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de Lyon–Université de Lyon, Ecully 69134, France

September 24, 2020

Abstract

The turbulence governed by the Navier-Stokes equation is paramount in many physical processes. How-

ever, it has been considered as a challenging problem due to its inherent nonlinearity, non-equilibrium

and complexity. Herein, we review the connections between the velocity derivative skewness 𝑆𝑘 and the

non-equilibrium properties of turbulence. 𝑆𝑘, a reasonable candidate for describing the non-equilibrium tur-

bulence, which varies during the non-equilibrium procedure. A lot of experimental or numerical evidences

have shown that the perturbation of energy spectrum, which associated with the excitation of large scales,

results in an obvious variation of 𝑆𝑘, and 𝑆𝑘 is a negative value in this rapid energy decay process. The

variation of positive 𝑆𝑘 is closely related to the perturbation of transfer spectrum, and this corresponds to

the backward energy transfer process. In addition, the skewness characterizes the production (or reduction)

rate of enstrophy due to vortex stretching (or compression). Using the transport equation of turbulent

energy dissipation rate and enstrophy, it is possible to establish a theoretical connection between skewness

and the non-equilibrium turbulence. It is expected that this work could trigger the rapid advancement of

the future studies of non-equilibrium turbulence, and also the improvement of turbulence models.

Keywords: velocity derivative skewness; non-equilibrium turbulence; turbulence model

PACS: 47.10.-g; 47.27.-i

1. Introduction

The Richardson-Kolmogorov energy cascade is an important fundamental theory for turbulence dissipation

at high Reynolds numbers, which leads to a conclusion that the energy transfer in the inertial range should
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North University of China (Grant No. 11026829).
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be balanced with dissipation, that is, an equilibrium state of turbulence. In recent ten years, a special state

of turbulence which is referred to as “non-equilibrium turbulence” has received a great deal of attention of

scientists [1,2]. This type of turbulence violates the equilibrium Richardson-Kolmogorov energy cascade which

is acceptable in traditional turbulence theories. Numerous important advances have been made over the last

decades in understanding the properties of non-equilibrium turbulence through experimental and numerical

data [1]. However, the mechanism of non-equilibrium remains an unsolved problems in physics. The dissipation

coefficient, defined as 𝐶𝜖 = 𝜖ℒ/𝒰3, is a quantity that has been widely used in many investigations for describing

the non-equilibrium state of turbulence. Here 𝜖 is the turbulent energy dissipation rate, 𝒰 is the rms of

the velocity fluctuations, and ℒ is the integral length scale. It is commonly believed that 𝐶𝜖 varies in the

non-equilibrium region and bocomes approximately constant in the equilibrium region. Due to the difficulty of

defining the integral scale ℒ in anisotropic flows with complex geometries, 𝐶𝜖 has a limited scope of application [3].

Fortunately, some recent studies have shown that the skewness of longitudinal velocity derivative, usually

defined as 𝑆𝑘 = ⟨(𝜕𝑢/𝜕𝑥 )
3⟩
⧸︁
⟨(𝜕𝑢/𝜕𝑥 )

2⟩
3/2

, plays an important role in assessing the non-equilibrium of

turbulence [4–6], with 𝑢 the longitudinal velocity fluctuation and 𝑥 the flow direction. Clearly, the obtainment

of 𝑆𝑘 is much easier than 𝐶𝜖 to some extent. Indeed, 𝐶𝜖 can only describes the phenomenon which is related

to the second-order moments (𝜖 and ℒ are second-order moments), wihle 𝑆𝑘 represents the relation between

second- and third-order moments, which is perfect in evaluating the ratio between the energy transfer and the

energy dissipation. 𝑆𝑘 is an important small-scale quantity in turbulence since it is closely related to the fine

interactions among all scales and to the production of enstrophy or energy dissipation rate. Furthermore, 𝑆𝑘 is

valuable in turbulence modelling, such as the classical 𝑘 − 𝜖 model.

In the past couple of decades, many studies focus on the Reynolds number (usually refers to the Taylor

microscale Reynolds number Re𝜆) dependence of the 𝑆𝑘
[7–16], especially when the Re𝜆 is very high. However

in the present work, we are rather interested in providing a review on the connections between 𝑆𝑘 and the

non-equilibrium properties of turbulence. Recently, using grid-generated turbulence experiments, Isaza et al.

found that 𝑆𝑘 can be used to identify the difference between the non-equilibrium near-field and the equilibrium

far-field [5]. Subsequently, Hearst and Lavoie showed that the rapid changes in 𝑆𝑘 are related to the turbulent

regions of non-equilibrium [4], as are the results of Liu et al. in their transitional channel flows [17]. 𝑆𝑘 approachs

a constant value in the equilibrium turbulence. Employing the 𝑆𝑘 of the resolved velocity field, Fang et al. pro-

posed an improved Smagorinsky model to correct the non-equilibrium behavior of the traditional Smagorinsky

model [6]. The recent papers [18,19] show that the transport equation for 𝜖 represents, in essence, a constraint

on how 𝑆𝑘 varies in different flows, which can be used to determine the 𝑘 − 𝜖 model constants. This is a very

important analytical tool to understand the behavior of 𝑆𝑘 and can be extended to non-equilibrium turbulence

studies.

In fact, before these studies, some previous investigations suggest that the initial conditions and the forms

of turbulent flow can give rise to a change in the value of 𝑆𝑘
[20–24]. This behaviour is of course understandable,

since the above conditions could introduce inhomogeneity or non-stationarity in large scales. Although the

study of non-equilibrium turbulence has already been reviewed in the past years, to the best of our knowledge,

a specific review on the relationship between 𝑆𝑘 and the non-equilibrium turbulence remains scarce. The goal

of this work is to broaden the understanding of non-equilibrium mechanism through the properties of 𝑆𝑘. This
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review is structured as follows: we present the nature and the features of 𝑆𝑘 in Section 2. In Section 3, we review

the evolution of 𝑆𝑘 under the perturbation of energy spectrum and transfer spectrum respectively. Section 4

generalizes the relationship between skewness and the enstrophy, and the relationship between skewness and

turbulent kinetic energy dissipation rate. Finally, in Section 5, the summary and discussion are concluded, and

new perspectives, opportunities and challenges of 𝑆𝑘 on future non-equilibrium studies are addressed.

2. The features of the velocity derivative skewness

It is well known that the probability distribution function (PDF) of the turbulent velocity is Gaussian

in isotropic turbulence. However, the PDF of the longitudinal velocity gradient 𝜕𝑢/𝜕𝑥 is non-Gaussian and

skews towards negative values, namely, 𝑆𝑘 is a negative value in turbulence. In fact 𝑆𝑘 can also be positive as

documented by numerous investigations [25–27], this will be elaborated in the following sections. Although 𝑆𝑘 is

a local quantity, it implies the global balance of energy transfer over all scales [6]. The expression for 𝑆𝑘 in the

spectral space is given by

𝑆𝑘(𝑡) =
⟨(𝜕𝑢/𝜕𝑥 )

3⟩
⟨(𝜕𝑢/𝜕𝑥 )

2⟩ 3/2
= −3 ×

√
30

14

∫︀∞
0

𝑘2𝑇 (𝑘, 𝑡)𝑑𝑘

[
∫︀∞
0

𝑘2𝐸(𝑘, 𝑡)𝑑𝑘]3/2
, (1)

with 𝑘 the wavenumber, 𝐸(𝑘, 𝑡) the energy spectrum and 𝑇 (𝑘, 𝑡) the transfer spectrum. This expression is

mentioned in many previous studies [28–30]. The numerator of Eq. (1) represents a flux of energy transfer and

scales in the same way as the mean-square second velocity derivative [31]. The denominator of Eq. (1) represents

the energy dissipation as it can be expressed as 𝜖 = 2𝜈
∫︀∞
0

𝑘2𝐸(𝑘, 𝑡)𝑑𝑘. This means that 𝑆𝑘 describes the ratio

between the energy transfer and the energy dissipation, which same to that in the dissipation coefficient 𝐶𝜖 as

summarized by Vassilicos [1]. Eq. (1) also reveals that 𝑆𝑘 is closely linked to the evolution of energy spectrum

𝐸(𝑘, 𝑡) and energy transfer spectrum 𝑇 (𝑘, 𝑡). For non-equilibrium turbulence, the energy spectrum in the inertial

range exhibit a 𝑘−5/3 power-law, which have no noticeable difference with that in equilibrium turbulence [1].

However, a significantly difference between these two turbulent states is that there is a spectral spike in small-

wavenumber range of non-equilibrium turbulence, which is propesed by many investigations [32–34]. Clearly, The

perturbation of energy spectrum (the presence of a spectral spike) plays an important role in the dynamics of

non-equilibrium turbulence. Nevertheless, a recent study suggested that the essential origin of non-equilibrium

should be the perturbation of energy transfer [35], the disscussions in this regard will be elaborated in the

following sections.

Since the nonlinear energy transfer between wavenumbers is an important process in turbulent flows, a

fundamental question in connection with this energy transfer is whether it is typically between neighboring

wavenumbers, or between wavenumbers that are more widely separated [36]. According to Kolmogorov’s equi-

librium theory, the energy transfer in the inertial range is predominately local, that is, most of the energy is

transferred between neighboring wavenumbers [37,38]. However, Many studies argue that the interscale energy

transfer is characterized by nonlocal triad interactions as well [39–41]. One may thus expect that a relation exists

between the nonlocal traid interactions of energy transfer and the non-equilibrium properties of turbulence.

This calls for future studies on considering the local traid interactions and the nonlocal traid interactions of the

𝑆𝑘.

3

A
cc

ep
te

d 
M

an
us

cr
ip

t



3. Evolution of the skewness in non-equilibrium turbulence

The non-equilibrium phenomena have been observed in various turbulent flows, including homogeneous

isotropic turbulence [42,43], grid-generated turbulence [44–47], time reversed turbulence [35], turbulent wakes [48–50],

turbulent planar jet [51], turbulent mixing layer [34], planar turbulent plume [52], turbulent boundary layer [53] and

transitional channel flows [17]. It is generally accepted that the origin of non-equilibrium might be attributed

to the excitation of large scales or small scales by external forcing, or to the turbulence generating conditions

which consist of different disturbances. In addition to the universal non-equilibrium law, 𝐶𝜖 ∼ Re−1
𝜆 , which is

confirmed by Vassilicos [1], a recent study reveals that a new non-equilibrium law, 𝐶𝜖 ∼ Re−2
𝜆 , is available in

time-reversed turbulence [35]. The perturbation of energy spectrum plays a dominant role in the former, while

the later is relevant to the perturbation of transfer spectrum primarily. Thus in this section, we discuss the

evolution of 𝑆𝑘 under the perturbation of energy spectrum and transfer spectrum respectively. It is important

for the following to note that the terms “universal non-equilibrium law” or “the first non-equilibrium law”

are employed to represent the scaling 𝐶𝜖 ∼ Re−1
𝜆 , and the terms “new non-equilibrium law” or “the second

non-equilibrium law” are employed to represent the scaling 𝐶𝜖 ∼ Re−2
𝜆 .

3.1. Evolution of the skewness under the perturbation of energy spectrum

The universal non-equilibrium law 𝐶𝜖 ∼ Re−1
𝜆 mentioned above is such that 𝐶𝜖 is non-constant and with

the turbulence decay rapidly in the non-equilibrium region. Although the turbulent energy dissipation in non-

equilibrium turbulence violate Kolmogorov’s equilibrium cascade, the direction of energy flux is maintained,

that is, a forward energy cascade from large to small scales. Most of the investigations believed that the

origin of non-equilibrium could be connected with the perturbation of energy spectrum which is induced by

the excitation of large scales or small scales in turbulence. At present, the widely studied non-equilibrium

turbulence are driven by large scales, and the cases of such type are mainly discussed in this subsection. The

small scales excited cases, of course, will also be covered here though it is rarely mentioned in non-equilibrium

turbulence studies.

Using wind tunnel grid-generated turbulence data, Mazellier and Vassilicos showed that 𝐶𝜖 is directly and

strongly dependent on the dimensionless number 𝐶𝑆

′
which represents the number of large-scale eddies within

an integral scale [47]. This means that 𝐶𝜖 changes with 𝐶𝑆

′
, and the non-equilibrium of this type is closely

related to the perturbation of large scales. A similar behavior was observed in decaying and forced turbulence

where 𝐶𝜖 depends on the energy distribution in the small-wavenumber range (i.e. large scales) and on the

forcing imposed on small wavenumbers [54]. Goto and Vassilicos also reported this non-equilibrium law via

direct numerical simulations (DNSs) of homogeneous isotropic turbulence [43]. Note that their turbulent cases

are calculated with periodic forcing terms applied to the large scales. Subsequently, in another DNSs of freely

decaying periodic turbulence, they discovered that the non-equilibrium of turbulence is always accompanied

by the presence of large-scale coherent structures (with a similar length scale to ℒ), which is evidenced by the

spectral spikes in the small-wavenumber range [32]. The dissipation law changes from 𝐶𝜖 ∼ Re−1
𝜆 to a constant 𝐶𝜖

when the spectral spikes are disappearing. Large-scale coherent structures are excited by the Kelvin-Helmholtz

(K-H) instability in the turbulence generating process [55]. Meldi and Sagaut confirmed the above findings by

investigating a special fast-decay homogeneous isotropic turbulence [33]. Considering a peculiar initial energy
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spectrum with a bump at the large scales, which is produced by the fractal/multiscale objects, they showed that

the non-equilibrium decay regimes are resulted from the relaxation of this non-classical energy spectrum, the

evolution of 𝐶𝜖 is consistent with the experimental results of grid-generated turbulence. The same results were

obtained by Takamure et al., performing a DNS for the spatially developing shear mixing layer, they showed that

the non-equilibrium law 𝐶𝜖 ∼ Re−1
𝜆 is caused by the spikes in small-wavenumber range of energy spectrum [34].

They also demonstrated this via an analysis of the probability density function (PDF) of large-scale structures.

In fact, an obvious energy bump at the large scales is often observed both experimentally and numerically, as

documented by Refs. [32,34,56].

What happens if the excitation is directly and strongly introduced in small scales while maintaining the

large scales unchanged. Wiltsea and Glezer carried out an experimental investigation on direct excitation of the

small scales in the dissipation range of a free shear flow, and they observed that this excitation can accelerate the

energy cascade from the large to the small scales, which agree with the first non-equilibrium phenomenology [57].

Interestingly, a spectral peak is appeared in the small-wavenumber range during the dissipation of turbulence,

similar to the results presented in large scale excitation turbulence. Indeed, this fact also recorded in their

previous work [58] and in the work of Yeung et al. [59].

Currently, there is little systematic theory research on explaining the non-equilibrium phenomena, never-

theless, some studies are valuable for reference. Here a discussion of the results of Bos and Rubinstein on the

non-equilibrium turbulence is appropriate [60]. They decompose the energy spectrum 𝐸(𝑘, 𝑡) into its equilibrium

part 𝐸(𝑘, 𝑡) and non-equilibrium part �̃�(𝑘, 𝑡) (𝐸(𝑘, 𝑡) = 𝐸(𝑘, 𝑡) + �̃�(𝑘, 𝑡)), and derived a non-equilibrium scal-

ing, written as 𝐶𝜖 ∼ Re
−15/14
𝜆 , from the evolution equation for the kinetic energy spectrum at high Reynolds

numbers. This scaling is equivalent approximately to the universal law 𝐶𝜖 ∼ Re−1
𝜆 , which observed in grid-

generated turbulent experiments and direct numerical simulations. In this study, the non-equilibrium �̃�(𝑘, 𝑡) is

considered as a harmonic wave of the equilibrium 𝐸(𝑘, 𝑡). Accordingly, the dynamic quantities 𝒰 , ℒ and 𝜖 are

then all separated into their equilibrium part 𝒰 , ℒ, 𝜖, and their non-equilibrium part 𝒰 , ℒ̃, 𝜖. It was shown that

the large-scale quantities 𝒰 and ℒ changed considerably in the non-equilibrium procedure with ℒ̃/ℒ ≈ 3
7𝒰

2/𝒰2
,

while the change of the small-scale quantity 𝜖 is negligible with 𝜖/𝜖 ≈ 0. This further confirms that the universal

non-equilibrium law 𝐶𝜖 ∼ Re−1
𝜆 is intimately related to the excitation of large scales.

The non-equilibrium behaviour of 𝐶𝜖 is associated with the perturbed energy spectrum which can dra-

matically change the distribution of transfer spectrum [33]. It is, therefore, reasonable to conclude that the

perturbation of energy transfer, which originate from the perturbation of energy spectrum, is the essential

reason for non-equilibrium phenomena. This point of view will be explained further in Subsection 3.2. The

perturbation of energy spectrum can be considered as a way in which allow the injection of perturbed transfer.

This is common in turbulence closure theories, such as EDQNM model [61] and Kovaznay model [62], which

allow the injection from energy spectrum to transfer spectrum. Besides, It is important to point out that this

universal non-equilibrium dissipation process corresponds to the increasing 𝐶𝜖.

Now we return to discuss the relation between the evolution 𝑆𝑘 and the perturbation of energy spectrum. As

suggested in Refs. [3], 𝐶𝜖 and 𝑆𝑘 are equivalent in describing the non-equilibrium turbulence. The experimentally

results of Hearst and Lavoie also reported that 𝐶𝜖 and 𝑆𝑘 are correlated in non-equilibrium turbulent flows [4].

Therefore, the perturbation of energy spectrum can give rise to an evolution 𝑆𝑘 in turbulence, this can also
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Fig. 1. Streamwise evolution of 𝑆𝑘 in fractal-generated grid turbulence. Different symbols correspond to different transverse

locations. 𝑆𝑘 reaches an approximately constant at 𝑥/𝑀 ≈ 20. Reproduced from Ref. [4], copyright 2015, with permission of AIP

Publishing.

be explained with the help of equation Eq. (1). To the best of our knowledge, the existing studies on the

performance of 𝑆𝑘 under non-equilibrium are mostly investigated in grid-generated turbulence, this relevant

to the non-equilibrium near-field in which the large scales are excited by the initial generating conditions.

Using fractal-generated grid turbulence, Hearst and Lavoie found that the value of −𝑆𝑘 grows in the non-

equilibrium near-field and then settles down to a value of around 0.43 in the equilibrium far-field (see Fig. 1) [4].

The asymptotic value of −𝑆𝑘 is in line with that obtained from experimental [13,15,63], numerical [7,8,10,64], and

theoretical investigations [30,65,66]. Isaza et al. also showed that −𝑆𝑘 varies in the non-equilibrium near-field [5],

as well as the results presented by Paul et al. [67]. Introducing the concept of time-reversed turbulence, Fang

et al. proposed an artificial non-equilibrium decaying turbulent case, the “Reverse-Normal” (RN), which is

constructed by impose an extreme excitation suddenly on the large scales of equilibrium turbulence and keep

the small scales normally in the meantime (see Refs. [6,68] for more details). They found that in such case −𝑆𝑘

increases in the initial stage and tends to an approximately constant after a period of time (unpublished data),

according with the non-equilibrium phenomenology of the first type. Recently, large-eddy simulation (LES) for

transitional spatial channel flows suggested that there is a non-equilibrium region in the later stage of transition,

that is, this special region lacates before the beginning of fully developed turbulence [17]. −𝑆𝑘 increases in this

non-equilibrium region, in agreement with that of grid-generated turbulence. However, a specific character

of channel flows is that the asymptotic values of −𝑆𝑘 varies for different wall distances. It should be noted

that 𝑆𝑘 remains a negative value though it changes in non-equilibrium turbulence of the first type, this agrees

with that of equilibrium turbulence. A negative 𝑆𝑘 implies the existence of vortex stretching, which allows

for a cascade from the large to the small scales in turbulence. Without a finite skewness there is no energy

cascade [69]. Generally speaking, a negative 𝑆𝑘 favours the formation of vortex sheets, as proposed by previous

studies [27,38,69].
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3.2. Evolution of the skewness under the perturbation of transfer spectrum

Here we will discuss the non-equilibrium state under the perturbation of transfer spectrum. As shown by

many traditional turbulence closures, the transfer spectrum is introduced by the energy spectrum, that is, the

perturbation of energy spectrum in such closure can give rise to a perturbed transfer spectrum. Unfortunately,

this is not the case in the present discussion, since we only want to consider the the perturbation of transfer

spectrum but exclude the influence introduced by the perturbed energy spectrum. In fact, this is possible as

a given energy spectrum can corresponds to multiple transfer spectra. This seems very difficult to achieve in

experiments, however, it is easier in numerical simulations as proposed by the studies of Fang et al. [6,35,68].

Reference [35] carried out a detailed analysis on the behavior of the “Reverse-Reverse”(RR) case, in which

an extreme perturbation is introduced in the distribution of transfer spectrum but kept the energy spectrum in

short times. They observed a new non-equilibrium law, 𝐶𝜖 ∼ Re−2
𝜆 , in the short-time evolution of RR (see Fig.

2). Here we recall the main ingredients in the obtainment of this particular non-equilibrium scaling. In RR

case, the perturbation is introduced at time 𝑡 = 0 of a equilibrium turbulence, and this immediately changes

the transfer spectrum, from 𝑇 (𝑘, 𝑡) to −𝑇 (𝑘, 𝑡), which implies the changing of energy transfer mechanism from

forward to backward. It was shown that in the initial evolution stage of RR case (0 < 𝑡 < 0.2), the value of

𝐶𝜖 decreases sharply and reveals a novel dissipation scaling, 𝐶𝜖 ∼ Re−2
𝜆 , this is very different from the scaling

𝐶𝜖 ∼ Re−1
𝜆 which is widely confirmed in many turbulent flows as mentioned before. In the present work, scaling

𝐶𝜖 ∼ Re−2
𝜆 is referred to as “the second non-equilibrium law”. The most obvious feature of this particular

non-equilibrium procedure is that the energy transfer proceeds in the backward direction, i.e., an inverse energy

cascade from small to large scales. This study extends the range of traditional non-equilibrium turbulence, and

more careful study needs to be done for such a new scaling law. One of the relevant discussion is introduced

by the work of Bos et al. [54], in which an initial equipartition spectrum yields the rapid decrease of 𝐶𝜖. Note

that a backward energy transfer process is needed in their decaying case, since the energy density at the high

wavenumbers is initially very high for equipartition spectrum. As a matter of fact, an inverse energy cascade

exists in many turbulent flows, such as the shallow fluid layers [70,71], the rotating turbulence [72–74] and the

corner separation region in a compressor cascade [75,76]. It is interesting that recent studies by Biferale et al.

show that backward energy transfer is also available in isotropic and three-dimensional flows, and this transfer

mechanism has a connection with the nature of helicity [77,78].

The results in RR case suggest that 𝑆𝑘 is a positive value and decreases sharply in this novel dissipation

event (see Fig. 3), indicating that a changing positive 𝑆𝑘 is associated with the backward energy transfer

process. During this non-equilibrium procedure, the small-scale quantity 𝜖 evolves much faster than the large-

scale quantities ℒ and 𝒰 , this means that the non-equilibrium of the second type is dominant by the small-scale

dynamics. It should be noted that positive 𝑆𝑘 is very common in engineering turbulent flows, such as the

transition region of channel flows [17] and the internal flow of compressors [3], in which the turbulence is non-

equilibrium, and accompanied by strong energy backscatter. Ayyalasomayajula and Warhaft investigated the

turbulent flows through an axisymmetric contraction, they found that the contraction causes a rapid increase

in 𝑆𝑘, as the flow emerges from the contraction 𝑆𝑘 becomes positive, and 𝑆𝑘 returns to an asymptotic value

of around −0.4 in the straight section of the tunnel [27]. A similar behavior is also obtained by numerous

experimental [25,26] and numerical [79,80] studies. Clearly, the flows through a complex geometry is universally
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Fig. 2. 𝐶𝜖 versus Re𝜆 for NN and RR cases. NN: normally decaying case (equilibrium); RR: non-equilibrium decaying case, which

is produced by reversing all velocities at time 0. Stages I, II, III and IV represent different time-evolution stages, among which I

denotes the 𝐶𝜖 ∼ Re−2
𝜆 stage, IV denotes the non-equilibrium stage. Reproduced from Ref. [35], copyright 2019, with permission

of American Physical Society.

non-equilibrium, and 𝑆𝑘 can be used to consider the energy backscatter of complex turbulence in engineering.

A positive 𝑆𝑘 implies that vortex compression is dominating over the non-equilibrium procedure of the second

type and hence the flow favours the formation of tubes rather than sheets [27,69]. This is quite different from the

non-equilibrium procedure of the first type as presented in Subsection 3.1.

Since the symbols of 𝑆𝑘 are closely related to the structure of turbulence in non-equilibrium procedure, it

is therefore necessary to track the development and evolution of turbulent structures in order to visualizing and

understanding the whole process of non-equilibrium. This can be implemented with the help of the popular

vortex identification methods such as Q-criterion [81], 𝜆2-criterion [82], 𝜆𝑐𝑖-criterion [83,84], Ω-criterion [85] and

vortex-surface field method [86,87], etc.

4. The relationship between skewness and other turbulence statistics

We focus on the relationship between skewness and enstrophy, and the relationship between skewness and

turbulent kinetic energy dissipation rate in this section. Based on these analyses, it is expected to shed light on

the future studies of the theoretical connection between the skewness and the non-equilibrium turbulence.

Under the assumption of isotropy, the transport equation of 𝜖 (𝜖 = 2𝜈⟨𝑠𝑖𝑗𝑠𝑖𝑗⟩, 𝑠𝑖𝑗 is the fluctuating strain

rate) simplifies to a form which directly related to 𝑆𝑘
[23,88], that is,

−𝑈
𝜕𝜖

𝜕𝑥
=

7

3
√

15

𝜖3/2

𝜈1/2

(︂
𝑆𝑘 + 2

𝐺

Re𝜆

)︂
, (2)

where 𝑈 is the mean velocity and 𝐺 = ⟨𝑢2⟩ ⟨(𝜕
2𝑢/𝜕𝑥2)

2⟩
⟨(𝜕𝑢/𝜕𝑥)2⟩2

. This shows that the evolution of 𝜖 is intimately related

to 𝑆𝑘. Using Eq. (2), Antoniaet al. studied the variation of 𝑆𝑘 in many turbulent flows [18,19,23,89]. The

transport equation of 𝜖 has a restrictive effect on the variation of 𝑆𝑘, which is very important in the classic

𝑘 − 𝜖 model. One can then simplify it by using assumptions such as local isotropy, local homogeneity, local
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Fig. 3. Temporal evolution of 𝑆𝑘 for NN and RR cases. The inset is the short-time evolution of 𝑆𝑘. Reproduced from Ref. [35],

copyright 2019, with permission of American Physical Society.

axisymmetry, and/or particular features of flow under considered. The use of the transport equation of 𝜖 to

examine the behavior of 𝑆𝑘 in non-equilibrium turbulence seems to have been largely overlooked and thus it is

possible to establish a theoretical relationship between 𝑆𝑘 and the non-equilibrium turbulence.

In addition to 𝜖, another statistical quantity which closely related to 𝑆𝑘 is the enstrophy 1
2 ⟨𝜔𝑖𝜔𝑖⟩, where

𝜔𝑖 is the vorticity of fluctuating velocity. Previous studies suggest that a negative 𝑆𝑘 corresponds to the

generation of enstrophy via vortex stretching and a positive 𝑆𝑘 corresponds to the reduction of enstrophy via

vortex compression [27,69,90]. This is evident in the transport equation of enstrophy [90]

𝑑

𝑑𝑡

(︂
1

2
⟨𝜔𝑖𝜔𝑖⟩

)︂
=

7
√

2

3
√

15
𝑆𝑘

(︂
1

2
⟨𝜔𝑖𝜔𝑖⟩

)︂3/2

+ 𝜈⟨𝜔𝑖
𝜕2𝜔𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
⟩. (3)

In fact, 𝜖 is very similar to 1
2 ⟨𝜔𝑖𝜔𝑖⟩ as both can be regarded as statistics related to the scalar product of fluc-

tuating velocity gradients. In addition to the turbulence production region, ⟨ 12𝜔𝑖𝜔𝑖⟩ = ⟨𝑠𝑖𝑗𝑠𝑖𝑗⟩ in homogeneous

turbulence [67]. The enstrophy production term ⟨𝜔𝑖𝜔𝑗𝑠𝑖𝑗⟩ appears in the transport equation of 𝜖 and 1
2 ⟨𝜔𝑖𝜔𝑖⟩,

which further explains the fact that these two turbulence statistics are closely connected with the variation of

𝑆𝑘.

Although 𝑆𝑘 is defined under isotropic condition and has the concepts of “vertical” and “horizontal”, when

large-scale anisotropy is added, 𝑆𝑘 will be related to the direction, and thus it can be extended to anisotropic

turbulence. In a recent work, we investigate the properties of 𝑆𝑘 in homogeneous shear turbulence which is one

of the simplest case under the condition of anisotropy. 𝑆𝑘 is calculated along streamwise (𝑥), normal (𝑦) and

spanwise (𝑧) directions, and then referred to as 𝑆𝑘
𝑥, 𝑆𝑘

𝑦, and 𝑆𝑘
𝑧 respectively. It is shown that the values of 𝑆𝑘

𝑥,

𝑆𝑘
𝑦 and 𝑆𝑘

𝑧 are distinct, while they trend together after a filter operation. The filter can change the small-scale

information but has no effect on large scales. This means that the small-scale quantity 𝑆𝑘 is markedly directional

in anisotropic turbulence. The directional character disappeared gradually as some small-scale information is

filtered. Fang et al. made an attempt to investigate the property of anisotropy by the scaling of the second-order
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cross structure function [91]. However, 𝑆𝑘 is assumed under isotropic condition, which limits the application of

this theory. If the directional character is taken into account, it is expected to develop a credible model for 𝑆𝑘

under anisotropic conditions. The progress of subgrid-scale modeling in physical space and the understanding

on the mathematical constraints in the modeling process are helpful in modeling the 𝑆𝑘
[92,93]. Further studies

are therefore needed in this respect. In a word, it is expected to explore the non-equilibrium mechanism of

anisotropic turbulence by investigating the relationship between 𝑆𝑘 and 1
2 ⟨𝜔𝑖𝜔𝑖⟩ and the relationship between

𝑆𝑘 and 𝜖.

5. Conclusions and perspectives

In this paper, we present a comprehensive review on the connections between 𝑆𝑘 and the non-equilibrium

evolution of turbulence. 𝑆𝑘 varies in the non-equilibrium turbulence. The changing negative 𝑆𝑘 corresponds

to a non-equilibrium procedure of the first type, in which the turbulent kinetic energy decay rapidly; while the

changing positive 𝑆𝑘 corresponds to a non-equilibrium procedure of the second type, in which the energy transfer

proceeds in the backward direction. The perturbation of energy spectrum is the origin of non-equilibrium of

the first type, by contrast, the non-equilibrium of the second type is excited by the perturbation of transfer

spectrum. Besides, the transport equations of turbulent energy dissipation rate and enstrophy have a restrictive

effect on the variation of 𝑆𝑘.

However, most of the existing researches focus on observing the variation of 𝑆𝑘, and its theoretical rela-

tionship with non-equilibrium turbulence has not been established. Specifically, the future studies should be

focused on the following aspects:

1. Previous studies have focused mainly on the non-equilibrium turbulence which excited by the perturbation

of energy spectrum or transfer spectrum in a certain wavenumber range, what happens to the value of 𝑆𝑘

when the excitation is imposed in a specific wavenumber.

2. By analysing the transport equation of turbulent energy dissipation rate and enstrophy, it might be

possible to establish a theoretical connection between skewness and the non-equilibrium turbulence, this

then calls for future studies.

3. 𝑆𝑘 is a promising candidate for investigating the physical mechanism of non-equilibrium under anisotropy,

thus how to introduce the anisotropy to the non-equilibrium turbulence is an important problem.

4. Are there any other non-equilibrium procedures of different type in addition to the two which mentioned in

this paper? In non-equilibrium turbulence, what law does 𝑆𝑘 follow and how turbulent structures evolve?

The present work is expected to inspire future investigations for the turbulent flow mechanism under complex

conditions as well as the modelling of non-equilibrium turbulence.
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