out of memory on large sequences; LAST, although

fast, tends to require too much memory to process genome-scale

sequences; Red is excellent at searching for repetitions but is not

designed to work on large amplicons with more variance among repe-

titions or with larger duplications. Moreover, these programs mask

repeated sequences without building underlying families of duplica-

tions. Therefore, none of these programs is ideal for the specific search

and analysis of whole-genome segmental duplications.

In this paper, we present ASGART, ‘A Segmental Duplications

Gathering And Retrieving Tool’, a new software developed to

search for SDs in any assembled sequence. ASGART does so by

browsing along two DNA strands, collecting identical k-mers which

are then clustered in highly similar families—according to the preci-

sion settings given by the user. We have compared its performance

with LAST and MUMmer by mapping duplications in five of the

most commonly analyzed model organisms: Homo sapiens, Mus

musculus, Danio rerio, Drosophila melanogaster and Arabidopsis

thaliana. ASGART was shown to be capable of finding SDs in a dis-

tributed and parallel manner and in a shorter time than MUMmer

and LAST; the proportion of SDs found and their intra- and inter-

chromosomal distributions were in accordance with results found in

the literature for these organisms. Our results demonstrate the abil-

ity of ASGART to extract SDs from any genome, regardless of

genomic size and organizational complexity, and its high potential

for performing whole-genome SD analyses.

2 Materials and methods

The core concept behind ASGART’s algorithm is that given a mini-

mal identity rate and length characterizing a segmental duplication,

there is a minimal length such that two substrings of this length in

each of the repeated units of the duplication exactly match. For

example, given a minimal length of 100 bases and an identity rate of

90%, it is guaranteed that there is at least one substring of 9 bases

long common to both units of the duplication. However, in actual

cases, dissimilarities between repeated units tend to be grouped in

clusters of indels, and SNPs are seldom homogeneously distributed

among repeated units. Given this assertion, ASGART’s strategy is to

gather duplications between two fragments by looking for subse-

quences from the first fragment that exactly match others in the

second and clustering them together to find the repeated units com-

posing the SD, according to the scheme detailed here and illustrated

in Figure 1:

1. pre-process DNA fragments in an efficient data structure;

2. gather identical k-mers from the two fragments;

3. merge and cluster these identical substrings together to form

families of segmental duplications.

An illustrated example of our algorithm is shown in Figure 2.

We define a string S as a sequence of letters from an alphabet R.

The ith letter within a string S is denoted S½i�. A substring—or

segment—from the ith to the jth letter of a string S is denoted S½i; j�.

A segmental duplication of length l and identity rate h is a set of

strings at least l bases long so that each has an identity rate of at

least h with the others: SD ¼ fSi;h j i 2 ½½1;n��g is defined by the n

repeated units—or arms—Si and the minimal identity rate h between

each pair of repeated units.

The identity rate between two strings is defined as the 100-com-

plement of the ratio between the Levenshtein (or edit) distance of

these strings and the length of the longest string. For example, two

100bp long strings differing at ten loci have a 90% identity rate.

The distance between two sets of segments SS1 ¼ fSS1i ¼ S1½ai;

bi�; i 2 ½½1;n��g and SS2 ¼ fSS2j ¼ S2½aj; bj�; j 2 ½½1;m��g is defined by

dSSðSS1; SS2Þ ¼ mini;jðdSðSS1i ; SS2j ÞÞ, where the distance between

Fig. 1. ASGART’s state automaton schema describing conditional transitions

between states

Fig. 2. A schematic example of an ASGART run. (1) After a first successful

Sweep, a k-mer in A has three matches found on B. (2) A second segment on

A, contiguous to the first, has two matches on B close to the existing ones.

Those are not contiguous to the existing matches from the previous step, but

they are still close enough to be kept. (3) No contiguous k-mer to the last one

on A having matches close enough to the existing ones on B, the automaton

switched to Sparse Grow state, until it found one having matches on B close

to the existing ones. (4) After spending some steps on Sparse Grow, a match

on B for the k-mer on A was eventually. But it either didn’t have a match close

to the existing ones or it was too far away; therefore, the automaton switch to

the Filter state. (5) After the Final state, the third and last set of matches on B

as been discarded, as it was too short w.r.t. the settings defined by the user.

The other set of matches are marked as being duplications of the part on A

ASGART: de novo duplications mapping 2709

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

rtic
le

-a
b

s
tra

c
t/3

4
/1

6
/2

7
0

8
/4

9
4

8
6

1
6

 b
y
 s

c
d

 - u
n

iv
e

rs
it T

o
u

lo
u

s
e

 III u
s
e
r o

n
 0

5
 S

e
p

te
m

b
e

r 2
0

1
8

two strings S1 and S2 is defined by dSðS1; S2Þ ¼ dSðS1½a1;b1�; S2½a2;

b2�Þ ¼ maxð0; a2 ÿ b1Þ if a2 > a1; maxð0; a1 ÿ b2Þ otherwise.

2.1 Pre-processing

As inputs, ASGART takes two DNA fragments, denoted A of size

Asize and B of size Bsize, a probing size psize and a maximal gap size

gsize. Both psize and gsize influence the granularity of the results. As

output, ASGART gives a list of segmental duplications spanning the

two fragments. To simplify the reuse of data by other tools, duplica-

tions with more than two repeated units are split in the results into

multiple two-unit duplications (which is necessary in order to make

an export to standard genome browsers’ input formats possible).

The two input fragments actually are an abstraction due to the algo-

rithm’s internal methodology, so e.g. if the user wishes to look for

duplications inside a single DNA fragment the two fragments A and

B will be identical. Similarly, if the user wishes to look for reversed

and/or complemented duplications, ASGART will proceed as if the

two input fragments were the input fragment and its reversed and/or

complemented self, though it is only using a single FASTA file.

The first step of ASGART requires a data structure that performs

a fast search for exactly matching strings while keeping space and

time complexity requirements as low as possible to allow the proc-

essing of whole genomes. To this end, we use the suffix array, a

derivative of the suffix tree offering a fast search of any substring of

a string in a OðlognÞ time and O(n) construction time and space

complexity. Unlike a suffix tree, a suffix array is a simple array of

integers and is a cache-friendly structure offering fast access. A suf-

fix array contains the starting position of each of the suffixes of a

given string, sorted lexicographically. Therefore, looking for a string

resolves to a simple binary search over this array to obtain the start-

ing indices of the matching substrings. At this point, a suffix array

of B is created.

2.2 Clustering and gathering

The gathering of high similarity zones and their subsequent cluster-

ing in SD is the heart of ASGART. From a suffix array of B, a finite

state automaton will scan A, store and merge identical k-mers

among the two fragments, and position and cluster them in proto-

SD according to the probing size and the maximal gap length pro-

vided by the user. The automaton contains four states: Sweep,

Expand, Sparse Grow and Filter. Please remark that for purposes of

clarity, the pseudo-code illustrating each of these states doesn’t

include DNA strands length checks and other constraints.

2.2.1 Sweep

In the Sweep state, the automaton will run a cursor c along A, while

probing B for k-mers psizebp long identical to the one starting from c

on A. Once N>0 substrings fB½xi;xi þ psize�; i 2 ½½1;N��g matching

A½c; cþ psize� are found, this set of matches smatch is stored and the

automaton switches to the Expand state. Otherwise, the exploration

pursues by increasing the cursor’s value until either finding matches

or reaching the end of the fragment. This state corresponds to the

search for the first matching portions of a duplication’s repeated

units.

2.2.2 Expand

In the Expand state, the automaton expands a potential proto-SD.

The cursor c skims along A while the distance dSS between the set of

the matches in B of the probing k-mer and the current set of matches

smatch is smaller than gsize. Found matches are successively merged in

smatch. When there are no more matches of the current probing

k-mer on B, or if the distance dSS to the current set of matches is

greater than gsize, the automaton switches to the Sparse Grow state.

If the end of A is reached, the automaton switches to the Filter state.

This state is dedicated to gathering either exactly matching portions

of future duplications or handling deletions in the repeated units

on B.

2.2.3 Sparse grow

The Sparse Grow state is reached when the current set of matches

is not immediately expandable. The automaton will browse cursor

c along A until a non-empty set of matches for the current probing

k-mer is found on B. If the distance dSS between the matches of the

probing k-mer and the current set of matches is smaller than gsize,

the sets are merged and the automaton switches back to the

Expand state. The automaton switches to the Filter state if the dis-

tance exceeds gsize or when the end of A is reached, i.e. c > Asize.

The sparse grow state also handles deletions in the repeated units

on A.

Algorithm 1 Sweep state pseudocode

probing_kmer next_probing_kmer()

matches search_for(probing_mker, B)

if matches not empty then

GoTo Grow

else

StayIn Sweep

end if

Algorithm 2 Expand state pseudocode

probing_kmer next_probing_kmer()

new_matches search_for(probing_kmer, B)

if dSS(matches, new_matches) <¼MAX_GAP_SIZE then

matches merge_matches(matches, new_matches)

StayIn Expand

else

GoTo SparseGrow

end if

Algorithm 3 Sparse Grow state pseudocode

probing_kmer next_probing_kmer()

gap_size gap_sizeþ1

if gap > MAX_GAP_SIZE then

GoTo Filter

else

new_matches search_for(probing_kmer, B)

if dSS(matches, new_matches) <¼MAX_GAP_SIZE then

matches merge_matches(matches, new_matches)

GoTo Expand

else

StayIn SparseGrow

end if

end if

2710 F.Delehelle et al.

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

rtic
le

-a
b

s
tra

c
t/3

4
/1

6
/2

7
0

8
/4

9
4

8
6

1
6

 b
y
 s

c
d

 - u
n

iv
e

rs
it T

o
u

lo
u

s
e

 III u
s
e

r o
n

 0
5

 S
e

p
te

m
b

e
r 2

0
1

8

2.2.4 Filter

In the Filter state, ASGART extracts a substring of fragment A and a

corresponding set of matching segments of fragment B. These data

are merged, filtered to ensure they satisfy the minimal length con-

straint set by the user, and split into multiple two-armed proto-SD

as described previously. The automaton then switches back to the

Sweep state if it didn’t yet reached A’s end.

2.3 Implementation

ASGART was developed using the Rust language. Rust is a recent

general-purpose compiled language developed with the support of

the Mozilla Foundation. It is designed as a compiled, low-level lan-

guage and is currently used, among others, in the development of

the Mozilla Firefox web browser. Its main advantages with regards

to this project are:

• running speed and memory usage comparable to C or Cþþ due

to the use of the LLVM compiler backend, which is also used by

the clang C/Cþþ compiler;
• a strong type system;
• a powerful error handling system;
• memory safety is statically enforced and guaranteed by the com-

piler, removing the need for a garbage collector and, therefore,

offering better runtime performance with the same ease of

development;
• the absence of data-races in multithreaded environments is

enforced by the compiler, facilitating the implementation of

parallelization;
• easy interfacing with libraries through the C ABI;
• a well-furnished standard library offering high-level zero-cost

abstractions.

Rust was chosen after the development of an initial prototype in

Cþþdue to the guarantees Rust offers in regard to memory- and

thread-safety, while ensuring a Cþþ-par runtime speed. After the

translation of our first prototype from Cþþ to Rust, the compiler

found several places in the program likely to cause issues (e.g. data-

race conditions, unsafe memory usage, faulty memory management)

that eluded us during development. With regard to speed, the mean

relative difference never exceeded a few tenth percentage points to

the advantage of one or the other, depending on the dataset, without

a discernible pattern.

2.4 Use and outputs

There are two ways to use ASGART. One is to use the command

line interface (available on Windows, macOS, GNU/Linux and

FreeBSD), which should be favored for scripting, batch processing

or heavy workloads. The alternative is a web-interface wrapping

ASGART with a job-dispatching queue system and an online result

viewer: this version is freely available, allowing users easier access

and simplifying the sharing of computing servers. The collected

regions can be exported in JSON, GFF2 and GFF3 formats, allowing

easy parsing and reuse of the results in other applications. GFF2 and

GFF3 formats are a standard for genome browser programs,

allowing a simple interface with standard tools. ASGART also

includes a tool to plot graphs of duplications as chord or linear

graphs in the SVG format for a quick and easy visualization method.

3 Results

ASGART is a tool designed to detect large duplications among or

between assembled sequences up to genomic scale which features a

nearly linearly parallelizable and distributable core algorithm,

allowing for the easy dispatching of heavy workloads among multi-

ple CPUs or computers. The program relies on a suffix array index

to locate identical zones between one or two DNA sequences that

are then extended by a finite-state automaton while guaranteeing

that the Levenshtein distance remains over a threshold set by the

user. The particularities of ASGART compared to other software

using the same core concepts [e.g. YASS (Noé and Kucherov, 2005)

or LAST] are: (i) the ability to expand multiple-armed duplications

instead of only the two most similar portions; (ii) the ability to dis-

patch work on multiple CPUs and machines, allowing the analysis

of large sequences in a reduced amount of time; and (iii) reduced

overall CPU and memory usage.

We validated and benchmarked the efficiency of our program

with a twofold method, first on artificially generated FASTA

sequences, then on actual data from reference genomes. The valida-

tion of ASGART and the comparative study of software perform-

ance are run on a 20-core computer server equipped with an Intel

bi-Xeon E–2600@2.60GHz with 32 GB of RAM. Full genome anal-

yses were run on the CALMIP supercomputer, composed of 612

nodes, each of which embeds two 10-cores Intel Xeon E5–

2680@2.80GHz and 64 GB of RAM. Only 20 of these 612 nodes

were used simultaneously in this study, equivalent to 400 physical

cores.

3.1 Algorithm validation

To validate our algorithm, we built artificial DNA with a

segmental duplication generator—which pseudocode is available in

Supplementary Material—that can spawn fragments of various sizes

(from 1000 to 100000bp) harboring 1 to 5 segmental duplications;

the lengths of these duplications vary between 1000 and 20000bp

and include random errors (substitutions and/or indels) resulting in

an identity rate varying from 90 to 100%.

With this generator, we spawned 10000 DNA fragments harbor-

ing perfectly known duplications. We analyzed these fragments

using ASGART, MUMmer and LAST. Figure 3 shows the error dis-

tributions for detected segmental duplications. Each bar represents

the percentage of occurrences of error ranges in bases, i.e. the first

bin represents the percentage of duplications for each of the

programs for which from zero to four base pairs are shifted in

the detected duplication with regard to the actual duplication.

MUMmer slightly outperforms both ASGART and LAST in preci-

sion on the error detection exercise. MUMmer obtained the best

precision score, with 36% of tests leading to errors ranging in only

0–4 bp shifts. ASGART and LAST are comparable in terms of qual-

ity detection, with most of the detected errors resulting in a less than

40 bp shift. These results confirm the capacity of our algorithm to

precisely detect SDs.

3.2 Algorithmic performances and comparative

analyses on a chromosome panel

We have compared the performances of ASGART, MUMmer and

LAST based on memory and CPU time usage on five model

Algorithm 4 Filter state pseudocode

proto_sds filter(collect_and_cut_in_pair(matches))

GoTo Sweep

ASGART: de novo duplications mapping 2711

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

rtic
le

-a
b

s
tra

c
t/3

4
/1

6
/2

7
0

8
/4

9
4

8
6

1
6

 b
y
 s

c
d

 - u
n

iv
e

rs
it T

o
u

lo
u

s
e

 III u
s
e

r o
n

 0
5

 S
e

p
te

m
b

e
r 2

0
1

8

organisms: Homo sapiens, Mus musculus, Danio rerio, Drosophila

melanogaster and Arabidopsis thaliana, for which we used

assembled chromosome sequences from the NCBI. We have chosen

three chromosomes per organism plus the Y chromosome, when

available, on which to compare their respective performances. We

have run these programs on three autosomes to test the effect of

relative size and on the Y-chromosome due to its known high den-

sity of SDs. All algorithms, including ASGART, were run sequen-

tially on only one core in order to ensure a fair comparison with

programs not supporting parallelization. Table 1 shows the results

of this comparative study: ASGART systematically outperforms

both MUMmer and LAST in CPU usage. More importantly,

ASGART consistently uses less memory to scan all of the tested

chromosomes in comparison to the other programs, which guaran-

tees its ability to successfully process larger DNA fragments on

equivalent machines.

3.3 Mapping SDs in full genomes

ASGART has also been run on the full genomic sequences of five

model organisms, for which we have deliberately chosen to include

centromeric regions, thereby providing an exhaustive distribution of

duplicated areas. We could not compare the performance of

ASGART with MUMmer or LAST on full genome analyses, because

these analyses would exhaust the available memory for MUMmer

and LAST for the three largest genomes tested (i.e. Homo sapiens,

Mus musculus and Danio rerio). ASGART was able to map SDs in

all genomes in a very competitive timeframe: Table 2 shows a

numerical analysis of SD mapping with and without prior repeat

masking using Red (Girgis, 2015) to estimate the proportion of sim-

ple repeats in the SDs detected. The human genome required 371h

of linear CPU time to complete, which is equivalent to approxi-

mately 18 h on a 20-cores computing server. Small genomes in the

order of hundreds of megabases, such as Arabidopsis thaliana or

Fig. 3. Error distributions of the three algorithms studied on generated DNA fragments. Although MUMMER is the most precise for extremely small errors,

ASGART and LAST quickly catch up if considering the [0; 25] bp error range, hence ensuring a globally satisfying quality of the result

Table 1. Performance comparison of CPU time and memory usage of ASGART, LAST and MUMmer on chromosomes of various sizes and

from different species—OoM means Out of Memory, bold values indicate the best performances

Species Chr. Size (Mb) Linear CPU Time (s) Memory usage (GB)

ASGART LAST MUMmer ASGART LAST MUMmer

Homo sapiens (GRCh38) chr1 241 2360 12 996 OoM 1.6 9.8 OoM

chr10 130 953 6320 OoM 1.6 4.9 OoM

chr21 46 223 1528 67 778 0.52 1.3 12

chrY 56 35 1101 14 205 0.61 1.1 3.6

Mus musculus (GRCm38) chr1 190 2728 6920 OoM 2.3 3.35 OoM

chr7 141 1089 4807 OoM 1.8 3.35 OoM

chr19 60 146 1087 OoM 0.8 1.01 OoM

chrY 89 604 4932 OoM 1.1 1.82 OoM

Danio rerio chr4 76 353 2050 OoM 0.9 3.7 OoM

chr17 53 688 1360 OoM 0.67 3.3 OoM

chr22 39 694 760 OoM 0.5 1.9 OoM

Drosophilia melanogaster chr3 32 75 11113 423 0.37 1.9 4.9

chr2 25 44 489 115 0.29 0.43 9.5

chr4 1.4 0.95 19 6.4 0.042 0.88 1.3

chrY 3.6 2.6 195 23.4 0.064 0.2 35

Arabidopsis thaliana chr1 30 22.5 163 2173 0.3 0.5 0.3

chr2 20 12.7 76 317 0.2 0.33 0.27

chr4 19 16.5 90 622 0.22 0.3 0.25

2712 F.Delehelle et al.

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

rtic
le

-a
b

s
tra

c
t/3

4
/1

6
/2

7
0

8
/4

9
4

8
6

1
6

 b
y
 s

c
d

 - u
n

iv
e

rs
it T

o
u

lo
u

s
e

 III u
s
e
r o

n
 0

5
 S

e
p

te
m

b
e

r 2
0

1
8

Table 2. Characteristics of segmental duplications detected in the five model organisms studied

Species Homo sap. (GRCh38.p7) Mus musculus Danio rerio Droso. mel. Arabid. thaliana

Analyzed Genome Size 2.9 GB 2.7 GB 1.4 GB 85 MB 119 MB

Chromosome (2N) 23 20 25 4 5

Sequential CPU time 371 h 263 h 311 h 241 s 481 s

Elapsed time on 400 cores 1 h 55 m 2 h 07 m 1 h 03 m 26 s 40 s

Peak memory usage 9 GB 8 GB 4 GB 1 GB 1.4 GB

No repeat masking

Intra-chr (Mean(stdev)) 5.69(2.92) 10.13(19.5) 4.75(5.72) 6.81(2.19) 1.97(0.79)
Inter-chr (Mean(stdev)) 4.09(2.75) 5.39(1.13) 7.36(1.79) 4.98(1.13) 1.78(0.13)
SD (All, in Mbp) 187 265 115.8 5.4 2.98

SD (>20 kbp, in Mbp) 70.8 70.5 2.78 0.28 0.29

SD (% genome) 6.5 9.8 8.64 6.32 2.5

With repeat masking using Red

Intra-chr (Mean(stdev)) 0.85(1.04) 0.3(0.25) 0.33(0.21) 0.29(0.21) 0.15(0.08)
Inter-chr (Mean(stdev)) 0.25(0.4) 0.08(0.02) 0.27(0.07) 0.12(0.12) 0.11(0.02)
SD (All, in Mbp) 16.8 6.39 5.4 0.196 0.194

SD (>20 kbp, in Mbp) 2.7 0.66 0.64 0.03 0

SD (% genome) 0.6 0.24 0.41 0.23 0.16

Fig. 4. Chord graph showing the SD content of the human genome (a) and linear representations showing global intra-chromosomal SDs for the human Y chro-

mosome and a zoomed-in view of its first 30 Mbp (b): in teal: palindromic repeats; in orange: direct repeats and identified Y palindromes from Skaletsky et al.

(2003) (noted as P3: P8)

ASGART: de novo duplications mapping 2713

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

rtic
le

-a
b

s
tra

c
t/3

4
/1

6
/2

7
0

8
/4

9
4

8
6

1
6

 b
y
 s

c
d

 - u
n

iv
e

rs
it T

o
u

lo
u

s
e

 III u
s
e
r o

n
 0

5
 S

e
p

te
m

b
e

r 2
0

1
8

Drosophila melanogaster, can be processed on personal computers

in a few dozen seconds.

3.4 SD distribution: less than 10% of all genomes and a

high prevalence of direct rather than palindromic SDs

SDs represent less than 10% of all genomes tested, with a minimum

of approximately 2.5% observed in Arabidopsis thaliana and up to

8.65% of the Mus musculus genome. The human genome harbors

approximately 5.85% SDs, as was estimated in a previous study

(Samonte and Eichler, 2002). The intrachromosomal SD density is

generally higher than the interchromosomal density (Samonte and

Eichler, 2002), and the proportion of direct SDs exceeds the propor-

tion of palindromic SDs for all genomes. A chord graph (a) repre-

senting the whole-genome SD content of the human genome is

shown in Figure 4 (only SDs longer than 10 kbp are plotted for

clarity) and a linear representation (b) of the human Y chromosome

is shown to illustrate its large palindromic structures, as reported

previously (Skaletsky et al., 2003). Chord graphs for the four other

organisms are provided in Supplementary Figures S1–S4.

4 Discussion

In this paper, we presented a new tool, ASGART, which aims to pre-

cisely localize highly identical regions between arbitrary DNA strands.

We ensured detection quality through benchmarking, while noting the

performance gains our tool offers with respect to similar programs that

are currently available. We have tested ASGART on five model organ-

isms to evaluate the effects of genome size and repeat content on its per-

formance. ASGART was able to process whole genomes while ensuring

nearly linear scaling both in memory consumption and parallelism

increase in speed, outperforming all existing software. The estimates of

intra-chromosomal, inter-chromosomal and whole-genome SD content

obtained using ASGART are compatible with those previously pub-

lished for all of the organisms studied, thereby providing validation in

addition to benchmarking for our program. ASGART’s parameters

(k-mer length, max number of family members, etc.) can be set for fit-

ting the problem at hand. ASGART has the potential to provide rapid

screening of future de novo sequenced genomes in combination with

new NGS technologies. Future developments to improve our tool will

include two aims: (i) the current code should be improved by using

SIMD instruction sets (e.g. AVX and SSE) to improve performance on

modern x86 CPUs; (ii) portions of ASGART can be ported to GPGPU,

making ASGART faster on desktop machines with cheap and massively

parallel cards. Finally, a graphical user interface should be added to

ASGART to improve its ease of use and user experience.

Acknowledgements

This work was performed using HPC resources from CALMIP (grant P1434).

We thank the three reviewers for their helpful comments.

Conflict of Interest: none declared.

References

Cannon,S.B. et al. (2004) The roles of segmental and tandem gene duplication

in the evolution of large gene families in arabidopsis thaliana. BMC Plant

Biol., 4, 10.

Eichler,E.E. (2001) Recent duplication, domain accretion and the dynamic

mutation of the human genome. Trends Genet., 17, 661–669.

Fredman,D. et al. (2004) Complex snp-related sequence variation in segmental

genome duplications.Nat. Genet., 36, 861–866.

Girgis,H.Z. (2015) Red: an intelligent, rapid, accurate tool for detecting

repeats de-novo on the genomic scale. BMC Bioinformatics, 16, 227.

Goidts,V. et al. (2006) Complex patterns of copy number variation at sites of

segmental duplications: an important category of structural variation in the

human genome.Hum. Genet., 120, 270–284.

Hallast,P. et al. (2013) Recombination dynamics of a human y-chromosomal

palindrome: rapid gc-biased gene conversion, multi-kilobase conversion

tracts, and rare inversions. PLoS Genet., 9, e1003666.

Kiełbasa,S.M. et al. (2011) Adaptive seeds tame genomic sequence compari-

son.Genome Res., 21, 487–493.

Kurtz,S. et al. (2004) Versatile and open software for comparing large

genomes.Genome Biol., 5, R12.

Laver,T. et al. (2015) Assessing the performance of the oxford nanopore tech-

nologies minion. Biomol. Detect. Quant., 3, 1–8.

Marques-Bonet,T. et al. (2009) A burst of segmental duplications in the

genome of the african great ape ancestor.Nature, 457, 877–881.

Mostovoy,Y. et al. (2016) A hybrid approach for de novo human genome

sequence assembly and phasing.Nat. Methods, 13, 587–590.

Noé,L. and Kucherov,G. (2005) Yass: enhancing the sensitivity of dna similar-

ity search.Nucleic Acids Res., 33, W540–W543.

Rhoads,A. and Au,K.F. (2015) Pacbio sequencing and its applications.

Genomics, Proteomics Bioinf., 13, 278–289.

Rozen,S. et al. (2003) Abundant gene conversion between arms of palin-

dromes in human and ape y chromosomes.Nature, 423, 873–876.

Samonte,R.V. and Eichler,E.E. (2002) Segmental duplications and the evolu-

tion of the primate genome.Nat. Rev. Genet., 3, 65–72.

Skaletsky,H. et al. (2003) The male-specific region of the human y

chromosome is a mosaic of discrete sequence classes. Nature, 423,

825–837.

Tomaszkiewicz,M. et al. (2016) A time-and cost-effective strategy to sequence

mammalian y chromosomes: an application to the de novo assembly of

gorilla y.Genome Res., 26, 530–540.

Zheng,G.X. et al. (2016) Haplotyping germline and cancer genomes

using high-throughput linked-read sequencing.Nat. Biotechnol., 34, 303.

