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INTRODUCTION

Important links:

• Web page • Github • Latest pdf • Official deposit for citation.
This document describes statistics and machine learning in Python using:

• Scikit-learn for machine learning.

• Pytorch for deep learning.

• Statsmodels for statistics.

Python ecosystem for data-science 1.Python language

• Python is popular Google trends • Interpreted: source file .py => interpretor => processor versus compiled, two steps (1) source file => compilaton => binary file. (2) Execution is simply binary file => processor.

• Garbage collector (do not prevent from memory leak)

• Dynamically-typed language (Java is statically typed)

Anaconda

Anaconda is a python distribution that ships most of python tools and libraries 

Environments

• A conda environment is a directory that contains a specific collection of conda packages that you have installed.

• Control packages environment for a specific purpose: collaborating with someone else, delivering an application to your client,

• Switch between environments List of all environments :: conda info -envs • Syntax highlighting.

• Code introspection for code completion (use TAB).

• Support for multiple Python consoles (including IPython).

• Explore and edit variables from a GUI.

• Debugging.

• Navigate in code (go to function definition) CTL. 
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Introduction to Machine Learning 1.2.1 Machine learning within data science

Machine learning covers two main types of data analysis:

1. Exploratory analysis: Unsupervised learning. Discover the structure within the data. E.g.: Experience (in years in a company) and salary are correlated.

2. Predictive analysis: Supervised learning. This is sometimes described as "learn from the past to predict the future". Scenario: a company wants to detect potential future clients among a base of prospects. Retrospective data analysis: we go through the data constituted of previous prospected companies, with their characteristics (size, domain, localization, etc. . . ). Some of these companies became clients, others did not. The question is, can we possibly predict which of the new companies are more likely to become clients, based on their characteristics based on previous observations? In this example, the training data consists of a set of n training samples. Each sample, 𝑥 𝑖 , is a vector of p input features (company characteristics) and a target feature (𝑦 𝑖 ∈ {𝑌 𝑒𝑠, 𝑁 𝑜} (whether they became a client or not).

IT/computing science tools

• High Performance Computing (HPC)

• Data flow, data base, file I/O, etc.

• Python: the programming language.

• Numpy: python library particularly useful for handling of raw numerical data (matrices, mathematical operations).
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• Pandas: input/output, manipulation structured data (tables).

Statistics and applied mathematics

• Linear model.

• Non parametric statistics.

• Linear algebra: matrix operations, inversion, eigenvalues.

Data analysis methodology

1. Formalize customer's needs into a learning problem:

• A target variable: supervised problem.

-Target is qualitative: classification.

-Target is quantitative: regression.

• No target variable: unsupervised problem -Vizualisation of high-dimensional samples: PCA, manifolds learning, etc.

-Finding groups of samples (hidden structure): clustering.

Ask question about the datasets

• Number of samples

• Number of variables, types of each variable.

Define the sample

• For prospective study formalize the experimental design: inclusion/exlusion criteria. The conditions that define the acquisition of the dataset.

• For retrospective study formalize the experimental design: inclusion/exlusion criteria. The conditions that define the selection of the dataset.

4. In a document formalize (i) the project objectives; (ii) the required learning dataset (more specifically the input data and the target variables); (iii) The conditions that define the acquisition of the dataset. In this document, warn the customer that the learned algorithms may not work on new data acquired under different condition.

5. Read the learning dataset.

6. (i) Sanity check (basic descriptive statistics); (ii) data cleaning (impute missing data, recoding); Final Quality Control (QC) perform descriptive statistics and think ! (remove possible confounding variable, etc.).

7. Explore data (visualization, PCA) and perform basic univariate statistics for association between the target an input variables.

8. Perform more complex multivariate-machine learning. 9. Model validation using a left-out-sample strategy (cross-validation, etc.).

10. Apply on new data. Out:

True

Lists

Different objects categorized along a certain ordered sequence, lists are ordered, iterable, mutable (adding or removing objects changes the list size), can contain multiple data types.

# create an empty list (two ways) empty_list = [] empty_list = list() # create a list simpsons = [ homer , marge , bart ] # examine a list simpsons [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] # print element 0 ( homer ) len(simpsons) # returns the length (3) # modify a list (does not return the list) simpsons.append( lisa ) # append element to end simpsons.extend([ itchy , scratchy ]) # append multiple elements to end simpsons.insert (0, maggie ) # insert element at index 0 (shifts␣ ˓→everything right) simpsons.remove( bart ) # searches for first instance and removes␣ ˓→it simpsons.pop(0) # removes element 0 and returns it del simpsons [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] # removes element 0 (does not return it) simpsons [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] 

Tuples

Like lists, but their size cannot change: ordered, iterable, immutable, can contain multiple data types # create a tuple digits = (0, 1, two ) # create a tuple directly digits = tuple([0, 1, two ]) # create a tuple from a list zero = (0,) # trailing comma is required to indicate it s a␣ ˓→tuple # examine a tuple digits[2] # returns two len(digits) # returns 3 digits.count [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] # counts the number of instances of that value (1) digits.index (1) # returns the index of the first instance of that value (1) # elements of a tuple cannot be modified # digits[2] = 2 # throws an error # concatenate tuples digits = digits + (3, 4)

# create a single tuple with elements repeated (also works with lists) (3, 4) * 2 # returns (3, 4, 3, 4) # tuple unpacking bart = ( male , 10, simpson ) # create a tuple

Strings

A sequence of characters, they are iterable, immutable # create a string s = str(42) # convert another data type into a string s = I like you # examine a string s [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] # returns I len ( 

Dictionaries

Dictionaries are structures which can contain multiple data types, and is ordered with key-value pairs: for each (unique) key, the dictionary outputs one value. Keys can be strings, numbers, or tuples, while the corresponding values can be any Python object. Dictionaries are: unordered, iterable, mutable # create an empty dictionary (two ways) empty_dict = {} empty_dict = dict() # create a dictionary (two ways) family = { dad : homer , mom : marge , size :6} family = dict(dad= homer , mom= marge , size=6)

# convert a list of tuples into a dictionary list_of_tuples = [( dad , homer ), ( mom , marge ), ( size , 6)] family = dict(list_of_tuples)

# examine a dictionary (continues on next page) (continued from previous page)

family [ print("Error", e) family.get( grandma ) # returns None family.get( grandma , not found ) # returns not found (the default) # accessing a list element within a dictionary family[ kids ] [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] # returns bart family [ kids ].remove( lisa ) # removes lisa # string substitution using a dictionary youngest child is %(baby)s % family # returns youngest child is maggie

Out:

Error grandma youngest child is maggie Chapter 2. Python language Statistics and Machine Learning in Python, Release 0.5

Sets

Like dictionaries, but with unique keys only (no corresponding values). They are: unordered, iterable, mutable, can contain multiple data types made up of unique elements (strings, numbers, or tuples) # get a sorted list of unique elements from a list sorted(set([9, 0, 2, 1, 0]))

#
# returns [0, 1, 2, 9]

Out:

Error c [0, 1, 2, 9]

Iterators

Cartesian product import itertools print([[x, y] for x, y in itertools.product([ a , b , c ], [1,2])])

Out: 

[[ a ,

Loops

Loops are a set of instructions which repeat until termination conditions are met. This can include iterating through all values in an object, go through a range of values, etc # range returns a list of integers range(0, 3) # returns [0, 1, 2]: includes first value but excludes second␣ ˓→value range(3) # same thing: starting at zero is the default range(0, 5, 2) # returns [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF]2,4] # return values can be assigned into multiple variables using tuple unpacking min_num, max_num = min_max(nums) # min_num = 1, max_num = 3 Out:

Functions
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Regular expression

import re # 1. Compile regular expression with a patetrn regex = re.compile("^.+(sub-.+)_(ses-.+)_(mod-.+)")

Match compiled RE on string

Capture the pattern anyprefixsub-<subj id>_ses-<session id>_<modality> strings = ["abcsub-033_ses-01_mod-mri", "defsub-044_ses-01_mod-mri", "ghisub-055_

˓→ses-02_mod-ctscan"]

print([regex.findall(s) [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] for s in strings])

Out:

[( sub-033 , ses-01 , mod-mri ), ( sub-044 , ses-01 , mod-mri ), ( sub-055 , ˓→ ses-02 , mod-ctscan )]

Match methods on compiled regular expression

Method/Attribute Purpose match(string) Determine if the RE matches at the beginning of the string. search(string) Scan through a string, looking for any location where this RE matches. findall (string) Find all substrings where the RE matches, and returns them as a list. finditer (string) Find all substrings where the RE matches, and returns them as an iterator.

2. Replace compiled RE on string regex = re.compile("(sub-[^_]+)") # match (sub-...)_ print([regex.sub("SUB-", s) for s in strings]) regex.sub("SUB-", "toto")

Out:

[ abcSUB-_ses-01_mod-mri , defSUB-_ses-01_mod-mri , ghiSUB-_ses-02_mod-ctscan ] toto Remove all non-alphanumeric characters in a string Create a directory os.makedirs(os.path.join(tmpdir, "foobar", "plop", "toto"), exist_ok=True)

# list containing the names of the entries in the directory given by path. os.listdir(mytmpdir)

Out:

[ plop ]

2.8. System programming 2.8.2 File input/output filename = os.path.join(mytmpdir, "myfile.txt") print(filename) # Write lines = ["Dans python tout est bon", "Enfin, presque"] ## write line by line fd = open(filename, "w") fd.write(lines [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] + "\n") fd.write(lines [1]+ "\n") fd.close() ## use a context manager to automatically close your file with open(filename, w ) as f: for line in lines: f.write(line + \n ) # Read ## read one line at a time (entire file does not have to fit into memory) f = open(filename, "r") f.readline() # one string per line (including newlines) f.readline() # next line f.close() ## read one line at a time (entire file does not have to fit into memory) f = open(filename, r ) f.readline() # one string per line (including newlines) f.readline() # next line f.close() ## read the whole file at once, return a list of lines f = open(filename, r ) f.readlines() # one list, each line is one string f.close() ## use list comprehension to duplicate readlines without reading entire file at␣ shutil -High-level file operations import shutil src = os.path.join(tmpdir, "foobar", "myfile.txt") dst = os.path.join(tmpdir, "foobar", "plop", "myfile.txt") print("copy %s to %s" % (src, dst))

shutil.copy(src, dst) print("File %s exists ?" % dst, os.path.exists(dst)) src = os.path.join(tmpdir, "foobar", "plop") dst = os.path.join(tmpdir, "plop2") print("copy tree %s under %s" % (src, dst)) 

(

Command execution with subprocess

• For more advanced use cases, the underlying Popen interface can be used directly.

• Run the command described by args.

• Wait for command to complete

• return a CompletedProcess instance.

• Does not capture stdout or stderr by default. To do so, pass PIPE for the stdout and/or stderr arguments.

import subprocess # doesn t capture output p = subprocess.run(["ls", "-l"]) print(p.returncode) # Run through the shell. subprocess.run("ls -l", shell=True)

# Capture output out = subprocess.run(["ls", "-a", "/"], stdout=subprocess.PIPE, stderr=subprocess.

˓→STDOUT)

# out.stdout is a sequence of bytes that should be decoded into a utf-8 string print(out.stdout.decode( utf-8 ).split("\n")[:5])

Out: 0 [ . , .. , bin , boot , cdrom ]

Multiprocessing and multithreading

Process

A process is a name given to a program instance that has been loaded into memory and managed by the operating system. Process = address space + execution context (thread of control)

Process address space (segments):

• Code.

• Data (static/global).

• Heap (dynamic memory allocation).

• Stack.

Execution context:

• Data registers.

• Stack pointer (SP).

• Program counter (PC).

• Working Registers.

OS Scheduling of processes: context switching (ie. save/load Execution context) Pros/cons

• Context switching expensive.

• (potentially) complex data sharing (not necessary true).

• Cooperating processes -no need for memory protection (separate address spaces).

• Relevant for parrallel computation with memory allocation.

Threads

• Threads share the same address space (Data registers): access to code, heap and (global) data.

• Separate execution stack, PC and Working Registers.

Pros/cons

• Faster context switching only SP, PC and Working Registers.

• Can exploit fine-grain concurrency

• Simple data sharing through the shared address space.

• Precautions have to be taken or two threads will write to the same memory at the same time. This is what the global interpreter lock (GIL) is for.

• Relevant for GUI, I/O (Network, disk) concurrent operation

In Python

• The threading module uses threads.

• The multiprocessing module uses processes. Multiprocessing ellapsed time 0.19075894355773926 Sharing object between process with Managers Managers provide a way to create data which can be shared between different processes, including sharing over a network between processes running on different machines. A manager object controls a server process which manages shared objects. Out:

Multithreading

Scripts and argument parsing

-rw-r--r-- • Class = template or blueprint that can be used to create objects.

• An object is a specific instance of a class. Out:

[4, 28.274333882308138] NotImplementedError

Style guide for Python programming

See PEP 8

• Spaces (four) are the preferred indentation method.

• Two blank lines for top level function or classes definition.

• One blank line to indicate logical sections.

• Never use: from lib import *

• Bad: Capitalized_Words_With_Underscores

• Function and Variable Names: lower_case_with_underscores

• Class Names: CapitalizedWords (aka: CamelCase)

Documenting

See Documenting Python Documenting = comments + docstrings (Python documentation string)

• Docstrings are use as documentation for the class, module, and packages. See it as "living documentation". At the begining of a script add a pream:

""" Created on Thu Nov 14 12:08:41 CET 2019 @author: firstname.lastname@email.com Some description """ 

CHAPTER

THREE

SCIENTIFIC PYTHON

Numpy: arrays and matrices

NumPy is an extension to the Python programming language, adding support for large, multidimensional (numerical) arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.

Sources:

• Out:

Create arrays

[[0] [1]]
Transpose print(a_col.T)

Out:

[[0 1]]
Flatten: always returns a flat copy of the orriginal array arr_flt = arr.flatten() arr_flt [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] = 33 print(arr_flt) print(arr)

Out:

[33. 

Summary on axis, reshaping/flattening and selection

Numpy internals: By default Numpy use C convention, ie, Row-major language: The matrix is stored by rows. In C, the last index changes most rapidly as one moves through the array as stored in memory.

For 2D arrays, sequential move in the memory will:

• iterate over rows (axis 0)

iterate over columns (axis 1)

For 3D arrays, sequential move in the memory will:

• iterate over plans (axis 0)

-iterate over rows (axis 1)

* iterate over columns (axis 2)

x = np.arange(2 * 3 * 4) print(x)
Out: Out: # random normals (mean 0, sd 1) np.random.randint(0, 2, 10) # 10 randomly picked 0 or 1 Out:

array([[0, 1], [2, 3]]) Default Vertical np.stack([a, b]) Out: array([[0, 1], [2, 3]])

Selection

array([0, 0, 0, 1, 1, 0, 1, 1, 1, 1])
3.1. Numpy: arrays and matrices

Broadcasting

Sources: https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html Implicit conversion to allow operations on arrays of different sizes. -The smaller array is stretched or "broadcasted" across the larger array so that they have compatible shapes. -Fast vectorized operation in C instead of Python. -No needless copies.

Rules

Starting with the trailing axis and working backward, Numpy compares arrays dimensions.

• If two dimensions are equal then continues • If one of the operand has dimension 1 stretches it to match the largest one • When one of the shapes runs out of dimensions (because it has less dimensions than the other shape), Numpy will use 1 in the comparison process until the other shape's dimensions run out as well. Out: 

[[ 0
A ( 2d 

Exercises

Given the array: X = np.random.randn(4, 2) # random normals in 4x2 array

• For each column find the row index of the minimum value.

• Write a function standardize(X) that return an array whose columns are centered and scaled (by std-dev).

Total running time of the script: ( 0 minutes 0.012 seconds)

Pandas: data manipulation

It is often said that 80% of data analysis is spent on the cleaning and small, but important, aspect of data manipulation and cleaning with Pandas.

Sources:

• Kevin Markham: https://github.com/justmarkham

• Pandas doc: http://pandas.pydata.org/pandas-docs/stable/index.html

Data structures

• Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the index. The basic method to create a Series is to call pd.Series( [1,3,5,np.nan,6,8]) 

Boxplot and violin plot: one factor

Box plots are non-parametric: they display variation in samples of a statistical population without making any assumptions of the underlying statistical distribution. ax = sns.boxplot(x="management", y="salary", data=salary) ax = sns.stripplot(x="management", y="salary", data=salary, jitter=True, color= ˓→"black") ax = sns.violinplot(x="management", y="salary", data=salary) ax = sns.stripplot(x="management", y="salary", data=salary, jitter=True, color= ˓→"white")

Boxplot and violin plot: two factors ax = sns.boxplot(x="management", y="salary", hue="education", data=salary) ax = sns.stripplot(x="management", y="salary", hue="education", data=salary,␣ ˓→jitter=True, dodge=True, linewidth=1) ax = sns.violinplot(x="management", y="salary", hue="education", data=salary) ax = sns.stripplot(x="management", y="salary", hue="education", data=salary,␣ ˓→jitter=True, dodge=True, linewidth=1) • Discover associations between a variable of interest and potential predictors. It is strongly recommended to start with simple univariate methods before moving to complex multivariate predictors.

Multiple axis

• Assess the prediction performances of machine learning predictors.

• Most of the univariate statistics are based on the linear model which is one of the main model in machine learning.

Libraries

Data import numpy as np import pandas as pd

Plots import matplotlib.pyplot as plt import seaborn as sns

Statistics

• Basic: scipy.stats

• Advanced: statsmodels. statsmodels API:

statsmodels.api: Cross-sectional models and methods. Canonically imported using import statsmodels.api as sm.

statsmodels.formula.api: A convenience interface for specifying models using formula strings and DataFrames. Canonically imported using import statsmodels. formula.api as smf statsmodels.tsa.api: Time-series models and methods. 

𝐸(𝑎𝑋) = 𝑎𝐸(𝑋) (4.3)
The estimator x on a sample of size 𝑛: 𝑥 = 𝑥 1 , ..., 𝑥 𝑛 is given by

x = 1 𝑛 ∑︁ 𝑖 𝑥 𝑖
x is itself a random variable with properties:

• 𝐸(x) = x,

• Var(x) = Var(𝑋)

𝑛

.

Variance

Var(𝑋) = 𝐸((𝑋 -𝐸(𝑋)) 2 ) = 𝐸(𝑋 2 ) -(𝐸(𝑋)) 2
The estimator is

𝜎 2 𝑥 = 1 𝑛 -1 ∑︁ 𝑖 (𝑥 𝑖 -x) 2
Note here the subtracted 1 degree of freedom (df) in the divisor. In standard statistical practice, 𝑑𝑓 = 1 provides an unbiased estimator of the variance of a hypothetical infinite population. With 𝑑𝑓 = 0 it instead provides a maximum likelihood estimate of the variance for normally distributed variables.

Standard deviation

Std(𝑋) = √︀ Var(𝑋)
The estimator is simply The estimator with 𝑑𝑓 = 1 is

𝜎 𝑥 = √︀ 𝜎 2 𝑥 . Covariance Cov(𝑋, 𝑌 ) = 𝐸((𝑋 -𝐸(𝑋))(𝑌 -𝐸(𝑌 ))) = 𝐸(𝑋𝑌 ) -𝐸(𝑋)𝐸(𝑌 ).
𝜎 𝑥𝑦 = 1 𝑛 -1 ∑︁ 𝑖 (𝑥 𝑖 -x)(𝑦 𝑖 -ȳ). Correlation Cor(𝑋, 𝑌 ) = Cov(𝑋, 𝑌 ) Std(𝑋) Std(𝑌 )
The estimator is

𝜌 𝑥𝑦 = 𝜎 𝑥𝑦 𝜎 𝑥 𝜎 𝑦 .

Standard Error (SE)

The standard error (SE) is the standard deviation (of the sampling distribution) of a statistic:

SE(𝑋) = Std(𝑋) √ 𝑛 .
It is most commonly considered for the mean with the estimator 

SE(𝑋) = Std(𝑋) = 𝜎 x (4.9) = 𝜎 𝑥 √ 𝑛 . ( 4 

Main distributions

Normal distribution

The normal distribution, noted 𝒩 (𝜇, 𝜎) with parameters: 𝜇 mean (location) and 𝜎 > 0 std-dev. Estimators: x and 𝜎 𝑥 .

The normal distribution, noted 𝒩 , is useful because of the central limit theorem (CLT) which states that: given certain conditions, the arithmetic mean of a sufficiently large number of iterates of independent random variables, each with a well-defined expected value and well-defined variance, will be approximately normally distributed, regardless of the underlying distribution. The Chi-Square distribution

The chi-square or 𝜒 2 𝑛 distribution with 𝑛 degrees of freedom (df) is the distribution of a sum of the squares of 𝑛 independent standard normal random variables 𝒩 (0, 1). Let 𝑋 ∼ 𝒩 (𝜇, 𝜎 2 ), then, 𝑍 = (𝑋 -𝜇)/𝜎 ∼ 𝒩 (0, 1), then:

• The squared standard 𝑍 2 ∼ 𝜒 2 1 (one df). • The distribution of sum of squares of 𝑛 normal random variables:

∑︀ 𝑛 𝑖 𝑍 2 𝑖 ∼ 𝜒 2

𝑛

The sum of two 𝜒 2 RV with 𝑝 and 𝑞 df is a 𝜒 2 RV with 𝑝 + 𝑞 df. This is useful when summing/subtracting sum of squares.

The 𝜒 2 -distribution is used to model errors measured as sum of squares or the distribution of the sample variance.

The Fisher's F-distribution

The 𝐹 -distribution, 𝐹 

𝑇 𝑛 = 𝑀 √︀ 𝑉 /𝑛
The distribution of the difference between an estimated parameter and its true (or assumed) value divided by the standard deviation of the estimated parameter (standard error) follow a 𝑡-distribution. Is this parameters different from a given value?

Hypothesis Testing

Examples

• Test a proportion: Biased coin ? 200 heads have been found over 300 flips, is it coins biased ?

• Test the association between two variables.

- • 𝑃 (𝑥 = 0) = 1/8 [60 52 51 ... 45 51 44] P-value using monte-carlo sampling of the Binomial distribution under H0= 0.

• 𝑃 (𝑥 = 1) = 3/8 • 𝑃 (𝑥 = 2) = 3/8 • 𝑃 (𝑥 = 3) = 1/

˓→025897410258974102

One sample 𝑡-test

The one-sample 𝑡-test is used to determine whether a sample comes from a population with a specific mean. For example you want to test if the average height of a population is 1.75 𝑚.

Assumptions

1. Independence of residuals (𝜀 𝑖 ). This assumptions must be satisfied.

2. Normality of residuals. Approximately normally distributed can be accepted.

Remarks: Although the parent population does not need to be normally distributed, the distribution of the population of sample means, 𝑥, is assumed to be normal. By the central limit theorem, if the sampling of the parent population is independent then the sample means will be approximately normal. 

Example

Given the following samples, we will test whether its true mean is 1.75.

Warning, when computing the std or the variance, set ddof=1. The default value, ddof=0, leads to the biased estimator of the variance.

x alpha=.8, label="p-value") _ = plt.legend()

Testing pairwise associations

Univariate statistical analysis: explore association betweens pairs of variables.

• In statistics, a categorical variable or factor is a variable that can take on one of a limited, and usually fixed, number of possible values, thus assigning each individual to a particular group or "category". The levels are the possibles values of the variable. Number of levels = 2: binomial; Number of levels > 2: multinomial. There is no intrinsic ordering to the categories. For example, gender is a categorical variable having two categories (male and female) and there is no intrinsic ordering to the categories. For example, Sex (Female, Male), Hair color (blonde, brown, etc.).

• An ordinal variable is a categorical variable with a clear ordering of the levels. For example: drinks per day (none, small, medium and high).

• A continuous or quantitative variable 𝑥 ∈ R is one that can take any value in a range of possible values, possibly infinite. E.g.: salary, experience in years, weight.

What statistical test should I use?

See: http://www.ats.ucla.edu/stat/mult_pkg/whatstat/ Let 𝑥 and 𝑦 two quantitative variables, where 𝑛 samples were obeserved. The linear correlation coeficient is defined as : 

𝑟 = ∑︀ 𝑛 𝑖=1 (𝑥 𝑖 -x)(𝑦 𝑖 -ȳ) √︀ ∑︀ 𝑛 𝑖=1 (𝑥 𝑖 -x) 2 √︀ ∑︀ 𝑛 𝑖=1 (𝑦 𝑖 -ȳ) 2 . Under 𝐻 0 , the test statistic 𝑡 = √ 𝑛 -2 𝑟

Model the data

Assume that the two random variables are normally distributed:

𝑦 1 ∼ 𝒩 (𝜇 1 , 𝜎 1 ), 𝑦 2 ∼ 𝒩 (𝜇 2 , 𝜎 2 ).

Fit: estimate the model parameters

Estimate means and variances: ȳ1 , 𝑠 2 𝑦 1 , ȳ2 , 𝑠 2 𝑦 2 .

𝑡-test

The general principle is 𝑡 = difference of means standard dev of error (4.16) = difference of means its standard error (4.17)

= ȳ1 -ȳ2 √︀ ∑︀ 𝜀 2 √ 𝑛 -2 (4.18) = ȳ1 -ȳ2 𝑠 ȳ1 -ȳ2 (4.19)
Since 𝑦 1 and 𝑦 2 are independant:

𝑠 2 ȳ1 -ȳ2 = 𝑠 2 ȳ1 + 𝑠 2 ȳ2 = 𝑠 2 𝑦 1 𝑛 1 + 𝑠 2 𝑦 2 𝑛 2 (4.20) thus (4.21) 𝑠 ȳ1 -ȳ2 = √︃ 𝑠 2 𝑦 1 𝑛 1 + 𝑠 2 𝑦 2 𝑛 2 (4.22)
Equal or unequal sample sizes, unequal variances (Welch's 𝑡-test)

Welch's 𝑡-test defines the 𝑡 statistic as

𝑡 = ȳ1 -ȳ2 √︁ 𝑠 2 𝑦 1 𝑛 1 + 𝑠 2 𝑦 2 𝑛 2 .
To compute the 𝑝-value one needs the degrees of freedom associated with this variance estimate. It is approximated using the Welch-Satterthwaite equation:

𝜈 ≈ (︂ 𝑠 2 𝑦 1 𝑛 1 + 𝑠 2 𝑦 2 𝑛 2 )︂ 2 𝑠 4 𝑦 1 𝑛 2 1 (𝑛 1 -1) + 𝑠 4 𝑦 2 𝑛 2 2 (𝑛 2 -1)
.

Equal or unequal sample sizes, equal variances

If we assume equal variance (ie, 𝑠 2

𝑦 1 = 𝑠 2 𝑦 1 = 𝑠 2 )
, where 𝑠 2 is an estimator of the common variance of the two samples:

𝑠 2 = 𝑠 2 𝑦 1 (𝑛 1 -1) + 𝑠 2 𝑦 2 (𝑛 2 -1) 𝑛 1 + 𝑛 2 -2 (4.23) = ∑︀ 𝑛 1 𝑖 (𝑦 1𝑖 -ȳ1 ) 2 + ∑︀ 𝑛 2 𝑗 (𝑦 2𝑗 -ȳ2 ) 2 (𝑛 1 -1) + (𝑛 2 -1) (4.24) then 𝑠 ȳ1 -ȳ2 = √︃ 𝑠 2 𝑛 1 + 𝑠 2 𝑛 2 = 𝑠 √︂ 1 𝑛 1 + 1 𝑛 2
Therefore, the 𝑡 statistic, that is used to test whether the means are different is:

𝑡 = ȳ1 -ȳ2 𝑠 • √︁ 1 𝑛 1 + 1 𝑛 2 ,

Equal sample sizes, equal variances

If we simplify the problem assuming equal samples of size 𝑛 1 = 𝑛 2 = 𝑛 we get Here we will consider one-way ANOVA with one independent variable, ie one-way anova.

𝑡 = ȳ1 -ȳ2 𝑠 √ 2 • √ 𝑛 (4.
Wikipedia:

• Test if any group is on average superior, or inferior, to the others versus the null hypothesis that all four strategies yield the same mean response

• Detect any of several possible differences.

• The advantage of the ANOVA 𝐹 -test is that we do not need to pre-specify which strategies are to be compared, and we do not need to adjust for making multiple comparisons.

• The disadvantage of the ANOVA 𝐹 -test is that if we reject the null hypothesis, we do not know which strategies can be said to be significantly different from the others.

Assumptions

1. The samples are randomly selected in an independent manner from the k populations.

2. All k populations have distributions that are approximately normal. Check by plotting groups distribution.

3. The k population variances are equal. Check by plotting groups distribution.

Model the data

Is there a difference in Petal Width in species from iris dataset. Let 𝑦 1 , 𝑦 2 and 𝑦 3 be Petal Width in three species.

Here we assume (see assumptions) that the three populations were sampled from three random variables that are normally distributed. I.e., 𝑌

1 ∼ 𝑁 (𝜇 1 , 𝜎 1 ), 𝑌 2 ∼ 𝑁 (𝜇 2 , 𝜎 2 ) and 𝑌 3 ∼ 𝑁 (𝜇 3 , 𝜎 3 ).

Fit: estimate the model parameters

Estimate means and variances: ȳ𝑖 , 𝜎 𝑖 , ∀𝑖 ∈ {1, 2, 3}.

𝐹 -test

The formula for the one-way ANOVA F-test statistic is

𝐹 = Explained variance Unexplained variance (4.28) = Between-group variability Within-group variability = 𝑠 2 𝐵 𝑠 2 𝑊 . (4.29)
The "explained variance", or "between-group variability" is

𝑠 2 𝐵 = ∑︁ 𝑖 𝑛 𝑖 (ȳ 𝑖• -ȳ) 2 /(𝐾 -1),
where ȳ𝑖• denotes the sample mean in the 𝑖th group, 𝑛 𝑖 is the number of observations in the 𝑖th group, ȳ denotes the overall mean of the data, and 𝐾 denotes the number of groups.

The "unexplained variance", or "within-group variability" is

𝑠 2 𝑊 = ∑︁ 𝑖𝑗 (𝑦 𝑖𝑗 -ȳ𝑖• ) 2 /(𝑁 -𝐾),
where 𝑦 𝑖𝑗 is the 𝑗th observation in the 𝑖th out of 𝐾 groups and 𝑁 is the overall sample size. This 𝐹 -statistic follows the 𝐹 -distribution with 𝐾 -1 and 𝑁 -𝐾 degrees of freedom under the null hypothesis. The statistic will be large if the between-group variability is large relative to the within-group variability, which is unlikely to happen if the population means of the groups all have the same value.

Note that when there are only two groups for the one-way ANOVA F-test, 𝐹 = 𝑡 2 where 𝑡 is the Student's 𝑡 statistic.

Iris dataset:

# Group means means = iris.groupby("Species").mean().reset_index() print(means) # Group Stds (equal variances ?) stds = iris.groupby("Species").std(ddof=1).reset_index() print(stds) # Plot groups ax = sns.violinplot(x="Species", y="SepalLength", data=iris) ax = sns.swarmplot(x="Species", y="SepalLength", data=iris, color="white") ax = sns.swarmplot(x="Species", y="SepalLength", color="black", data=means,␣ Computes the chi-square, 𝜒 2 , statistic and 𝑝-value for the hypothesis test of independence of frequencies in the observed contingency table (cross-table ). The observed frequencies are tested against an expected contingency table obtained by computing expected frequencies based on the marginal sums under the assumption of independence.

Example: 20 participants: 10 exposed to some chemical product and 10 non exposed (exposed = 1 or 0). Among the 20 participants 10 had cancer 10 not (cancer = 1 or 0 print("---------------") print(crosstab) chi2, pval, dof, expected = scipy.stats.chi2_contingency(crosstab) print("Statistics:") print("-----------") print("Chi2 = %f, pval = %f" % (chi2, pval)) print("Expected table:") print(" ---------------") print(expected) 

Observed table: --------------- cancer 0 1 exposed 0 8 2 1 2 8 Statistics: ----------- Chi2 = 5.000000, pval = 0.025347 Expected table: --------------- [[5. 5.] [5. 5.]]

Non-parametric test of pairwise associations

Spearman rank-order correlation (quantitative ~quantitative)

The Spearman correlation is a non-parametric measure of the monotonicity of the relationship between two datasets.

When to use it? Observe the data distribution: -presence of outliers -the distribution of the residuals is not Gaussian.

Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Source: https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when comparing two related samples, matched samples, or repeated measurements on a single sample to assess whether their population mean ranks differ (i.e. it is a paired difference test). It is equivalent to one-sample test of the difference of paired samples.

It can be used as an alternative to the paired Student's 𝑡-test, 𝑡-test for matched pairs, or the 𝑡test for dependent samples when the population cannot be assumed to be normally distributed.

When to use it? Observe the data distribution: -presence of outliers -the distribution of the residuals is not Gaussian It has a lower sensitivity compared to 𝑡-test. May be problematic to use when the sample size is small.

Null hypothesis 𝐻 0 : difference between the pairs follows a symmetric distribution around zero. 

Linear model

Fig. 3: Linear model

Given 𝑛 random samples (𝑦 𝑖 , 𝑥 1𝑖 , . . . , 𝑥 𝑝𝑖 ), 𝑖 = 1, . . . , 𝑛, the linear regression models the relation between the observations 𝑦 𝑖 and the independent variables 𝑥 𝑝 𝑖 is formulated as

𝑦 𝑖 = 𝛽 0 + 𝛽 1 𝑥 1𝑖 + • • • + 𝛽 𝑝 𝑥 𝑝𝑖 + 𝜀 𝑖 𝑖 = 1, . . . , 𝑛
• The 𝛽's are the model parameters, ie, the regression coeficients.

• 𝛽 0 is the intercept or the bias.

• 𝜀 𝑖 are the residuals.

• An independent variable (IV). It is a variable that stands alone and isn't changed by the other variables you are trying to measure. For example, someone's age might be an independent variable. Other factors (such as what they eat, how much they go to school, how much television they watch) aren't going to change a person's age. In fact, when you are looking for some kind of relationship between variables you are trying to see if the independent variable causes some kind of change in the other variables, or dependent variables. In Machine Learning, these variables are also called the predictors. 

Assumptions

1. Independence of residuals (𝜀 𝑖 ). This assumptions must be satisfied 2. Normality of residuals (𝜀 𝑖 ). Approximately normally distributed can be accepted.

Regression diagnostics: testing the assumptions of linear regression

Simple regression: test association between two quantitative variables

Using the dataset "salary", explore the association between the dependant variable (e.g. Salary) and the independent variable (e.g.: Experience is quantitative), considering only non-managers.

df = salary[salary.management == N ]

Model the data

Model the data on some hypothesis e.g.: salary is a linear function of the experience.

salary 𝑖 = 𝛽 0 + 𝛽 experience 𝑖 + 𝜖 𝑖 , more generally

𝑦 𝑖 = 𝛽 0 + 𝛽 𝑥 𝑖 + 𝜖 𝑖
This can be rewritten in the matrix form using the design matrix made of values of independant variable and the intercept:

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑦 1 𝑦 2 𝑦 3 𝑦 4 𝑦 5 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 𝑥 1 1 𝑥 2 1 𝑥 3 1 𝑥 4 1 𝑥 5 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ [︂ 𝛽 0 𝛽 1 ]︂ + ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜖 1 𝜖 2 𝜖 3 𝜖 4 𝜖 5 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦
• 𝛽: the slope or coefficient or parameter of the model,

• 𝛽 0 : the intercept or bias is the second parameter of the model,

• 𝜖 𝑖 : is the 𝑖th error, or residual with 𝜖 ∼ 𝒩 (0, 𝜎 2 ).

The simple regression is equivalent to the Pearson correlation.

Fit: estimate the model parameters

The goal it so estimate 𝛽, 𝛽 0 and 𝜎 2 .

Minimizes the mean squared error (MSE) or the Sum squared error (SSE). The so-called Ordinary Least Squares (OLS) finds 𝛽, 𝛽 0 that minimizes the

𝑆𝑆𝐸 = ∑︀ 𝑖 𝜖 2 𝑖 𝑆𝑆𝐸 = ∑︁ 𝑖 (𝑦 𝑖 -𝛽 𝑥 𝑖 -𝛽 0 ) 2
Recall from calculus that an extreme point can be found by computing where the derivative is zero, i.e. to find the intercept, we perform the steps:

𝜕𝑆𝑆𝐸 𝜕𝛽 0 = ∑︁ 𝑖 (𝑦 𝑖 -𝛽 𝑥 𝑖 -𝛽 0 ) = 0 ∑︁ 𝑖 𝑦 𝑖 = 𝛽 ∑︁ 𝑖 𝑥 𝑖 + 𝑛 𝛽 0 𝑛 ȳ = 𝑛 𝛽 x + 𝑛 𝛽 0 𝛽 0 = ȳ -𝛽 x
To find the regression coefficient, we perform the steps:

𝜕𝑆𝑆𝐸 𝜕𝛽 = ∑︁ 𝑖 𝑥 𝑖 (𝑦 𝑖 -𝛽 𝑥 𝑖 -𝛽 0 ) = 0 Plug in 𝛽 0 : ∑︁ 𝑖 𝑥 𝑖 (𝑦 𝑖 -𝛽 𝑥 𝑖 -ȳ + 𝛽 x) = 0 ∑︁ 𝑖 𝑥 𝑖 𝑦 𝑖 - ȳ ∑︁ 𝑖 𝑥 𝑖 = 𝛽 ∑︁ 𝑖 (𝑥 𝑖 -x)
Divide both sides by 𝑛:

1 𝑛 ∑︁ 𝑖 𝑥 𝑖 𝑦 𝑖 -ȳx = 1 𝑛 𝛽 ∑︁ 𝑖 (𝑥 𝑖 -x) 𝛽 = 1 𝑛 ∑︀ 𝑖 𝑥 𝑖 𝑦 𝑖 -ȳx 1 𝑛 ∑︀ 𝑖 (𝑥 𝑖 -x) = 𝐶𝑜𝑣(𝑥, 𝑦) 𝑉 𝑎𝑟(𝑥) .
y, x = df.salary, df.experience beta, beta0, r_value, p_value, std_err = scipy.stats.linregress(x,y) print("y = %f x + %f, r: %f, r-squared: %f,\np-value: %f, std_err: %f" % (beta, beta0, r_value, r_value**2, p_value, std_err))

print In linear regression, we assume that the model that generates the data involves only a linear combination of the input variables, i.e.

𝑦 𝑖 = 𝛽 0 + 𝛽 1 𝑥 𝑖1 + ... + 𝛽 𝑃 𝑥 𝑖𝑃 + 𝜀 𝑖 ,
or, simplified

𝑦 𝑖 = 𝛽 0 + 𝑃 -1 ∑︁ 𝑗=1 𝛽 𝑗 𝑥 𝑗 𝑖 + 𝜀 𝑖 .
Extending each sample with an intercept, 𝑥 𝑖 := [1, 𝑥 𝑖 ] ∈ 𝑅 𝑃 +1 allows us to use a more general notation based on linear algebra and write it as a simple dot product:

𝑦 𝑖 = x 𝑇 𝑖 𝛽 + 𝜀 𝑖 ,
where 𝛽 ∈ 𝑅 𝑃 +1 is a vector of weights that define the 𝑃 + 1 parameters of the model. From now we have 𝑃 regressors + the intercept.

Using the matrix notation: Let 𝑋 = [𝑥 𝑇 0 , ..., 𝑥 𝑇 𝑁 ] be the (𝑁 × 𝑃 + 1) design matrix of 𝑁 samples of 𝑃 input features with one column of one and let be 𝑦 = [𝑦 1 , ..., 𝑦 𝑁 ] be a vector of the 𝑁 targets.

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑦 1 𝑦 2 𝑦 3 𝑦 4 𝑦 5 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 𝑥 11 . . . 𝑥 1𝑃 1 𝑥 21 . . . 𝑥 2𝑃 1 𝑥 31 . . . 𝑥 3𝑃 1 𝑥 41 . . . 𝑥 4𝑃 1 𝑥 5 . . . 𝑥 5 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ 𝛽 0 𝛽 1 . . . 𝛽 𝑃 ⎤ ⎥ ⎥ ⎥ ⎦ + ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜖 1 𝜖 2 𝜖 3 𝜖 4 𝜖 5 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 106 

𝑦 = 𝑋𝛽 + 𝜀

Minimize the Mean Squared Error MSE loss:

𝑀 𝑆𝐸(𝛽) == 1 𝑁 𝑁 ∑︁ 𝑖=1 (𝑦 𝑖 -x 𝑇 𝑖 𝛽) 2
Using the matrix notation, the mean squared error (MSE) loss can be rewritten:

𝑀 𝑆𝐸(𝛽) = 1 𝑁 ||𝑦 -𝑋𝛽|| 2 2 .
The 𝛽 that minimises the MSE can be found by:

∇ 𝛽 (︂ 1 𝑁 ||𝑦 -𝑋𝛽|| 2 2 )︂ = 0 (4.30) 1 𝑁 ∇ 𝛽 (𝑦 -𝑋𝛽) 𝑇 (𝑦 -𝑋𝛽) = 0 (4.31) 1 𝑁 ∇ 𝛽 (𝑦 𝑇 𝑦 -2𝛽 𝑇 𝑋 𝑇 𝑦 + 𝛽 𝑇 𝑋 𝑇 𝑋𝛽) = 0 (4.32) -2𝑋 𝑇 𝑦 + 2𝑋 𝑇 𝑋𝛽 = 0 (4.33) 𝑋 𝑇 𝑋𝛽 = 𝑋 𝑇 𝑦 (4.34) 𝛽 = (𝑋 𝑇 𝑋) -1 𝑋 𝑇 𝑦, (4.35) 
where (𝑋 𝑇 𝑋) -1 𝑋 𝑇 is a pseudo inverse of 𝑋.

Simulated dataset where: ----------------------------------------------------------------------------- 

⎡ ⎢ ⎣ 𝑦 1 . . . 𝑦 50 ⎤ ⎥ ⎦ = ⎡ ⎢ ⎣ 1 𝑥 1,1 𝑥 1,2 𝑥 1,3 . . . . . . . . . . . . 1 𝑥 50,1 𝑥 50,2 𝑥 50,3 ⎤ ⎥ ⎦ ⎡ ⎢ ⎢ ⎣ 10 1 0.5 0.1 ⎤ ⎥ ⎥ ⎦ + ⎡ ⎢ ⎣ 𝜖 1 . . .

Statsmodels with Pandas using formulae (smf)

Use R language syntax for data.frame. For an additive model: ----------------------------------------------------------------------------- 

𝑦 𝑖 = 𝛽 0 + 𝑥 1 𝑖 𝛽 1 + 𝑥 2 𝑖 𝛽 2 + 𝜖 𝑖 ≡ y x1 + x2. df = pd.DataFrame(np.column_stack([X, y]), columns=[ inter , x1 , x2 , x3 , y ˓→ ]) print(df.

Multiple regression with categorical independent variables or factors: Analysis of covariance (ANCOVA)

Analysis of covariance (ANCOVA) is a linear model that blends ANOVA and linear regression. ANCOVA evaluates whether population means of a dependent variable (DV) are equal across levels of a categorical independent variable (IV) often called a treatment, while statistically controlling for the effects of other quantitative or continuous variables that are not of primary interest, known as covariates (CV). df = salary.copy() lm = smf.ols( salary ~experience , df).fit() df["residuals"] = lm.resid print("Jarque-Bera normality test p-value %.5f" % \ sm.stats.jarque_bera(lm.resid) [1]) ax = sns.displot(df, x= residuals , kind="kde", fill=True) ax = sns.displot(df, x= residuals , kind="kde", hue= management , fill=True) Jarque-Bera normality test p-value 0.04374

Normality assumption of the residuals can be rejected (p-value < 0.05). There is an efect of the "management" factor, take it into account.

One-way AN(C)OVA

• ANOVA: one categorical independent variable, i.e. one factor.

• ANCOVA: ANOVA with some covariates. 

Two-way AN(C)OVA

Ancova with two categorical independent variables, i.e. two factors. twoway = smf.ols( salary ~education + management + experience , df).fit() df["residuals"] = twoway.resid sns.displot(df, x= residuals , kind="kde", fill=True) print(sm.stats.anova_lm(twoway, typ=2)) print("Jarque-Bera normality test p-value %.3f" % \ sm.stats.jarque_bera(twoway.resid) [1]) ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- axis [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF].plot(range(n_features), tvals, o ) axis [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF].set_ylabel("t-value")

sum_sq df F PR ( 
axis [1].plot(range(n_features), pvals, o ) axis [1].axhline(y=0.05, color= red , linewidth=3, label="p-value=0.05") #axis [1].axhline(y=0.05, label="toto", color= red ) axis [1].set_ylabel("p-value") axis [1].legend() No correction, FP: 47 (expected: 45.00), TP: 71

Bonferroni correction for multiple comparisons

The Bonferroni correction is based on the idea that if an experimenter is testing 𝑃 hypotheses, then one way of maintaining the familywise error rate (FWER) is to test each individual hypothesis at a statistical significance level of 1/𝑃 times the desired maximum overall level. The False discovery rate (FDR) correction for multiple comparisons FDR-controlling procedures are designed to control the expected proportion of rejected null hypotheses that were incorrect rejections ("false discoveries"). FDR-controlling procedures provide less stringent control of Type I errors compared to the familywise error rate (FWER) controlling procedures (such as the Bonferroni correction), which control the probability of at least one Type I error. Thus, FDR-controlling procedures have greater power, at the cost of increased rates of Type I errors. 

Lab: Brain volumes study

The study provides the brain volumes of grey matter (gm), white matter (wm) and cerebrospinal fluid) (csf) of 808 anatomical MRI scans.

Manipulate data

Set the working directory within a directory called "brainvol" Create 2 subdirectories: data that will contain downloaded data and reports for results of the analysis.

import os import os.path import pandas as pd import tempfile import urllib.request WD = os.path.join(tempfile.gettempdir(), "brainvol") os.makedirs(WD, exist_ok=True) #os.chdir(WD) # use cookiecutter file organization # https://drivendata.github.io/cookiecutter-data-science/ os.makedirs(os.path.join(WD, "data"), exist_ok=True) #os.makedirs("reports", exist_ok=True)

Fetch data

• Demographic data demo.csv (columns: participant_id, site, group, age, sex) and tissue volume data: group is Control or Patient. site is the recruiting site.

• Gray matter volume gm.csv (columns: participant_id, session, gm_vol)

• White matter volume wm.csv (columns: participant_id, session, wm_vol)

• Cerebrospinal Fluid csf.csv (columns: participant_id, session, csf_vol) base_url = https://github.com/duchesnay/pystatsml/raw/master/datasets/brain_ ˓→volumes/%s data = dict() for file in ["demo.csv", "gm.csv", "wm.csv", "csf.csv"]: urllib.request.urlretrieve(base_url % file, os.path.join(WD, "data", file))

# Read all CSV in one line # dicts = {k: pd.read_csv(os.path.join(WD, "data", "%s.csv" % k)) # for k in ["demo", "gm", "wm", "csf"]} demo = pd.read_csv(os.path.join(WD, "data", "demo.csv")) gm = pd.read_csv(os.path.join(WD, "data", "gm.csv")) wm = pd.read_csv(os.path.join(WD, "data", "wm.csv")) csf = pd.read_csv(os.path.join(WD, "data", "csf.csv"))

(continued from previous page)

sheet_name= data ) # Round float at 2 decimals when printing pd.options.display.float_format = {:,.2f} .format Descriptive statistics Most of participants have several MRI sessions (column session) Select on rows from session one "ses-01" brain_vol1 = brain_vol[brain_vol.session == "ses-01"] # Check that there are no duplicates assert len(brain_vol1.participant_id.unique()) == len(brain_vol1.participant_id) 

Global

Statistics

Objectives:

1. Site effect of gray matter atrophy 2. Test the association between the age and gray matter atrophy in the control and patient population independently.

3. Test for differences of atrophy between the patients and the controls 4. Test for interaction between age and clinical status, ie: is the brain atrophy process in patient population faster than in the control population.

5. The effect of the medication in the patient population.

import statsmodels.api as sm import statsmodels.formula.api as smfrmla import scipy.stats import seaborn as sns

Site effect on Grey Matter atrophy

The model is Oneway Anova gm_f ~site The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid.

• The samples are independent.

• Each sample is from a normally distributed population.

• The population standard deviations of the groups are all equal. This property is known as homoscedasticity. ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- 

Plot
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Linear Mixed Models

Introduction

Quoted from [Brady et al. 2014]:A linear mixed model (LMM) is a parametric linear model for clustered, longitudinal, or repeated-measures data that quantifies the relationships between a continuous dependent variable and various predictor variables. An LMM may include both fixed-effect parameters associated with one or more continuous or categorical covariates and random effects associated with one or more random factors. The mix of fixed and random effects gives the linear mixed model its name. Whereas fixed-effect parameters describe the relationships of the covariates to the dependent variable for an entire population, random effects are specific to clusters or subjects within a population. LMM is closely related with hierarchical linear model (HLM).

Clustered/structured datasets

Quoted from [Bruin 2006]: Random effects, are used when there is non independence in the data, such as arises from a hierarchical structure with clustered data. For example, students could be sampled from within classrooms, or patients from within doctors. When there are multiple levels, such as patients seen by the same doctor, the variability in the outcome can be thought of as being either within group or between group. Patient level observations are not independent, as within a given doctor patients are more similar. Units sampled at the highest level (in our example, doctors) are independent.

The continuous outcome variables is structured or clustered into units within observations are not independents. Types of clustered data:

Mixed effects = fixed + random effects

Fixed effects may be associated with continuous covariates, such as weight, baseline test score, or socioeconomic status, which take on values from a continuous (or sometimes a multivalued ordinal) range, or with factors, such as gender or treatment group, which are categorical. Fixed effects are unknown constant parameters associated with either continuous covariates or the levels of categorical factors in an LMM. Estimation of these parameters in LMMs is generally of intrinsic interest, because they indicate the relationships of the covariates with the continuous outcome variable.

Random effect

When the levels of a factor can be thought of as having been sampled from a sample space, such that each particular level is not of intrinsic interest (e.g., classrooms or clinics that are randomly sampled from a larger population of classrooms or clinics), the effects associated with the levels of those factors can be modeled as random effects in an LMM. In contrast to fixed effects, which are represented by constant parameters in an LMM, random effects are represented by (unobserved) random variables, which are usually assumed to follow a normal distribution.

Random intercept

The score_parentedu_byclass dataset measure a score obtained by 60 students, indexed by 𝑖, within 3 classroom (with different teacher), indexed by 𝑗, given the education level edu of their parents. We want to study the link between score and edu. Observations, score are strutured by the sampling of classroom, see Fig below . score from the same classroom are are not indendant from each other: they shifted upward or backward thanks to a classroom or teacher effect. There is an intercept for each classroom. But this effect is not known given a student (unlike the age or the sex), it is a consequence of a random sampling of the classrooms. It 

Global fixed effect

Global effect regresses the the independant variable 𝑦 = score on the dependant variable 𝑥 = edu without considering the any classroom effect. For each individual 𝑖 the model is:

𝑦 𝑖𝑗 = 𝛽 0 + 𝛽 1 𝑥 𝑖𝑗 + 𝜀 𝑖𝑗 ,
where, 𝛽 0 is the global intercept, 𝛽 1 is the slope associated with edu and 𝜀 𝑖𝑗 is the random error at the individual level. Note that the classeroom, 𝑗 index is not taken into account by the model.

The general R formula is: y ~x which in this case is score ~edu. This model is:

• Not sensitive since it does not model the classroom effect (high standard error).

• Wrong because, residuals are not normals, and it considers samples from the same classroom to be indenpendant. ----------------------------------------------------------------------------- 

𝑦 𝑖𝑗 = 𝛽 0 + 𝛽 1 𝑥 𝑖𝑗 + 𝑢 𝑗 𝑧 𝑖𝑗 + 𝜀 𝑖𝑗 ,
where, 𝑢 𝑗 is the coefficient (an intercept, or a shift) associated with classroom 𝑗 and

𝑧 𝑖𝑗 = 1 if subject 𝑖 belongs to classroom 𝑗 else 𝑧 𝑖𝑗 = 0.
The general R formula is:

y ~x + z which in this case is score ~edu + classroom.
This model is:

• Sensitive since it does not model the classroom effect (lower standard error). But,

• questionable because it considers the classroom to have a fixed constant effect without any uncertainty. However, those classrooms have been sampled from a larger samples of classrooms within the country. ----------------------------------------------------------------------------- Fixed effect is the coeficient or parameter (𝛽 1 in the model) that is associated with a continuous covariates (age, education level, etc.) or (categorical) factor (sex, etc.) that is known without uncertainty once a subject is sampled.

Random effect, in contrast, is the coeficient or parameter (𝑢 𝑗 in the model below) that is associated with a continuous covariates or factor (classroom, individual, etc.) that is not known without uncertainty once a subject is sampled. It generally conrespond to some random sampling. Here the classroom effect depends on the teacher which has been sampled from a larger samples of classrooms within the country. Measures are structured by units or a clustering structure that is possibly hierarchical. Measures within units are not independant. Measures between top level units are independant.

There are multiple ways to deal with structured data with random effect. One simple approach is to aggregate.

Aggregation of data into independent units

Aggregation of measure at classroom level: average all values within classrooms to perform statistical analysis between classroom. 1. Level 1 (within unit): Average by classrom:

𝑥 𝑗 = mean 𝑖 (𝑥 𝑖𝑗 ), 𝑦 𝑗 = mean 𝑖 (𝑦 𝑖𝑗 ), for 𝑗 ∈ {1, 2, 3}.

Level 2 (between independant units)

Regress averaged score on a averaged edu:

𝑦 𝑗 = 𝛽 0 + 𝛽 1 𝑥 𝑗 + 𝜀 𝑗
. The general R formula is: y ~x which in this case is score ~edu.

This model is:

• Correct because the aggregated data are independent.

• Not sensitive since all the within classroom association between edu and is lost. Moreover, at the aggregate level, there would only be three data points. ----------------------------------------------------------------------------- [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF].set_title("Level 1: Average within classroom") sns.regplot(x="edu", y="score", data=agregate, ax=axes [1]) sns.scatterplot(x= edu , y= score , hue= classroom , data=agregate, ax=axes [1], s=150) axes [1].set_title("Level 2: Test between classroom") Text(0.5, 1.0, Level 2: Test between classroom )

Hierarchical/multilevel modeling

Another approach to hierarchical data is analyzing data from one unit at a time. Thus, we run three separate linear regressions -one for each classroom in the sample leading to three estimated parameters of the score vs edu association. Then the paramteres are tested across the classrooms:

1. Run three separate linear regressions -one for each classroom

𝑦 𝑖𝑗 = 𝛽 0𝑗 + 𝛽 1𝑗 𝑥 𝑖𝑗 + 𝜀 𝑖𝑗 , for 𝑗 ∈ {1, 2, 3}
The general R formula is: y ~x which in this case is score ~edu within classrooms.

Test across the classrooms if is the mean

𝑗 (𝛽 1𝑗 ) = 𝛽 0 ̸ = 0 : 𝛽 1𝑗 = 𝛽 0 + 𝜀 𝑗
The general R formula is: y ~1 which in this case is beta_edu ~1.

This model is:

• Correct because the invidividual estimated parameters are independent.

• sensitive since it allows to model differents slope for each classroom (see fixed interaction or random slope below). But it is but not optimally designed since there are many models, and each one does not take advantage of the information in data from other classroom. This can also make the results "noisy" in that the estimates from each model are not based on very much data ----------------------------------------------------------------------------- ) axes [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF].set_title("Level 1: Regressions within %s" % group) _ = sns.barplot(x=group, y="beta", hue=group, data=lv1, ax=axes [1]) axes [1].axhline(0, ls= --) axes [1].text(0, 0, "Null slope") axes [1].set_ylim(-.1, 0.2) _ = axes [1].set_title("Level 2: Test Slopes between classrooms")

#

Model the classroom random intercept: linear mixed model

Linear mixed models (also called multilevel models) can be thought of as a trade off between these two alternatives. The individual regressions has many estimates and lots of data, but is noisy. The aggregate is less noisy, but may lose important differences by averaging all samples within each classroom. LMMs are somewhere in between.

Model the classroom 𝑧 = classroom (as a random effect). For each individual 𝑖 and each classroom 𝑗 the model is:

𝑦 𝑖𝑗 = 𝛽 0 + 𝛽 1 𝑥 𝑖𝑗 + 𝑢 𝑗 𝑧 𝑖𝑗 + 𝜀 𝑖𝑗 ,
where, 𝑢 𝑗 is a random intercept following a normal distribution associated with classroom 𝑗.

The general R formula is: ---------------------------------------------------- ----------------------------------------------------- 

y ~x + (1|z)

Random slope

Now suppose that the classroom random effect is not just a vertical shift (random intercept) but that some teachers "compensate" or "amplify" educational disparity. The slope of the linear relation between score and edu for teachers that amplify will be larger. In the contrary, it will be smaller for teachers that compensate.

Model the classroom intercept and slode as a fixed effect: ANCOVA with interactions ----------------------------------------------------------------------------- The graphical representation of the model would be the same than the one provided for "Model a classroom intercept as a fixed effect: ANCOVA". The same slope (associated to edu) with different interpcept, depicted as dashed black lines. Moreover we added, as solid lines, the model's prediction that account different slopes. 

Model the classroom random intercept and slope with LMM

The model looks similar to the ANCOVA with interactions:

𝑦 𝑖𝑗 = 𝛽 0 + 𝛽 1 𝑥 𝑖𝑗 + 𝑢 1 𝑗 𝑧 𝑖𝑗 + 𝑢 𝛼 𝑗 𝑧 𝑖𝑗 𝑥 𝑖𝑗 + 𝜀 𝑖𝑗 , but:
• 𝑢 1 𝑗 is a random intercept associated with classroom 𝑗 following the same normal distribution for all classroom, 𝑢 1 𝑗 ∼ 𝒩 (0, 𝜎 1 ).

• 𝑢 𝛼

𝑗 is a random slope associated with classroom 𝑗 following the same normal distribution for all classroom, 𝑢 𝛼 𝑗 ∼ 𝒩 (0, 𝜎 𝛼 ).

Note the difference with linear model: the variances parameters (𝜎 1 , 𝜎 𝛼 ) should be estimated together with fixed effect (𝛽 0 + 𝛽 1 ) and random effect (𝑢 ------------------------------------------------------- -------------------------------------------------------- 

Random intercepts

1. LM-Global is wrong (consider residuals to be independent) and has a large error (RMSE, Root Mean Square Error) since it does not adjust for classroom effect.

2. ANCOVA-Inter is "wrong" (consider residuals to be independent) but it has a small error since it adjusts for classroom effect.

3. Aggregation is ok (units average are independent) but it has a very large error.

4. Hierarchical model is ok (unit average are independent) and it has a reasonable error (look at the statistic, not the RMSE).

LMM-Inter (with random intercept

) is ok (it models residuals non-independence) and it has a small error.

6. ANCOVA-Inter, Hierarchical model and LMM provide similar coefficients for the fixed effect. So if statistical significance is not the key issue, the "biased" ANCOVA is a reasonable choice.

7. Hierarchical and LMM with random intercept are the best options (unbiased and sensitive), with an advantage to LMM.

Random slopes

Modeling individual slopes in both ANCOVA-Full and LMM-Full decreased the statistics, suggesting that the supplementary regressors (one per classroom) do not significantly improve the fit of the model (see errors). 

Theory of Linear Mixed Models

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ Inter Edu 1 2 1 10 1 1 1 9 1 8 1 5 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎣ Fix 𝛽 0 𝛽 1 ⎤ ⎦ + ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ c1 c2 c3 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎣ Rand 𝑢 11 𝑢 12 𝑢 13 ⎤ ⎥ ⎥ ⎦ + ⎡ ⎣ Err 𝜖 1 𝜖 2 ⎤ ⎦
where u 1 = 𝑢 11 , 𝑢 12 , 𝑢 12 are the 3 parameters associated with the 3 level of the single random factor classroom.

This can be re-written in a more general form as:

y = X 𝑇 𝛽 + Z 𝑇 u + 𝜀,
where: -y is the 𝑁 × 1 vector of the 𝑁 observations. -X is the 𝑁 × 𝑃 design matrix, which represents the known values of the 𝑃 covariates for the 𝑁 observations. -𝛽 is a 𝑃 × 1 vector unknown regression coefficients (or fixed-effect parameters) associated with the 𝑃 covariates.

-𝜀 is a 𝑁 × 1 vector of residuals 𝜖 ∼ 𝒩 (0, R), where R is a 𝑁 × 𝑁 matrix. -Z is a 𝑁 × 𝑄 design matrix of random factors and covariates. In an LMM in which only the intercepts are assumed to vary randomly from 𝑄 units, the Z matrix would simply be 𝑄 columns of indicators 1 (if subject belong to unit q) or 0 otherwise. -u is a 𝑄 × 1 vector of 𝑄 random effects associated with the 𝑄 covariates in the Z matrix. Note that one random factor of 3 levels will be coded by 3 coefficients in u and 3 columns Z. u ∼ 𝒩 (0, D) where D is plays a central role of the covariance structures associated with the mixed effect.

Covariance structures of the residuals covariance matrix: :math: mathbf{R}

Many different covariance structures are possible for the R matrix. The simplest covariance matrix for R is the diagonal structure, in which the residuals associated with observations on the same subject are assumed to be uncorrelated and to have equal variance: R = 𝜎I 𝑁 . Note that in this case, the correlation between observation within unit stem from mixed effects, and will be encoded in the D below. However, other model exists: popular models are the compound symmetry and first-order autoregressive structure, denoted by AR (1).

Covariance structures associated with the mixed effect

Many different covariance structures are possible for the D matrix. The usual prartice associate a single variance parameter (a scalar, 𝜎 𝑘 ) to each random-effects factor 𝑘 (eg. classroom).

Hence D is simply parametrized by a set of scalars 𝜎 𝑘 , 𝑘 ∈ {1, 𝐾} for the 𝐾 random factors such the sum of levels of the 𝐾 factors equals 𝑄. In our case 𝐾 = 1 with 3 levels (𝑄 = 3), thus D = 𝜎 𝑘 I 𝑄 . Factors 𝑘 define 𝑘 variance components whose parameters 𝜎 𝑘 should be estimated addition to the variance of the model errors 𝜎. The 𝜎 𝑘 and 𝜎 will define the overall covariance structure: V, as define below.

In this model, the effect of a particular level (eg. classroom 0 c0) of a random factor is supposed to be sampled from a normal distritution of variance 𝜎 𝑘 . This is a crucial aspect of LMM which is related to ℓ 2 -regularization or Bayes Baussian prior. Indeed, the estimator of associated to each level 𝑢 𝑖 of a random effect is shrinked toward 0 since 𝑢 𝑖 ∼ 𝒩 (0, 𝜎 𝑘 ). Thus it tends to be smaller than the estimated effects would be if they were computed by treating a random factor as if it were fixed.

Overall covariance structure as variance components :math: mathbf{V}

The overall covariance structure can be obtained by:

V = ∑︁ 𝑘 𝜎 𝑘 ZZ ′ + R.
The ∑︀ 𝑘 𝜎 𝑘 ZZ ′ define the 𝑁 × 𝑁 variance structure, using 𝑘 variance components, modeling the non-independance between the observations. In our case with only one component we get:

V = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜎 𝑘 𝜎 𝑘 0 0 0 0 𝜎 𝑘 𝜎 𝑘 0 0 0 0 0 0 𝜎 𝑘 𝜎 𝑘 0 0 0 0 𝜎 𝑘 𝜎 𝑘 0 0 0 0 0 0 𝜎 𝑘 𝜎 𝑘 0 0 0 0 𝜎 𝑘 𝜎 𝑘 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ + ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜎 0 0 0 0 0 0 𝜎 0 0 0 0 0 0 𝜎 0 0 0 0 0 0 𝜎 0 0 0 0 0 0 𝜎 0 0 0 0 0 0 𝜎 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜎 𝑘 + 𝜎 𝜎 𝑘 0 0 0 0 𝜎 𝑘 𝜎 𝑘 + 𝜎 0 0 0 0 0 0 𝜎 𝑘 + 𝜎 𝜎 𝑘 0 0 0 0 𝜎 𝑘 𝜎 𝑘 + 𝜎 0 0 0 0 0 0 𝜎 𝑘 + 𝜎 𝜎 𝑘 0 0 0 0 𝜎 𝑘 𝜎 𝑘 + 𝜎 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
The model to be minimized

Here 𝜎 𝑘 and 𝜎 are called variance components of the model. Solving the problem constist in the estimation the fixed effect 𝛽 and the parameters 𝜎, 𝜎 𝑘 of the variance-covariance structure. This is obtained by minizing the The likelihood of the sample:

𝑙(y, 𝛽, 𝜎, 𝜎 𝑘 ) = 1 2𝜋 𝑛/2 det(V) 1/2 exp - 1 2 (y -X𝛽)V -1 (y -X𝛽)
LMM introduces the variance-covariance matrix V to reweigtht the residuals according to the non-independance between observations. If V is known, of. The optimal value of be can be obtained analytically using generalized least squares (GLS, minimisation of mean squared error associated with Mahalanobis metric):

β = X ′ V-1 X -1 X ′ V-1 y
In the general case, V is unknown, therefore iterative solvers should be use to estimate the fixed effect 𝛽 and the parameters (𝜎, 𝜎 𝑘 , . . .) of variance-covariance matrix V. The ML Maximum Likelihood estimates provide biased solution for V because they do not take into account the loss of degrees of freedom that results from estimating the fixed-effect parameters in 𝛽. For this reason, REML (restricted (or residual, or reduced) maximum likelihood) is often preferred to ML estimation.

Checking model assumptions (Diagnostics)

Residuals plotted against predicted values represents a random pattern or not.

These residual vs. fitted plots are used to verify model assumptions and to detect outliers and potentially influential observations. 

Multivariate statistics

Multivariate statistics includes all statistical techniques for analyzing samples made of two or more variables. The data set (a

𝑁 × 𝑃 matrix X) is a collection of 𝑁 independent samples column vectors [x 1 , . . . , x 𝑖 , . . . , x 𝑁 ] of length 𝑃 X = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -x 𝑇 1 - . . . -x 𝑇 𝑖 - . . . -x 𝑇 𝑃 - ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑥 11 • • • 𝑥 1𝑗 • • • 𝑥 1𝑃 . . . . . . . . . 𝑥 𝑖1 • • • 𝑥 𝑖𝑗 • • • 𝑥 𝑖𝑃 . . . . . . . . . 𝑥 𝑁 1 • • • 𝑥 𝑁 𝑗 • • • 𝑥 𝑁 𝑃 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑥 11 . . . 𝑥 1𝑃 . . . . . . X . . . . . . 𝑥 𝑁 1 . . . 𝑥 𝑁 𝑃 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 𝑁 ×𝑃
.

Linear Algebra Euclidean norm and distance

The Euclidean norm of a vector a ∈ R 𝑃 is denoted

‖a‖ 2 = ⎯ ⎸ ⎸ ⎷ 𝑃 ∑︁ 𝑖 𝑎 𝑖 2
The Euclidean distance between two vectors a, b ∈ R 𝑃 is

‖a -b‖ 2 = ⎯ ⎸ ⎸ ⎷ 𝑃 ∑︁ 𝑖 (𝑎 𝑖 -𝑏 𝑖 ) 2

Dot product and projection

Source: Wikipedia

Algebraic definition

The dot product, denoted ''•" of two 𝑃 -dimensional vectors a = [𝑎 1 , 𝑎 2 , ..., 𝑎 𝑃 ] and a = [𝑏 1 , 𝑏 2 , ..., 𝑏 𝑃 ] is defined as

a • b = a 𝑇 b = ∑︁ 𝑖 𝑎 𝑖 𝑏 𝑖 = [︀ 𝑎 1 . . . a 𝑇 . . . 𝑎 𝑃 ]︀ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑏 1 . . . b . . . 𝑏 𝑃 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
.

The Euclidean norm of a vector can be computed using the dot product, as

‖a‖ 2 = √ a • a.

Geometric definition: projection

In Euclidean space, a Euclidean vector is a geometrical object that possesses both a magnitude and a direction. A vector can be pictured as an arrow. Its magnitude is its length, and its direction is the direction that the arrow points. The magnitude of a vector a is denoted by ‖a‖ 2 . The dot product of two Euclidean vectors a and b is defined by

a • b = ‖a‖ 2 ‖b‖ 2 cos 𝜃,
where 𝜃 is the angle between a and b.

In particular, if a and b are orthogonal, then the angle between them is 90°and

a • b = 0.
At the other extreme, if they are codirectional, then the angle between them is 0°and

a • b = ‖a‖ 2 ‖b‖ 2
This implies that the dot product of a vector a by itself is

a • a = ‖a‖ 2 2 .
The scalar projection (or scalar component) of a Euclidean vector a in the direction of a Euclidean vector b is given by

𝑎 𝑏 = ‖a‖ 2 cos 𝜃,
where 𝜃 is the angle between a and b.

In terms of the geometric definition of the dot product, this can be rewritten 

𝑎 𝑏 = a • b ‖b‖ 2 ,

Mean vector

The mean (𝑃 × 1) column-vector 𝜇 whose estimator is

x = 1 𝑁 𝑁 ∑︁ 𝑖=1 x i = 1 𝑁 𝑁 ∑︁ 𝑖=1 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑥 𝑖1 . . . 𝑥 𝑖𝑗 . . . 𝑥 𝑖𝑃 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ x1 . . . x𝑗 . . . x𝑃 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
.

Covariance matrix

• The covariance matrix Σ XX is a symmetric positive semi-definite matrix whose element in the 𝑗, 𝑘 position is the covariance between the 𝑗 𝑡ℎ and 𝑘 𝑡ℎ elements of a random vector i.e. the 𝑗 𝑡ℎ and 𝑘 𝑡ℎ columns of X.

• The covariance matrix generalizes the notion of covariance to multiple dimensions.

• The covariance matrix describe the shape of the sample distribution around the mean assuming an elliptical distribution:

Σ XX = 𝐸(X -𝐸(X)) 𝑇 𝐸(X -𝐸(X)),
whose estimator S XX is a 𝑃 × 𝑃 matrix given by

S XX = 1 𝑁 -1 (X -1x 𝑇 ) 𝑇 (X -1x 𝑇 ).
If we assume that X is centered, i.e. X is replaced by X -1x 𝑇 then the estimator is

S XX = 1 𝑁 -1 X 𝑇 X = 1 𝑁 -1 ⎡ ⎢ ⎢ ⎢ ⎣ 𝑥 11 • • • 𝑥 𝑁 1 𝑥 1𝑗 • • • 𝑥 𝑁 𝑗 . . . . . . 𝑥 1𝑃 • • • 𝑥 𝑁 𝑃 ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎣ 𝑥 11 • • • 𝑥 1𝑘 𝑥 1𝑃 . . . . . . . . . 𝑥 𝑁 1 • • • 𝑥 𝑁 𝑘 𝑥 𝑁 𝑃 ⎤ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎣ 𝑠 1 . . . 𝑠 1𝑘 𝑠 1𝑃 . . . 𝑠 𝑗𝑘 . . . 𝑠 𝑘 𝑠 𝑘𝑃 𝑠 𝑃 ⎤ ⎥ ⎥ ⎥ ⎦
, where 

𝑠 𝑗𝑘 = 𝑠 𝑘𝑗 = 1 𝑁 -1 x j 𝑇 x k = 1 𝑁 -1 𝑁 ∑︁ 𝑖=1 𝑥 𝑖𝑗 𝑥 𝑖𝑘

Mahalanobis distance

• The Mahalanobis distance is a measure of the distance between two points x and 𝜇 where the dispersion (i.e. the covariance structure) of the samples is taken into account.

• The dispersion is considered through covariance matrix.

This is formally expressed as

𝐷 𝑀 (x, 𝜇) = √︁ (x -𝜇) 𝑇 Σ -1 (x -𝜇).

Intuitions

• Distances along the principal directions of dispersion are contracted since they correspond to likely dispersion of points.

• Distances othogonal to the principal directions of dispersion are dilated since they correspond to unlikely dispersion of points.

For example [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF]) plt.scatter(mean [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF], mean [1], color=colors [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF], s=200, label="mean") plt.scatter(x1 [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF], x1 [1], color=colors [1], s=200, label="x1") plt.scatter(x2 [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF], x2 [1], color=colors [mean [1], d2_m_x1 * vm_x1 [1]], color= k ) plt.plot([mean [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] -jitter, d2_m_x2 * vm_x2 [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] -jitter],

𝐷 𝑀 (1) = √ 1 𝑇 Σ -1
[mean [1], d2_m_x2 * vm_x2 [1]], color= k ) plt.plot([mean [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] + jitter, dm_m_x1 * vm_x1 [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] + jitter],

[mean [1], dm_m_x1 * vm_x1 [1]], color= r ) plt.plot([mean [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] + jitter, dm_m_x2 * vm_x2 [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] + jitter],

[mean [1], dm_m_x2 * vm_x2 If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is called a normalized Euclidean distance.

More generally, the Mahalanobis distance is a measure of the distance between a point x and a distribution 𝒩 (x|𝜇, Σ). It is a multi-dimensional generalization of the idea of measuring how many standard deviations away x is from the mean. This distance is zero if x is at the mean, and grows as x moves away from the mean: along each principal component axis, it measures the number of standard deviations from x to the mean of the distribution.

Multivariate normal distribution

The distribution, or probability density function (PDF) (sometimes just density), of a continuous random variable is a function that describes the relative likelihood for this random variable to take on a given value.

The multivariate normal distribution, or multivariate Gaussian distribution, of a 𝑃 -dimensional random vector

x = [𝑥 1 , 𝑥 2 , . . . , 𝑥 𝑃 ] 𝑇 is 𝒩 (x|𝜇, Σ) = 1 (2𝜋) 𝑃/2 |Σ| 1/2 exp{- 1 2 (x -𝜇) 𝑇 Σ -1 (x -𝜇)}.
import numpy as np import matplotlib.pyplot as plt import scipy.stats from scipy.stats import multivariate_normal from mpl_toolkits.mplot3d import Axes3D def multivariate_normal_pdf(X, mean, sigma): """Multivariate normal probability density function over X (n_samples x n_ 2. Compute the mean vector x and center X. Compare the estimated mean x to the true mean, 𝜇.

3. Compute the empirical covariance matrix S. Compare the estimated covariance matrix S to the true covariance matrix, Σ.

4. Compute S -1 (Sinv) the inverse of the covariance matrix by using scipy.linalg.inv(S).

5. Write a function mahalanobis(x, xbar, Sinv) that computes the Mahalanobis distance of a vector x to the mean, x.

6. Compute the Mahalanobis and Euclidean distances of each sample x 𝑖 to the mean x. Store the results in a 100 × 2 dataframe.

Time series in python

Two libraries:

• Pandas: https://pandas.pydata.org/pandas-docs/stable/timeseries.html

• scipy http://www.statsmodels.org/devel/tsa.html

Stationarity

A TS is said to be stationary if its statistical properties such as mean, variance remain constant over time.

• constant mean

• constant variance

• an autocovariance that does not depend on time.

what is making a TS non-stationary. There are 2 major reasons behind non-stationaruty of a TS:

1. Trend -varying mean over time. For eg, in this case we saw that on average, the number of passengers was growing over time.

2. Seasonality -variations at specific time-frames. eg people might have a tendency to buy cars in a particular month because of pay increment or festivals. 

Pandas time series data structure

Time series analysis of Google trends

source: https://www.datacamp.com/community/tutorials/time-series-analysis-tutorial Get Google Trends data of keywords such as 'diet' and 'gym' and see how they vary over time while learning about trends and seasonality in time series data.

In the Facebook Live code along session on the 4th of January, we checked out Google trends data of keywords 'diet', 'gym' and 'finance' to see how they vary over time. We asked ourselves if there could be more searches for these terms in January when we're all trying to turn over a new leaf?

In this tutorial, you'll go through the code that we put together during the session step by step. You're not going to do much mathematics but you are going to do the following:

• Read data 'diet' and 'gym' are negatively correlated! Remember that you have a seasonal and a trend component. From the correlation coefficient, 'diet' and 'gym' are negatively correlated:

• trends components are negatively correlated.

• seasonal components would positively correlated and their

The actual correlation coefficient is actually capturing both of those.

Seasonal correlation: correlation of the first-order differences of these time series 

Autocorrelation

A time series is periodic if it repeats itself at equally spaced intervals, say, every 12 months. Autocorrelation Function (ACF): It is a measure of the correlation between the TS with a lagged version of itself. For instance at lag 5, ACF would compare series at time instant t1. . . t2 with series at instant t1-5. . . t2-5 (t1-5 and t2 being end points). 

Time series forecasting with Python using Autoregressive Moving Average (ARMA) models

Source:

• https://www.packtpub.com/mapt/book/big_data_and_business_intelligence/ 9781783553358/7/ch07lvl1sec77/arma-models

• http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model

• ARIMA: https://www.analyticsvidhya.com/blog/2016/02/ time-series-forecasting-codes-python/ ARMA models are often used to forecast a time series. These models combine autoregressive and moving average models. In moving average models, we assume that a variable is the sum of the mean of the time series and a linear combination of noise components.

The autoregressive and moving average models can have different orders. In general, we can define an ARMA model with p autoregressive terms and q moving average terms as follows:

𝑥 𝑡 = 𝑝 ∑︁ 𝑖 𝑎 𝑖 𝑥 𝑡-𝑖 + 𝑞 ∑︁ 𝑖 𝑏 𝑖 𝜀 𝑡-𝑖 + 𝜀 𝑡

Choosing p and q

Plot the partial autocorrelation functions for an estimate of p, and likewise using the autocorrelation functions for an estimate of q.

Partial Autocorrelation Function (PACF): This measures the correlation between the TS with a lagged version of itself but after eliminating the variations already explained by the intervening comparisons. Eg at lag 5, it will check the correlation but remove the effects already explained by lags 1 to 4. In this plot, the two dotted lines on either sides of 0 are the confidence interevals. These can be used to determine the p and q values as:

• p: The lag value where the PACF chart crosses the upper confidence interval for the first time, in this case p=1.

• q: The lag value where the ACF chart crosses the upper confidence interval for the first time, in this case q=1.

Fit ARMA model with statsmodels

1. Define the model by calling ARMA() and passing in the p and q parameters.

2. The model is prepared on the training data by calling the fit() function. ----------------------------------------------------------------------------- ----------------------------------------------------------------------------AR ---------------------------------------------------------------------------- 

Predictions can be

Introduction

In machine learning and statistics, dimensionality reduction or dimension reduction is the process of reducing the number of features under consideration, and can be divided into feature selection (not addressed here) and feature extraction.

Feature extraction starts from an initial set of measured data and builds derived values (features) intended to be informative and non-redundant, facilitating the subsequent learning and generalization steps, and in some cases leading to better human interpretations. Feature extraction is related to dimensionality reduction.

The input matrix X, of dimension 𝑁 × 𝑃 , is

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑥 11 . . . 𝑥 1𝑃 . . . X . . . 𝑥 𝑁 1 . . . 𝑥 𝑁 𝑃 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
where the rows represent the samples and columns represent the variables. The goal is to learn a transformation that extracts a few relevant features.

Models:

1. Linear matrix decomposition/factorisation SVD/PCA. Those models exploit the covariance Σ XX between the input features.

2. Non-linear models based on manifold learning: Isomap, t-SNE. Those models

Singular value decomposition and matrix factorization

Matrix factorization principles

Decompose the data matrix X 𝑁 ×𝑃 into a product of a mixing matrix U 𝑁 ×𝐾 and a dictionary matrix V 𝑃 ×𝐾 .

X = UV 𝑇 ,
If we consider only a subset of components 𝐾 < 𝑟𝑎𝑛𝑘(X) < min(𝑃, 𝑁 -1) , X is approximated by a matrix X:

X ≈ X = UV 𝑇 ,
Each line of x i is a linear combination (mixing u i ) of dictionary items V.

𝑁 𝑃 -dimensional data points lie in a space whose dimension is less than 𝑁 -1 (2 dots lie on a line, 3 on a plane, etc.).

Fig. 1: Matrix factorization

Singular value decomposition (SVD) principles

Singular-value decomposition (SVD) factorises the data matrix X 𝑁 ×𝑃 into a product:

X = UDV 𝑇 , where ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑥 11 𝑥 1𝑃 X 𝑥 𝑁 1 𝑥 𝑁 𝑃 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑢 11 𝑢 1𝐾 U 𝑢 𝑁 1 𝑢 𝑁 𝐾 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎣ 𝑑 1 0 D 0 𝑑 𝐾 ⎤ ⎦ ⎡ ⎣ 𝑣 11 𝑣 1𝑃 V 𝑇 𝑣 𝐾1 𝑣 𝐾𝑃 ⎤ ⎦ .
U: right-singular

• V = [v 1 , • • • , v 𝐾 ] is a 𝑃 × 𝐾 orthogonal matrix.
• It is a dictionary of patterns to be combined (according to the mixing coefficients) to reconstruct the original samples.

• V perfoms the initial rotations (projection) along the 𝐾 = min(𝑁, 𝑃 ) principal component directions, also called loadings.

• Each v 𝑗 performs the linear combination of the variables that has maximum sample variance, subject to being uncorrelated with the previous v 𝑗-1 .

D: singular values

• D is a 𝐾 × 𝐾 diagonal matrix made of the singular values of X with

𝑑 1 ≥ 𝑑 2 ≥ • • • ≥ 𝑑 𝐾 ≥ 0.
• D scale the projection along the coordinate axes by 𝑑 1 , 𝑑 2 , • • • , 𝑑 𝐾 .

• Singular values are the square roots of the eigenvalues of X 𝑇 X.

V: left-singular vectors

• U = [u 1 , • • • , u 𝐾 ] is an 𝑁 × 𝐾 orthogonal matrix.
• Each row v i provides the mixing coefficients of dictionary items to reconstruct the sample x i

• It may be understood as the coordinates on the new orthogonal basis (obtained after the initial rotation) called principal components in the PCA.

SVD for variables transformation

V transforms correlated variables (X) into a set of uncorrelated ones (UD) that better expose the various relationships among the original data items.

X = UDV 𝑇 , (5.1) 
XV = UDV 𝑇 V, (5.2) 
XV = UDI, (5.3) 
XV = UD (5.4)
At the same time, SVD is a method for identifying and ordering the dimensions along which data points exhibit the most variation. 

import

Principal components analysis (PCA)

Sources:

• C. M. Bishop Pattern Recognition and Machine Learning, Springer, 2006

• Everything you did and didn't know about PCA

• Principal Component Analysis in 3 Simple Steps

Principles

• Principal components analysis is the main method used for linear dimension reduction.

• The idea of principal component analysis is to find the 𝐾 principal components directions (called the loadings) V 𝐾×𝑃 that capture the variation in the data as much as possible.

• It converts a set of 𝑁 𝑃 -dimensional observations N 𝑁 ×𝑃 of possibly correlated variables into a set of 𝑁 𝐾-dimensional samples C 𝑁 ×𝐾 , where the 𝐾 < 𝑃 . The new variables are linearly uncorrelated. The columns of C 𝑁 ×𝐾 are called the principal components.

• The dimension reduction is obtained by using only 𝐾 < 𝑃 components that exploit correlation (covariance) among the original variables.

• PCA is mathematically defined as an orthogonal linear transformation V 𝐾×𝑃 that transforms the data to a new coordinate system such that the greatest variance by some projection of the data comes to lie on the first coordinate (called the first principal component), the second greatest variance on the second coordinate, and so on.

C 𝑁 ×𝐾 = X 𝑁 ×𝑃 V 𝑃 ×𝐾
• PCA can be thought of as fitting a 𝑃 -dimensional ellipsoid to the data, where each axis of the ellipsoid represents a principal component. If some axis of the ellipse is small, then the variance along that axis is also small, and by omitting that axis and its corresponding principal component from our representation of the dataset, we lose only a commensurately small amount of information.

• Finding the 𝐾 largest axes of the ellipse will permit to project the data onto a space having dimensionality 𝐾 < 𝑃 while maximizing the variance of the projected data.

Dataset preprocessing

Centering

Consider a data matrix, X , with column-wise zero empirical mean (the sample mean of each column has been shifted to zero), ie. X is replaced by X -1x 𝑇 .

Standardizing

Optionally, standardize the columns, i.e., scale them by their standard-deviation. Without standardization, a variable with a high variance will capture most of the effect of the PCA. The principal direction will be aligned with this variable. Standardization will, however, raise noise variables to the save level as informative variables.

The covariance matrix of centered standardized data is the correlation matrix.

Eigendecomposition of the data covariance matrix

To begin with, consider the projection onto a one-dimensional space (𝐾 = 1). We can define the direction of this space using a 𝑃 -dimensional vector v, which for convenience (and without loss of generality) we shall choose to be a unit vector so that ‖v‖ 2 = 1 (note that we are only interested in the direction defined by v, not in the magnitude of v itself). PCA consists of two mains steps:

Projection in the directions that capture the greatest variance

Each 𝑃 -dimensional data point x 𝑖 is then projected onto v, where the coordinate (in the coordinate system of v) is a scalar value, namely x 𝑇 𝑖 v. I.e., we want to find the vector v that maximizes these coordinates along v, which we will see corresponds to maximizing the variance of the projected data. This is equivalently expressed as

v = arg max ‖v‖=1 1 𝑁 ∑︁ 𝑖 (︀ x 𝑇 𝑖 v )︀ 2 .
We can write this in matrix form as

v = arg max ‖v‖=1 1 𝑁 ‖Xv‖ 2 = 1 𝑁 v 𝑇 X 𝑇 Xv = v 𝑇 S XX v,
where S XX is a biased estiamte of the covariance matrix of the data, i.e.

S XX = 1 𝑁 X 𝑇 X.
We now maximize the projected variance v 𝑇 S XX v with respect to v. Clearly, this has to be a constrained maximization to prevent ‖v 2 ‖ → ∞. The appropriate constraint comes from the normalization condition ‖v‖ 2 ≡ ‖v‖ 2 2 = v 𝑇 v = 1. To enforce this constraint, we introduce a Lagrange multiplier that we shall denote by 𝜆, and then make an unconstrained maximization of

v 𝑇 S XX v -𝜆(v 𝑇 v -1).
By setting the gradient with respect to v equal to zero, we see that this quantity has a stationary point when

S XX v = 𝜆v.
We note that v is an eigenvector of S XX .

If we left-multiply the above equation by v 𝑇 and make use of v 𝑇 v = 1, we see that the variance is given by

v 𝑇 S XX v = 𝜆,
and so the variance will be at a maximum when v is equal to the eigenvector corresponding to the largest eigenvalue, 𝜆. This eigenvector is known as the first principal component.

We can define additional principal components in an incremental fashion by choosing each new direction to be that which maximizes the projected variance amongst all possible directions that are orthogonal to those already considered. If we consider the general case of a 𝐾-dimensional projection space, the optimal linear projection for which the variance of the projected data is maximized is now defined by the 𝐾 eigenvectors, v 1 , . . . , v K , of the data covariance matrix S XX that corresponds to the 𝐾 largest eigenvalues,

𝜆 1 ≥ 𝜆 2 ≥ • • • ≥ 𝜆 𝐾 .

Back to SVD

The sample covariance matrix of centered data X is given by

S XX = 1 𝑁 -1 X 𝑇 X.
We rewrite X 𝑇 X using the SVD decomposition of X as

X 𝑇 X = (UDV 𝑇 ) 𝑇 (UDV 𝑇 ) = VD 𝑇 U 𝑇 UDV 𝑇 = VD 2 V 𝑇 V 𝑇 X 𝑇 XV = D 2 1 𝑁 -1 V 𝑇 X 𝑇 XV = 1 𝑁 -1 D 2 V 𝑇 S XX V = 1 𝑁 -1 D 2 .
Considering only the 𝑘 𝑡ℎ right-singular vectors v 𝑘 associated to the singular value

𝑑 𝑘 v k 𝑇 S XX v k = 1 𝑁 -1 𝑑 2 𝑘 ,
It turns out that if you have done the singular value decomposition then you already have the Eigenvalue decomposition for X 𝑇 X. Where -The eigenvectors of S XX are equivalent to the right singular vectors, V, of X. -The eigenvalues, 𝜆 𝑘 , of S XX , i.e. the variances of the components, are equal to 1 𝑁 -1 times the squared singular values, 𝑑 𝑘 . Moreover computing PCA with SVD do not require to form the matrix X 𝑇 X, so computing the SVD is now the standard way to calculate a principal components analysis from a data matrix, unless only a handful of components are required.

PCA outputs

The SVD or the eigendecomposition of the data covariance matrix provides three main quantities:

1. Principal component directions or loadings are the eigenvectors of X 𝑇 X. The V 𝐾×𝑃 or the right-singular vectors of an SVD of X are called principal component directions of X. They are generally computed using the SVD of X.

2. Principal components is the 𝑁 × 𝐾 matrix C which is obtained by projecting X onto the principal components directions, i.e.

C 𝑁 ×𝐾 = X 𝑁 ×𝑃 V 𝑃 ×𝐾 .
Since X = UDV 𝑇 and V is orthogonal (V 𝑇 V = I):

C 𝑁 ×𝐾 = UDV 𝑇 𝑁 ×𝑃 V 𝑃 ×𝐾 (5.5) 
C 𝑁 ×𝐾 = UD 𝑇 𝑁 ×𝐾 I 𝐾×𝐾 (5.6)

C 𝑁 ×𝐾 = UD 𝑇 𝑁 ×𝐾
(5.7)

(5.8)

Thus c 𝑗 = Xv 𝑗 = u 𝑗 𝑑 𝑗 , for 𝑗 = 1, . . . 𝐾. Hence u 𝑗 is simply the projection of the row vectors of X, i.e., the input predictor vectors, on the direction v 𝑗 , scaled by 𝑑 𝑗 . 

c 1 = ⎡ ⎢ ⎢ ⎢ ⎣ 𝑥 1,1 𝑣 1,1 + . . . + 𝑥 1,𝑃 𝑣 1,𝑃 𝑥 2,
𝑣𝑎𝑟(c 𝑘 ) = 1 𝑁 -1 (Xv 𝑘 ) 2 (5.9) = 1 𝑁 -1 (u 𝑘 𝑑 𝑘 ) 2 (5.10) = 1 𝑁 -1 𝑑 2 𝑘 (5.11)

Determining the number of PCs

We must choose 𝐾 * ∈ [1, . . . , 𝐾], the number of required components. This can be done by calculating the explained variance ratio of the 𝐾 * first components and by choosing 𝐾 * such that the cumulative explained variance ratio is greater than some given threshold (e.g., ≈ 90%). This is expressed as

cumulative explained variance(c 𝑘 ) = ∑︀ 𝐾 * 𝑗 𝑣𝑎𝑟(c 𝑘 ) ∑︀ 𝐾 𝑗 𝑣𝑎𝑟(c 𝑘 )
.

Interpretation and visualization

PCs

Plot the samples projeted on first the principal components as e.g. PC1 against PC2.

PC directions

Exploring the loadings associated with a component provides the contribution of each original variable in the component.

Remark: The loadings (PC directions) are the coefficients of multiple regression of PC on original variables: c = Xv (5.12) • fit(X) that estimates the data mean, principal components directions V and the explained variance of each component.

X 𝑇 c = X 𝑇 Xv (5.13) (X 𝑇 X) -1 X 𝑇 c = v (5.
• transform(X) that projects the data onto the principal components.

Check that your BasicPCA gave similar results, compared to the results from sklearn.

Apply your Basic PCA on the iris dataset

The data set is available at: https://github.com/duchesnay/pystatsml/raw/master/datasets/ iris.csv

• Describe the data set. Should the dataset been standardized?

• Describe the structure of correlations among variables.

• Compute a PCA with the maximum number of components.

• Compute the cumulative explained variance ratio. Determine the number of components 𝐾 by your computed values.

• Print the 𝐾 principal components directions and correlations of the 𝐾 principal components with the original variables. Interpret the contribution of the original variables into the PC.

• Plot the samples projected into the 𝐾 first PCs.

• Color samples by their species.

Run scikit-learn examples

Load the notebook or python file at the end of each examples

• Faces dataset decompositions

• Faces recognition example using eigenfaces and SVMs

Manifold learning: non-linear dimension reduction

Sources:

• Scikit-learn documentation

• Wikipedia

Nonlinear dimensionality reduction or manifold learning cover unsupervised methods that attempt to identify low-dimensional manifolds within the original 𝑃 -dimensional space that represent high data density. Then those methods provide a mapping from the high-dimensional space to the low-dimensional embedding.

Multi-dimensional Scaling (MDS)

Resources:

• The purpose of MDS is to find a low-dimensional projection of the data in which the pairwise distances between data points is preserved, as closely as possible (in a least-squares sense).

• Let D be the (𝑁 × 𝑁 ) pairwise distance matrix where 𝑑 𝑖𝑗 is a distance between points 𝑖 and 𝑗.

• The MDS concept can be extended to a wide variety of data types specified in terms of a similarity matrix.

Given the dissimilarity (distance) matrix D 𝑁 ×𝑁 = [𝑑 𝑖𝑗 ], MDS attempts to find 𝐾-dimensional projections of the 𝑁 points x 1 , . . . , x 𝑁 ∈ R 𝐾 , concatenated in an X 𝑁 ×𝐾 matrix, so that 𝑑 𝑖𝑗 ≈ ‖x 𝑖 -x 𝑗 ‖ are as close as possible. This can be obtained by the minimization of a loss function called the stress function

stress(X) = ∑︁ 𝑖̸ =𝑗 (𝑑 𝑖𝑗 -‖x 𝑖 -x 𝑗 ‖) 2 .
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This loss function is known as least-squares or Kruskal-Shepard scaling.

A modification of least-squares scaling is the Sammon mapping

stress Sammon (X) = ∑︁ 𝑖̸ =𝑗 (𝑑 𝑖𝑗 -‖x 𝑖 -x 𝑗 ‖) 2 𝑑 𝑖𝑗 .
The Sammon mapping performs better at preserving small distances compared to the leastsquares scaling.

Classical multidimensional scaling

Also known as principal coordinates analysis, PCoA.

• The distance matrix, D, is transformed to a similarity matrix, B, often using centered inner products.

• The loss function becomes

stress classical (X) = ∑︁ 𝑖̸ =𝑗 (︀ 𝑏 𝑖𝑗 -⟨x 𝑖 , x 𝑗 ⟩ )︀ 2 .
• The stress function in classical MDS is sometimes called strain.

• The solution for the classical MDS problems can be found from the eigenvectors of the similarity matrix.

• If the distances in D are Euclidean and double centered inner products are used, the results are equivalent to PCA.

Example

The 

Exercises

Apply MDS from sklearn on the iris dataset available at: https://github.com/duchesnay/pystatsml/raw/master/datasets/iris.csv

• Center and scale the dataset.

• Compute Euclidean pairwise distances matrix.

• Select the number of components.

• Show that classical MDS on Euclidean pairwise distances matrix is equivalent to PCA.

Manifold learning

Dataset S curve: import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import manifold, datasets X, color = datasets.make_s_curve(1000, random_state=42)

Isomap

Isomap is a nonlinear dimensionality reduction method that combines a procedure to compute the distance matrix with MDS. The distances calculation is based on geodesic distances evaluated on neighborhood graph:

1. Determine the neighbors of each point. All points in some fixed radius or K nearest neighbors.

2. Construct a neighborhood graph. Each point is connected to other if it is a K nearest neighbor. Edge length equal to Euclidean distance.

3. Compute shortest path between pairwise of points 𝑑 𝑖𝑗 to build the distance matrix D.

Apply MDS on D.

isomap = manifold.Isomap(n_neighbors=10, n_components=2) X_isomap = isomap.fit_transform(X)

t-SNE

Sources:

• Wikipedia

• scikit-learn Principles 1. Construct a (Gaussian) probability distribution between pairs of object in input (highdimensional) space.

2. Construct a (student) ) probability distribution between pairs of object in embeded (lowdimensional) space. 

Minimize the

Exercises

Run Manifold learning on handwritten digits: Locally Linear Embedding, Isomap with scikitlearn

Clustering

Wikipedia: Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). Clustering is one of the main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics.

Sources: http://scikit-learn.org/stable/modules/clustering.html

K-means clustering

Source: C. M. Bishop Pattern Recognition and Machine Learning, Springer, 2006

Suppose we have a data set 𝑋 = {𝑥 1 , • • • , 𝑥 𝑁 } that consists of 𝑁 observations of a random 𝐷-dimensional Euclidean variable 𝑥. Our goal is to partition the data set into some number, 𝐾, of clusters, where we shall suppose for the moment that the value of 𝐾 is given. Intuitively, we might think of a cluster as comprising a group of data points whose inter-point distances are small compared to the distances to points outside of the cluster. We can formalize this notion by first introducing a set of 𝐷-dimensional vectors 𝜇 𝑘 , where 𝑘 = 1, . . . , 𝐾, in which 𝜇 𝑘 is a prototype associated with the 𝑘 𝑡ℎ cluster. As we shall see shortly, we can think of the 𝜇 𝑘 as representing the centres of the clusters. Our goal is then to find an assignment of data points to clusters, as well as a set of vectors {𝜇 𝑘 }, such that the sum of the squares of the distances of each data point to its closest prototype vector 𝜇 𝑘 , is at a minimum.

It is convenient at this point to define some notation to describe the assignment of data points to clusters. For each data point 𝑥 𝑖 , we introduce a corresponding set of binary indicator variables 𝑟 𝑖𝑘 ∈ {0, 1}, where 𝑘 = 1, . . . , 𝐾, that describes which of the 𝐾 clusters the data point 𝑥 𝑖 is assigned to, so that if data point 𝑥 𝑖 is assigned to cluster 𝑘 then 𝑟 𝑖𝑘 = 1, and 𝑟 𝑖𝑗 = 0 for 𝑗 ̸ = 𝑘. This is known as the 1-of-𝐾 coding scheme. We can then define an objective function, denoted inertia, as

𝐽(𝑟, 𝜇) = 𝑁 ∑︁ 𝑖 𝐾 ∑︁ 𝑘 𝑟 𝑖𝑘 ‖𝑥 𝑖 -𝜇 𝑘 ‖ 2 2
which represents the sum of the squares of the Euclidean distances of each data point to its assigned vector 𝜇 𝑘 . Our goal is to find values for the {𝑟 𝑖𝑘 } and the {𝜇 𝑘 } so as to minimize the function 𝐽. We can do this through an iterative procedure in which each iteration involves two successive steps corresponding to successive optimizations with respect to the 𝑟 𝑖𝑘 and the 𝜇 𝑘 . First we choose some initial values for the 𝜇 𝑘 . Then in the first phase we minimize 𝐽 with respect to the 𝑟 𝑖𝑘 , keeping the 𝜇 𝑘 fixed. In the second phase we minimize 𝐽 with respect to the 𝜇 𝑘 , keeping 𝑟 𝑖𝑘 fixed. This two-stage optimization process is then repeated until convergence. We shall see that these two stages of updating 𝑟 𝑖𝑘 and 𝜇 𝑘 correspond respectively to the expectation (E) and maximization (M) steps of the expectation-maximisation (EM) algorithm, and to emphasize this we shall use the terms E step and M step in the context of the 𝐾-means algorithm.

Consider first the determination of the 𝑟 𝑖𝑘 . Because 𝐽 in is a linear function of 𝑟 𝑖𝑘 , this optimization can be performed easily to give a closed form solution. The terms involving different 𝑖 are independent and so we can optimize for each 𝑖 separately by choosing 𝑟 𝑖𝑘 to be 1 for whichever value of 𝑘 gives the minimum value of ||𝑥 𝑖 -𝜇 𝑘 || 2 . In other words, we simply assign the 𝑖th data point to the closest cluster centre. More formally, this can be expressed as The denominator in this expression is equal to the number of points assigned to cluster 𝑘, and so this result has a simple interpretation, namely set 𝜇 𝑘 equal to the mean of all of the data points 𝑥 𝑖 assigned to cluster 𝑘. For this reason, the procedure is known as the 𝐾-means algorithm.

𝑟 𝑖𝑘 = {︃ 1, if 𝑘 = arg min 𝑗 ||𝑥 𝑖 -𝜇 𝑗 || 2 . 0,
The two phases of re-assigning data points to clusters and re-computing the cluster means are repeated in turn until there is no further change in the assignments (or until some maximum number of iterations is exceeded). Because each phase reduces the value of the objective function 𝐽, convergence of the algorithm is assured. However, it may converge to a local rather than global minimum of 𝐽. • Analyse the plot above visually. What would a good value of 𝐾 be?

from
• If you instead consider the inertia, the value of 𝐽, what would a good value of 𝐾 be?

• Explain why there is such difference.

• For 𝐾 = 2 why did 𝐾-means clustering not find the two "natural" clusters? See the assumptions of 𝐾-means: See sklearn doc.

Re-implement the 𝐾-means clustering algorithm (homework)

Write a function kmeans(X, K) that return an integer vector of the samples' labels.

Gaussian mixture models

The Gaussian mixture model (GMM) is a simple linear superposition of Gaussian components over the data, aimed at providing a rich class of density models. We turn to a formulation of Gaussian mixtures in terms of discrete latent variables: the 𝐾 hidden classes to be discovered.

Differences compared to 𝐾-means:

• Whereas the 𝐾-means algorithm performs a hard assignment of data points to clusters, in which each data point is associated uniquely with one cluster, the GMM algorithm makes a soft assignment based on posterior probabilities.

• Whereas the classic 𝐾-means is only based on Euclidean distances, classic GMM use a Mahalanobis distances that can deal with non-spherical distributions. It should be noted that Mahalanobis could be plugged within an improved version of 𝐾-Means clustering. The Mahalanobis distance is unitless and scale-invariant, and takes into account the correlations of the data set.

The Gaussian mixture distribution can be written as a linear superposition of 𝐾 Gaussians in the form:

𝑝(𝑥) = 𝐾 ∑︁ 𝑘=1 𝒩 (𝑥 | 𝜇 𝑘 , Σ 𝑘 )𝑝(𝑘),
where:

• The 𝑝(𝑘) are the mixing coefficients also know as the class probability of class 𝑘, and they sum to one:

∑︀ 𝐾 𝑘=1 𝑝(𝑘) = 1. • 𝒩 (𝑥 | 𝜇 𝑘 , Σ 𝑘 ) = 𝑝(𝑥 | 𝑘)
is the conditional distribution of 𝑥 given a particular class 𝑘. It is the multivariate Gaussian distribution defined over a 𝑃 -dimensional vector 𝑥 of continuous variables.

The goal is to maximize the log-likelihood of the GMM:

ln 𝑁 ∏︁ 𝑖=1 𝑝(𝑥 𝑖 ) = ln 𝑁 ∏︁ 𝑖=1 {︃ 𝐾 ∑︁ 𝑘=1 𝒩 (𝑥 𝑖 | 𝜇 𝑘 , Σ 𝑘 )𝑝(𝑘) }︃ = 𝑁 ∑︁ 𝑖=1 ln {︃ 𝐾 ∑︁ 𝑘=1 𝒩 (𝑥 𝑖 | 𝜇 𝑘 , Σ 𝑘 )𝑝(𝑘)
}︃ .

To compute the classes parameters: 𝑝(𝑘), 𝜇 𝑘 , Σ 𝑘 we sum over all samples, by weighting each sample 𝑖 by its responsibility or contribution to class 𝑘: 𝑝(𝑘 | 𝑥 𝑖 ) such that for each point its contribution to all classes sum to one

∑︀ 𝑘 𝑝(𝑘 | 𝑥 𝑖 ) = 1.
This contribution is the conditional probability of class 𝑘 given 𝑥: 𝑝(𝑘 | 𝑥) (sometimes called the posterior). It can be computed using Bayes' rule:

𝑝(𝑘 | 𝑥) = 𝑝(𝑥 | 𝑘)𝑝(𝑘) 𝑝(𝑥) (5.16) = 𝒩 (𝑥 | 𝜇 𝑘 , Σ 𝑘 )𝑝(𝑘) ∑︀ 𝐾 𝑘=1 𝒩 (𝑥 | 𝜇 𝑘 , Σ 𝑘 )𝑝(𝑘)
(5.17)

Since the class parameters, 𝑝(𝑘), 𝜇 𝑘 and Σ 𝑘 , depend on the responsibilities 𝑝(𝑘 | 𝑥) and the responsibilities depend on class parameters, we need a two-step iterative algorithm: the expectation-maximization (EM) algorithm. We discuss this algorithm next.

### The expectation-maximization (EM) algorithm for Gaussian mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the parameters (comprised of the means and covariances of the components and the mixing coefficients).

Initialize the means 𝜇 𝑘 , covariances Σ 𝑘 and mixing coefficients 𝑝(𝑘) marker="o", s=100, facecolor="w", linewidth=2) _ = plt.title("K=4") Models of covariances: parmeter covariance_type see Sklearn doc. K-means is almost a GMM with spherical covariance.

Model selection

Bayesian information criterion

In statistics, the Bayesian information criterion (BIC) is a criterion for model selection among a finite set of models; the model with the lowest BIC is preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC). 

Hierarchical clustering

Hierarchical clustering is an approach to clustering that build hierarchies of clusters in two main approaches:

• Agglomerative: A bottom-up strategy, where each observation starts in their own cluster, and pairs of clusters are merged upwards in the hierarchy.

• Divisive: A top-down strategy, where all observations start out in the same cluster, and then the clusters are split recursively downwards in the hierarchy.

In order to decide which clusters to merge or to split, a measure of dissimilarity between clusters is introduced. More specific, this comprise a distance measure and a linkage criterion. The distance measure is just what it sounds like, and the linkage criterion is essentially a function of the distances between points, for instance the minimum distance between points in two clusters, the maximum distance between points in two clusters, the average distance between points in two clusters, etc. One particular linkage criterion, the Ward criterion, will be discussed next.

Ward clustering

Ward clustering belongs to the family of agglomerative hierarchical clustering algorithms. This means that they are based on a "bottoms up" approach: each sample starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.

In Ward clustering, the criterion for choosing the pair of clusters to merge at each step is the minimum variance criterion. Ward's minimum variance criterion minimizes the total withincluster variance by each merge. To implement this method, at each step: find the pair of clusters that leads to minimum increase in total within-cluster variance after merging. This increase is a weighted squared distance between cluster centers. 

Exercises

Perform clustering of the iris dataset based on all variables using Gaussian mixture models. Use PCA to visualize clusters. 

Linear models for regression problems

Ordinary least squares

Linear regression models the output, or target variable 𝑦 ∈ R as a linear combination of the 𝑃dimensional input x ∈ R 𝑃 . Let X be the 𝑁 × 𝑃 matrix with each row an input vector (with a 1 in the first position), and similarly let y be the 𝑁 -dimensional vector of outputs in the training set, the linear model will predict the y given x using the parameter vector, or weight vector w ∈ R 𝑃 according to

y = Xw + 𝜀,
where 𝜀 ∈ R 𝑁 are the residuals, or the errors of the prediction. The w is found by minimizing an objective function, which is the loss function, 𝐿(w), i.e. the error measured on the data. This error is the sum of squared errors (SSE) loss.

𝐿(w) = SSE(w) (5.21) = 𝑁 ∑︁ 𝑖 (𝑦 𝑖 -x 𝑇 𝑖 w) 2 (5.22) = (y -X 𝑇 w) 𝑇 (y -X 𝑇 w) (5.23) = ‖y -X 𝑇 w‖ 2 2 , (5.24) 
Minimizing the SSE is the Ordinary Least Square OLS regression as objective function. which is a simple ordinary least squares (OLS) minimization whose analytic solution is:

w OLS = (X 𝑇 X) -1 X 𝑇 y
The gradient of the loss:

𝜕 𝐿(w, X, y) 𝜕w = 2 ∑︁ 𝑖 x 𝑖 (x 𝑖 • w -𝑦 𝑖 )

Linear regression with scikit-learn

Scikit learn offer many models for supervised learning, and they all follow the same application programming interface (API), namely: 

model = Estimator() model.

Overfitting

In statistics and machine learning, overfitting occurs when a statistical model describes random errors or noise instead of the underlying relationships. Overfitting generally occurs when a model is excessively complex, such as having too many parameters relative to the number of observations. A model that has been overfit will generally have poor predictive performance, as it can exaggerate minor fluctuations in the data.

A learning algorithm is trained using some set of training samples. If the learning algorithm has the capacity to overfit the training samples the performance on the training sample set will improve while the performance on unseen test sample set will decline.

The overfitting phenomenon has three main explanations: -excessively complex models, -multicollinearity, and -high dimensionality.

Model complexity

Complex learners with too many parameters relative to the number of observations may overfit the training dataset.

Multicollinearity

Predictors are highly correlated, meaning that one can be linearly predicted from the others. In this situation the coefficient estimates of the multiple regression may change erratically in response to small changes in the model or the data. Multicollinearity does not reduce the predictive power or reliability of the model as a whole, at least not within the sample data set; it only affects computations regarding individual predictors. That is, a multiple regression model with correlated predictors can indicate how well the entire bundle of predictors predicts the outcome variable, but it may not give valid results about any individual predictor, or about which predictors are redundant with respect to others. In case of perfect multicollinearity the predictor matrix is singular and therefore cannot be inverted. Under these circumstances, for a general linear model y = Xw + 𝜀, the ordinary least-squares estimator, w 𝑂𝐿𝑆 = (X 𝑇 X) -1 X 𝑇 y, does not exist.

An example where correlated predictor may produce an unstable model follows: We want to predict the business potential (pb) of some companies given their business volume (bv) and the taxes (tx) they are paying. Here pb ~10% of bv. However, taxes = 20% of bv (tax and bv are highly collinear), therefore there is an infinite number of linear combinations of tax and bv that lead to the same prediction. Solutions with very large coefficients will produce excessively large predictions. Dealing with multicollinearity:

• Regularisation by e.g. ℓ 2 shrinkage: Introduce a bias in the solution by making (𝑋 𝑇 𝑋) -1 non-singular. See ℓ 2 shrinkage.

• Feature selection: select a small number of features. See: Isabelle Guyon and André Elisseeff An introduction to variable and feature selection The Journal of Machine Learning Research, 2003.

• Feature selection: select a small number of features using ℓ 1 shrinkage.

• Extract few independent (uncorrelated) features using e.g. principal components analysis (PCA), partial least squares regression (PLS-R) or regression methods that cut the number of predictors to a smaller set of uncorrelated components.

High dimensionality

High dimensions means a large number of input features. Linear predictor associate one parameter to each input feature, so a high-dimensional situation (𝑃 , number of features, is large) with a relatively small number of samples 𝑁 (so-called large 𝑃 small 𝑁 situation) generally lead to an overfit of the training data. Thus it is generally a bad idea to add many input features into the learner. This phenomenon is called the curse of dimensionality.

One of the most important criteria to use when choosing a learning algorithm is based on the relative size of 𝑃 and 𝑁 .

• Remenber that the "covariance" matrix X 𝑇 X used in the linear model is a 𝑃 × 𝑃 matrix of rank min(𝑁, 𝑃 ). Thus if 𝑃 > 𝑁 the equation system is overparameterized and admit an infinity of solutions that might be specific to the learning dataset. See also ill-conditioned or singular matrices.

• The sampling density of 𝑁 samples in an 𝑃 -dimensional space is proportional to 𝑁 1/𝑃 . Thus a high-dimensional space becomes very sparse, leading to poor estimations of samples densities. To preserve a constant density, an exponential growth in the number of observations is required. 50 points in 1D, would require 2 500 points in 2D and 125 000 in 3D!

• Another consequence of the sparse sampling in high dimensions is that all sample points are close to an edge of the sample. Consider 𝑁 data points uniformly distributed in a 𝑃 -dimensional unit ball centered at the origin. Suppose we consider a nearest-neighbor estimate at the origin. The median distance from the origin to the closest data point is given by the expression:

𝑑(𝑃, 𝑁 ) = (︁ 1 -1 2 1/𝑁 )︁ 1/𝑃 .
A more complicated expression exists for the mean distance to the closest point. For N = 500, P = 10 , 𝑑(𝑃, 𝑁 ) ≈ 0.52, more than halfway to the boundary. • See also bias-variance trade-off.

Regularization using penalization of coefficients

Regarding linear models, overfitting generally leads to excessively complex solutions (coefficient vectors), accounting for noise or spurious correlations within predictors. Regularization aims to alleviate this phenomenon by constraining (biasing or reducing) the capacity of the learning algorithm in order to promote simple solutions. Regularization penalizes "large" solutions forcing the coefficients to be small, i.e. to shrink them toward zeros.

The objective function 𝐽(w) to minimize with respect to w is composed of a loss function 𝐿(w) for goodness-of-fit and a penalty term Ω(w) (regularization to avoid overfitting). This is a trade-off where the respective contribution of the loss and the penalty terms is controlled by the regularization parameter 𝜆.

Therefore the loss function 𝐿(w) is combined with a penalty function Ω(w) leading to the general form:

𝐽(w) = 𝐿(w) + 𝜆Ω(w).
The respective contribution of the loss and the penalty is controlled by the regularization parameter 𝜆.

For regression problems the loss is the SSE given by:

𝐿(w) = 𝑆𝑆𝐸(w) = 𝑁 ∑︁ 𝑖 (𝑦 𝑖 -x 𝑇 𝑖 w) 2 = ‖y -xw‖ 2 2
Popular penalties are:

• Ridge (also called ℓ 2 ) penalty: ‖w‖ 2 2 . It shrinks coefficients toward 0. • Lasso (also called ℓ 1 ) penalty: ‖w‖ 1 . It performs feature selection by setting some coefficients to 0.

• ElasticNet (also called ℓ 1 ℓ 2 ) penalty: 𝛼

(︀ 𝜌 ‖w‖ 1 + (1 -𝜌) ‖w‖ 2 2 )︀
. It performs selection of group of correlated features by setting some coefficients to 0.

The next figure shows the predicted performance (r-squared) on train and test sets with an increasing number of input features. The number of predictive features is always 10% of the total number of input features. Therefore, the signal to noise ratio (SNR) increases by increasing the number of input features. The performances on the training set rapidly reach 100% (R2=1). However, the performance on the test set decreases with the increase of the input dimensionality. The difference between the train and test performances (blue shaded region) depicts the overfitting phenomena. Regularisation using penalties of the coefficient vector norm greatly limits the overfitting phenomena.

With scikit-learn:

# Dataset with some correlation X, y, coef = datasets.make_regression(n_samples=100, n_features=10, n_ Fig. 4: Multicollinearity between the predictors lr = lm.LinearRegression().fit(X, y) l2 = lm.Ridge(alpha=10).fit(X, y) # lambda is alpha! l1 = lm.Lasso(alpha=.1).fit(X, y) # lambda is alpha ! l1l2 = lm.ElasticNet(alpha=.1, l1_ratio=.9).fit(X, y) pd.DataFrame(np.vstack((coef, lr.coef_, l2.coef_, l1.coef_, l1l2.coef_)), index=[ True , lr , l2 , l1 , l1l2 ])

Ridge regression (ℓ 2 -regularization)

Ridge regression impose a ℓ 2 penalty on the coefficients, i.e. it penalizes with the Euclidean norm of the coefficients while minimizing SSE. The objective function becomes:

Ridge(w) = 𝑁 ∑︁ 𝑖 (𝑦 𝑖 -x 𝑇 𝑖 w) 2 + 𝜆‖w‖ 2 2 (5.25) = ‖y -xw‖ 2 2 + 𝜆‖w‖ 2 2 .
(5.26)

The w that minimises 𝐹 𝑅𝑖𝑑𝑔𝑒 (w) can be found by the following derivation:

∇ w Ridge(w) = 0 (5.27) ∇ w (︀ (y -Xw) 𝑇 (y -Xw) + 𝜆w 𝑇 w )︀ = 0 (5.28) ∇ w (︀ (y 𝑇 y -2w 𝑇 X 𝑇 y + w 𝑇 X 𝑇 Xw + 𝜆w 𝑇 w) )︀ = 0 (5.29) -2X 𝑇 y + 2X 𝑇 Xw + 2𝜆w = 0 (5.30) -X 𝑇 y + (X 𝑇 X + 𝜆I)w = 0 (5.31) (X 𝑇 X + 𝜆I)w = x 𝑇 y (5.32) w = (X 𝑇 X + 𝜆I) -1 x 𝑇 y (5.33)
• The solution adds a positive constant to the diagonal of X 𝑇 X before inversion. This makes the problem nonsingular, even if X 𝑇 X is not of full rank, and was the main motivation behind ridge regression.

• Increasing 𝜆 shrinks the w coefficients toward 0.

• This approach penalizes the objective function by the Euclidian (:math: ell_2 ) norm of the coefficients such that solutions with large coefficients become unattractive.

The gradient of the loss:

𝜕 𝐿(w, X, y) 𝜕w = 2( ∑︁ 𝑖 x 𝑖 (x 𝑖 • w -𝑦 𝑖 ) + 𝜆w)
5.4. Linear models for regression problems

Lasso regression (ℓ 1 -regularization)

Lasso regression penalizes the coefficients by the ℓ 1 norm. This constraint will reduce (bias) the capacity of the learning algorithm. To add such a penalty forces the coefficients to be small, i.e. it shrinks them toward zero. The objective function to minimize becomes:

Lasso(w) = 𝑁 ∑︁ 𝑖 (𝑦 𝑖 -x 𝑇 𝑖 w) 2 + 𝜆‖w‖ 1 .
(5.34)

This penalty forces some coefficients to be exactly zero, providing a feature selection property.

Sparsity of the ℓ 1 norm

Occam's razor

Occam's razor (also written as Ockham's razor, and lex parsimoniae in Latin, which means law of parsimony) is a problem solving principle attributed to William of Ockham (1287-1347), who was an English Franciscan friar and scholastic philosopher and theologian. The principle can be interpreted as stating that among competing hypotheses, the one with the fewest assumptions should be selected.

Principle of parsimony

The simplest of two competing theories is to be preferred. Definition of parsimony: Economy of explanation in conformity with Occam's razor.

Among possible models with similar loss, choose the simplest one:

• Choose the model with the smallest coefficient vector, i.e. smallest ℓ 2 (‖w‖ 2 ) or ℓ 1 (‖w‖ 1 ) norm of w, i.e. ℓ 2 or ℓ 1 penalty. See also bias-variance tradeoff.

• Choose the model that uses the smallest number of predictors. In other words, choose the model that has many predictors with zero weights. Two approaches are available to obtain this: (i) Perform a feature selection as a preprocessing prior to applying the learning algorithm, or (ii) embed the feature selection procedure within the learning process.

Sparsity-induced penalty or embedded feature selection with the ℓ 1 penalty

The penalty based on the ℓ 1 norm promotes sparsity (scattered, or not dense): it forces many coefficients to be exactly zero. This also makes the coefficient vector scattered.

The figure bellow illustrates the OLS loss under a constraint acting on the ℓ 1 norm of the coefficient vector. I.e., it illustrates the following optimization problem: minimize w ‖y -Xw‖ 2 2 subject to ‖w‖ 1 ≤ 1.

Fig. 5: Sparsity of L1 norm

Optimization issues

Section to be completed

• No more closed-form solution.

• Convex but not differentiable.

• Requires specific optimization algorithms, such as the fast iterative shrinkage-thresholding algorithm (FISTA): Amir Beck and Marc Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems SIAM J. Imaging Sci., 2009.

The ridge penalty shrinks the coefficients toward zero. The figure illustrates: the OLS solution on the left. The ℓ 1 and ℓ 2 penalties in the middle pane. The penalized OLS in the right pane. The right pane shows how the penalties shrink the coefficients toward zero. The black points are the minimum found in each case, and the white points represents the true solution used to generate the data. 

Elastic-net regression (ℓ 1 -ℓ 2 -regularization)

The Elastic-net estimator combines the ℓ 1 and ℓ 2 penalties, and results in the problem to

Enet(w) = 𝑁 ∑︁ 𝑖 (𝑦 𝑖 -x 𝑇 𝑖 w) 2 + 𝛼 (︀ 𝜌 ‖w‖ 1 + (1 -𝜌) ‖w‖ 2 2 )︀ , (5.35) 
where 𝛼 acts as a global penalty and 𝜌 as an ℓ 1 /ℓ 2 ratio.

Rational

• If there are groups of highly correlated variables, Lasso tends to arbitrarily select only one from each group. These models are difficult to interpret because covariates that are strongly associated with the outcome are not included in the predictive model. Conversely, the elastic net encourages a grouping effect, where strongly correlated predictors tend to be in or out of the model together.

• Studies on real world data and simulation studies show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation.

Regression performance evaluation metrics: R-squared, MSE and MAE

Common regression metrics are:

• 𝑅 2 : R-squared

• MSE: Mean Squared Error

• MAE: Mean Absolute Error

R-squared

The goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. We will consider the explained variance also known as the coefficient of determination, denoted 𝑅 2 pronounced R-squared.

The total sum of squares, 𝑆𝑆 tot is the sum of the sum of squares explained by the regression, 𝑆𝑆 reg , plus the sum of squares of residuals unexplained by the regression, 𝑆𝑆 res , also called the SSE, i.e. such that

𝑆𝑆 tot = 𝑆𝑆 reg + 𝑆𝑆 res Fig. 7: title
The mean of 𝑦 is

ȳ = 1 𝑛 ∑︁ 𝑖 𝑦 𝑖 .
The total sum of squares is the total squared sum of deviations from the mean of 𝑦, i.e.

𝑆𝑆 tot = ∑︁ 𝑖 (𝑦 𝑖 -ȳ) 2
The regression sum of squares, also called the explained sum of squares:

𝑆𝑆 reg = ∑︁ 𝑖 (ŷ 𝑖 -ȳ) 2 ,
where ŷ𝑖 = 𝛽𝑥 𝑖 + 𝛽 0 is the estimated value of salary ŷ𝑖 given a value of experience 𝑥 𝑖 .

The sum of squares of the residuals (SSE, Sum Squared Error), also called the residual sum of squares (RSS) is:

𝑆𝑆 res = ∑︁ 𝑖 (𝑦 𝑖 -ŷ𝑖 ) 2 .
𝑅 2 is the explained sum of squares of errors. It is the variance explain by the regression divided by the total variance, i.e.

𝑅 2 = explained SS total SS = 𝑆𝑆 reg 𝑆𝑆 𝑡𝑜𝑡 = 1 - 𝑆𝑆 𝑟𝑒𝑠 𝑆𝑆 𝑡𝑜𝑡 .

Test

Let σ2 = 𝑆𝑆 res /(𝑛 -2) be an estimator of the variance of 𝜖. The 2 in the denominator stems from the 2 estimated parameters: intercept and coefficient.

• Unexplained variance:

𝑆𝑆res σ2 ∼ 𝜒 2 𝑛-2
• Explained variance:

𝑆𝑆reg σ2 ∼ 𝜒 2 1 .
The single degree of freedom comes from the difference between 𝑆𝑆tot σ2 (∼ 𝜒 2 𝑛-1 ) and 𝑆𝑆res σ2 (∼ 𝜒 2 𝑛-2 ), i.e. (𝑛 -1) -(𝑛 -2) degree of freedom. The Fisher statistics of the ratio of two variances:

𝐹 = Explained variance Unexplained variance = 𝑆𝑆 reg /1 𝑆𝑆 res /(𝑛 -2) ∼ 𝐹 (1, 𝑛 -2)
Using the 𝐹 -distribution, compute the probability of observing a value greater than 𝐹 under 𝐻 print("r2: %.3f, mae: %.3f, mse: %.3f" % (r2, mae, mse)) r2: 0.050, mae: 71.834, mse: 7891.217 Therfore, for each class the classifier seek for a vector of parameters 𝑤 that performs a linear combination of the input variables, 𝑥 𝑇 𝑤. This step performs a projection or a rotation of input sample into a good discriminative one-dimensional sub-space, that best discriminate sample of current class vs sample of other classes.

Linear models for classification problems

This score (a.k.a decision function) is tranformed, using the nonlinear activation funtion 𝑓 (.), to a "posterior probabilities" of class 1: 𝑝(𝑦 = 1|𝑥) = 𝑓 (𝑥 𝑇 𝑤), where, 𝑝(𝑦 = 1|𝑥) = 1 -𝑝(𝑦 = 0|𝑥).

The decision surfaces (orthogonal hyperplan to 𝑤) correspond to 𝑓 (𝑥) = constant, so that 𝑥 𝑇 𝑤 = constant and hence the decision surfaces are linear functions of 𝑥, even if the function 𝑓 (.) is nonlinear.

A thresholding of the activation (shifted by the bias or intercept) provides the predicted class label.

The vector of parameters, that defines the discriminative axis, minimizes an objective function 𝐽(𝑤) that is a sum of of loss function 𝐿(𝑤) and some penalties on the weights vector Ω(𝑤).

min

𝑤 𝐽 = ∑︁ 𝑖 𝐿(𝑦 𝑖 , 𝑓 (𝑥 𝑖 𝑇 𝑤)) + Ω(𝑤),

Fisher's linear discriminant with equal class covariance

This geometric method does not make any probabilistic assumptions, instead it relies on distances. It looks for the linear projection of the data points onto a vector, 𝑤, that maximizes the between/within variance ratio, denoted 𝐹 (𝑤). Under a few assumptions, it will provide the same results as linear discriminant analysis (LDA), explained below.

Suppose two classes of observations, 𝐶 0 and 𝐶 1 , have means 𝜇 0 and 𝜇 1 and the same total within-class scatter ("covariance") matrix,

𝑆 𝑊 = ∑︁ 𝑖∈𝐶 0 (𝑥 𝑖 -𝜇 0 )(𝑥 𝑖 -𝜇 0 ) 𝑇 + ∑︁ 𝑗∈𝐶 1 (𝑥 𝑗 -𝜇 1 )(𝑥 𝑗 -𝜇 1 ) 𝑇 (5.36) = 𝑋 𝑐 𝑇 𝑋 𝑐 , (5.37) 
where 𝑋 𝑐 is the (𝑁 × 𝑃 ) matrix of data centered on their respective means:

𝑋 𝑐 = [︂ 𝑋 0 -𝜇 0 𝑋 1 -𝜇 1 ]︂ ,
where 𝑋 0 and 𝑋 1 are the (𝑁 0 × 𝑃 ) and (𝑁 1 × 𝑃 ) matrices of samples of classes 𝐶 0 and 𝐶 1 .

Let 𝑆 𝐵 being the scatter "between-class" matrix, given by

𝑆 𝐵 = (𝜇 1 -𝜇 0 )(𝜇 1 -𝜇 0 ) 𝑇 .
The linear combination of features 𝑤 𝑇 𝑥 have means 𝑤 𝑇 𝜇 𝑖 for 𝑖 = 0, 1, and variance 𝑤 𝑇 𝑋 𝑇 𝑐 𝑋 𝑐 𝑤. Fisher defined the separation between these two distributions to be the ratio of the variance between the classes to the variance within the classes:

𝐹 Fisher (𝑤) = 𝜎 2 between 𝜎 2 within (5.38) = (𝑤 𝑇 𝜇 1 -𝑤 𝑇 𝜇 0 ) 2 𝑤 𝑇 𝑋 𝑇 𝑐 𝑋 𝑐 𝑤 (5.39) = (𝑤 𝑇 (𝜇 1 -𝜇 0 )) 2 𝑤 𝑇 𝑋 𝑇 𝑐 𝑋 𝑐 𝑤 (5.40) = 𝑤 𝑇 (𝜇 1 -𝜇 0 )(𝜇 1 -𝜇 0 ) 𝑇 𝑤 𝑤 𝑇 𝑋 𝑇 𝑐 𝑋 𝑐 𝑤 (5.41) = 𝑤 𝑇 𝑆 𝐵 𝑤 𝑤 𝑇 𝑆 𝑊 𝑤 . (5.42) 
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The Fisher most discriminant projection

In the two-class case, the maximum separation occurs by a projection on the (𝜇 1 -𝜇 0 ) using the Mahalanobis metric 𝑆 𝑊 -1 , so that

𝑤 ∝ 𝑆 𝑊 -1 (𝜇 1 -𝜇 0 ).

Demonstration

Differentiating 𝐹 Fisher (𝑤) with respect to 𝑤 gives

∇ 𝑤 𝐹 Fisher (𝑤) = 0 ∇ 𝑤 (︂ 𝑤 𝑇 𝑆 𝐵 𝑤 𝑤 𝑇 𝑆 𝑊 𝑤 )︂ = 0 (𝑤 𝑇 𝑆 𝑊 𝑤)(2𝑆 𝐵 𝑤) -(𝑤 𝑇 𝑆 𝐵 𝑤)(2𝑆 𝑊 𝑤) = 0 (𝑤 𝑇 𝑆 𝑊 𝑤)(𝑆 𝐵 𝑤) = (𝑤 𝑇 𝑆 𝐵 𝑤)(𝑆 𝑊 𝑤) 𝑆 𝐵 𝑤 = 𝑤 𝑇 𝑆 𝐵 𝑤 𝑤 𝑇 𝑆 𝑊 𝑤 (𝑆 𝑊 𝑤) 𝑆 𝐵 𝑤 = 𝜆(𝑆 𝑊 𝑤) 𝑆 𝑊 -1 𝑆 𝐵 𝑤 = 𝜆𝑤.
Since we do not care about the magnitude of 𝑤, only its direction, we replaced the scalar factor (𝑤 𝑇 𝑆 𝐵 𝑤)/(𝑤 𝑇 𝑆 𝑊 𝑤) by 𝜆.

In the multiple-class case, the solutions 𝑤 are determined by the eigenvectors of 𝑆 𝑊 -1 𝑆 𝐵 that correspond to the 𝐾 -1 largest eigenvalues.

However, in the two-class case (in which

𝑆 𝐵 = (𝜇 1 -𝜇 0 )(𝜇 1 -𝜇 0 ) 𝑇 ) it is easy to show that 𝑤 = 𝑆 𝑊 -1 (𝜇 1 -𝜇 0 ) is the unique eigenvector of 𝑆 𝑊 -1 𝑆 𝐵 : 𝑆 𝑊 -1 (𝜇 1 -𝜇 0 )(𝜇 1 -𝜇 0 ) 𝑇 𝑤 = 𝜆𝑤 𝑆 𝑊 -1 (𝜇 1 -𝜇 0 )(𝜇 1 -𝜇 0 ) 𝑇 𝑆 𝑊 -1 (𝜇 1 -𝜇 0 ) = 𝜆𝑆 𝑊 -1 (𝜇 1 -𝜇 0 )
,

where here 𝜆 = (𝜇 1 -𝜇 0 ) 𝑇 𝑆 𝑊 -1 (𝜇 1 -𝜇 0 ). Which leads to the result 𝑤 ∝ 𝑆 𝑊 -1 (𝜇 1 -𝜇 0 ).

The separating hyperplane

The separating hyperplane is a 𝑃 -1-dimensional hyper surface, orthogonal to the projection vector, 𝑤. There is no single best way to find the origin of the plane along 𝑤, or equivalently the classification threshold that determines whether a point should be classified as belonging to 𝐶 0 or to 𝐶 1 . However, if the projected points have roughly the same distribution, then the threshold can be chosen as the hyperplane exactly between the projections of the two means, i.e. as 

𝑇 = 𝑤 • 1 2 (𝜇 1 -𝜇 0 ).

Linear models for classification problems

Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is a probabilistic generalization of Fisher's linear discriminant. It uses Bayes' rule to fix the threshold based on prior probabilities of classes.

1. First compute the class-conditional distributions of 𝑥 given class 𝐶 𝑘 : 𝑝(𝑥|𝐶 𝑘 ) = 𝒩 (𝑥|𝜇 𝑘 , 𝑆 𝑊 ). Where 𝒩 (𝑥|𝜇 𝑘 , 𝑆 𝑊 ) is the multivariate Gaussian distribution defined over a P-dimensional vector 𝑥 of continuous variables, which is given by

𝒩 (𝑥|𝜇 𝑘 , 𝑆 𝑊 ) = 1 (2𝜋) 𝑃/2 |𝑆 𝑊 | 1/2 exp{- 1 2 (𝑥 -𝜇 𝑘 ) 𝑇 𝑆 𝑊 -1 (𝑥 -𝜇 𝑘 )} 2.
Estimate the prior probabilities of class 𝑘, 𝑝(𝐶 𝑘 ) = 𝑁 𝑘 /𝑁 .

3. Compute posterior probabilities (ie. the probability of a each class given a sample) combining conditional with priors using Bayes' rule:

𝑝(𝐶 𝑘 |𝑥) = 𝑝(𝐶 𝑘 )𝑝(𝑥|𝐶 𝑘 ) 𝑝(𝑥)
Where 𝑝(𝑥) is the marginal distribution obtained by suming of classes: As usual, the denominator in Bayes' theorem can be found in terms of the quantities appearing in the numerator, because

𝑝(𝑥) = ∑︁ 𝑘 𝑝(𝑥|𝐶 𝑘 )𝑝(𝐶 𝑘 )
4. Classify 𝑥 using the Maximum-a-Posteriori probability:

𝐶 𝑘 = arg max 𝐶 𝑘 𝑝(𝐶 𝑘 |𝑥)
LDA is a generative model since the class-conditional distributions cal be used to generate samples of each classes.

LDA is useful to deal with imbalanced group sizes (eg.: 𝑁 1 ≫ 𝑁 0 ) since priors probabilities can be used to explicitly re-balance the classification by setting 𝑝(𝐶 0 ) = 𝑝(𝐶 1 ) = 1/2 or whatever seems relevant.

LDA can be generalised to the multiclass case with 𝐾 > 2.

With 𝑁 1 = 𝑁 0 , LDA lead to the same solution than Fisher's linear discriminant.

Logistic regression is a discriminative model since it focuses only on the posterior probability of each class 𝑝(𝐶 𝑘 |𝑥). It only requires to estimate the 𝑃 weights of the 𝑤 vector. Thus it should be favoured over LDA with many input features. In small dimension and balanced situations it would provide similar predictions than LDA.

However imbalanced group sizes cannot be explicitly controlled. It can be managed using a reweighting of the input samples. 

Exercise

Explore the Logistic Regression parameters and proposes a solution in cases of highly imbalanced training dataset 𝑁 1 ≫ 𝑁 0 when we know that in reality both classes have the same probability 𝑝(𝐶 1 ) = 𝑝(𝐶 0 ).

Losses Negative log likelihood or cross-entropy

The Loss function for sample 𝑖 is the negative log of the probability:

𝐿(𝑤, 𝑥 𝑖 , 𝑦 𝑖 ) = {︃ -log(𝑝(1|𝑤, 𝑥 𝑖 )) if 𝑦 𝑖 = 1 -log(1 -𝑝(1|𝑤, 𝑥 𝑖 ) if 𝑦 𝑖 = 0
For the whole dataset 𝑋, 𝑦 = {𝑥 𝑖 , 𝑦 𝑖 } the loss function to minimize 𝐿(𝑤, 𝑋, 𝑦) is the negative negative log likelihood (nll) that can be simplied using a 0/1 coding of the label in the case of binary classification:

𝐿(𝑤, 𝑋, 𝑦) = -log ℒ(𝑤, 𝑋, 𝑦) (5.43) 
= -log Π 𝑖 {𝑝(1|𝑤, 𝑥 𝑖 ) 𝑦 𝑖 (1 -𝑝(1|𝑤, 𝑥 𝑖 ) (1-𝑦 𝑖 ) } (5.44) = ∑︁ 𝑖 {𝑦 𝑖 log 𝑝(1|𝑤, 𝑥 𝑖 ) + (1 -𝑦 𝑖 ) log(1 -𝑝(1|𝑤, 𝑥 𝑖 ))}, (5.45) 
This is known as the cross-entropy between the true label 𝑦 and the predicted probability 𝑝.

For the logistic regression case, we have:

𝐿(𝑤, 𝑋, 𝑦) = ∑︁ 𝑖 {𝑦 𝑖 𝑤 • 𝑥 𝑖 -log(1 + exp(𝑤 • 𝑥 𝑖 ))}
This is solved by numerical method using the gradient of the loss:

𝜕 𝐿(𝑤, 𝑋, 𝑦) 𝜕𝑤 = ∑︁ 𝑖 𝑥 𝑖 (𝑦 𝑖 -𝑝(1|𝑤, 𝑥 𝑖 ))
See also Scikit learn doc Hinge loss or ℓ 1 loss TODO

Overfitting

VC dimension (for Vapnik-Chervonenkis dimension) is a measure of the capacity (complexity, expressive power, richness, or flexibility) of a statistical classification algorithm, defined as the cardinality of the largest set of points that the algorithm can shatter.

Theorem: Linear classifier in 𝑅 𝑃 have VC dimension of 𝑃 + 1. Hence in dimension two (𝑃 = 2) any random partition of 3 points can be learned. 

Regularization using penalization of coefficients

The penalties use in regression are also used in classification. The only difference is the loss function generally the negative log likelihood (cross-entropy) or the hinge loss. We will explore:

• Ridge (also called ℓ 2 ) penalty: ‖w‖ 2 2 . It shrinks coefficients toward 0. • Lasso (also called ℓ 1 ) penalty: ‖w‖ 1 . It performs feature selection by setting some coefficients to 0.

• ElasticNet (also called ℓ 1 ℓ 2 ) penalty: 𝛼

(︀ 𝜌 ‖w‖ 1 + (1 -𝜌) ‖w‖ 2 2 )︀
. It performs selection of group of correlated features by setting some coefficients to 0.

# Dataset with some correlation X, y = datasets.make_classification(n_samples=100, n_features=10, 

Ridge Fisher's linear classification (ℓ 2 -regularization)

When the matrix 𝑆 𝑊 is not full rank or 𝑃 ≫ 𝑁 , the The Fisher most discriminant projection estimate of the is not unique. This can be solved using a biased version of 𝑆 𝑊 :

𝑆 𝑊 𝑅𝑖𝑑𝑔𝑒 = 𝑆 𝑊 + 𝜆𝐼
where 𝐼 is the 𝑃 × 𝑃 identity matrix. This leads to the regularized (ridge) estimator of the Fisher's linear discriminant analysis:

𝑤 𝑅𝑖𝑑𝑔𝑒 ∝ (𝑆 𝑊 + 𝜆𝐼) -1 (𝜇 1 -𝜇 0 )
Fig. 11: The Ridge Fisher most discriminant projection Increasing 𝜆 will:

• Shrinks the coefficients toward zero.

• The covariance will converge toward the diagonal matrix, reducing the contribution of the pairwise covariances.

Ridge logistic regression (ℓ 2 -regularization)

The objective function to be minimized is now the combination of the logistic loss (negative log likelyhood) -log ℒ(𝑤) with a penalty of the L2 norm of the weights vector. In the two-class case, using the 0/1 coding we obtain: lrl2.fit(X, y) y_pred_l2 = lrl2.predict(X) prob_pred_l2 = lrl2.predict_proba(X) print("Probas of 5 first samples for class 0 and class 1:") print(prob_pred_l2[:5, :]) print("Coef vector:") print(lrl2.coef_) # Retrieve proba from coef vector probas = 1 / (1 + np.exp(-(np.dot(X, lrl2.coef_.T) + lrl2.intercept_))).ravel() print("Diff", np.max(np.abs(prob_pred_l2[:, 1] -probas)))

(continues on next page)

Ridge linear Support Vector Machine (ℓ 2 -regularization)

Support Vector Machine seek for separating hyperplane with maximum margin to enforce robustness against noise. Like logistic regression it is a discriminative method that only focuses of predictions.

Here we present the non separable case of Maximum Margin Classifiers with ±1 coding (ie.: 𝑦 𝑖 {-1, +1}). In the next figure the legend aply to samples of "dot" class. 1. If 𝑦 𝑖 (𝑤 • 𝑥 𝑖 ) ≥ 1 then the point lies outside the margin but on the correct side of the decision boundary. In this case 𝜉 𝑖 = 0. The constraint is thus not active for this point. It does not contribute to the prediction.

2. If 1 > 𝑦 𝑖 (𝑤 • 𝑥 𝑖 ) ≥ 0 then the point lies inside the margin and on the correct side of the decision boundary. In this case 0 < 𝜉 𝑖 ≤ 1. The constraint is active for this point. It does contribute to the prediction as a support vector.

3. If 0 < 𝑦 𝑖 (𝑤 • 𝑥 𝑖 )) then the point is on the wrong side of the decision boundary (missclassification). In this case 0 < 𝜉 𝑖 > 1. The constraint is active for this point. It does contribute to the prediction as a support vector.

This loss is called the hinge loss, defined as:

max(0, 1 -𝑦 𝑖 (𝑤 • 𝑥 𝑖 ))
So linear SVM is closed to Ridge logistic regression, using the hinge loss instead of the logistic loss. Both will provide very similar predictions.

-Give the equation of the decision function for a linear classifier, assuming that their is no intercept.

-Compute the correlation decision function.

-Plot the pairwise decision function of the classifiers.

• Conclude on the differences between Linear SVM and logistic regression.

Elastic-net classification (ℓ 1 ℓ 2 -regularization)

The objective function to be minimized is now the combination of the logistic loss log 𝐿(𝑤) or the hinge loss with combination of L1 and L2 penalties. In the two-class case, using the 0/1 coding we obtain:

min Logistic enet(𝑤) = -log ℒ(𝑤, 𝑋, 𝑦) + 𝛼 (︀ 𝜌 ‖𝑤‖ 1 + (1 -𝜌) ‖𝑤‖ 2 2 )︀ (5.46) min Hinge enet(𝑤) = Hinge loss(𝑤) + 𝛼 (︀ 𝜌 ‖𝑤‖ 1 + (1 -𝜌) ‖𝑤‖ 2 2 )︀ (5.47) 
# Use SGD solver enetlog = lm.SGDClassifier(loss="log", penalty="elasticnet", alpha=0.1, l1_ratio=0.5, random_state=42) enetlog.fit(X, y) # Or saga solver: # enetloglike = lm.LogisticRegression(penalty= elasticnet , # C=.1, l1_ratio=0.5, solver= saga ) enethinge = lm.SGDClassifier(loss="hinge", penalty="elasticnet", alpha=0.1, l1_ratio=0.5, random_state=42) enethinge.fit(X, y) print("Hinge loss and logistic loss provide almost the same predictions.") print("Confusion matrix") metrics.confusion_matrix(enetlog.predict(X), enethinge.predict(X)) print("Decision_function log x hinge losses:") _ = plt.plot(enetlog.decision_function(X), enethinge.decision_function(X), "o")

Hinge loss and logistic loss provide almost the same predictions. Confusion matrix Decision_function log x hinge losses: • Balanced accuracy (bACC):is a useful performance measure is the balanced accuracy which avoids inflated performance estimates on imbalanced datasets (Brodersen, et al. (2010). "The balanced accuracy and its posterior distribution"). It is defined as the arithmetic mean of sensitivity and specificity, or the average accuracy obtained on either class: bACC = 1/2 * (SEN + SPC)

• F1 Score (or F-score) which is a weighted average of precision and recall are usefull to deal with imballaced datasets

The four outcomes can be formulated in a 2×2 contingency table or confusion matrix https: //en.wikipedia.org/wiki/Sensitivity_and_specificity For more precision see: http://scikit-learn.org/stable/modules/model_evaluation.html Is 65% of accuracy a significant prediction rate among 70 observations?

from
Since this is an exact, two-sided test of the null hypothesis, the p-value can be divided by 2 since we test that the accuracy is superior to the chance level. 

Area Under Curve (AUC) of Receiver operating characteristic (ROC)

Some classifier may have found a good discriminative projection 𝑤. However if the threshold to decide the final predicted class is poorly adjusted, the performances will highlight an high specificity and a low sensitivity or the contrary.

In this case it is recommended to use the AUC of a ROC analysis which basically provide a measure of overlap of the two classes when points are projected on the discriminative axis. For more detail on ROC and AUC see:https://en.wikipedia.org/wiki/Receiver_operating_characteristic. score_pred = np.array([.1 ,.2, .3, .4, .5, .6, .7, .8]) y_true = np.array([0, 0, 0,

) thres = .9 y_pred = (score_pred > thres).astype(int) print("With a threshold of %.2f, the rule always predict 0. Predictions:" % thres) print(y_pred) metrics.accuracy_score(y_true, y_pred)

# The overall precision an recall on each individual class r = metrics.recall_score(y_true, y_pred, average=None) print("Recalls on individual classes are:", r, "ie, 100% of specificity, 0% of␣ 

Imbalanced classes

Learning with discriminative (logistic regression, SVM) methods is generally based on minimizing the misclassification of training samples, which may be unsuitable for imbalanced datasets where the recognition might be biased in favor of the most numerous class. This problem can be addressed with a generative approach, which typically requires more parameters to be determined leading to reduced performances in high dimension.

Dealing with imbalanced class may be addressed by three main ways (see Japkowicz and Stephen (2002) for a review), resampling, reweighting and one class learning.

In sampling strategies, either the minority class is oversampled or majority class is undersampled or some combination of the two is deployed. Undersampling (Zhang and Mani, 2003) the majority class would lead to a poor usage of the left-out samples. Sometime one cannot afford such strategy since we are also facing a small sample size problem even for the majority class. Informed oversampling, which goes beyond a trivial duplication of minority class samples, requires the estimation of class conditional distributions in order to generate synthetic samples.

Here generative models are required. An alternative, proposed in (Chawla et al., 2002) generate samples along the line segments joining any/all of the k minority class nearest neighbors. Such procedure blindly generalizes the minority area without regard to the majority class, which may be particularly problematic with high-dimensional and potentially skewed class distribution.

Reweighting, also called cost-sensitive learning, works at an algorithmic level by adjusting the costs of the various classes to counter the class imbalance. Such reweighting can be implemented within SVM (Chang and Lin, 2001) or logistic regression (Friedman et al., 2010) classifiers. Most classifiers of Scikit learn offer such reweighting possibilities.

The class_weight parameter can be positioned into the "balanced" mode which uses the values of 𝑦 to automatically adjust weights inversely proportional to class frequencies in the input data as 𝑁/(2𝑁 𝑘 ).

# dataset X, y = datasets.make_classification(n_samples=500, n_features=5, 

Confidence interval cross-validation

Confidence interval CI classification accuracy measured by cross-validation:

Exercise Fisher linear discriminant rule

Write a class FisherLinearDiscriminant that implements the Fisher's linear discriminant analysis. This class must be compliant with the scikit-learn API by providing two methods: -fit(X, y) which fits the model and returns the object itself; -predict(X) which returns a vector of the predicted values. Apply the object on the dataset presented for the LDA.

Non-linear models

Here we focuse on non-linear models for classification. Nevertheless, each classification model has its regression counterpart.

# Outline of the SVM algorithm:

1. Map points 𝑥 into kernel space using a kernel function: 𝑥 → 𝐾(𝑥, .).

2. Learning algorithms operates linearly by dot product into high-kernel space 𝐾(., 𝑥 𝑖 ) • 𝐾(., 𝑥 𝑗 ).

• Using the kernel trick (Mercer's Theorem) replaces dot product in high dimensional space by a simpler operation such that 𝐾(., 𝑥 𝑖 ) • 𝐾(., 𝑥 𝑗 ) = 𝐾(𝑥 𝑖 , 𝑥 𝑗 ). Thus we only need to compute a similarity measure for each pairs of point and store in a 𝑁 × 𝑁 Gram matrix.

• Finally, The learning process consist of estimating the $alpha_i$ of the decision function that maximises the hinge loss (of 𝑓 (𝑥)) plus some penalty when applied on all training points.

𝑓 (𝑥) = sign (︃ 𝑁 ∑︁ 𝑖 𝛼 𝑖 𝑦 𝑖 𝐾(𝑥 𝑖 , 𝑥)
)︃ .

3. Predict a new point $x$ using the decision function.

Gaussian kernel (RBF, Radial Basis Function):

One of the most commonly used kernel is the Radial Basis Function (RBF) Kernel. For a pair of points 𝑥 𝑖 , 𝑥 𝑗 the RBF kernel is defined as: 

𝐾(𝑥 𝑖 , 𝑥 𝑗 ) = exp (︂ - ‖𝑥 𝑖 -𝑥 𝑗 ‖ 2 2𝜎 2 )︂ (5.48) = exp (︀ -𝛾 ‖𝑥 𝑖 -𝑥 𝑗 ‖ 2 )︀ ( 

Random forest Decision tree

A tree can be "learned" by splitting the training dataset into subsets based on an features value test. Each internal node represents a "test" on an feature resulting on the split of the current sample. At each step the algorithm selects the feature and a cutoff value that maximises a given metric. Different metrics exist for regression tree (target is continuous) or classification tree (the target is qualitative). This process is repeated on each derived subset in a recursive manner called recursive partitioning. The recursion is completed when the subset at a node has all the same value of the target variable, or when splitting no longer adds value to the predictions. This general principle is implemented by many recursive partitioning tree algorithms.

Decision trees are simple to understand and interpret however they tend to overfit the data. However decision trees tend to overfit the training set. Leo Breiman propose random forest to deal with this issue.

A single decision tree is usually overfits the data it is learning from because it learn from only one pathway of decisions. Predictions from a single decision tree usually don't make accurate predictions on new data.

Forest

A random forest is a meta estimator that fits a number of decision tree learners on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Random forest models reduce the risk of overfitting by introducing randomness by:

• building multiple trees (n_estimators)

• drawing observations with replacement (i.e., a bootstrapped sample)

• splitting nodes on the best split among a random subset of the features selected at every node Extra Trees is like Random Forest, in that it builds multiple trees and splits nodes using random subsets of features, but with two key differences: it does not bootstrap observations (meaning it samples without replacement), and nodes are split on random splits, not best splits. So, in summary, ExtraTrees: builds multiple trees with bootstrap = False by default, which means it samples without replacement nodes are split based on random splits among a random subset of the features selected at every node In Extra Trees, randomness doesn't come from bootstrapping of data, but rather comes from the random splits of all observations. ExtraTrees is named for (Extremely Randomized Trees).

from

Gradient boosting

Gradient boosting is a meta estimator that fits a sequence of weak learners. Each learner aims to reduce the residuals (errors) produced by the previous learner. The two main hyperparameters are:

• The learning rate (lr) controls over-fitting: decreasing the lr limits the capacity of a learner to overfit the residuals, ie, it slows down the learning speed and thus increases the regularisation.

• The sub-sampling fraction controls the fraction of samples to be used for fitting the learners. Values smaller than 1 leads to Stochastic Gradient Boosting. It thus controls for over-fitting reducing variance and incresing bias. 

Cross-Validation (CV)

If sample size is limited, train/validation/test split may not be possible. Cross Validation (CV) can be used to replace train/validation split and/or train+validation / test split.

Cross-Validation scheme randomly divides the set of observations into K groups, or folds, of approximately equal size. The first fold is treated as a validation set, and the method 𝑓 () is fitted on the remaining union of K -1 folds: (𝑓 (𝑋 -𝐾 , 𝑦 -𝐾 )). The measure of performance (the score function 𝒮), either a error measure or an correct prediction measure is an average of a loss error or correct prediction measure, noted ℒ, between a true target value and the predicted target value. The score function is evaluated of the on the observations in the heldout fold. For each sample i we consider the model estimated 𝑓 (𝑋 -𝑘(𝑖) , 𝑦 -𝑘(𝑖) on the data set without the group k that contains i noted -k(i). This procedure is repeated K times; each time, a different group of observations is treated as a test set. Then we compare the predicted value (𝑓 -𝑘(𝑖) (𝑥 𝑖 ) = ŷ𝑖 ) with true value 𝑦 𝑖 using a Error or Loss function ℒ(𝑦, ŷ).

For 10-fold we can either average over 10 values (Macro measure) or concatenate the 10 experiments and compute the micro measures.

Two strategies [micro vs macro estimates](https://stats.stackexchange.com/questions/34611/ meanscores-vs-scoreconcatenation-in-cross-validation):

• 

CV for regression

Usually the error function ℒ() is the r-squared score. --------perms: 1d array, statistics under the null hypothesis. perms [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] is the true statistic . """ # Re-weight to obtain distribution pval = np.sum(perms >= perms [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF]) / perms.shape [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] weights = np.ones(perms.shape [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF]) / perms.shape [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] ax.hist([perms[perms >= perms [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF]], perms], histtype= stepfilled , bins=100, label="p-val<%.3f" % pval, weights=[weights[perms >= perms [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF]], weights]) ax.axvline(x=perms [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF], color="k", linewidth=2)#, label="observed statistic") ax.set_ylabel(name) ax.legend() return ax n_coef = coefs_perm.shape 

Exercise

Given the logistic regression presented above and its validation given a 5 folds CV.

1. Compute the p-value associated with the prediction accuracy measured with 5CV using a permutation test.

2. Compute the p-value associated with the prediction accuracy using a parametric test.

Bootstrapping

Bootstrapping is a statistical technique which consists in generating sample (called bootstrap samples) from an initial dataset of size N by randomly drawing with replacement N observations. It provides sub-samples with the same distribution than the original dataset. It aims to:

1. Assess the variability (standard error, [confidence intervals.](https:// sebastianraschka.com/blog/2016/model-evaluation-selection-part2.html# the-bootstrap-method-and-empirical-confidence-intervals)) of performances scores or estimated parameters (see [START_REF] Efron | Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy[END_REF]).

2. Regularize model by fitting several models on bootstrap samples and averaging their predictions (see Baging and random-forest).

A great advantage of bootstrap is its simplicity. It is a straightforward way to derive estimates of standard errors and confidence intervals for complex estimators of complex parameters of the distribution, such as percentile points, proportions, odds ratio, and correlation coefficients.

1. Perform 𝐵 sampling, with replacement, of the dataset.

2. For each sample 𝑖 fit the model and compute the scores.

3. Assess standard errors and confidence intervals of scores using the scores obtained on the 𝐵 resampled dataset. Or, average models predictions. 

Single weak learner

In machine learning, no matter if we are facing a classification or a regression problem, the choice of the model is extremely important to have any chance to obtain good results. This choice can depend on many variables of the problem: quantity of data, dimensionality of the space, distribution hypothesis. . .

A low bias and a low variance, although they most often vary in opposite directions, are the two most fundamental features expected for a model. Indeed, to be able to "solve" a problem, we want our model to have enough degrees of freedom to resolve the underlying complexity of the data we are working with, but we also want it to have not too much degrees of freedom to avoid high variance and be more robust. This is the well known bias-variance tradeoff. In ensemble learning theory, we call weak learners (or base models) models that can be used as building blocks for designing more complex models by combining several of them. Most of the time, these basics models perform not so well by themselves either because they have a high bias (low degree of freedom models, for example) or because they have too much variance to be robust (high degree of freedom models, for example). Then, the idea of ensemble methods is to combining several of them together in order to create a strong learner (or ensemble model) that achieves better performances.

Usually, ensemble models are used in order to :

• decrease the variance for bagging (Bootstrap Aggregating) technique

• reduce bias for the boosting technique

• improving the predictive force for stacking technique.

To understand these techniques, first, we will explore what is boostrapping and its different hypothesis.

Bagging

In parallel methods we fit the different considered learners independently from each others and, so, it is possible to train them concurrently. The most famous such approach is "bagging" (standing for "bootstrap aggregating") that aims at producing an ensemble model that is more robust than the individual models composing it.

When training a model, no matter if we are dealing with a classification or a regression problem, we obtain a function that takes an input, returns an output and that is defined with respect to the training dataset.

The idea of bagging is then simple: we want to fit several independent models and "average" their predictions in order to obtain a model with a lower variance. However, we can't, in practice, fit fully independent models because it would require too much data. So, we rely on the good "approximate properties" of bootstrap samples (representativity and independence) to fit models that are almost independent.

First, we create multiple bootstrap samples so that each new bootstrap sample will act as another (almost) independent dataset drawn from true distribution. Then, we can fit a weak learner for each of these samples and finally aggregate them such that we kind of "average" their outputs and, so, obtain an ensemble model with less variance that its components. Roughly speaking, as the bootstrap samples are approximatively independent and identically distributed (i.i.d.), so are the learned base models. Then, "averaging" weak learners outputs do not change the expected answer but reduce its variance.

So, assuming that we have L bootstrap samples (approximations of L independent datasets) of size B denoted -> Averages or votes can either be simple or weighted if any relevant weights can be used.

Finally, we can mention that one of the big advantages of bagging is that it can be parallelised.

As the different models are fitted independently from each others, intensive parallelisation techniques can be used if required. Here, we are trying some example of stacking model in the sequence is fitted giving more importance to observations in the dataset that were badly handled by the previous models in the sequence. Intuitively, each new model focus its efforts on the most difficult observations to fit up to now, so that we obtain, at the end of the process, a strong learner with lower bias (even if we can notice that boosting can also have the effect of reducing variance).

-> Boosting, like bagging, can be used for regression as well as for classification problems.

Being mainly focused at reducing bias, the base models that are often considered for boosting are* *models with low variance but high bias. For example, if we want to usetreesas our base models, we will choosemost of the time shallow decision trees with only a few depths.** Another important reason that motivates the use of low variance but high bias models as weak learners for boosting is that these models are in general less computationally expensive to fit (few degrees of freedom when parametrised). Indeed, as computations to fit the different models can't be done in parallel (unlike bagging), it could become too expensive to fit sequentially several complex models.

Once the weak learners have been chosen, we still need to define how they will be sequentially fitted and how they will be aggregated. We will discuss these questions in the two following subsections, describing more especially two important boosting algorithms: adaboost and gradient boosting.

In a nutshell, these two meta-algorithms differ on how they create and aggregate the weak learners during the sequential process. Adaptive boosting updates the weights attached to each of the training dataset observations whereas gradient boosting updates the value of these observations. This main difference comes from the way both methods try to solve the optimisation problem of finding the best model that can be written as a weighted sum of weak learners. Notice that there exists variants of the initial adaboost algorithm such that LogitBoost (classification) or L2Boost (regression) that mainly differ by their choice of loss function.

Fig. 22: Medium Science Blog

Adaboost updates weights of the observations at each iteration. Weights of well classified observations decrease relatively to weights of misclassified observations. Models that perform better have higher weights in the final ensemble model.

2/ Gradient boosting

In gradient boosting, the ensemble model we try to build is also a weighted sum of weak learners This entity is the opposite of the gradient of the fitting error with respect to the ensemble model at step l-1. This opposite of the gradient is a function that can, in practice, only be evaluated for observations in the training dataset (for which we know inputs and outputs): these evaluations are called pseudo-residuals attached to each observations. Moreover, even if we know for the observations the values of these pseudo-residuals, we don't want to add to our ensemble model any kind of function: we only want to add a new instance of weak model. So, the natural thing to do is to fit a weak learner to the pseudo-residuals computed for each observation. Finally, the coefficient c_l is computed following a one dimensional optimisation process (line-search to obtain the best step size c_l).

So, assume that we want to use gradient boosting technique with a given family of weak models. At the very beginning of the algorithm (first model of the sequence), the pseudo-residuals are set equal to the observation values. Then, we repeat L times (for the L models of the sequence) the following steps:

fit the best possible weak model to pseudo-residuals (approximate the opposite of the gradient with respect to the current strong learner) compute the value of the optimal step size that defines by how much we update the ensemble model in the direction of the new weak learner update the ensemble model by adding the new weak learner multiplied by the step size (make a step of gradient descent) compute new pseudo-residuals that indicate, for each observation, in which direction we would like to update next the ensemble model predictions Repeating these steps, we have then build sequentially our L models and aggregate them following a gradient descent approach. Notice that, while adaptative boosting tries to solve at each iteration exactly the "local" optimisation problem (find the best weak learner and its coefficient to add to the strong model), gradient boosting uses instead a gradient descent approach and can more easily be adapted to large number of loss functions. Thus, gradient boosting can be considered as a generalization of adaboost to arbitrary differentiable loss functions.

Note

There is an algorithm which gained huge popularity after a Kaggle's competitions. It is XGBoost (Extreme Gradient Boosting). This is a gradient boosting algorithm which has more 

Examples

Here, we are trying an example of Boosting and compare it to a Bagging. Both of algorithms take the same weak learners to build the macro-model 

Overview of stacking

Stacking mainly differ from bagging and boosting on two points : -First stacking often considers heterogeneous weak learners (different learning algorithms are combined) whereas bagging and boosting consider mainly homogeneous weak learners. -Second, stacking learns to combine the base models using a meta-model whereas bagging and boosting combine weak learners following deterministic algorithms.

As we already mentioned, the idea of stacking is to learn several different weak learners and combine them by training a meta-model to output predictions based on the multiple predictions returned by these weak models. So, we need to define two things in order to build our stacking model: the L learners we want to fit and the meta-model that combines them.

For example, for a classification problem, we can choose as weak learners a KNN classifier, a logistic regression and a SVM, and decide to learn a neural network as meta-model. Then, the neural network will take as inputs the outputs of our three weak learners and will learn to return final predictions based on it.

So, assume that we want to fit a stacking ensemble composed of L weak learners. Then we have to follow the steps thereafter:

• split the training data in two folds

• choose L weak learners and fit them to data of the first fold

• for each of the L weak learners, make predictions for observations in the second fold

• fit the meta-model on the second fold, using predictions made by the weak learners as inputs

In the previous steps, we split the dataset in two folds because predictions on data that have been used for the training of the weak learners are not relevant for the training of the metamodel.

Stacking consists in training a meta-model to produce outputs based on the outputs returned by some lower layer weak learners.

A possible extension of stacking is multi-level stacking. It consists in doing stacking with multiple layers. As an example, Multi-level stacking considers several layers of stacking: some meta-models are trained on outputs returned by lower layer meta-models and so on. Here we have represented a 3-layers stacking model. print("For Bagging : F1 Score {}, Accuracy {}".format(round(f1_score(test_y, ˓→predictions_bagging),2),round(accuracy_score(test_y,predictions_bagging),2)))

Examples

print("For Boosting : F1 Score {}, Accuracy {}".format(round(f1_score(test_y, ˓→predictions_boosting),2),round(accuracy_score(test_y,predictions_boosting),2)))

print("For Stacking : F1 Score {}, Accuracy {}".format(round(f1_score(test_y, ˓→predictions_stacking),2),round(accuracy_score(test_y,predictions_stacking),2))) 

Gradient descent

Gradient descent is an optimization algorithm used to minimize some function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient. In machine learning, we use gradient descent to update the parameters of our model. Parameters refer to coefficients in Linear Regression and weights in neural networks.

This section aims to provide you an explanation of gradient descent and intuitions towards the behaviour of different algorithms for optimizing it. These explanations will help you put them to use.

We are first going to introduce the gradient descent, solve it for a regression problem and look at its different variants. Then, we will then briefly summarize challenges during training. Finally, we will introduce the most common optimization algorithms by showing their motivation to resolve these challenges and list some advices for facilitate the algorithm choice.

Introduction

Consider the 3-dimensional graph below in the context of a cost function. Our goal is to move from the mountain in the top right corner (high cost) to the dark blue sea in the bottom left (low cost). The arrows represent the direction of steepest descent (negative gradient) from any given point-the direction that decreases the cost function as quickly as possible Gradient descent intuition.

Starting at the top of the mountain, we take our first step downhill in the direction specified by the negative gradient. Next we recalculate the negative gradient (passing in the coordinates of our new point) and take another step in the direction it specifies. We continue this process iteratively until we get to the bottom of our graph, or to a point where we can no longer move downhill-a local minimum.

Fig. 29: adalta.it

Learning rate

The size of these steps is called the learning rate. With a high learning rate we can cover more ground each step, but we risk overshooting the lowest point since the slope of the hill is constantly changing. With a very low learning rate, we can confidently move in the direction of the negative gradient since we are recalculating it so frequently. A low learning rate is more precise, but calculating the gradient is time-consuming, so it will take us a very long time to get to the bottom. 

Cost function

A Loss Function (Error function) tells us "how good" our model is at making predictions for a given set of parameters. The cost function has its own curve and its own gradients. The slope of this curve tells us how to update our parameters to make the model more accurate.

Numerical solution for gradient descent

Let's run gradient descent using a linear regression cost function.

There are two parameters in our cost function we can control: -$ .. raw:: latex beta _0$ : (the bias) -$:raw-latex:beta_1 $ : (weight or coefficient)

Since we need to consider the impact each one has on the final prediction, we need to use partial derivatives. We calculate the partial derivatives of the cost function with respect to each parameter and store the results in a gradient.

Given the cost function

𝑓 (𝛽 0 , 𝛽 1 ) = 1 2 𝜕𝑀 𝑆𝐸 𝜕𝛽 = 1 2𝑁 𝑛 ∑︁ 𝑖=1 (𝑦 𝑖 -(𝛽 1 𝑥 𝑖 + 𝛽 0 )) 2 = 1 2𝑁 𝑛 ∑︁ 𝑖=1 ((𝛽 1 𝑥 𝑖 + 𝛽 0 ) -𝑦 𝑖 ) 2
The gradient can be calculated as

𝑓 ′ (𝛽 0 , 𝛽 1 ) = [︃ 𝜕𝑓 𝜕𝛽 0 𝜕𝑓 𝜕𝛽 1 ]︃ = [︂ 1 2𝑁 ∑︀ -2((𝛽 1 𝑥 𝑖 + 𝛽 0 ) -𝑦 𝑖 ) 1 2𝑁 ∑︀ -2𝑥 𝑖 ((𝛽 1 𝑥 𝑖 + 𝛽 0 ) -𝑦 𝑖 ) ]︂ = [︂ -1 𝑁 ∑︀ ((𝛽 1 𝑥 𝑖 + 𝛽 0 ) -𝑦 𝑖 ) -1 𝑁 ∑︀ 𝑥 𝑖 ((𝛽 1 𝑥 𝑖 + 𝛽 0 ) -𝑦 𝑖 ) ]︂
To solve for the gradient, we iterate through our data points using our 

Gradient descent variants

There are three variants of gradient descent, which differ in how much data we use to compute the gradient of the objective function. Depending on the amount of data, we make a trade-off between the accuracy of the parameter update and the time it takes to perform an update.

Batch gradient descent

Batch gradient descent, known also as Vanilla gradient descent, computes the gradient of the cost function with respect to the parameters 𝜃 for the entire training dataset :

𝜃 = 𝜃 -𝜂 • ∇ 𝜃 𝐽(𝜃)
As we need to calculate the gradients for the whole dataset to perform just one update, batch gradient descent can be very slow and is intractable for datasets that don't fit in memory. Batch gradient descent also doesn't allow us to update our model online.

Stochastic gradient descent

Stochastic gradient descent (SGD) in contrast performs a parameter update for each training example 𝑥 (𝑖) and label 𝑦 (𝑖) • Choose an initial vector of parameters 𝑤 and learning rate 𝜂.

• Repeat until an approximate minimum is obtained:

-Randomly shuffle examples in the training set.

-For 𝑖 ∈ 1, . . . , 𝑛 * 𝜃 = 𝜃 -𝜂 • ∇ 𝜃 𝐽(𝜃; 𝑥 (𝑖) ; 𝑦 (𝑖) ) Batch gradient descent performs redundant computations for large datasets, as it recomputes gradients for similar examples before each parameter update. SGD does away with this redundancy by performing one update at a time. It is therefore usually much faster and can also be used to learn online. SGD performs frequent updates with a high variance that cause the objective function to fluctuate heavily as in the image below.

SGD fluctuation.

While batch gradient descent converges to the minimum of the basin the parameters are placed in, SGD's fluctuation, on the one hand, enables it to jump to new and potentially better local minima. On the other hand, this ultimately complicates convergence to the exact minimum, as SGD will keep overshooting. However, it has been shown that when we slowly decrease the learning rate, SGD shows the same convergence behaviour as batch gradient descent, almost certainly converging to a local or the global minimum for nonconvex and convex optimization respectively. This way, it :

• reduces the variance of the parameter updates, which can lead to more stable convergence.

• can make use of highly optimized matrix optimizations common to state-of-the-art deep learning libraries that make computing the gradient very efficient. Common mini-batch sizes range between 50 and 256, but can vary for different applications.

Mini-batch gradient descent is typically the algorithm of choice when training a neural network.

Gradient Descent challenges

Vanilla mini-batch gradient descent, however, does not guarantee good convergence, but offers a few challenges that need to be addressed:

• Choosing a proper learning rate can be difficult. A learning rate that is too small leads to painfully slow convergence, while a learning rate that is too large can hinder convergence and cause the loss function to fluctuate around the minimum or even to diverge.

• Learning rate schedules try to adjust the learning rate during training by e.g. annealing, i.e. reducing the learning rate according to a pre-defined schedule or when the change in objective between epochs falls below a threshold. These schedules and thresholds, however, have to be defined in advance and are thus unable to adapt to a dataset's characteristics.

• Additionally, the same learning rate applies to all parameter updates. If our data is sparse and our features have very different frequencies, we might not want to update all of them to the same extent, but perform a larger update for rarely occurring features.

• Another key challenge of minimizing highly non-convex error functions common for neural networks is avoiding getting trapped in their numerous suboptimal local minima. These saddle points (local minimas) are usually surrounded by a plateau of the same error, which makes it notoriously hard for SGD to escape, as the gradient is close to zero in all dimensions.

Gradient descent optimization algorithms

In the following, we will outline some algorithms that are widely used by the deep learning community to deal with the aforementioned challenges. 

Momentum

Note:

The momentum term :math: rho is usually set to 0.9 or a similar value.

Essentially, when using momentum, we push a ball down a hill. The ball accumulates momentum as it rolls downhill, becoming faster and faster on the way (until it reaches its terminal velocity if there is air resistance, i.e. :math: rho <1 ).

The same thing happens to our parameter updates: The momentum term increases for dimensions whose gradients point in the same directions and reduces updates for dimensions whose gradients change directions. As a result, we gain faster convergence and reduced oscillation.

AdaGrad: adaptive learning rates

• Added element-wise scaling of the gradient based on the historical sum of squares in each dimension.

• "Per-parameter learning rates" or "adaptive learning rates" grad_squared = 0 while True: dx = gradient(J, x) grad_squared += dx * dx x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)

• Progress along "steep" directions is damped.

• Progress along "flat" directions is accelerated.

• Problem: step size over long time => Decays to zero.

RMSProp: "Leaky AdaGrad" grad_squared = 0 while True: dx = gradient(J, x) grad_squared += decay_rate * grad_squared + (1 -decay_rate) * dx * dx x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)

• decay_rate = 1: gradient descent

• decay_rate = 0: AdaGrad

Gradient descent

Nesterov accelerated gradient

However, a ball that rolls down a hill, blindly following the slope, is highly unsatisfactory. We'd like to have a smarter ball, a ball that has a notion of where it is going so that it knows to slow down before the hill slopes up again. Nesterov accelerated gradient (NAG) is a way to give our momentum term this kind of prescience. We know that we will use our momentum term 𝛾𝑣 𝑡-1 to move the parameters 𝜃.

Computing 𝜃 -𝛾𝑣 𝑡-1 thus gives us an approximation of the next position of the parameters (the gradient is missing for the full update), a rough idea where our parameters are going to be. We can now effectively look ahead by calculating the gradient not w.r.t. to our current parameters 𝜃 but w.r.t. the approximate future position of our parameters:

𝑣 𝑡 = 𝛾𝑣 𝑡-1 + 𝜂∇ 𝜃 𝐽(𝜃 -𝛾𝑣 𝑡-1 ) 𝜃 = 𝜃 -𝑣 𝑡 (5.51)
Again, we set the momentum term 𝛾 to a value of around 0.9. While Momentum first computes the current gradient and then takes a big jump in the direction of the updated accumulated gradient , NAG first makes a big jump in the direction of the previous accumulated gradient, measures the gradient and then makes a correction, which results in the complete NAG update. This anticipatory update prevents us from going too fast and results in increased responsiveness, which has significantly increased the performance of RNNs on a number of tasks

Adam

Adaptive Moment Estimation (Adam) is a method that computes adaptive learning rates for each parameter. In addition to storing an exponentially decaying average of past squared gradients :math: v_t , Adam also keeps an exponentially decaying average of past gradients :math: m_t , similar to momentum. Whereas momentum can be seen as a ball running down a slope, Adam behaves like a heavy ball with friction, which thus prefers flat minima in the error surface. We compute the decaying averages of past and past squared gradients 𝑚 𝑡 and 𝑣 𝑡 respectively as follows: As 𝑚 𝑡 and 𝑣 𝑡 are initialized as vectors of 0's, the authors of Adam observe that they are biased towards zero, especially during the initial time steps, and especially when the decay rates are small (i.e. 𝛽 1 and 𝛽 2 are close to 1). They counteract these biases by computing bias-corrected first and second moment estimates:

𝑚 𝑡 = 𝛽 1 𝑚 𝑡-1 + (1 -𝛽 1 )∇ 𝜃 𝐽(𝜃) 𝑣 𝑡 = 𝛽 2 𝑣 𝑡-1 + (1 -𝛽 2 )∇ 𝜃 𝐽(𝜃) 2 ( 
m𝑡 = 𝑚 𝑡 1 -𝛽 𝑡 1 (5.53) v𝑡 = 𝑣 𝑡 1 -𝛽 𝑡 2 (5.54)
They then use these to update the parameters (Adam update rule):

𝜃 𝑡+1 = 𝜃 𝑡 - 𝜂 √ v𝑡 + 𝜖 m𝑡
• m𝑡 Accumulate gradient: velocity.

• v𝑡 Element-wise scaling of the gradient based on the historical sum of squares in each dimension.

• Choose Adam as default optimizer

• Default values of 0.9 for 𝛽 1 , 0.999 for 𝛽 2 , and 10 -7 for 𝜖.

• learning rate in a range between 1𝑒 -3 and 5𝑒 -4

Lab: Faces recognition using various learning models

This lab is inspired by a scikit-learn lab: Faces recognition example using eigenfaces and SVMs It uses scikit-learan and pytorch models using skorch (slides).

• skorch provides scikit-learn compatible neural network library that wraps PyTorch.

• skorch abstracts away the training loop, making a lot of boilerplate code obsolete. A simple net.fit(X, y) is enough.

Note that more sofisticated models can be used, see for a overview.

Models:

• Eigenfaces unsupervized exploratory analysis.

• LogisticRegression with L2 regularization (includes model selection with 5CV _

• SVM-RBF (includes model selection with 5CV.

• MLP using sklearn using sklearn (includes model selection with 5CV)

• MLP using skorch classifier

• Basic Convnet (ResNet18) using skorch.

• Pretrained ResNet18 using skorch.

Pipelines:

• Univariate feature filtering (Anova) with Logistic-L2 Projecting the input data on the eigenfaces orthonormal basis <seaborn.axisgrid.FacetGrid object at 0x7fe42eba3250>

Plot eigenfaces: eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF])] plot_gallery(eigenfaces, eigenface_titles, h, w)

LogisticRegression with L2 penalty (with CV-based model selection)

Our goal is to obtain a good balanced accuracy, ie, the macro average (macro avg) of classes' reccalls. In this perspective, the good practices are:

• Scale input features using either StandardScaler() or MinMaxScaler() "It doesn't harm".

• Re-balance classes' contributions class_weight='balanced' 

MLP with sklearn and CV-based model selection

Default parameters: -alpha, default=0.0001 L2 penalty (regularization term) parameter. -batch_size=min(200, n_samples) -learning_rate_init = 0.001 (the important one since we uses adam) -solver default='adam'

• sgd: momentum=0.9

• adam: beta_1, beta_2 default=0.9, 0.999 Exponential decay rates for the first and second moment.

• L2 penalty (regularization term) parameter, alpha default=0.0001 

Backpropagation and chaine rule

We will set up a two layer network source pytorch tuto : Y = max(XW (1) , 0)W (2)

A fully-connected ReLU network with one hidden layer and no biases, trained to predict y from x using Euclidean error.

Chaine rule

Forward pass with local partial derivatives of ouput given inputs:

𝑥 → 𝑧 (1) = 𝑥 𝑇 𝑤 (1) → ℎ (1) = max(𝑧 (1) , 0) → 𝑧 (2) = ℎ (1)𝑇 𝑤 (2) → 𝐿(𝑧 (2) , 𝑦) = (𝑧 (2) -𝑦) 2

𝑤 (1) ↗ 𝑤 (2) ↗ 𝜕𝑧 (1) 𝜕𝑤 (1) = 𝑥 𝜕ℎ (1) 𝜕𝑧 (1) = { 1 if 𝑧 (1) >0 else 0 𝜕𝑧 (2) 𝜕𝑤 (2) = ℎ (1) 𝜕𝐿 𝜕𝑧 (2) = 2(𝑧 (2) -𝑦) 𝜕𝑧 (1) 𝜕𝑥 = 𝑤 (1) 𝜕𝑧 (2) 𝜕ℎ (1) = 𝑤 (2)

Backward: compute gradient of the loss given each parameters vectors applying chaine rule from the loss downstream to the parameters:

For 𝑤 (2) : 𝜕𝐿 𝜕𝑤 (2) = 𝜕𝐿 𝜕𝑧 (2) 𝜕𝑧 (2) 𝜕𝑤 (2) (6.1) =2(𝑧 (2) -𝑦)ℎ (1) (6.2)

For 𝑤 (1) :

𝜕𝐿 𝜕𝑤 (1) = 𝜕𝐿 𝜕𝑧 (2)
𝜕𝑧 (2) 𝜕ℎ (1) 𝜕ℎ (1) 𝜕𝑧 (1) 𝜕𝑧 (1) 𝜕𝑤 (1) (6.3) # device = torch.device("cuda:0") # Uncomment this to run on GPU # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = X.shape[0], X.shape [1], 100, Y.shape [1] # Setting requires_grad=False indicates that we do not need to compute␣ # Compute and print loss using operations on Tensors. # Now loss is a Tensor of shape (1,) # loss.item() gets the scalar value held in the loss. loss = (y_pred -Y).pow(2).sum() # Use autograd to compute the backward pass. This call will compute the # gradient of loss with respect to all Tensors with requires_grad=True. # After this call w1.grad and w2.grad will be Tensors holding the gradient # of the loss with respect to w1 and w2 respectively. loss.backward() This implementation uses the nn package from PyTorch to build the network. PyTorch autograd makes it easy to define computational graphs and take gradients, but raw autograd can be a bit too low-level for defining complex neural networks; this is where the nn package can help. The nn package defines a set of Modules, which you can think of as a neural network layer that has produces output from input and may have some trainable weights. 

=2(𝑧 (2) -𝑦)𝑤 (2) { 1 if 𝑧 (1)
#

Backpropagation with PyTorch optim

This implementation uses the nn package from PyTorch to build the network. Rather than manually updating the weights of the model as we have been doing, we use the optim package to define an Optimizer that will update the weights for us. The optim package defines many optimization algorithms that are commonly used for deep learning, including SGD+momentum, RMSProp, Adam, etc. # Before the backward pass, use the optimizer object to zero all of the # gradients for the variables it will update (which are the learnable # weights of the model). This is because by default, gradients are # accumulated in buffers( i.e, not overwritten) whenever .backward() • Input 𝑥: a vector of dimension (0) (layer 0).

(
• Ouput 𝑓 (𝑥) a vector of (1) (layer 1) possible labels

The model as (1) neurons as output layer

𝑓 (𝑥) = softmax(𝑥 𝑇 𝑊 + 𝑏)
Where 𝑊 is a (0) × (1) of coefficients and 𝑏 is a (1)-dimentional vector of bias. • Featured Convolutional Layers stacked on top of each other (previously it was common to only have a single CONV layer always immediately followed by a POOL layer).

• ReLu(Rectified Linear Unit) for the non-linear part, instead of a Tanh or Sigmoid.

The advantage of the ReLu over sigmoid is that it trains much faster than the latter because the derivative of sigmoid becomes very small in the saturating region and therefore the updates to the weights almost vanish. This is called vanishing gradient problem.

• Dropout: reduces the over-fitting by using a Dropout layer after every FC layer. Dropout layer has a probability,(p), associated with it and is applied at every neuron of the response map separately. It randomly switches off the activation with the probability p.

Why does DropOut work? The idea behind the dropout is similar to the model ensembles. Due to the dropout layer, different sets of neurons which are switched off, represent a different architecture and all these different architectures are trained in parallel with weight given to each subset and the summation of weights being one. For n neurons attached to DropOut, the number of subset architectures formed is 2^n. So it amounts to prediction being averaged over these ensembles of models. This provides a structured model regularization which helps in avoiding the overfitting. Another view of DropOut being helpful is that since neurons are randomly chosen, they tend to avoid developing co-adaptations among themselves thereby enabling them to develop meaningful features, independent of others.

• Data augmentation is carried out to reduce over-fitting. This Data augmentation includes mirroring and cropping the images to increase the variation in the training data-set.

GoogLeNet. (Szegedy et al. from Google 2014) was a Convolutional Network . Its main contribution was the development of an

• Inception Module that dramatically reduced the number of parameters in the network (4M, compared to AlexNet with 60M).

• There are also several followup versions to the GoogLeNet, most recently Inception-v4.

VGGNet. (Karen Simonyan and Andrew Zisserman 2014)

• 16 CONV/FC layers and, appealingly, features an extremely homogeneous architecture.

• Only performs 3x3 convolutions and 2x2 pooling from the beginning to the end. Replace large kernel-sized filters(11 and 5 in the first and second convolutional layer, respectively) with multiple 3X3 kernel-sized filters one after another.

With a given receptive field(the effective area size of input image on which output depends), multiple stacked smaller size kernel is better than the one with a larger size kernel because multiple non-linear layers increases the depth of the network which enables it to learn more complex features, and that too at a lower cost. For example, three 3X3 filters on top of each other with stride 1 ha a receptive size of 7, but the number of parameters involved is 3*(9^2) in comparison to 49^2 parameters of kernels with a size of 7. • but recent advances such as ResNet/GoogLeNet have challenged this paradigm 

ResNet-like Model:

Stack multiple resnet blocks # ----------------------------------------------------------------------------# # An implementation of https://arxiv.org/pdf/1512.03385.pdf # # See section 4.2 for the model architecture on CIFAR-10 # # Some part of the code was referenced from below # # https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py # # - --------------------------------------------------------------------------- 
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 13 Commands python: python interpreter. On the dos/unix command line execute wholes file: python file.py Interactive mode: python Quite with CTL-D ipython: advanced interactive python interpreter: ipython Quite with CTL-D pip alternative for packages management (update -U in user directory --user): pip install -U --user seaborn For neuroimaging: pip install -U --user nibabel pip install -U --user nilearn spyder: IDE (integrated development environment):

  [ a , a , b , b , b ] Chapter 2. Python language Statistics and Machine Learning in Python, Release 0.5

#

  re.sub( [^0-9a-zA-Z]+ , , h^&ell .,|o w]{+orld ) Get the current working directory cwd = os.getcwd() print(cwd) # Set the current working directory os.chdir(cwd) Out: /home/ed203246/git/pystatsml/python_lang Temporary directory import tempfile tmpdir = tempfile.gettempdir() Join paths mytmpdir = os.path.join(tmpdir, "foobar")

  ˓→once f = open(filename, r ) [line for line in f] f.close() ## use a context manager to automatically close your file with open(filename, r ) as f: lines = [line for line in f]Out:/tmp/foobar/myfile.txt 2.8.3 Explore, list directories Walk import os WD = os.path.join(tmpdir, "foobar") for dirpath, dirnames, filenames in os.walk(WD): print(dirpath, dirnames, filenames) Out: /tmp/foobar [ plop ] [ myfile.txt ] /tmp/foobar/plop [ toto ] [] /tmp/foobar/plop/toto [] [] glob, basename and file extension import tempfile import glob tmpdir = tempfile.gettempdir() filenames = glob.glob(os.path.join(tmpdir, "*", "*.txt")) print(filenames) # take basename then remove extension basenames = [os.path.splitext(os.path.basename(f))[0] for f in filenames] print(basenames) Out: [ /tmp/foobar/myfile.txt ] [ myfile ]

  list_append(count, sign=1, out_list=None): if out_list is None: out_list = list() for i in range(count): out_list.append(sign * i) sum(out_list) # do some computation return out_list size = 10000 # Number of numbers to add out_list = list() # result is a simple list thread1 = threading.Thread(target=list_append, args=(size, 1, out_list, )) thread2 = threading.Thread(target=list_append, args=(size, -1, out_list, )) startime = time.time() # Will execute both in parallel thread1.start() thread2.start() # Joins threads back to the parent process thread1.join() thread2.join() print("Threading ellapsed time ", time.time() -startime) print(out_list[:10]) Out: Threading ellapsed time 0.6789593696594238 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] Multiprocessing import multiprocessing # Sharing requires specific mecanism out_list1 = multiprocessing.Manager().list() p1 = multiprocessing.Process(target=list_append, args=(size, 1, None)) out_list2 = multiprocessing.Manager().list() p2 = multiprocessing.Process(target=list_append, args=(size, -1, None)) startime = time.time() p1.start() p2.start() p1.join() p2.join() (continues on next page) (continued from previous page) print("Multiprocessing ellapsed time ", time.time() -startime) # print(out_list[:10]) is not availlable Out:

  (size / 100) # Number of numbers to add # Sharing requires specific mecanism out_list = multiprocessing.Manager().list() p1 = multiprocessing.Process(target=list_append, args=(size, 1, out_list)) p2 = multiprocessing.Process(target=list_append, args=(size, -1, out_list)) startime = time.time() p1.start() p2.start() p1.join() p2.join() print(out_list[:10]) print("Multiprocessing with shared object ellapsed time ", time.time() -startime) Out: [0, 1, 2, 3, 4, 5, 0, 6, -1, 7] Multiprocessing with shared object ellapsed time 0.3832252025604248

•

  Comments are used to explain non-obvious portions of the code. "Dead documentation". Docstrings for functions (same for classes and methods): b : float, optional Second operand. The default is 2.(continues on next page)

  Kevin Markham: https://github.com/justmarkham Computation time: import numpy as np l = [v for v in range(10 ** 8)] s = 0 %time for v in l: s += v arr = np.arange(10 ** 8) %time arr.sum()
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 1 Fig. 1: Source: http://www.scipy-lectures.org

5 (

 5 array): 15 x 3 x 5 A (3d array): 15 x 3 x 5 B (2d array): 3 x continues on next page) (continued from previous page)

  , 𝑌 ) = Cov(𝑌, 𝑋) (4.5) Cov(𝑐𝑋, 𝑌 ) = 𝑐 Cov(𝑋, 𝑌 ) (4.6) Cov(𝑋 + 𝑐, 𝑌 ) = Cov(𝑋, 𝑌 )

mu = 0

 0 # mean variance = 2 #variance sigma = np.sqrt(variance) #standard deviation", x = np.linspace(mu -3 * variance, mu + 3 * variance, 100) _ = plt.plot(x, scipy.stats.norm.pdf(x, mu, sigma))

0 . 5 𝑘 ( 1 - 0 . 5 )

 05105 8 plt.figure(figsize=(5, 3)) plt.bar([0, 1, 2, 3], [1/8, 3/8, 3/8, 1/8], width=0.9) _ = plt.xticks([0, 1, 2, 3], [0, 1, 2, 3]) plt.xlabel("Distribution of the number of head over 3 flip under the null␣ ˓→hypothesis") Text(0.5, 0, Distribution of the number of head over 3 flip under the null␣ ˓→hypothesis ) 3. Compute the probability (𝑝-value) to observe a value larger or equal that 2 under the null hypothesis ? This probability is the 𝑝-value: 𝑃 (𝑥 ≥ 2|𝐻 0 ) = 𝑃 (𝑥 = 2) + 𝑃 (𝑥 = 3) = 3/8 + 1/8 = 4/8 = 1/2 Flip coin: Real Example Biased coin ? 60 heads have been found over 100 flips, is it coins biased ? 1. Model the data: number of heads follow a Binomial disctribution. 2. Compute model parameters: N=100, P=60/100. 3. Compute a test statistic, same as frequency. 4. Compute a test statistic: 60/100. 5. Under the null hypothesis the distribution of the number of tail (𝑘) follow the binomial distribution of parameters N=100, P=0.5: 𝑃 𝑟(𝑋 = 𝑘|𝐻 0 ) = 𝑃 𝑟(𝑋 = 𝑘|𝑛 = 100, 𝑝 = 0.5) = (︂ 100 𝑘 )︂ 0.5 𝑘 (1 -0.5) (100-𝑘) . 𝑃 (𝑋 = 𝑘 ≥ 60|𝐻 0 ) = (100-𝑘) , the cumulative distribution function. Use tabulated binomial distribution succes = np.linspace(30, 70, 41) plt.plot(succes, scipy.stats.binom.pmf(succes, 100, 0.5), b-, label="Binomial(100, 0.5)") upper_succes_tvalues = succes[succes > 60] plt.fill_between(upper_succes_tvalues, 0, scipy.stats.binom.pmf(upper_succes_tvalues, 100, 0.5), alpha=.8, label="p-value") _ = plt.legend() pval = 1 -scipy.stats.binom.cdf(60, 100, 0.5) print(pval) 0.01760010010885238 Random sampling of the Binomial distribution under the null hypothesis sccess_h0 = scipy.stats.binom.rvs(100, 0.5, size=10000, random_state=4) print(sccess_h0) pval_rnd = np.sum(sccess_h0 >= 60) / (len(sccess_h0) + 1) print("P-value using monte-carlo sampling of the Binomial distribution under H0=", pval_rnd)
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 1 Fig. 1: Statistical tests

√ 1 -

 1 𝑟 2 follow Student distribution with 𝑛 -2 degrees of freedom. n = 50 x = np.random.normal(size=n) y = 2 * x + np.random.normal(size=n) # Compute with scipy (continues on next page) (continued from previous page) cor, pval = scipy.stats.pearsonr(x, y) print(cor, pval) 0.8297883544365898 9.497428029783463e-14 4.1.7 Two sample (Student) 𝑡-test: compare two means

Fig. 2 :Assumptions 1 .

 21 Fig. 2: Two-sample model The two-sample 𝑡-test (Snedecor and Cochran, 1989) is used to determine if two population means are equal. There are several variations on this test. If data are paired (e.g. 2 measures, before and after treatment for each individual) use the one-sample 𝑡-test of the difference. The variances of the two samples may be assumed to be equal (a.k.a. homoscedasticity) or unequal (a.k.a. heteroscedasticity).

  ("Regression line with the scatterplot") yhat = beta * x + beta0 # regression line plt.plot(x, yhat, r-, x, y, o ) plt.xlabel( Experience (years) ) plt.ylabel( Salary ) plt.show() print("Using seaborn") ax = sns.regplot(x="experience", y="salary", data=df) y = 452.658228 x + 10785.911392, r: 0.965370, r-squared: 0.931939, p-value: 0.000000, std_err: 24.970021 Regression line with the scatterplot Using seaborn Multiple regression Theory Muliple Linear Regression is the most basic supervised learning algorithm. Given: a set of training data {𝑥 1 , ..., 𝑥 𝑁 } with corresponding targets {𝑦 1 , ..., 𝑦 𝑁 }.

  linalg np.random.seed(seed=42) # make the example reproducible # Dataset N, P = 50, 4 X = np.random.normal(size= N * P).reshape((N, P)) ## Our model needs an intercept so we add a column of 1s: X[:, 0] = 1 print(X[:5, :]) betastar = np.array([10, 1., .

  >F) education 9.152624e+07 2.0 43.351589 7.672450e-11 management 5.075724e+08 1.0 480.825394 2.901444e-24 experience 3.380979e+08 1.0 320.281524 5.546313e-21 Residual 4.328072e+07 41.0 NaN NaN Jarque-Bera normality test p-value 0.506 Normality assumtion cannot be rejected. Assume it. Education, management and experience are significantly associated with salary. Comparing two nested models oneway is nested within twoway. Comparing two nested models tells us if the additional predictors (i.e. education) of the full model significantly decrease the residuals. Such comparison can be done using an 𝐹 -test on residuals: print(twoway.compare_f_test(oneway)) # return F, pval, df (43.35158945918107, 7.672449570495418e-11, 2.0) twoway is significantly better than one way Factor coding See http://statsmodels.sourceforge.net/devel/contrasts.html By default Pandas use "dummy coding". Explore: print(twoway.model.data.param_names) print(twoway.model.data.exog[:10, :]) [ Intercept , education[T.Master] , education[T.Ph.D] , management[T.Y] , 1. 0. 1. 2.] [1. 1. 0. 0. 2.] [1. 0. 0. 0. 2.] [1. 0. 1. 0. 2.] [1. 1. 0. 0. 3.]] Contrasts and post-hoc tests # t-test of the specific contribution of experience: ttest_exp = twoway.t_test([0, 0, 0, 0, 1]) ttest_exp.pvalue, ttest_exp.tvalue print(ttest_exp) # Alternatively, you can specify the hypothesis tests using a string twoway.t_test( experience ) # Post-hoc is salary of Master different salary of Ph.D? # ie. t-test salary of Master = salary of Ph.D. print(twoway.t_test( education[T.Master] = education[T.Ph.D] ))

  [2].hist([pvals[n_info:], pvals[:n_info]], stacked=True, bins=100, label=["Negatives", "Positives"]) axis[2].set_xlabel("p-value histogram") axis[2].set_ylabel("density") axis[2].legend() plt.tight_layout() Statistics and Machine Learning in Python, Release 0.5 Note that under the null hypothesis the distribution of the p-values is uniform. Statistical measures: • True Positive (TP) equivalent to a hit. The test correctly concludes the presence of an effect. • True Negative (TN). The test correctly concludes the absence of an effect. • False Positive (FP) equivalent to a false alarm, Type I error. The test improperly concludes the presence of an effect. Thresholding at 𝑝-value < 0.05 leads to 47 FP. • False Negative (FN) equivalent to a miss, Type II error. The test improperly concludes the absence of an effect. P, N = n_info, n_features -n_info # Positives, Negatives TP = np.sum(pvals[:n_info ] < 0.05) # True Positives FP = np.sum(pvals[n_info: ] < 0.05) # False Positives print("No correction, FP: %i (expected: %.2f), TP: %i" % (FP, N * 0.05, TP))

  So, if the desired significance level for the whole family of tests is 𝛼 (usually 0.05), then the Bonferroni correction would test each individual hypothesis at a significance level of 𝛼/𝑃 . For example, if a trial is testing 𝑃 = 8 hypotheses with a desired 𝛼 = 0.05, then the Bonferroni correction would test each individual hypothesis at 𝛼 = 0.05/8 = 0.00625. import statsmodels.sandbox.stats.multicomp as multicomp _, pvals_fwer, _, _ = multicomp.multipletests(pvals, alpha=0.05, method= bonferroni ) TP = np.sum(pvals_fwer[:n_info ] < 0.05) # True Positives FP = np.sum(pvals_fwer[n_info: ] < 0.05) # False Positives print("FWER correction, FP: %i, TP: %i" % (FP, TP)) FWER correction, FP: 0, TP: 6

_

  , pvals_fdr, _, _ = multicomp.multipletests(pvals, alpha=0.05, method= fdr_bh ) TP = np.sum(pvals_fdr[:n_info ] < 0.05) # True Positives FP = np.sum(pvals_fdr[n_info: ] < 0.05) # False Positives print("FDR correction, FP: %i, TP: %i" % (FP, TP)) FDR correction, FP: 3, TP: 20

  .lmplot(x="edu", y="score", data=df) Model diagnosis: plot the normality of the residuals and residuals vs prediction. plot_lm_diagnosis(residual=lm_glob.resid, prediction=lm_glob.predict(df), group=df.classroom) Model a classroom intercept as a fixed effect: ANCOVA Remember ANCOVA = ANOVA with covariates. Model the classroom 𝑧 = classroom (as a fixed effect), ie a vertical shift for each classroom. The slope is the same for all classrooms. For each individual 𝑖 and each classroom 𝑗 the model is:

  -Coef. Std.Err. z P>|z| [0.025 0.975]

  print("Model parameters:") print(ancova_full.params) (continues on next page) (continued from previous page) plot_ancova_fullmodel(x= edu , y= score , group= classroom , df=df, model=ancova_full)

  -Coef. Std.Err. z P>|z| [0.025 0.975]

Fig. 4 :

 4 Fig. 4: Projection.

  is an estimator of the covariance between the 𝑗 𝑡ℎ and 𝑘 𝑡ℎ variables. ## Avoid warnings and force inline plot %matplotlib inline import warnings warnings.filterwarnings("ignore") ## import numpy as np import scipy import matplotlib.pyplot as plt import seaborn as sns import pystatsml.plot_utils import seaborn as sns # nice color np.random.seed(42) colors = sns.color_palette() n_samples, n_features = 100, 2 mean, Cov, X = [None] * 4, [None] * 4, [None] * 4 mean[0] = np.array([-2.5, 2.5]) Cov[0] = np.array([[1, 0], [0, 1]]) mean[1] = np.array([2.5, 2.5]) Cov[1] = np.array([[1, .5], [.5, 1]]) mean[2] = np.array([-2.5, -2.5]) Cov[2] = np.array([[1, .9], [.9, 1]]) mean[3] = np.array([2.5, -2.5]) Cov[3] = np.array([[1, -.9], [-.9, 1]]) (continues on next page) (continued from previous page) # Generate dataset for i in range(len(mean)): X[i] = np.random.multivariate_normal(mean[i], Cov[i], n_samples) # Plot for i in range(len(mean)): # Points plt.scatter(X[i][:, 0], X[i][:, 1], color=colors[i], label="class %i" % i) # Means plt.scatter(mean[i][0], mean[i][1], marker="o", s=200, facecolors= w , edgecolors=colors[i], linewidth=2) # Ellipses representing the covariance matrices pystatsml.plot_utils.plot_cov_ellipse(Cov[i], pos=mean[i], facecolor= none , linewidth=2, edgecolor=colors[i]) plt.axis( equal ) _ = plt.legend(loc= upper left ) url = https://python-graph-gallery.com/wp-content/uploads/mtcars.csv df = pd.read_csv(url) (continues on next page) # Compute the correlation matrix corr = df.corr() # Generate a mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True f, ax = plt.subplots(figsize=(5.5, 4.5)) cmap = sns.color_palette("RdBu_r", 11) # Draw the heatmap with the mask and correct aspect ratio _ = sns.heatmap(corr, mask=None, cmap=cmap, vmax=1, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}) Re-order correlation matrix using AgglomerativeClustering # convert correlation to distances d = 2 * (1 -np.abs(corr)) from sklearn.cluster import AgglomerativeClustering clustering = AgglomerativeClustering(n_clusters=3, linkage= single , affinity=

  [2], s=200, label="x2") # plot covariance ellipsis pystatsml.plot_utils.plot_cov_ellipse(Cov, pos=mean, facecolor= none , linewidth=2, edgecolor=colors[0]) # Compute distances d2_m_x1 = scipy.spatial.distance.euclidean(mean, x1) d2_m_x2 = scipy.spatial.distance.euclidean(mean, x2) Covi = scipy.linalg.inv(Cov) dm_m_x1 = scipy.spatial.distance.mahalanobis(mean, x1, Covi) dm_m_x2 = scipy.spatial.distance.mahalanobis(mean, x2, Covi) # Plot distances vm_x1 = (x1 -mean) / d2_m_x1 (continues on next page) vm_x2 = (x2 -mean) / d2_m_x2 jitter = .1 plt.plot([mean[0] -jitter, d2_m_x1 * vm_x1[0] -jitter],

  [1]], color= r ) plt.legend(loc= lower right ) plt.text(-6.1, 3, Euclidian: d(m, x1) = %.1f<d(m, x2) = %.1f % (d2_m_x1, d2_m_x2),␣ ˓→color= k ) plt.text(-6.1, 3.5, Mahalanobis: d(m, x1) = %.1f>d(m, x2) = %.1f % (dm_m_x1, dm_m_x2),␣ ˓→color= r ) plt.axis( equal ) print( Euclidian d(m, x1) = %.2f < d(m, x2) = %.2f % (d2_m_x1, d2_m_x2)) print( Mahalanobis d(m, x1) = %.2f > d(m, x2) = %.2f % (dm_m_x1, dm_m_x2)) Euclidian d(m, x1) = 2.00 < d(m, x2) = 2.83 Mahalanobis d(m, x1) = 3.33 > d(m, x2) = 2.11

  fig = plt.figure(figsize=(10, 7)) ax = fig.gca(projection= 3d ) surf = ax.plot_surface(x, y, norm, rstride=3, cstride=3, cmap=plt.cm.coolwarm, linewidth=1, antialiased=False )

(

  continues on next page) (continued from previous page) # df.plot(figsize=(20,10), linewidth=5, fontsize=20) # Plot single column # df[[ diet ]].plot(figsize=(20,10), linewidth=5, fontsize=20) # plt.xlabel( Year , fontsize=20); Note that this data is relative. As you can read on Google trends:Numbers represent search interest relative to the highest point on the chart for the given region and time. A value of 100 is the peak popularity for the term. A value of 50 means that the term is half as popular. Likewise a score of 0 means the term was less than 1% as popular as the peak.4.5.7 Resampling, smoothing, windowing, rolling average: trendsRolling average, for each time point, take the average of the points on either side of it. Note that the number of points is specified by a window size.Remove Seasonality with pandas Series. See: http://pandas.pydata.org/pandas-docs/stable/timeseries.html A: 'year end frequency' year frequencydiet = df[ diet ] diet_resamp_yr = diet.resample( A ).mean() diet_roll_yr = diet.rolling(12).mean() ax = diet.plot(alpha=0.5, style= -) # store axis (ax) for latter plots diet_resamp_yr.plot(style= : , label= Resample at year frequency , ax=ax) (continues on next page) df_dtrend = df[["diet", "gym"]] -df_avg df_dtrend.plot() plt.xlabel( Year ) Text(0.5, 0, Year ) 4.5.8 First-order differencing: seasonal patterns # diff = original -shiftted data # (exclude first term for some implementation details) assert np.all((diet.diff() == diet -diet.shift())[1:]) df.diff().plot() plt.xlabel( Year )

Plot#

  from pandas.plotting import autocorrelation_plot from pandas.plotting import autocorrelation_plot x = df["diet"].astype(float) autocorrelation_plot(x) <AxesSubplot:xlabel= Lag , ylabel= Autocorrelation >

  from statsmodels.tsa.stattools import acf, pacf x = df["gym"].astype(float) x_diff = x.diff().dropna() # first item is NA # ACF and PACF plots: lag_acf = acf(x_diff, nlags=20, fft=True) lag_pacf = pacf(x_diff, nlags=20, method= ols ) #Plot ACF: plt.subplot(121) plt.plot(lag_acf) plt.axhline(y=0,linestyle= --,color= gray ) plt.axhline(y=-1.96/np.sqrt(len(x_diff)),linestyle= --,color= gray ) plt.axhline(y=1.96/np.sqrt(len(x_diff)),linestyle= --,color= gray ) plt.title( Autocorrelation Function (q=1) ) (continues on next page) (continued from previous page) #Plot PACF: plt.subplot(122) plt.plot(lag_pacf) plt.axhline(y=0,linestyle= --,color= gray ) plt.axhline(y=-1.96/np.sqrt(len(x_diff)),linestyle= --,color= gray ) plt.axhline(y=1.96/np.sqrt(len(x_diff)),linestyle= --,color= gray ) plt.title( Partial Autocorrelation Function (p=1) ) plt.tight_layout()

  Preprocessing # global centering faces_centered = faces -faces.mean(axis=0) # local centering faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1) First centered Olivetti faces plot_gallery("First centered Olivetti faces", faces_centered[:n_components]) pca = decomposition.PCA(n_components=n_components) pca.fit(faces_centered) plot_gallery("PCA first %i loadings" % n_components, pca.components_[:n_ Write a class BasicPCA with two methods:

X

  = iris.data y_iris = iris.target bic = list() #print(X) (continues on next page) (continued from previous page) ks = np.arange(1, 10) for k in ks: gmm = GaussianMixture(n_components=k, covariance_type= full ) gmm.fit(X) bic.append(gmm.bic(X)) k_chosen = ks[np.argmin(bic)] plt.plot(ks, bic) plt.xlabel("k") plt.ylabel("BIC") print("Choose k=", k_chosen) Choose k= 2

Fig. 2 :

 2 Fig. 2: Linear regression

  bv = np.array([10, 20, 30, 40, 50]) # business volume tax = .2 * bv # Tax bp = .1 * bv + np.array([-.1, .2, .1, -.2, .1]) # business potential X = np.column_stack([bv, tax]) beta_star = np.array([.1, 0]) # true solution Since tax and bv are correlated, there is an infinite number of linear␣ ˓→combinations (continues on next page) (continued from previous page) leading to the same prediction. # 10 times the bv then subtract it 9 times using the tax variable: beta_medium = np.array([.1 * 10, -.1 * 9 * (1/.2)]) # 100 times the bv then subtract it 99 times using the tax variable: beta_large = np.array([.1 * 100, -.1 * 99 * (1/.2)]) print("L2 norm of coefficients: small:%.2f, medium:%.2f, large:%.2f." % (np.sum(beta_star ** 2), np.sum(beta_medium ** 2), np.sum(beta_large ** 2)))print("However all models provide the exact same predictions.") assert np.all(np.dot(X, beta_star) == np.dot(X, beta_medium)) assert np.all(np.dot(X, beta_star) == np.dot(X, beta_large))L2 norm of coefficients: small:0.01, medium:21.25, large:2550.25. However all models provide the exact same predictions.

Fig. 6 :

 6 Fig. 6: ℓ 1 and ℓ 2 shrinkages

Fig. 8 :

 8 Fig. 8: Linear (logistic) classification Given a training set of 𝑁 samples, 𝐷 = {(𝑥 1 , 𝑦 1 ), . . . , (𝑥 𝑁 , 𝑦 𝑁 )} , where 𝑥 𝑖 is a multidimensional input vector with dimension 𝑃 and class label (target or response). Multiclass Classification problems can be seen as several binary classification problems 𝑦 𝑖 ∈ {0, 1} where the classifier aims to discriminate the sample of the current class (label 1) versus the samples of other classes (label 0).

Fig

  Fig. 9: The Fisher most discriminant projection

  logreg = lm.LogisticRegression(penalty= none ).fit(X, y) # This class implements regularized logistic regression. # C is the Inverse of regularization strength. # Large value => no regularization. logreg.fit(X, y) y_pred_logreg = logreg.predict(X) errors = y_pred_logreg != y print("Nb errors=%i, error rate=%.2f" % (errors.sum(), errors.sum() / len(y_pred_ ˓→logreg))) print(logreg.coef_) Nb errors=10, error rate=0.05 [[-5.15 5.57]]

Fig. 10 :

 10 Fig. 10: In 2D we can shatter any three non-collinear points

  = lm.LogisticRegression(penalty= none ).fit(X, y) l2 = lm.LogisticRegression(penalty= l2 , C=.1).fit(X, y) # lambda = 1 / C! # use solver saga to handle L1 penalty l1 = lm.LogisticRegression(penalty= l1 , C=.1, solver= saga ).fit(X, y) # lambda␣ ˓→= 1 / C! l1l2 = lm.LogisticRegression(penalty= elasticnet , C=.1, l1_ratio=0.5, solver= ˓→ saga ).fit(X, y) # lambda = 1 / C! pd.DataFrame(np.vstack((lr.coef_, l2.coef_, l1.coef_, l1l2.coef_)), index=[ lr , l2 , l1 , l1l2 ])

  min 𝑤 Logistic ridge(𝑤) = -log ℒ(𝑤, 𝑋, 𝑦) + 𝜆 ‖𝑤‖ 2 from sklearn import linear_model lrl2 = linear_model.LogisticRegression(penalty= l2 , C=.1) # This class implements regularized logistic regression. C is the Inverse of␣ ˓→regularization strength. # Large value => no regularization.

Fig. 12 :

 12 Fig. 12: Linear lar margin classifiers

5. 5 .•

 5 13 Classification performance evaluation metrics source: https://en.wikipedia.org/wiki/Sensitivity_and_specificity Imagine a study evaluating a new test that screens people for a disease. Each person taking the test either has or does not have the disease. The test outcome can be positive (classifying the person as having the disease) or negative (classifying the person as not having the disease). The test results for each subject may or may not match the subject's actual status. In that setting: • True positive (TP): Sick people correctly identified as sick • False positive (FP): Healthy people incorrectly identified as sick • True negative (TN): Healthy people correctly identified as healthy • False negative (FN): Sick people incorrectly identified as healthy • Accuracy (ACC): ACC = (TP + TN) / (TP + FP + FN + TN) • Sensitivity (SEN) or recall of the positive class or true positive rate (TPR) or hit rate: SEN = TP / P = TP / (TP+FN) • Specificity (SPC) or recall of the negative class or true negative rate: SPC = TN / N = TN / (TN+FP) Precision or positive predictive value (PPV): PPV = TP / (TP + FP)

#

  The overall precision an recall metrics.precision_score(y_true, y_pred) metrics.recall_score(y_true, y_pred) # Recalls on individual classes: SEN & SPC recalls = metrics.recall_score(y_true, y_pred, average=None) recalls[0] # is the recall of class 0: specificity recalls[1] # is the recall of class 1: sensitivity # Balanced accuracy b_acc = recalls.mean() # The overall precision an recall on each individual class p, r, f, s = metrics.precision_recall_fscore_support(y_true, y_pred) Significance of classification rate P-value associated to classification rate. Compared the number of correct classifications (=accuracy ×𝑁 ) to the null hypothesis of Binomial distribution of parameters 𝑝 (typically 50% of chance level) and 𝑁 (Number of observations).

  .stats.binom_test(x=int(acc * N), n=N, p=0.5) / 2 print(pval) 0.01123144774625465

#

  However AUC=1 indicating a perfect separation of the two classes auc = metrics.roc_auc_score(y_true, score_pred) print("But the AUC of %.2f demonstrate a good classes separation." % auc) With a threshold of 0.90, the rule always predict 0. Predictions: [0 0 0 0 0 0 0 0] Recalls on individual classes are: [1. 0.] ie, 100% of specificity, 0% of␣ ˓→sensitivity But the AUC of 1.00 demonstrate a good classes separation.

  ["#samples of class %i = %i;" % (lev, np.sum(y == lev)) for lev in np. ˓→unique(y)]) print( # No Reweighting balanced dataset ) lr_inter = linear_model.LogisticRegression(C=1) lr_inter.fit(X, y) p, r, f, s = metrics.precision_recall_fscore_support(y, lr_inter.predict(X)) print("SPC: %.3f; SEN: %.3f" % tuple(r)) print( # => The predictions are balanced in sensitivity and specificity\n ) # Create imbalanced dataset, by subsampling sample of class 0: keep only 10% of # class 0 s samples and all class 1 s samples. n0 = int(np.rint(np.sum(y == 0) / 20)) subsample_idx = np.concatenate((np.where(y == 0)[0][:n0], np.where(y == 1)[0])) Ximb = X[subsample_idx, :] yimb = y[subsample_idx] print(*["#samples of class %i = %i;" % (lev, np.sum(yimb == lev)) for lev in np.unique(yimb)]) print( # No Reweighting on imbalanced dataset ) lr_inter = linear_model.LogisticRegression(C=1) lr_inter.fit(Ximb, yimb) p, r, f, s = metrics.precision_recall_fscore_support(yimb, lr_inter.predict(Ximb)) print("SPC: %.3f; SEN: %.3f" % tuple(r)) print( # => Sensitivity >> specificity\n ) print( # Reweighting on imbalanced dataset ) lr_inter_reweight = linear_model.LogisticRegression(C=1, class_weight="balanced") lr_inter_reweight.fit(Ximb, yimb) (continues on next page) p, r, f, s = metrics.precision_recall_fscore_support(yimb, lr_inter_reweight. ˓→predict(Ximb)) print("SPC: %.3f; SEN: %.3f" % tuple(r)) print( # => The predictions are balanced in sensitivity and specificity\n ) #samples of class 0 = 250; #samples of class 1 = 250; # No Reweighting balanced dataset SPC: 0.940; SEN: 0.928 # => The predictions are balanced in sensitivity and specificity #samples of class 0 = 12; #samples of class 1 = 250; # No Reweighting on imbalanced dataset SPC: 0.750; SEN: 0.996 # => Sensitivity >> specificity # Reweighting on imbalanced dataset SPC: 1.000; SEN: 0.980 # => The predictions are balanced in sensitivity and specificity

  from sklearn.ensemble import GradientBoostingClassifier gb = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, subsample=0.5, random_state=0) gb.fit(X_train, y_train) y_pred = gb.predict(X_test) y_prob = gb.predict_proba(X_test)[:, 1]print("bAcc: %.2f, AUC: %.2f " % ( metrics.balanced_accuracy_score(y_true=y_test, y_pred=y_pred), metrics.roc_auc_score(y_true=y_test, y_score=y_prob))) import matplotlib.pyplot as plt import seaborn as sns from sklearn import datasets (continues on next page)

•

  Micro measure: average(individual scores): compute a score 𝒮 for each sample and average over all samples. It is simillar to average score(concatenation): an averaged score computed over all concatenated samples. Macro measure mean(CV scores) (the most commonly used method): compute a score 𝒮 on each each fold k and average accross folds: These two measures (an average of average vs. a global average) are generaly similar. They may differ slightly is folds are of different sizes. This validation scheme is known as the K-Fold CV. Typical choices of K are 5 or 10, [Kohavi 1995]. The extreme case where K = N is known as leave-one-out cross-validation, LOO-CV.

  [1] fig, axes = plt.subplots(n_coef, 1, figsize=(12, 9)) for i in range(n_coef): hist_pvalue( coefs_perm[:, i], axes[i], str(i)) _ = axes[-1].set_xlabel("Coefficient distribution under null hypothesis")
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 13 Fig. 13: towardsdatascience blog

Fig. 14 :

 14 Fig. 14: Medium Science Blog

Fig. 17 :

 17 Fig. 17: Medium Science Blog Bagging consists in fitting several base models on different bootstrap samples and build an ensemble model that "average" the results of these weak learners. Question : -Can you name an algorithms based on Bagging technique , Hint : leaf ###### Examples

Fig. 18 :

 18 Fig. 18: Medium Science Blog

Fig. 23 :

 23 Fig. 23: Medium Science Blog

  Fig. 26: Medium Science Blog Gradient boosting updates values of the observations at each iteration. Weak learners are trained to fit the pseudo-residuals that indicate in which direction to correct the current ensemble model predictions to lower the error.

Fig. 27 :

 27 Fig. 27: Medium Science Blog

#

  Creating a stacking class class Stacking():(continues on next page) (continued from previous page) predictions_stacking = clf_stacking.predict(test_x)

Fig. 30

 30 Fig. 30: jeremyjordan

  :math:beta_1 and :math:beta_0 values and compute the partial derivatives. This new gradient tells us the slope of our cost function at our current position (current parameter values) and the direction we should move to update our parameters. The size of our update is controlled by the learning rate. Pseudocode of this algorithm Function gradient_descent(X, Y, learning_rate, number_iterations): data_length : m_deriv : m_deriv -X[i] * ((m*X[i] + b) -Y[i]) b_deriv : b_deriv -((m*X[i] + b) -Y[i]) m : m -(m_deriv / data_length) * learning_rate b : b -(b_deriv / data_length) * learning_rate return m, b

Fig

  Fig. 31: Wikipedia

SGD

  has trouble navigating ravines (areas where the surface curves much more steeply in one dimension than in another), which are common around local optima. In these scenarios, SGD oscillates across the slopes of the ravine while only making hesitant progress along the bottom towards the local optimum as in the image below.

FigFig. 33 :

 33 Fig. 32: Wikipedia

Fig. 34 :

 34 Fig. 34: With momentum: accumulate velocity to avoid oscillations

  5.52) 𝑚 𝑡 and 𝑣 𝑡 are estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradients respectively, hence the name of the method. Adam (almost) first_moment = beta1 * first_moment + (1 -beta1) * dx # AdaGrad/RMSProp second_moment = beta2 * second_moment + (1 -beta2) * dx * dx x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7)

>0 else 0 𝑥 5 )

 05 Given a function 𝑧 = 𝑥 with 𝑧 the output, 𝑥 the input and 𝑤 the coeficients.• Scalar to Scalar:𝑥 ∈ R, 𝑧 ∈ R, 𝑤 ∈ R Regular derivative: 𝜕𝑧 𝜕𝑤 = 𝑥 ∈ RIf 𝑤 changes by a small amount, how much will 𝑧 change?• Vector to Scalar:𝑥 ∈ R 𝑁 , 𝑧 ∈ R, 𝑤 ∈ R 𝑁 Derivative is Gradient of partial derivative: 𝜕𝑧 𝜕𝑤 ∈ R 𝑁 𝜕𝑧 𝜕𝑤 = ∇ 𝑤 𝑧 =For each element 𝑤 𝑖 of 𝑤, if it changes by a small amount then how much will y change?• Vector to Vector:𝑤 ∈ R 𝑁 , 𝑧 ∈ R 𝑀Derivative is Jacobian of partial derivative: connected ReLU network with one hidden layer and no biases, trained to predict y from x by minimizing squared Euclidean distance. This implementation computes the forward pass using operations on PyTorch Tensors, and uses PyTorch autograd to compute gradients. A PyTorch Tensor represents a node in a computational graph. If x is a Tensor that has x. requires_grad=True then x.grad is another Tensor holding the gradient of x with respect to some scalar value. import torch # X=X_iris_tr; Y=Y_iris_tr; X_val=X_iris_val; Y_val=Y_iris_val # del X, Y, X_val, Y_val def two_layer_regression_autograd_train(X, Y, X_val, Y_val, lr, nite): dtype = torch.float device = torch.device("cpu")

˓→gradients#

  with respect to these Tensors during the backward pass. X = torch.from_numpy(X) Y = torch.from_numpy(Y) X_val = torch.from_numpy(X_val) Y_val = torch.from_numpy(Y_val) # Create random Tensors for weights. # Setting requires_grad=True indicates that we want to compute gradients with # respect to these Tensors during the backward pass. W1 = torch.randn(D_in, H, device=device, dtype=dtype, requires_grad=True) W2 = torch.randn(H, D_out, device=device, dtype=dtype, requires_grad=True) losses_tr, losses_val = list(), list() learning_rate = lr for t in range(nite): # Forward pass: compute predicted y using operations on Tensors; these # are exactly the same operations we used to compute the forward pass␣ ˓→using # Tensors, but we do not need to keep references to intermediate values␣ ˓→since # we are not implementing the backward pass by hand. y_pred = X.mm(W1).clamp(min=0).mm(W2) (continues on next page) (continued from previous page)

#

  X=X_iris_tr; Y=Y_iris_tr; X_val=X_iris_val; Y_val=Y_iris_val # del X, Y, X_val, Y_val def two_layer_regression_nn_train(X, Y, X_val, Y_val, lr, nite): # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = X.shape[START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF], X.shape[1], 100, Y.shape[1] X = torch.from_numpy(X) (continues on next page) Y = torch.from_numpy(Y) X_val = torch.from_numpy(X_val) Y_val = torch.from_numpy(Y_val) # Use the nn package to define our model as a sequence of layers. nn. ˓→Sequential # is a Module which contains other Modules, and applies them in sequence to # produce its output. Each Linear Module computes output from input using a # linear function, and holds internal Tensors for its weight and bias. model = torch.nn.Sequential( torch.nn.Linear(D_in, H), torch.nn.ReLU(), torch.nn.Linear(H, D_out), ) # The nn package also contains definitions of popular loss functions; in this # case we will use Mean Squared Error (MSE) as our loss function. loss_fn = torch.nn.MSELoss(reduction= sum ) losses_tr, losses_val = list(), list() learning_rate = lr for t in range(nite): # Forward pass: compute predicted y by passing x to the model. Module␣ ˓→objects # override the __call__ operator so you can call them like functions. When # doing so you pass a Tensor of input data to the Module and it produces # a Tensor of output data. y_pred = model(X) # Compute and print loss. We pass Tensors containing the predicted and␣ ˓→true # values of y, and the loss function returns a Tensor containing the # loss. loss = loss_fn(y_pred, Y) # Zero the gradients before running the backward pass. model.zero_grad() # Backward pass: compute gradient of the loss with respect to all the␣ ˓→learnable # parameters of the model. Internally, the parameters of each Module are␣ ˓→stored # in Tensors with requires_grad=True, so this call will compute gradients␣ ˓→for # all learnable parameters in the model. loss.backward() # Update the weights using gradient descent. Each parameter is a Tensor,␣ ˓→so (continues on next page)

#

  X=X_iris_tr; Y=Y_iris_tr; X_val=X_iris_val; Y_val=Y_iris_val def two_layer_regression_nn_optim_train(X, Y, X_val, Y_val, lr, nite):# N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = X.shape[0], X.shape[1], 100, Y.shape[1] X = torch.from_numpy(X) Y = torch.from_numpy(Y) X_val = torch.from_numpy(X_val) Y_val = torch.from_numpy(Y_val) # Use the nn package to define our model and loss function. model = torch.nn.Sequential( torch.nn.Linear(D_in, H), torch.nn.ReLU(), torch.nn.Linear(H, D_out), ) loss_fn = torch.nn.MSELoss(reduction= sum ) losses_tr, losses_val = list(), list() # Use the optim package to define an Optimizer that will update the weights of # the model for us. Here we will use Adam; the optim package contains many␣ ˓→other # optimization algoriths. The first argument to the Adam constructor tells the # optimizer which Tensors it should update. learning_rate = lr optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) for t in range(nite): # Forward pass: compute predicted y by passing x to the model. y_pred = model(X) # Compute and print loss. loss = loss_fn(y_pred, Y)

  output layer 𝑓 (𝑥) = 𝜎(𝑥 𝑇 𝑤) Softmax Classifier (Multinomial Logistic Regression)

MNIST classfification using multinomial

  logistic source: Logistic regression MNIST Here we fit a multinomial logistic regression with L2 penalty on a subset of the MNIST digits classification task. source: scikit-learn.org X_train = train_loader.dataset.data.numpy() #print(X_train.shape) X_train = X_train.reshape((X_train.shape[0], -1))(continues on next page) (continued from previous page) phase, epoch_loss, 100 * epoch_acc)) # deep copy the model if phase == val and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) if log_interval is not None and epoch % log_interval == 0: print() time_elapsed = time.time() -since print( Training complete in {:.0f}m {:.0f}s .format( time_elapsed // 60, time_elapsed % 60)) print( Best val Acc: {:.2f}% .format(100 * best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model, losses, accuracies Run one epoch and save the model model = TwoLayerMLP(D_in, 50, D_out).to(device) print(next(model.parameters()).is_cuda) optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) criterion = nn.NLLLoss() # Explore the model for parameter in model.parameters(): print(parameter.shape) print("Total number of parameters =", np.sum([np.prod(parameter.shape) for␣ ˓→parameter in model.parameters()])) model, losses, accuracies = train_val_model(model, criterion, optimizer,␣ ˓→dataloaders, num_epochs=1, log_interval=1) print(next(model.parameters()).is_cuda) torch.save(model.state_dict(), models/mod-%s.pth % model.__class__.__name__) False torch.Size([50, 784]) torch.Size([50]) torch.Size([10, 50]) torch.Size([10]) Total number of parameters = 39760 Epoch 0/0 ---------train Loss: 0.4431 Acc: 87.93% (continues on next page)6.2.6 Reduce the size of training datasetReduce the size of the training dataset by considering only 10 minibatche for size16. train_loader, val_loader = load_mnist(16, 1000) train_size = 10 * 16 # Stratified sub-sampling targets = train_loader.dataset.targets.numpy() nclasses = len(set(targets)) indices = np.concatenate([np.random.choice(np.where(targets == lab)[0], int(train_ ˓→size / nclasses),replace=False) for lab in set(targets)]) np.random.shuffle(indices) train_loader = torch.utils.data.DataLoader(train_loader.dataset, batch_size=16, sampler=torch.utils.data.SubsetRandomSampler(indices)) # Check train subsampling train_labels = np.concatenate([labels.numpy() for inputs, labels in train_loader]) print("Train size=", len(train_labels), " Train label count=", {lab:np.sum(train_ ˓→labels == lab) for lab in set(train_labels)}) print("Batch sizes=", [inputs.size(0) for inputs, labels in train_loader]) # Put together train and val dataloaders = dict(train=train_loader, val=val_loader) # Info about the dataset D_in = np.prod(dataloaders["train"].dataset.data.shape[1:]) (continues on next page) Path WD = os.path.join(Path
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  Fig. 2: AlexNet

Fig

  Fig. 4: Dropout

Fig. 5 :•

 5 Fig. 5: Inception Module

Fig

  Fig. 8: ResNet block

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Basic numerical operation. Matrix operation plus some basic solvers.:

	1.1.4 Libraries							
	import numpy as np						
	X = np.array([[1, 2], [3, 4]])					
	#v = np.array([1, 2]).reshape((2, 1))				
	v = np.array([1, 2])						
	np.dot(X, v) # no broadcasting					
	X * v # broadcasting						
	np.dot(v, X)							
	X -X.mean(axis=0)						
	Scipy: general scientific libraries with advanced solver:			
	import scipy							
	import scipy.linalg						
	scipy.linalg.svd(X, full_matrices=False)				
	Matplotlib: visualization:						
	import numpy as np						
	import matplotlib.pyplot as plt					
	#%matplotlib qt							
	x = np.linspace(0, 10, 50)					
	sinus = np.sin(x)							
	plt.plot(x, sinus)						
	plt.show()							
	Statsmodel: Advanced statistics					
	Scikit-learn: Machine learning					
	li-or 4 panels: Arrays brary Num.	data, comp,	Structured data, I/O	Solvers: basic	Solvers: advanced	Stats: basic	Stats: ad-	Machine learning
	I/O Numpy X Scipy		text editor help/variable explorer X ipython interpreter X X X	vanced	
	das Shortcuts: -F9 run line/selection Pan-X					
	Stat-					X	X	
	mod-							
	els							
	Scikit-							X
	learn							

scipy.org: https://www.scipy.org/docs.html

Numpy:

Pandas: Manipulation of structured data (tables). input/output excel files, etc.

Introduction CHAPTER TWO PYTHON LANGUAGE

  

			(continued from previous page) (continued from previous page)
	10 / 4 bool(2)	# true division (returns 2.5)
	10 // 4 bool( two )	# floor division (returns 2)
	bool([2])	
	# Boolean operations
	# comparisons (these return True)
	5 > 3	
	5 >= 3	
	5 != 3	
	5 == 5	
	Source Kevin Markham https://github.com/justmarkham/python-reference # boolean operations (these return True)
	5 > 3 and 6 > 3	
	5 > 3 or 5 < 3 2.1 Import libraries not False
	False or not False and True	# evaluation order: not, and, or
	# generic import of math module
	import math Out:	
	math.sqrt(25) True	
	# import a function
	from math import sqrt
	sqrt(25) 2.3 Data types # no longer have to reference the module
	# import multiple functions at once # determine the type of an object from math import cos, floor type(2) # returns int
	type(2.0) # import all functions in a module (generally discouraged) # returns float type( two ) # returns str # from os import * type(True) # returns bool
	# define an alias type(None) # returns NoneType
	import numpy as np # check if an object is of a given type
	isinstance(2.0, int) # show all functions in math module # returns False content = dir(math) isinstance(2.0, (int, float)) # returns True
	# convert an object to a given type
	float(2) 2.2 Basic operations int(2.9)
	str(2.9)	
	# Numbers 10 + 4 # zero, None, and empty containers are converted to False # add (returns 14) 10 -4 bool(0) # subtract (returns 6) 10 * 4 bool(None) # multiply (returns 40) 10 ** 4 bool( ) # empty string # exponent (returns 10000) 10 / 4 bool([]) # empty list # divide (returns 2 because both types are int ) 10 / float(4) # divide (returns 2.5) bool({}) # empty dictionary
	5 % 4 # non-empty containers and non-zeros are converted to True # modulo (returns 1) -also known as the remainder
			(continues on next page) (continues on next page)

1.3. Data analysis methodology Chapter 1.
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	2.3.4 Strings 2/2		(continued from previous page)
	s.endswith( you ) # returns True
	s.isdigit() Normal strings allow for escaped characters # returns False (returns True if every character in the␣
	˓→string is a digit) s.find( like ) # returns index of first occurrence (2), but doesn t support␣ print( first line\nsecond line )
	˓→regex s.find( hate ) Out:	# returns -1 since not found
	s.replace( like , love ) first line	# replaces all instances of like with love
	# split a string into a list of substrings separated by a delimiter second line
	s.split( ) s.split() raw strings treat backslashes as literal characters # returns [ I , like , you ] # same thing
	s2 = a, an, the print(r first line\nfirst line )
	s2.split( , )	# returns [ a , an , the ]
	Out:	
	# join a list of strings into one string using a delimiter
	stooges = [ larry , curly , moe ] first line\nfirst line
	.join(stooges) # returns larry curly moe
	Sequence of bytes are not strings, should be decoded before some operations
	# concatenate strings s = b first line\nsecond line s3 = The meaning of life is s4 = 42 print(s)
	s3 + s3 + print(s.decode( utf-8 ).split()) + s4 # returns The meaning of life is 42 + str(42) # same thing
	# remove whitespace from start and end of a string Out:
	s5 = s5.strip() ham and cheese b first line\nsecond line # returns ham and cheese [ first , line , second , line ]
	# string substitutions: all of these return raining cats and dogs
	raining %s and %s % ( cats , dogs )	# old way
	raining {} and {} .format( cats , dogs )	# new way
	raining {arg1} and {arg2} .format(arg1= cats ,arg2= dogs ) # named arguments
	# string formatting	
	# more examples: http://mkaz.com/2012/10/10/python-string-format/
	pi is {:.2f} .format(3.14159)	# returns pi is 3.14
	Out:	
	s) pi is 3.14	# returns 10
	# string slicing like lists
	s[:6]	# returns I like
	s[7:]	# returns you
	s[-1]	# returns u
	# basic string methods (does not modify the original string)
	s.lower()	# returns i like you
	s.upper()	# returns I LIKE YOU
	s.startswith( I ) # returns True
			(continues on next page)
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		(continued from previous page) (continued from previous page) (continued from previous page)
	cubes = [num**3 for num in nums] simpsons_older = {k.upper(): v + 1 for k, v in simpsons.items()} # [1, 8, 27, 64, 125] print_this(3) # prints 3
	print(simpsons_older) n = print_this(3) # prints 3, but doesn t assign 3 to n
	# for loop to create a list of cubes of even numbers # because the function has no return statement
	cubes_of_even = [] Out:	
	for num in nums: if num % 2 == 0: def add(a, b): { HOMER : 46, MARGE : 46, BART : 11, LISA : 11} return a + b
	cubes_of_even.append(num**3)
	# equivalent list comprehension 2.5.2 Exercice: count words in a sentence : third argument specifies the stride add(2, 3)
	# syntax: [expression for variable in iterable if condition] add("deux", "trois") # for loop fruits = [ apple , banana , cherry ] for i in range(len(fruits)): print(fruits[i].upper()) cubes_of_even = [num**3 for num in nums if num % 2 == 0] quote = """Tick-tow add(["deux", "trois"], [2, 3]) our incomes are like our shoes; if too small they gall and pinch us # [8, 64] # for loop to cube even numbers and square odd numbers cubes_and_squares = [] for num in nums: but if too large they cause us to stumble and to trip # define a function with one argument and one return value """ def square_this(x): # alternative for loop (recommended style) if num % 2 == 0: return x ** 2 for fruit in fruits: cubes_and_squares.append(num**3) print(fruit.upper()) else: # include an optional docstring to describe the effect of a function
	cubes_and_squares.append(num**2) def square_this(x): # use range when iterating over a large sequence to avoid actually creating the␣ """Return the square of a number.""" ˓→integer list in memory v = 0 return x ** 2
	for i in range(10 ** 6): # call the function v += 1 square_this(3)	# prints 9
	Out: ˓→8, 9, 64, 25] var = square_this(3)	# assigns 9 to var, but does not print 9
	# for loop to flatten a 2d-matrix # default arguments APPLE matrix = [[1, 2], [3, 4]] def power_this(x, power=2): BANANA items = [] return x ** power CHERRY for row in matrix: APPLE BANANA CHERRY for item in row: items.append(item) power_this(2) # 4 if fruit == banana : print("Found the banana!") power_this(2, 3) # 8
	# equivalent list comprehension break # exit the loop and skip the else block else: # use pass as a placeholder if you haven t written the function body
	2.5 List comprehensions, iterators, etc. items = [item for row in matrix def stub(): # this block executes ONLY if the for loop completes without hitting for item in row] # [1, 2, 3, 4] # break pass
	# set comprehension print("Can t find the banana") # return two values from a single function 2.5.1 List comprehensions Process which affects whole lists without iterating through loops. For more: http:// fruits = [ apple , banana , cherry ] unique_lengths = {len(fruit) for fruit in fruits} # {5, 6} def min_max(nums): # while loop count = 0 return min(nums), max(nums)
	python-3-patterns-idioms-test.readthedocs.io/en/latest/Comprehensions.html # for loop to create a list of cubes nums = [1, 2, 3, 4, 5] # dictionary comprehension fruit_lengths = {fruit:len(fruit) for fruit in fruits} # { apple : 5, banana : 6, while count < 5: # return values can be assigned to a single variable as a tuple print("This will print 5 times") count += 1 nums = [1, 2, 3] # equivalent to count = count + 1 min_max_num = min_max(nums) # min_max_num = (1, 3)
	cubes = [] Out:	
	for num in nums:	
	cubes.append(num**3) dad homer
	mom marge	
	# equivalent list comprehension size 6
		(continues on next page) (continues on next page)

# equivalent list comprehension (using a ternary expression) # syntax: [true_condition if condition else false_condition for variable in␣

˓→iterable] cubes_and_squares = [num**3 if num % 2 == 0 else num**2 for num in nums] # [1,␣ ˓→ cherry : 6} Exercise: upper-case names and add 1 year to all simpsons simpsons = { Homer : 45, Marge : 45, Bart : 10, Lisa : 10} (continues on next page) 20 Chapter 2. count = {word: 0 for word in set(quote.split())} for word in quote.split(): count[word] += 1 # iterate through two things at once (using tuple unpacking) family = { dad : homer , mom : marge , size : 6} for key, value in family.items(): print(key, value) # use enumerate if you need to access the index value within the loop for index, fruit in enumerate(fruits): print(index, fruit) # for/else loop for fruit in fruits:

and Machine Learning in Python, Release 0.5

  

	(continued from previous page)
	try:
	shutil.copytree(src, dst)
	shutil.rmtree(dst)
	shutil.move(src, dst)
	except (FileExistsError, FileNotFoundError) as e:
	pass
	Out:
	copy /tmp/foobar/myfile.txt to /tmp/foobar/plop/myfile.txt
	File /tmp/foobar/plop/myfile.txt exists ? True
	copy tree /tmp/foobar/plop under /tmp/plop2

continues on next page)

Statistics

•

  Inheritance: OOP allows classes to inherit commonly used state and behaviour from other classes. Reduce code duplication• Polymorphism: (usually obtained through polymorphism) calling code is agnostic as to whether an object belongs to a parent class or one of its descendants (abstraction, modularity). The same method called on 2 objects of 2 different classes will behave differently.

	(continued from previous page)
	try:
	s.area()
	except NotImplementedError as e:
	print("NotImplementedError", e)
	import math
	class Shape2D:
	def area(self):
	raise NotImplementedError()
	# __init__ is a special method called the constructor
	# Inheritance + Encapsulation
	class Square(Shape2D):
	def __init__(self, width):
	self.width = width
	def area(self):
	return self.width ** 2
	class Disk(Shape2D):
	def __init__(self, radius):
	self.radius = radius
	def area(self):
	return math.pi * self.radius ** 2
	shapes = [Square(2), Disk(3)]

# Polymorphism print([s.area() for s in shapes]) s = Shape2D() (continues on next page) Statistics and Machine Learning in Python, Release 0.5

Statistics and Machine Learning in Python, Release 0.5 2.15 Exercises 2.15.1 Exercise 1: functions

  

	Create a function that acts as a simple calulator If the operation is not specified, default to
	addition If the operation is misspecified, return an prompt message Ex: calc(4,5,"multiply")
	returns 20 Ex: calc(3,5) returns 8 Ex: calc(1, 2, "something") returns error message
	2.15.2 Exercise 2: functions + list + loop
	Given a list of numbers, return a list where all adjacent duplicate elements have been reduced
	to a single element. Ex: [1, 2, 2, 3, 2] returns [1, 2, 3, 2]. You may create a new list or
	modify the passed in list.
	Remove all duplicate values (adjacent or not) Ex: [1, 2, 2, 3, 2] returns [1, 2, 3]

2.15.3 Exercise 3: File I/O

1. Copy/paste the BSD 4 clause license (https://en.wikipedia.org/wiki/BSD_licenses) into a text file. Read, the file and count the occurrences of each word within the file. Store the words' occurrence number in a dictionary. 2. Write an executable python command count_words.py that parse a list of input files provided after --input parameter. The dictionary of occurrence is save in a csv file provides by --output. with default value word_count.csv. Use: -open -regular expression -argparse (https://docs. python.org/3/howto/argparse.html)

2.15.4 Exercise 4: OOP

1. Create a class Employee with 2 attributes provided in the constructor: name, years_of_service. With one method salary with is obtained by 1500 + 100 * years_of_service. 2. Create a subclass Manager which redefine salary method 2500 + 120 * years_of_service. 3. Create a small dictionary-nosed database where the key is the employee's name. Populate the database with: samples = Employee('lucy', 3), Employee('john', 1), Manager('julie', 10), Manager('paul', 3) 4. Return a table of made name, salary rows, i.e. a list of list [[name, salary]] 5. Compute the average salary Total running time of the script: ( 0 minutes 2.741 seconds)

.11 Quality check Remove duplicate data

  Get

	Statistics and Machine Learning in Python, Release 0.5
	import pandas as pd import numpy as np 3.2.1 Create DataFrame columns = [ name , age , gender , job ] user1 = pd.DataFrame([[ alice , 19, "F", "student"], [ john , 26, "M", "student"]], columns=columns) user2 = pd.DataFrame([[ eric , 22, "M", "student"], [ paul , 58, "F", "manager"]], columns=columns) user3 = pd.DataFrame(dict(name=[ peter , julie ], age=[33, 44], gender=[ M , F ], job=[ engineer , scientist ])) print(user3) Out: name age gender job 0 peter 33 M engineer 1 julie 44 F scientist 3.2.2 Combining DataFrames Out: name age gender job 0 alice 19 F student 1 john 26 M student height 0 1.65 1 1.80 name age gender job height 0 alice 19 F student 1.65 1 john 26 M student 1.80 Concatenate rows (default: axis = 0) 3.2. Pandas: data manipulation users = pd.concat([user1, user2, user3]) print(users) Out: name age gender job 0 alice 19 F student 1 john 26 M student 0 eric 22 M student 1 paul 58 F manager 0 peter 33 M engineer 1 julie 44 F scientist Concatenate rows: append user1.append(user2) Join DataFrame user4 = pd.DataFrame(dict(name=[ alice , john , eric , julie ], height=[165, 180, 175, 171])) print(user4) Out: name height 0 alice 165 1 john 180 2 eric 175 3 julie 171 Use intersection of keys from both frames merge_inter = pd.merge(users, user4) print(merge_inter) Out: name age gender job height 0 alice 19 F student 165 1 john 26 M student 180 2 eric 22 M student 175 3 julie 44 F scientist 171 Use union of keys from both frames Out: name age gender job height 0 alice 19 F student 165.0 1 john 26 M student 180.0 2 eric 22 M student 175.0 3 paul 58 F manager NaN 4 peter 33 M engineer NaN 5 julie 44 F scientist 171.0 Reshaping by pivoting "Unpivots" a DataFrame from wide format to long (stacked) format, staked = pd.melt(users, id_vars="name", var_name="variable", value_name="value") print(staked) Out: name variable value 0 alice age 19 1 john age 26 2 eric age 22 3 paul age 58 4 peter age 33 5 julie age 44 6 alice gender F 7 john gender M 8 eric gender M 9 paul gender F 10 peter gender M 11 julie gender F 12 alice job student 13 john job student 14 eric job student 15 paul job manager 16 peter job engineer 17 julie job scientist 18 alice height 165 19 john height 180 20 eric height 175 21 paul height NaN 22 peter height NaN 23 julie height 171 "pivots" a DataFrame from long (stacked) format to wide format, print(staked.pivot(index= name , columns= variable , values= value )) Out: variable age gender height job name alice 19 F 165 student eric 22 M 175 student john 26 M 180 student julie 44 F 171 scientist paul 58 F NaN manager peter 33 M NaN engineer 3.2.3 Summarizing users # print the first 30 and last 30 rows type(users) # DataFrame users.head() # print the first 5 rows users.tail() # print the last 5 rows Descriptive statistics users.describe(include="all") Meta-information users.index # "Row names" users.columns # column names users.dtypes # data types of each column users.values # underlying numpy array users.shape # number of rows and columns Out: (6, 5) 3.2.4 Columns selection users[ gender ] # select one column type(users[ gender ]) # Series users.gender # select one column using the DataFrame # select multiple columns users[[ age , gender ]] # select two columns my_cols = [ age , gender ] # or, create a list... users[my_cols] # ...and use that list to select columns type(users[my_cols]) # DataFrame 3.2.5 Rows selection (basic) iloc is strictly integer position based df = users.copy() df.iloc[0] # first row df.iloc[0, :] # first row df.iloc[0, 0] # first item of first row df.iloc[0, 0] = 55 loc supports mixed integer and label based access. df.loc[0] # first row df.loc[0, :] # first row df.loc[0, "age"] # age item of first row df.loc[0, "age"] = 55 Selection and index Select females into a new DataFrame df = users[users.gender == "F"] print(df) Out: name age gender job height 0 alice 19 F student 165.0 3 paul 58 F manager NaN 5 julie 44 F scientist 171.0 Use loc try: df.loc[[0, 1], :] # Failed except KeyError as err: print(err) Out: "Passing list-likes to .loc or [] with any missing labels is no longer supported.␣ ˓→The following labels were missing: Int64Index([1], dtype= int64 ). See https:// ˓→pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-˓→reindex-listlike" Reset index print(df) print(df.loc[[0, 1], :]) Out: name age gender job height 0 alice 19 F student 165.0 1 paul 58 F manager NaN 2 julie 44 F scientist 171.0 name age gender job height 0 alice 19 F student 165.0 1 paul 58 F manager NaN 3.2.6 Sorting 3.2.7 Rows iteration Out: alice 19 john 26 itertuples(): fast, get namedtuples, read-only • Returns namedtuples of the values and which is generally faster than iterrows. • Fast, because itertuples does not box the data into a Series. • Retrieve fields with integer index starting from 0. Out: alice 19 john 26 iter using loc[i, . . . ]: read and write for i in range(df.shape[0]): df.loc[i, "age"] *= 10 # df is modified 3.2.8 Rows selection (filtering) simple logical filtering on numerical values users[users.age < 20] # only show users with age < 20 young_bool = users.age < 20 # or, create a Series of booleans... young = users[young_bool] # ...and use that Series to filter rows users[users.age < 20].job # select one column from the filtered results print(young) Out: name age gender job height 0 alice 19 F student 165.0 Advanced logical filtering users[users.age < 20][[ age , job ]] # select multiple columns users[(users.age > 20) & (users.gender == M )] # use multiple conditions 3.2.9 Sorting df = users.copy() df.age.sort_values() # only works for a Series df.sort_values(by= age ) # sort rows by a specific column df.sort_values(by= age , ascending=False) # use descending order instead df.sort_values(by=[ job , age ]) # sort by multiple columns df.sort_values(by=[ job , age ], inplace=True) # modify df print(df) name age gender job height 4 peter 33 M engineer NaN 3 paul 58 F manager NaN 5 julie 44 F scientist 171.0 0 alice 19 F student 165.0 2 eric 22 M student 175.0 1 john 26 M student 180.0 3.2.10 Descriptive statistics Summarize all numeric columns print(df.describe()) Out: age height count 6.000000 4.000000 mean 33.666667 172.750000 std 14.895189 6.344289 min 19.000000 165.000000 25% 23.000000 169.500000 50% 29.500000 173.000000 75% 41.250000 176.250000 max 58.000000 180.000000 Summarize all columns print(df.describe(include= all )) print(df.describe(include=[ object ])) # limit to one (or more) types Out: name age gender job height count 6 6.000000 6 6 4.000000 unique 6 NaN 2 4 NaN top peter NaN F student NaN freq 1 NaN 3 3 NaN mean NaN 33.666667 NaN NaN 172.750000 std NaN 14.895189 NaN NaN 6.344289 min NaN 19.000000 NaN NaN 165.000000 25% NaN 23.000000 NaN NaN 169.500000 50% NaN 29.500000 NaN NaN 173.000000 75% NaN 41.250000 NaN NaN 176.250000 max NaN 58.000000 NaN NaN 180.000000 name gender job count 6 6 6 58 Chapter 3. Scientific Python Statistics per group (groupby) print(df.groupby("job").mean()) print(df.groupby("job")["age"].mean()) print(df.groupby("job").describe(include= all )) Out: age height job engineer 33.000000 NaN manager 58.000000 NaN scientist 44.000000 171.000000 student 22.333333 173.333333 job engineer 33.000000 manager 58.000000 scientist 44.000000 student 22.333333 Name: age, dtype: float64 name ... height count unique top freq mean std ... std min 25% 50% ␣ ˓→ 75% max job ... engineer 1 1 peter 1 NaN NaN ... NaN NaN NaN NaN ␣ ˓→ NaN NaN manager 1 1 paul 1 NaN NaN ... NaN NaN NaN NaN ␣ ˓→ NaN NaN scientist 1 1 julie 1 NaN NaN ... NaN 171.0 171.0 171.0 ␣ ˓→171.0 171.0 student 3 3 eric 1 NaN NaN ... 7.637626 165.0 170.0 175.0 ␣ ˓→177.5 180.0 [4 rows x 44 columns] Groupby in a loop for grp, data in df.groupby("job"): print(grp, data) Out: engineer name age gender job height 4 peter 33 M engineer NaN manager name age gender job height 3 paul 58 F manager NaN scientist name age gender job height (continues on next page) (continued from previous page) 2 eric 22 M student 175.0 1 john 26 M student 180.0 3.2df = users.append(users.iloc[0], ignore_index=True) print(df.duplicated()) # Series of booleans # (True if a row is identical to a previous row) df.duplicated().sum() # count of duplicates df[df.duplicated()] # only show duplicates df.age.duplicated() # check a single column for duplicates df.duplicated([ age , gender ]).sum() # specify columns for finding duplicates df = df.drop_duplicates() # drop duplicate rows Out: 0 False 1 False 2 False 3 False 4 False 5 False 6 True dtype: bool Missing data # Missing values are often just excluded df = users.copy() df.describe(include= all ) # find missing values in a Series df.height.isnull() # True if NaN, False otherwise df.height.notnull() # False if NaN, True otherwise df[df.height.notnull()] # only show rows where age is not NaN df.height.isnull().sum() # count the missing values # find missing values in a DataFrame df.isnull() # DataFrame of booleans df.isnull().sum() # calculate the sum of each column 3.2. Pandas: data manipulation df = df.reset_index(drop=True) # Watch the index unique 6 2 4 5 julie 44 F scientist 171.0 Out: top peter F student freq 1 3 0 alice 19 F student 165.0 3 student name age gender job height Out:

• DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects. It stems from the R data.frame() object. Concatenate DataFrame Concatenate columns (axis = 1). height = pd.DataFrame(dict(height=[1.65, 1.8])) print(user1, "\n", height) print(pd.concat([user1, height], axis=1)) users = pd.merge(users, user4, on="name", how= outer ) print(users) the two first rows using iloc (strictly integer position) df.iloc[[0, 1], :] # Ok, but watch the index: 0, 3 df = users[:2].copy() iterrows(): slow, get series, read-only • Returns (index, Series) pairs. • Slow because iterrows boxes the data into a Series. • Retrieve fields with column name • Don't modify something you are iterating over. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. for idx, row in df.iterrows(): print(row["name"], row["age"]) • Names will be renamed to positional names if they are invalid Python identifier for tup in df.itertuples(): print(tup[1], tup[2]) simple logical filtering on categorial values users[users.job == student ] users[users.job.isin([ student , engineer ])] users[users[ job ].str.contains("stu|scient")]
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	name	0	
	age	0	
	gender	0	
	job	0	
	height	2	
	dtype: int64	
	Strategy 1: drop missing values
	df.dropna()		# drop a row if ANY values are missing
	df.dropna(how= all )	# drop a row only if ALL values are missing
	Strategy 2: fill in missing values
	df.height.mean()	
	df = users.copy()	
	df.loc[df.height.isnull(), "height"] = df["height"].mean()
	print(df)		
	Out:		
	name age gender	job height
	0 alice 19	F	student 165.00
	1 john 26	M	student 180.00
	2 eric 22	M	student 175.00
	3 paul 58	F	manager 172.75
	4 peter 33	M engineer 172.75
	5 julie 44	F scientist 171.00

3.2.12 Operation: multiplication

  

	3.2.13 Renaming		
	Rename columns		
	df = users.copy()		
	df.rename(columns={ name : NAME })
	Rename values		
	df.job = df.job.map({ student : etudiant , manager : manager ,
			engineer : ingenieur , scientist : scientific })
	3.2.14 Dealing with outliers	
	size = pd.Series(np.random.normal(loc=175, size=20, scale=10))
	# Corrupt the first 3 measures	
	size[:3] += 500		
	Multiplication of dataframe and other, element-wise
	df = users.dropna()		
	df.insert(0, random , np.arange(df.shape[0]))
	print(df)		
	df[["age", "height"]].multiply(df["random"], axis="index")
	Out:			
	random name age gender	job height
	0	0 alice 19	F	student 165.0
	1	1 john 26	M	student 180.0
	2	2 eric 22	M	student 175.0
	5	3 julie 44	F scientist 171.0

Based on parametric statistics: use the mean

  

	Assume random variable follows the normal distribution Exclude data outside 3 standard-
	deviations: -Probability that a sample lies within 1 sd: 68.27% -Probability that a sample
	lies within 3 sd: 99.73% (68.27 + 2 * 15.73)
	size_outlr_mean = size.copy()
	size_outlr_mean[((size -size.mean()).abs() > 3 * size.std())] = size.mean()
	print(size_outlr_mean.mean())
	Out:
	248.48963819938044

Based on non-parametric statistics: use the median

  

	Median absolute deviation (MAD), based on the median, is a robust non-parametric statistics.
	https://en.wikipedia.org/wiki/Median_absolute_deviation
	mad = 1.4826 * np.median(np.abs(size -size.median()))
	size_outlr_mad = size.copy()
	size_outlr_mad[((size -size.median()).abs() > 3 * mad)] = size.median()
	print(size_outlr_mad.mean(), size_outlr_mad.median())
	Out:
	173.80000467192673 178.7023568870694
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	tmpdir = tempfile.gettempdir() csv_filename = os.path.join(tmpdir, "users.csv") users.to_csv(csv_filename, index=False) other = pd.read_csv(csv_filename) Read csv from url url = https://github.com/duchesnay/pystatsml/raw/master/datasets/salary_table.csv ˓→ salary = pd.read_csv(url) Excel xls_filename = os.path.join(tmpdir, "users.xlsx") users.to_excel(xls_filename, sheet_name= users , index=False) pd.read_excel(xls_filename, sheet_name= users ) # Multiple sheets with pd.ExcelWriter(xls_filename) as writer: users.to_excel(writer, sheet_name= users , index=False) df.to_excel(writer, sheet_name= salary , index=False) pd.read_excel(xls_filename, sheet_name= users ) pd.read_excel(xls_filename, sheet_name= salary ) SQL (SQLite) import pandas as pd import sqlite3 db_filename = os.path.join(tmpdir, "users.db") Connect conn = sqlite3.connect(db_filename) Creating tables with pandas ˓→ salary = pd.read_csv(url) salary.to_sql("salary", conn, if_exists="replace") Push modifications cur = conn.cursor() values = (100, 14000, 5, Bachelor , N ) cur.execute("insert into salary values (?, ?, ?, ?, ?)", values) conn.commit() Reading results into a pandas DataFrame salary_sql = pd.read_sql_query("select * from salary;", conn) print(salary_sql.head()) pd.read_sql_query("select * from salary;", conn).tail() pd.read_sql_query( select * from salary where salary>25000; , conn) pd.read_sql_query( select * from salary where experience=16; , conn) pd.read_sql_query( select * from salary where education="Master"; , conn) Out: index salary experience education management 0 0 13876 1 Bachelor Y 1 1 11608 1 Ph.D N 2 2 18701 1 Ph.D Y 3 3 11283 1 Master N 4 4 11767 1 Ph.D N 3.2. Pandas: data manipulation url = https://github.com/duchesnay/pystatsml/raw/master/datasets/salary_table.csv 3

.2.16 Exercises Data Frame

  

	Missing data				
	Add some missing data to the previous table users:		
	df = users.copy()				
	df.loc[[0, 2], "age"] = None			
	df.loc[[1, 3], "gender"] = None			
	1. Write a function fillmissing_with_mean(df) that fill all missing value of numerical column
	with the mean of the current columns.			
	2. Save the original users and "imputed" frame in a single excel file "users.xlsx" with 2 sheets:
	original, imputed.				
	Total running time of the script: ( 0 minutes 1.125 seconds)	
	3					
		1. Read the iris dataset at 'https://github.com/neurospin/pystatsml/tree/master/datasets/
		iris.csv'				
		2. Print column names			
		3. Get numerical columns			
		4. For each species compute the mean of numerical columns and store it in a stats table
		like:				
		species sepal_length sepal_width petal_length petal_width
	0	setosa	5.006	3.428	1.462	0.246
	1 versicolor	5.936	2.770	4.260	1.326
	2 virginica	6.588	2.974	5.552	2.026

.3 Data visualization: matplotlib & seaborn 3.3.1 Basic plots import numpy as np import matplotlib.pyplot as plt import seaborn as sns

  

	plt.show()
	# use plt.plot to get color / marker abbreviations
	# Rapid multiplot
	plt.figure(figsize=(9, 3))
	cosinus = np.cos(x)
	plt.plot(x, sinus, "-b", x, sinus, "ob", x, cosinus, "-r", x, cosinus, "or")
	plt.xlabel( this is x! )
	plt.ylabel( this is y! )
	plt.title( My First Plot ) # inline plot (for jupyter) %matplotlib inline plt.show()
	plt.figure(figsize=(9, 3))
	x = np.linspace(0, 10, 50)
	sinus = np.sin(x)
	plt.plot(x, sinus)
	plt.show()
	# Step by step
	plt.figure(figsize=(9, 3))
	plt.plot(x, sinus, label= sinus , color= blue , linestyle= --, linewidth=2)
	plt.plot(x, cosinus, label= cosinus , color= red , linestyle= -, linewidth=2)
	plt.legend()
	plt.figure(figsize=(9, 3)) plt.show()
	plt.plot(x, sinus, "o")
	(continues on next page)

3.3.2 Scatter (2D) plots Load dataset import pandas as pd try: salary

  

	Simple scatter with colors		
	plt.figure(figsize=(3, 3), dpi=100)	
	_ = sns.scatterplot(x="experience", y="salary", hue="education", data=salary)
	Legend outside			
	˓→table.csv			
	salary = pd.read_csv(url)	
	df = salary			
	print(df.head())			
	salary experience education management
	0 13876	1 Bachelor	Y
	1 11608	1	Ph.D	N
	2 18701	1	Ph.D	Y
	3 11283	1	Master	N
	4 11767	1	Ph.D	N

= pd.read_csv("../datasets/salary_table.csv") except: url = https://github.com/duchesnay/pystatsml/raw/master/datasets/salary_ ax = sns.relplot(x="experience", y="salary", hue="education", data=salary)

68 Chapter 3. Scientific Python Linear model ax = sns.lmplot(x="experience", y="salary", hue="education", data=salary) Scatter plot with colors and symbols ax = sns.relplot(x="experience", y="salary", hue="education", style= management ,␣ ˓→data=salary) 70 Chapter 3. Scientific Python 3.3.3 Saving Figures

  

	# Or pdf
	plt.plot(x, sinus)
	plt.savefig("sinus.pdf")
	plt.close()

3.3.5 Pairwise scatter plots ax = sns.pairplot(salary, hue="management") 3.3.6 Time series import seaborn as sns sns

  

	fig, axes = plt.subplots(3, 1, figsize=(9, 9), sharex=True)
	i = 0 .set(style="darkgrid")
	for edu, d in salary.groupby([ education ]): # Load an example dataset with long-form data sns.kdeplot(x="salary", hue="management", data=d, fill=True, ax=axes[i],␣ fmri = sns.load_dataset("fmri")
	˓→palette="muted")
	axes[i].set_title(edu) # Plot the responses for different events and regions i += 1 ax = sns.pointplot(x="timepoint", y="signal",
	hue="region", style="event",
	data=fmri)
	Chapter

3. Scientific Python CHAPTER FOUR STATISTICS 4.1 Univariate statistics

  

	Basics univariate statistics are required to explore dataset:

import scipy.stats import statsmodels.api as sm

  Canonically imported using import statsmodels.tsa.api as tsa. #import statsmodels.stats.api as sms

import statsmodels.formula.api as smf from statsmodels.stats.stattools import jarque_bera %matplotlib inline

  

	Datasets
	Salary
	try:
	salary = pd.read_csv("../datasets/salary_table.csv")
	except:
	url = https://github.com/duchesnay/pystatsml/raw/master/datasets/salary_
	˓→table.csv
	salary = pd.read_csv(url)
	Iris
	# Load iris datset
	iris = sm.datasets.get_rdataset("iris").data
	iris.columns = [s.replace( . , ) for s in iris.columns]

4.1.2 Estimators of the main statistical measures Mean

  

	Properties of the expected value operator E(•) of a random variable 𝑋	
	𝐸(𝑋 + 𝑐) = 𝐸(𝑋) + 𝑐	(4.1)
	𝐸(𝑋 + 𝑌 ) = 𝐸(𝑋) + 𝐸(𝑌 )	(4.2)
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  𝜎 𝑥 , 𝜎 𝑥𝑦 (xbar, xvar, xycov) using only the np.sum() operation. Explore the np. module to find out which numpy functions performs the same computations and compare them (using assert) with your previous results.

	Columns' means		
	iris.mean()		
	SepalLength	5.843333	
	SepalWidth	3.057333	
	PetalLength	3.758000	
	PetalWidth dtype: float64	1.199333		.10)
	Columns' std-dev. Pandas normalizes by N-1 by default.
	Descriptives statistics with numpy
	iris.std()		
	• Generate 2 random samples: 𝑥 ∼ 𝑁 (1.78, 0.1) and 𝑦 ∼ 𝑁 (1.66, 0.1), both of size 10.
	SepalLength SepalWidth PetalLength PetalWidth • Compute x, Caution! By default np.var() used the biased estimator (with ddof=0). Set ddof=1 to use 0.828066 0.435866 1.765298 0.762238 dtype: float64
	unbiased estimator.	
	n = 10 With Numpy		
	x = np.random.normal(loc=1.78, scale=.1, size=n) X = iris[[ SepalLength , SepalWidth , PetalLength , PetalWidth ]].values y = np.random.normal(loc=1.66, scale=.1, size=n) iris.columns
	xbar = np.mean(x) X.mean(axis=0)	
	assert xbar == np.sum(x) / x.shape[0] array([5.84333333, 3.05733333, 3.758	, 1.19933333])
	xvar = np.var(x, ddof=1) Columns' std-dev. Numpy normalizes by N by default. Set ddof=1 to normalize by N-1 to get assert xvar == np.sum((x -xbar) ** 2) / (n -1) the unbiased estimator.
	xycov = np.cov(x, y) print(xycov) X.std(axis=0, ddof=1)	
	ybar = np.sum(y) / n array([0.82806613, 0.43586628, 1.76529823, 0.76223767])
	assert np.allclose(xycov[0, 1], np.sum((x -xbar) * (y -ybar)) / (n -1))
	assert np.allclose(xycov[0, 0], xvar)
	assert np.allclose(xycov[1, 1], np.var(y, ddof=1))
	[[ 0.01025944 -0.00661557]
	[-0.00661557 0.0167	]]

Are two variances equals?, is the ratio or two errors significantly large ?.

  𝑛,𝑝 , with 𝑛 and 𝑝 degrees of freedom is the ratio of two independent 𝜒 2 Let 𝑀 ∼ 𝒩 (0, 1) and 𝑉 ∼ 𝜒 2 𝑛 . The 𝑡-distribution, 𝑇 𝑛 , with 𝑛 degrees of freedom is the ratio:

	variables. Let 𝑋 ∼ 𝜒 2 𝑛 and 𝑌 ∼ 𝜒 2 𝑝 then: # pdf(x, df1, df2): Probability density function at x of F. 𝐹 𝑛,𝑝 = 𝑋/𝑛 𝑌 /𝑝 plt.plot(fvalues, scipy.stats.f.pdf(fvalues, 1, 30), b-, label="F(1, 30)") plt.plot(fvalues, scipy.stats.f.pdf(fvalues, 5, 30), r-, label="F(5, 30)") plt.legend() # cdf(x, df1, df2): Cumulative distribution function of F. # ie. proba_at_f_inf_3 = scipy.stats.f.cdf(3, 1, 30) # P(F(1,30) < 3) # ppf(q, df1, df2): Percent point function (inverse of cdf) at q of F. f_at_proba_inf_95 = scipy.stats.f.ppf(.95, 1, 30) # q such P(F(1,30) < .95) assert scipy.stats.f.cdf(f_at_proba_inf_95, 1, 30) == .95 # sf(x, df1, df2): Survival function (1 -cdf) at x of F. proba_at_f_sup_3 = scipy.stats.f.sf(3, 1, 30) # P(F(1,30) > 3) assert proba_at_f_inf_3 + proba_at_f_sup_3 == 1 # p-value: P(F(1, 30)) < 0.05 low_proba_fvalues = fvalues[fvalues > f_at_proba_inf_95] plt.fill_between(low_proba_fvalues, 0, scipy.stats.f.pdf(low_proba_fvalues, 1,␣ ˓→30), alpha=.8, label="P < 0.05") plt.show() The 𝐹 -distribution plays a central role in hypothesis testing answering the question: fvalues = np.linspace(.1, 5, 100) The Student's 𝑡-distribution

1 Model the data

  

	Assume that height is normally distributed: 𝑋 ∼ 𝒩 (𝜇, 𝜎), ie:
	height 𝑖 = average height over the population + error 𝑖	(4.11)
	𝑥 𝑖 = x + 𝜀 𝑖				(4.12)
	The 𝜀 𝑖 are called the residuals			
	2 Fit: estimate the model parameters			
	x, 𝑠 𝑥 are the estimators of 𝜇, 𝜎.			
	3 Compute a test statistic			
	In testing the null hypothesis that the population mean is equal to a specified value 𝜇 0 = 1.75,
	one uses the statistic:			
	𝑡 = 𝑡 = effect size difference of means std-dev of noise √ 𝑛	√	𝑛	(4.13) (4.14)
	𝑡 =	x -𝜇 0 𝑠 𝑥	√ 𝑛		(4.15)

4 Compute the probability of the test statistic under the null hypotheis. This require to have the distribution of the t statistic under 𝐻 0 .

  

math: p -value is

  the probability to observe a value 𝑡 more extreme than the observed one 𝑡 𝑜𝑏𝑠 under the null hypothesis 𝐻 0 : 𝑃 (𝑡 > 𝑡 𝑜𝑏𝑠 |𝐻 0 )

	1.816
	2.3968766311585883
	The :tvalues = np.linspace(-10, 10, 100)
	plt.plot(tvalues, scipy.stats.t.pdf(tvalues, n-1), b-, label="T(n-1)")
	upper_tval_tvalues = tvalues[tvalues > tobs]
	plt.fill_between(upper_tval_tvalues, 0, scipy.stats.t.pdf(upper_tval_tvalues, n-
	˓→1),
	= [1.83, 1.83, 1.73, 1.82, 1.83, 1.73, 1.99, 1.85, 1.68, 1.87]
	xbar = np.mean(x) # sample mean
	mu0 = 1.75 # hypothesized value
	s = np.std(x, ddof=1) # sample standard deviation
	n = len(x) # sample size
	print(xbar)
	tobs = (xbar -mu0) / (s / np.sqrt(n))
	print(tobs)

standard t-test, assuming equal variance.

  

	Ttest_indResult(statistic=3.5511519888466885, pvalue=0.00228208937112721)
	4.1					
							25)
	≈ effect size •	√	𝑛			(4.26)
	≈	difference of means standard deviation of the noise	•	√	𝑛	(4.27)
	Example					
	Given the following two samples, test whether their means are equal using the height = np.array([ 1.83, 1.83, 1.73, 1.82, 1.83, 1.73, 1.99, 1.85, 1.68,␣
	˓→ 1.87,					
	1.66, 1.71, 1.73, 1.64, 1.70, 1.60, 1.79, 1.73, 1.62,␣
	˓→ 1.77])					
	grp = np.array(["M"] * 10 + ["F"] * 10)		
	# Compute with scipy					
	scipy.stats.ttest_ind(height[grp == "M"], height[grp == "F"], equal_var=True)

.8 ANOVA 𝐹 -test (quantitative ~categorial (>=2 levels))

  

	Analysis of variance (ANOVA) provides a statistical test of whether or not the means of several
	(k) groups are equal, and therefore generalizes the 𝑡-test to more than two groups. ANOVAs
	are useful for comparing (testing) three or more means (groups or variables) for statistical
	significance. It is conceptually similar to multiple two-sample 𝑡-tests, but is less conservative.

  ). 𝜒 2 tests the association between those two variables.

	# Dataset:
	# 15 samples:
	# 10 first exposed
	exposed = np.array([1] * 10 + [0] * 10)
	# 8 first with cancer, 10 without, the last two with.
	cancer = np.array([1] * 8 + [0] * 10 + [1] * 2)

crosstab = pd.crosstab(exposed, cancer, rownames=[ exposed ], colnames=[ cancer ]) print("Observed table:") (continues on next page) (continued from previous page)

  In statistics, the Mann-Whitney 𝑈 test (also called the Mann-Whitney-Wilcoxon, Wilcoxon rank-sum test or Wilcoxon-Mann-Whitney test) is a nonparametric test of the null hypothesis that two samples come from the same population against an alternative hypothesis, especially that a particular population tends to have larger values than the other.

	# Wilcoxon
	print(scipy.stats.wilcoxon(bv0, bv1))
	Ttest_relResult(statistic=0.7766377807752968, pvalue=0.44693401731548044)
	WilcoxonResult(statistic=23.0, pvalue=0.001209259033203125)
	Mann-Whitney 𝑈 test (quantitative ~categorial (2 levels))
	n = 20
	# Buisness Volume time 0
	bv0 = np.random.normal(loc=3, scale=.1, size=n)
	# Buisness Volume time 1
	bv1 = bv0 + 0.1 + np.random.normal(loc=0, scale=.1, size=n)
	# create an outlier
	bv1[0] -= 10

# Paired t-test print(scipy.stats.ttest_rel(bv0, bv1)) (continues on next page) (continued from previous page) It can be applied on unknown distributions contrary to e.g. a 𝑡-test that has to be applied only on normal distributions, and it is nearly as efficient as the 𝑡-test on normal distributions. n = 20 # Buismess Volume group 0 bv0 = np.random.normal(loc=1, scale=.1, size=n) # Buismess Volume group 1 bv1 = np.random.normal(loc=1.2, scale=.1, size=n) # create an outlier bv1[0] -= 10 # Two-samples t-test print(scipy.stats.ttest_ind(bv0, bv1)) # Wilcoxon print(scipy.stats.mannwhitneyu(bv0, bv1)) Ttest_indResult(statistic=0.6104564820307219, pvalue=0.5451934484051324) MannwhitneyuResult(statistic=41.0, pvalue=9.037238869417781e-06)

  Standard Errors assume that the covariance matrix of the errors is correctly␣

							-
	const	10.1474	0.150	67.520	0.000	9.845	10.450
	x1	0.5794	0.160	3.623	0.001	0.258	0.901
	x2	0.5165	0.151	3.425	0.001	0.213	0.820
	x3	0.1786	0.144	1.240	0.221	-0.111	0.469
	==============================================================================
	Omnibus:			2.493 Durbin-Watson:		2.369
	Prob(Omnibus):		0.288 Jarque-Bera (JB):		1.544
	Skew:			0.330 Prob(JB):			0.462
	Kurtosis:			3.554 Cond. No.			1.27
	==============================================================================
	Notes:						
	[1]						

˓→specified.

  Standard Errors assume that the covariance matrix of the errors is correctly␣ ˓→specified.

						(continued from previous page)
	x3	0.1786	0.144	1.240	0.221	-0.111	0.469
	==============================================================================
	Omnibus:			2.493 Durbin-Watson:		2.369
	Prob(Omnibus):		0.288 Jarque-Bera (JB):		1.544
	Skew:			0.330 Prob(JB):			0.462
	Kurtosis:			3.554 Cond. No.			1.27
	==============================================================================
	Notes:						
	[1]						
							-
	Intercept	10.1474	0.150	67.520	0.000	9.845	10.450
	x1	0.5794	0.160	3.623	0.001	0.258	0.901
	x2	0.5165	0.151	3.425	0.001	0.213	0.820
						(continues on next page)

stats as stats import matplotlib.pyplot as plt tvals

  

	4.1.13 Multiple comparisons				
	np.random.seed(seed=42) # make example reproducible		
	# Dataset						
	n_samples, n_features = 100, 1000				
	n_info = int(n_features/10) # number of features with information	
	n1, n2 = int(n_samples/2), n_samples -int(n_samples/2)		
	snr = .5						
	Y = np.random.randn(n_samples, n_features)			
	grp = np.array(["g1"] * n1 + ["g2"] * n2)			
	# Add some group effect for Pinfo features			
	Y[grp=="g1", :n_info] += snr				
	#						
	import scipy.						
							-
	c0	147.8249	387.659	0.381	0.705	-635.069	930.719
	==============================================================================

, pvals = np.full(n_features, np.NAN), np.full(n_features, np.NAN) for j in range(n_features): tvals[j], pvals[j] = stats.ttest_ind(Y[grp=="g1", j], Y[grp=="g2", j], equal_var=True) fig, axis = plt.subplots(3, 1, figsize=(9, 9))#, sharex= col )

  descriptives statistics of numerical variables

				(continued from previous page)
	S3	29.00	nan	nan
	S4	15.00	nan	nan
	S1	13.00	nan	nan
	S6	1.00	nan	nan
	Patient nan 157.00	nan
	Control nan 87.00	nan
	M	nan	nan 155.00
	F	nan	nan 89.00
	Remove the single participant from site 6
	brain_vol = brain_vol[brain_vol.site != "S6"]
	brain_vol1 = brain_vol[brain_vol.session == "ses-01"] desc_glob_num = brain_vol1.describe() desc_glob_cat = pd.DataFrame({col: brain_vol1[col].value_counts().to_dict() print(desc_glob_num) for col in ["site", "group", "sex"]})
	print(desc_glob_cat)	
	Out:			
	Out:	age gm_vol wm_vol csf_vol tiv_vol gm_f wm_f
	count 244.00 244.00 244.00 244.00 244.00 244.00 244.00 mean 34.54 0.71 0.44 0.31 site group sex 1.46 0.49 0.30 std 12.09 0.08 0.07 0.08 S7 65.00 nan nan 0.17 0.04 0.03 min 18.00 0.48 0.05 0.12 S5 62.00 nan nan 0.83 0.37 0.06 25% 25.00 0.66 0.40 0.25 S8 59.00 nan nan 1.34 0.46 0.28 50% 31.00 0.70 0.43 0.30 S3 29.00 nan nan 1.45 0.49 0.30 75% 44.00 0.77 0.48 0.37 S4 15.00 nan nan 1.57 0.52 0.31 max 61.00 1.03 0.62 0.63 S1 13.00 nan nan 2.06 0.60 0.36 Patient nan 157.00 nan
	Control nan 86.00	nan
	M	nan	nan 155.00
	F	nan	nan 88.00
	Descriptives statistics of numerical variables per clinical status
	desc_group_num = brain_vol1[["group", gm_vol ]].groupby("group").describe()
	print(desc_group_num)	
	Out:			
	Out:	gm_vol		
	site count mean std min 25% 50% 75% max group sex count 244 group 244 244 unique 7 2 Control 86.00 0.72 0.09 0.48 0.66 0.71 0.78 1.03 2 top S7 Patient M Patient 157.00 0.70 0.08 0.53 0.65 0.70 0.76 0.90
	freq	65	157 155
	Get count by level	
		site group	sex
	S7	65.00	nan	nan
	S5	62.00	nan	nan
	S8	59.00	nan	nan
				(continues on next page)

Global Descriptive statistics of categorical variable desc_glob_cat = brain_vol1[["site", "group", "sex"]].describe(include= all ) print(desc_glob_cat) print("Get count by level") desc_glob_cat = pd.DataFrame({col: brain_vol1[col].value_counts().to_dict() for col in ["site", "group", "sex"]}) print(desc_glob_cat)

Test the association between the age and gray matter atrophy

  

	Site explains 23.82% of the grey matter fraction variance sum_sq df F PR(>F) site 0.11 5.00 14.82 0.00 Residual 0.35 237.00 nan nan print("---In patient population ---") beta, beta0, r_value, p_value, std_err = \ scipy.stats.linregress(x=brain_vol1_pat.age, y=brain_vol1_pat.gm_f) print("gm_f = %f * age + %f" % (beta, beta0)) (continued from previous page) 2. (continued from previous page) coef std err t P>|t| [0.025 0.975]
	print("Corr: %f, r-squared: %f, p-value: %f, std_err: %f"\
	% (r_value, r_value**2, p_value, std_err))
	print("Decrease seems faster in patient than in control population")
	Out:	
	---In control population ---	
	gm_f = -0.001181 * age + 0.529829
	Corr: -0.325122, r-squared: 0.105704, p-value: 0.002255, std_err: 0.000375
	---In patient population ---	
	gm_f = -0.001899 * age + 0.556886
	Out: Out:	
	Oneway Anova gm_f ~site F=14.82, p-value=1.188136E-12 ---In control population ---
	OLS Regression Results =============================================================================== Stats with statsmodels
	Dep. Variable: anova = smfrmla.ols("gm_f ~site", data=brain_vol1).fit() gm_f R-squared: Model: OLS Adj. R-squared: # print(anova.summary()) Method: Least Squares F-statistic: print("Site explains %.2f%% of the grey matter fraction variance" % Date: ven., 08 janv. 2021 Prob (F-statistic): (anova.rsquared * 100)) Time: 16:12:34 Log-Likelihood:	0.106 0.095 9.929 0.00226 159.34
	No. Observations: print(sm.stats.anova_lm(anova, typ=2)) 86 AIC: Df Residuals: 84 BIC:	-314.7 -309.8
	Df Model: Out: Covariance Type:	1 nonrobust
	==============================================================================
		(continues on next page)

sns.violinplot(x="site", y="gm_f", data=brain_vol1) # sns.violinplot(x="site", y="wm_f", data=brain_vol1) Out: <AxesSubplot:xlabel= site , ylabel= gm_f > Stats with scipy fstat, pval = scipy.stats.f_oneway(*[brain_vol1.gm_f[brain_vol1.site == s] for s in brain_vol1.site.unique()]) print("Oneway Anova gm_f ~site F=%.2f, p-value=%E" % (fstat, pval)) in the control and patient population independently. Plot sns.lmplot(x="age", y="gm_f", hue="group", data=brain_vol1) brain_vol1_ctl = brain_vol1[brain_vol1.group == "Control"] brain_vol1_pat = brain_vol1[brain_vol1.group == "Patient"] Stats with scipy print("---In control population ---") beta, beta0, r_value, p_value, std_err = \ scipy.stats.linregress(x=brain_vol1_ctl.age, y=brain_vol1_ctl.gm_f) print("gm_f = %f * age + %f" % (beta, beta0)) print("Corr: %f, r-squared: %f, p-value: %f, std_err: %f"\ % (r_value, r_value**2, p_value, std_err)) Corr: -0.528765, r-squared: 0.279592, p-value: 0.000000, std_err: 0.000245 Decrease seems faster in patient than in control population

Stats with statsmodels

print("---In control population ---") lr = smfrmla.ols("gm_f ~age", data=brain_vol1_ctl).fit() print(lr.summary()) print("Age explains %.2f%% of the grey matter fraction variance" % (lr.rsquared * 100))

print("---In patient population ---") lr = smfrmla.ols("gm_f ~age", data=brain_vol1_pat).fit() print(lr.summary()) print("Age explains %.2f%% of the grey matter fraction variance" % (lr.rsquared * 100))

tests for age x group effect

  Before testing for differences of atrophy between the patients ans the controls Preliminary

							(continued from previous page)
	No. Observations:			243 AIC:			1903.
	Df Residuals:				241 BIC:			1910.
	Df Model:				1		
	Covariance Type:		nonrobust		
	====================================================================================
			coef	std err	t	P>|t|	[0.025	0.
	˓→975]						
								-
	Intercept	0.5569	0.009	60.817	0.000		0.539	0.575
	age	-0.0019	0.000	-7.756	0.000		-0.002	-0.001
	============================================================================== Out:
	Omnibus: Prob(Omnibus): Ttest_indResult(statistic=-1.2155557697674162, pvalue=0.225343592508479) 2.310 Durbin-Watson: 0.315 Jarque-Bera (JB):	1.325 1.854
	Skew:				0.230 Prob(JB):		0.396
	Kurtosis: Stats with statsmodels			3.268 Cond. No.		111.
	============================================================================== print(smfrmla.ols("age ~group", data=brain_vol1).fit().summary())
	Notes: print("No significant difference in age between patients and controls")
	[1] Standard Errors assume that the covariance matrix of the errors is correctly␣ ˓→specified. Out:
	Age explains 27.96% of the grey matter fraction variance OLS Regression Results
	===============================================================================
	Dep. Variable:			age R-squared:		0.006
	Model:				OLS Adj. R-squared:	0.002
	Method:		Least Squares F-statistic:		1.478
	Date:	ven., 08 janv. 2021 Prob (F-statistic):	0.225
	Time:			16:12:34 Log-Likelihood:	-949.69
								(continues on next page)

(patients would be older or younger than Controls) Plot sns.violinplot(x="group", y="age", data=brain_vol1) Out: <AxesSubplot:xlabel= group , ylabel= age > Stats with scipy print(scipy.stats.ttest_ind(brain_vol1_ctl.age, brain_vol1_pat.age))

Test for differences of atrophy between the patients and the controls print

  Standard Errors assume that the covariance matrix of the errors is correctly␣ ˓→specified.

					(continued from previous page)
	print("No significant difference in atrophy between patients and controls")
	Out:			
		sum_sq	df	F PR(>F)
	group	0.00 1.00 0.01	0.92
	Residual	0.46 241.00 nan	nan
	No significant difference in atrophy between patients and controls
	.2558 This model is simplistic we should adjust for age and site 1.305 25.484	0.000	30.685	35.
	˓→826 group[T.Patient] print(sm.stats.anova_lm(smfrmla.ols( 1.9735 1.624 "gm_f ~group + age + site", data=brain_vol1).fit(), typ=2)) 1.216 0.225 -1.225 ˓→172 ============================================================================== print("No significant difference in GM between patients and controls")	5.
	Omnibus: Prob(Omnibus): Out:			35.711 Durbin-Watson: 0.000 Jarque-Bera (JB):	2.096 20.726
	Skew: Kurtosis: group ============================================================================== 0.569 Prob(JB): 3.16e-05 2.133 Cond. No. sum_sq df F PR(>F) 3.12 0.00 1.00 1.82 0.18 site 0.11 5.00 19.79 0.00
	age Notes: Residual No significant difference in GM between patients and controls 0.09 1.00 86.86 0.00 0.25 235.00 nan nan [1] No significant difference in age between patients and controls Observe age effect
	Preliminary tests for sex x group (more/less males in patients than in Controls) 4.
	crosstab = pd.crosstab(brain_vol1.sex, brain_vol1.group)
	print("Obeserved contingency table")
	print(crosstab)		
	chi2, pval, dof, expected = scipy.stats.chi2_contingency(crosstab)
	print("Chi2 = %f, pval = %f" % (chi2, pval))
	print("No significant difference in sex between patients and controls")
	Out:			
	Obeserved contingency table
	group Control Patient	
	sex			
	F	33	55	
	M	53	102	
	Chi2 = 0.143253, pval = 0.705068
	No significant difference in sex between patients and controls
	3. (continues on next page)

(sm.stats.anova_lm(smfrmla.ols("gm_f ~group", data=brain_vol1).fit(), typ=2))

Test for interaction between age and clinical status, ie

  : is the brain atrophy process in patient population faster than in the control population.

				(continued from previous page)
	site[T.S4]		0.03
	site[T.S5]		0.01
	site[T.S7]		0.06
	site[T.S8]		0.02
	age		-0.00
	group[T.Patient]:age -0.00
	dtype: float64	
	-0.148% of grey matter loss per year (almost -1.5% per decade)
	grey matter loss in patients is accelerated by -0.232% per decade
	Total running time of the script: ( 0 minutes 3.007 seconds)
	ancova = smfrmla.ols("gm_f ~group:age + age + site", data=brain_vol1).fit()
	print(sm.stats.anova_lm(ancova, typ=2))
	print("= Parameters =")
	print(ancova.params)	
	print("%.3f%% of grey matter loss per year (almost %.1f%% per decade)" %
	(ancova.params.age * 100, ancova.params.age * 100 * 10))
	print("grey matter loss in patients is accelerated by %.3f%% per decade" %
	(ancova.params[ group[T.Patient]:age ] * 100 * 10))
	Out:		
		sum_sq	df	F PR(>F)
	site	0.11 5.00 20.28	0.00
	age	0.10 1.00 89.37	0.00
	group:age	0.00 1.00 3.28	0.07
	Residual	0.25 235.00 nan	nan
	= Parameters =	
	Intercept		0.52
	site[T.S3]		0.01
				(continues on next page)

is called a random intercept. import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm import statsmodels.formula.api as smf from stat_lmm_utils import rmse_coef_tstat_pval from stat_lmm_utils import plot_lm_diagnosis from stat_lmm_utils import plot_ancova_oneslope_grpintercept from stat_lmm_utils import plot_lmm_oneslope_randintercept from stat_lmm_utils import plot_ancova_fullmodel

  

				(continued from previous page)
	1	c0 10 7.963083
	2	c0	3 8.383137
	3	c0	5 7.213047
	4	c0	6 8.379630
	results = pd.DataFrame(columns=["Model", "RMSE", "Coef", "Stat", "Pval"])
	df = pd.read_csv( datasets/score_parentedu_byclass.csv )
	print(df.head())
	_ = sns.scatterplot(x="edu", y="score", hue="classroom", data=df)
		classroom edu	score
	0	c0	2 7.204352
				(continues on next page)

  -

	c0	0.1208	0.035	3.412	0.076	-0.032	0.273
	==============================================================================
	MSE=0.004						
	Plot						
	fig, axes = plt.subplots(1, 2, figsize=(9, 6))			
	for group_lab, group_df in df.groupby(group):			
	sns.regplot(x=x, y=y, data=group_df, ax=axes[0]		
						(continues on next page)

  which in this case it is score ~edu + (1|classroom). For python statmodels, the grouping factor |classroom is omited an provided as groups parameter.

	lmm_inter = smf.mixedlm("score ~edu", df, groups=df["classroom"],
		re_formula="~1").fit()	
	# But since the default use a random intercept for each group, the following
	# formula would have provide the same result:	
	# lmm_inter = smf.mixedlm("score ~edu", df, groups=df["classroom"]).fit()
	print(lmm_inter.summary())		
	results.loc[len(results)] = ["LMM-Inter"] + \	
	list(rmse_coef_tstat_pval(mod=lmm_inter, var= edu ))
	Mixed Linear Model Regression Results	
	======================================================
	Model:	MixedLM Dependent Variable: score
	No. Observations: 60	Method:	REML
	No. Groups:	3	Scale:	0.8693
	Min. group size: 20	Log-Likelihood:	-88.8676
	Max. group size: 20	Converged:	Yes
	Mean group size: 20.0		
	-			

  1. Model the global association between edu and score: 𝑦 𝑖𝑗 = 𝛽 0 + 𝛽 1 𝑥 𝑖𝑗 , in R: score ~edu. 2. Model the classroom 𝑧 𝑗 = classroom (as a fixed effect) as a vertical shift (intercept, 𝑢 1 𝑗 ) for each classroom 𝑗 indicated by 𝑧 𝑖𝑗 : 𝑦 𝑖𝑗 = 𝑢 1 𝑗 𝑧 𝑖𝑗 , in R: score ~classroom. 3. Model the classroom (as a fixed effect) specitic slope (𝑢 𝛼 𝑗 ): 𝑦 𝑖 = 𝑢 𝛼 𝑗 𝑥 𝑖 𝑧 𝑗 score ẽdu:classroom. The 𝑥 𝑖 𝑧 𝑗 forms 3 new columns with values of 𝑥 𝑖 for each edu level, ie.: for 𝑧 𝑗 classroom 1, 2 and 3. 𝑦 𝑖𝑗 = 𝛽 0 + 𝛽 1 𝑥 𝑖𝑗 + 𝑢 1 𝑗 𝑧 𝑖𝑗 + 𝑢 𝛼 𝑗 𝑧 𝑖𝑗 𝑥 𝑖𝑗 + 𝜀 𝑖𝑗 ,

	4. Put everything together:				
		Test for Constraints		
	==============================================================================
	coef	std err	t	P>|t|	[0.025	0.975]

in R: score ~edu + classroom edu:classroom or mor simply score ~edu * classroom that denotes the full model with the additive contribution of each regressor and all their interactions. ancova_full = smf.ols( score ~edu + classroom + edu:classroom , df).fit() # Full model (including interaction) can use this notation: # ancova_full = smf.ols( score ~edu * classroom , df).fit() # print(sm.stats.anova_lm(lm_fx, typ=3)) # print(lm_fx.summary()) print(ancova_full.t_test( edu )) print("MSE=%.3f" % ancova_full.mse_resid) results.loc[len(results)] = ["ANCOVA-Full (biased)"] + \ list(rmse_coef_tstat_pval(mod=ancova_full, var= edu ))

  1 , 𝑢 𝛼 𝑗 , one pair of random intercept/slope per classroom). The R notation is: score ~edu + (edu | classroom). or score 1 + edu + (1 + edu | classroom), remember that intercepts are implicit. In statmodels, the notation is ~1+edu or ~edu since the groups is provided by the groups argument.

	lmm_full = smf.mixedlm("score ~edu", df, groups=df["classroom"],
		re_formula="~1+edu").fit()
	print(lmm_full.summary())		
	results.loc[len(results)] = ["LMM-Full (biased)"] + \
	list(rmse_coef_tstat_pval(mod=lmm_full, var= edu ))
	Mixed Linear Model Regression Results	
	=========================================================
	Model:	MixedLM Dependent Variable: score
	No. Observations: 60	Method:	REML
	No. Groups:	3	Scale:	0.8609
	Min. group size: 20	Log-Likelihood:	-88.5987
	Max. group size: 20	Converged:	Yes
	Mean group size: 20.0		
	-			

  /home/ed203246/anaconda3/lib/python3.8/site-packages/statsmodels/regression/mixed_ ˓→linear_model.py:1634: UserWarning: Random effects covariance is singular warnings.warn(msg) /home/ed203246/anaconda3/lib/python3.8/site-packages/statsmodels/regression/mixed_ ˓→linear_model.py:2237: ConvergenceWarning: The MLE may be on the boundary of the␣ ˓→parameter space.warnings.warn(msg, ConvergenceWarning)The warning results in a singular fit (correlation estimated at 1) caused by too little variance among the random slopes. It indicates that we should considere to remove random slopes.

	4.3.4 Conclusion on modeling random effects
	print(results)			
			Model	RMSE	Coef	Stat	Pval
	0	LM-Global (biased) 2.694785 0.232842 2.139165 0.036643
	1 ANCOVA-Inter (biased) 0.932351 0.130717 3.441072 0.001102
	2	Aggregation 0.587859 6.073401 7.497672 0.084411
	3	Hierarchical 0.061318 0.120808 3.412469 0.076190
	4		LMM-Inter 0.916211 0.131193 3.453472 0.000553
	5 ANCOVA-Full (biased) 0.935869 0.129084 1.978708 0.052959
	6	LMM-Full (biased) 0.911742 0.127269 2.756917 0.005835
						-
	Intercept	9.900	1.912 5.177 0.000 6.152 13.647
	edu		0.127	0.046 2.757 0.006 0.037 0.218
	Group Var	10.760 12.279	
	Group x edu Cov -0.121	0.318	
	edu Var	0.001	0.012	
	=========================================================
	/home/ed203246/anaconda3/lib/python3.8/site-packages/statsmodels/base/model.
	˓→py:566: ConvergenceWarning: Maximum Likelihood optimization failed to converge.␣
	˓→Check mle_retvals		
	warnings.warn("Maximum Likelihood optimization failed to "
	/home/ed203246/anaconda3/lib/python3.8/site-packages/statsmodels/regression/mixed_

˓→linear_model.py:2200: ConvergenceWarning: Retrying MixedLM optimization with␣ ˓→lbfgs warnings.warn( (continues on next page)

  If we consider only 6 samples (𝑖 ∈ {1, 6}, two sample for each classroom 𝑗 ∈ {c0, c1, c2}) and the random intercept model. Stacking the 6 observations, the equation 𝑦 𝑖𝑗 = 𝛽 0 + 𝛽 1 𝑥 𝑖𝑗 + 𝑢 𝑗 𝑧 𝑗 + 𝜀 𝑖𝑗 gives :

	⎡ score
	⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣	7.2 7.9 9.1 11.1 14.6
		14.0

  1. ones = np.ones(Cov.shape[0]) d_euc = np.sqrt(np.dot(ones, ones)) d_mah = np.sqrt(np.dot(np.dot(ones, Prec), ones)) print("Euclidean norm of ones=%.2f. Mahalanobis norm of ones=%.2f" % (d_euc, d_

	˓→mah))	
	Euclidean norm of ones=2.45. Mahalanobis norm of ones=1.77	
	The first dot product that distances along the principal directions of dispersion are contracted:
	print(np.dot(ones, Prec))	
	[0.35714286 0.35714286 0.35714286 0.52631579 0.52631579 1.	]
	import numpy as np	
	import scipy	
	import matplotlib.pyplot as plt	
	import seaborn as sns	
	import pystatsml.plot_utils	
	%matplotlib inline	
	np.random.seed(40)	
	colors = sns.color_palette()	
	mean = np.array([0, 0])	
	Cov = np.array([[1, .8],	
	[.8, 1]])	
	samples = np.random.multivariate_normal(mean, Cov, 100)	
	x1 = np.array([0, 2])	
	x2 = np.array([2, 2])	
	plt.scatter(samples[:, 0], samples[:, 1], color=colors	

Statistics Statistics and Machine Learning in Python, Release 0.5

  Next, you'll turn the 'month' column into a DateTime data type and make it the index of the DataFrame.Note that you do this because you saw in the result of the .info() method that the 'Month' column was actually an of data type object. Now, that generic data type encapsulates everything from strings to integers, etc. That's not exactly what you want when you want to be looking at time series data. That's why you'll use .to_datetime() to convert the 'month' column in your DataFrame to a DateTime.Be careful! Make sure to include the inplace argument when you're setting the index of the DataFrame df so that you actually alter the original index and set it to the 'month' column.

					(continued from previous page)
	3 2004-04			70	22	48
	4 2004-05			72	22	43
			diet		gym	finance
	count 168.000000 168.000000 168.000000
	mean	49.642857 34.690476 47.148810
	std	8.033080	8.134316	4.972547
	min	34.000000 22.000000 38.000000
	25%	44.000000 28.000000 44.000000
	50%	48.500000 32.500000 46.000000
	75%	53.000000 41.000000 50.000000
	max	100.000000 58.000000 73.000000
	4.5.5 Recode data	
	• Recode data	
	• Exploratory Data Analysis df.month = pd.to_datetime(df.month)
	df.set_index( month , inplace=True)
	4.5.4 Read data	
	print(df.head())	
	try:			
	url = "https://raw.githubusercontent.com/datacamp/datacamp_facebook_live_ny_ diet gym finance
	˓→resolution/master/datasets/multiTimeline.csv" month
	df = pd.read_csv(url, skiprows=2) 2004-01-01 100 31 48
	except: 2004-02-01	75 26	49
	df = pd.read_csv("../datasets/multiTimeline.csv", skiprows=2) 2004-03-01 67 24 47
	2004-04-01	70 22	48
	print(df.head()) 2004-05-01 72 22	43
	# Rename columns	
	df.columns = [ month , diet , gym , finance ] 4.5.6 Exploratory data analysis
	# Describe You can use a built-in pandas visualization method .plot() to plot your data as 3 line plots on a print(df.describe()) single figure (one for each column, namely, 'diet', 'gym', and 'finance').
	Month diet: (Worldwide) gym: (Worldwide) finance: (Worldwide) df.plot()
	0 2004-01 plt.xlabel( Year );		100	31	48
	1 2004-02			75	26	49
	2 2004-03 # change figure parameters	67	24	47

(continues on next page)
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from statsmodels.tsa.seasonal import seasonal_decompose

  

	plt.plot(residual, label= Residuals )
	plt.legend(loc= best )
	plt.tight_layout()
	print(df.diff().corr())
		diet	gym finance
	diet	1.000000 0.758707 0.373828
	gym	0.758707 1.000000 0.301111
	finance 0.373828 0.301111 1.000000
	Decomposing time serie in trend, seasonality and residuals
	x = gym	
	x = x.astype(float) # force float
	decomposition = seasonal_decompose(x)
	trend = decomposition.trend
	df.diff().plot() seasonal = decomposition.seasonal
	plt.xlabel( Year ); residual = decomposition.resid
	print(df.diff().corr()) plt.subplot(411)
	plt.plot(x, label= Original )
	diet plt.legend(loc= best ) diet plt.subplot(412) 1.000000 0.758707 0.373828 gym finance gym plt.plot(trend, label= Trend ) 0.758707 1.000000 0.301111 plt.legend(loc= best ) finance 0.373828 0.301111 1.000000 plt.subplot(413)
	plt.plot(seasonal,label= Seasonality )
	plt.legend(loc= best )
	plt.subplot(414)
			(continues on next page)

  made by calling the predict() function and specifying the index of the time or times to be predicted. FutureWarning: statsmodels.tsa.arima_model.ARMA and statsmodels.tsa.arima_model.ARIMA have been deprecated in favor of statsmodels.tsa.arima.model.ARIMA (note the . between arima and model) and statsmodels.tsa.SARIMAX. These will be removed after the 0.12 release.

	model = ARMA(x, order=(1, 1)).fit() # fit model		
	print(model.summary())				
	plt.plot(x)					
	plt.plot(model.predict(), color= red )			
	plt.title( RSS: %.4f % sum((model.fittedvalues-x)**2))	
	/home/ed203246/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/arima_model.
	import warnings					
	warnings.filterwarnings( ignore , statsmodels.tsa.arima_model.ARMA ,
			FutureWarning)			
	warnings.filterwarnings( ignore , statsmodels.tsa.arima_model.ARIMA ,
			FutureWarning)			
	warnings.warn(ARIMA_DEPRECATION_WARN, FutureWarning)	
	/home/ed203246/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_
	˓→model.py:527: ValueWarning: No frequency information was provided, so inferred␣
	˓→frequency MS will be used.			
	% freq, ValueWarning)				
			ARMA Model Results		
	==============================================================================
	Dep. Variable:		gym No. Observations:		168
	Model:		ARMA(1, 1) Log Likelihood		-436.852
	Method:		css-mle S.D. of innovations		3.229
	Date:	Fri, 04 Dec 2020 AIC			881.704
	Time:		13:05:20 BIC			894.200
	Sample:		01-01-2004 HQIC			886.776
			-12-01-2017			
	==============================================================================
		coef	std err	z	P>|z|	[0.025	0.975]
						(continues on next page)

from statsmodels.tsa.arima_model import ARMA # from statsmodels.tsa.arima.model import ARIMA ˓→py:472: statsmodels.tsa.arima.model.ARIMA makes use of the statespace framework and is both well tested and maintained.

To silence this warning and continue using ARMA and ARIMA until they are removed, use:

numpy as np import scipy from sklearn.decomposition import PCA import matplotlib.pyplot as plt import seaborn as sns

  

		(continued from previous page)
	#	full_matrices.
	#	
	# s : The singular values, sorted in non-increasing order. Of shape (n_comps,),
	#	with n_comps = min(n_samples, n_features).
	#	
	# Vh: Unitary matrix having right singular vectors as rows.
	#	Of shape (n_features, n_features) or (n_comps, n_features) depending
	# on full_matrices.
	plt.figure(figsize=(9, 3))
	plt.subplot(131)
	plt.scatter(U[:, 0], U[:, 1], s=50)
	plt.axis( equal )
	plt.title("U: Rotated and scaled data")
	plt.subplot(132)
	# Project data
	PC = np.dot(X, Vh.T)
	plt.scatter(PC[:, 0], PC[:, 1], s=50)
	plt.axis( equal )
	plt.title("XV: Rotated data")
	plt.xlabel("PC1")
	plt.ylabel("PC2")
	plt.subplot(133)
	plt.scatter(X[:, 0], X[:, 1], s=50)
	for i in range(Vh.shape[0]):
		plt.arrow(x=0, y=0, dx=Vh[i, 0], dy=Vh[i, 1], head_width=0.2,
		head_length=0.2, linewidth=2, fc= r , ec= r )
		plt.text(Vh[i, 0], Vh[i, 1], v%i % (i+1), color="r", fontsize=15,
		horizontalalignment= right , verticalalignment= top )
	plt.axis( equal ) %matplotlib inline plt.ylim(-4, 4)
	np.random.seed(42) plt.title("X: original data (v1, v2:PC dir.)")
	plt.xlabel("experience") # dataset n_samples = 100 plt.ylabel("salary")
	experience = np.random.normal(size=n_samples) salary = 1500 + experience + np.random.normal(size=n_samples, scale=.5) plt.tight_layout()
	X = np.column_stack([experience, salary])
	print(X.shape) (100, 2)
	# PCA using SVD
		(continues on next page)

X -= X.mean(axis=0) # Centering is required U, s, Vh = scipy.linalg.svd(X, full_matrices=False) # U : Unitary matrix having left singular vectors as columns. # Of shape (n_samples,n_samples) or (n_samples,n_comps), depending on

from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import

  

	5.1.4 Eigen faces
	Sources: Scikit learn Faces decompositions
	Load data
	import matplotlib.pyplot as plt
	from sklearn.datasets import fetch_olivetti_faces
	from sklearn import decomposition
	n_row, n_col = 2, 3
	n_components = n_row * n_col
	image_shape = (64, 64)
	faces, _ = fetch_olivetti_faces(return_X_y=True, shuffle=True,
	random_state=1)
	n_samples, n_features = faces.shape
	# Utils function
	def plot_gallery(title, images, n_col=n_col, n_row=n_row, cmap=plt.cm.gray):
	plt.figure(figsize=(2. * n_col, 2.26 * n_row))
	plt.suptitle(title, size=16)
	for i, comp in enumerate(images):
	plt.subplot(n_row, n_col, i + 1)
	vmax = max(comp.max(), -comp.min())
	plt.imshow(comp.reshape(image_shape), cmap=cmap,
	interpolation= nearest , vmin=-vmax, vmax=vmax) from sklearn.decomposition import PCA import numpy as np plt.xticks(()) import matplotlib.pyplot as plt plt.yticks(())
	np.random.seed(42) plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.)
	# dataset
	n_samples = 100
	experience = np.random.normal(size=n_samples)
	salary = 1500 + experience + np.random.normal(size=n_samples, scale=.5)
	X = np.column_stack([experience, salary]) print(__doc__)
	# PCA with scikit-learn digits = datasets.load_digits(n_class=6) pca = PCA(n_components=2) X = digits.data pca.fit(X) y = digits.target print(pca.explained_variance_ratio_) n_samples, n_features = X.shape
	PC = pca.transform(X) n_neighbors = 30
	plt.subplot(121) Automatically created module for IPython interactive environment

14)

Another way to evaluate the contribution of the original variables in each PC can be obtained by computing the correlation between the PCs and the original variables, i.e. columns of X, denoted x 𝑗 , for 𝑗 = 1, . . . , 𝑃 . For the 𝑘 𝑡ℎ PC, compute and plot the correlations with all original variables

𝑐𝑜𝑟(c 𝑘 , x 𝑗 ), 𝑗 = 1 . . . 𝐾, 𝑗 = 1 . . . 𝐾.

These quantities are sometimes called the correlation loadings. plt.scatter(X[:, 0], X[:, 1]) plt.xlabel("x1"); plt.ylabel("x2") plt.subplot(122) (continues on next page) plt.scatter(PC[:, 0], PC[:, 1]) plt.xlabel("PC1 (var=%.2f)" % pca.explained_variance_ratio_[0]) plt.ylabel("PC2 (var=%.2f)" % pca.explained_variance_ratio_[1]) plt.axis( equal ) plt.tight_layout() [0.93646607 0.06353393] (manifold, datasets, decomposition, ensemble, discriminant_analysis, random_projection, neighbors)

import pandas as pd import numpy as np import matplotlib.pyplot as plt

  

	# Pairwise distance between European cities
	try:
	url = ../datasets/eurodist.csv
	df = pd.read_csv(url)
	except:
	url = https://github.com/duchesnay/pystatsml/raw/master/datasets/eurodist.csv

eurodist datset provides the road distances (in kilometers) between 21 cities in Europe. Given this matrix of pairwise (non-Euclidean) distances D = [𝑑 𝑖𝑗 ], MDS can be used to recover the coordinates of the cities in some Euclidean referential whose orientation is arbitrary. ˓→ df = pd.read_csv(url) print(df.iloc[:5, :5]) city = df["city"] D = np.array(df.iloc[:, 1:]) # Distance matrix (continues on next page)

  Now consider the optimization of the 𝜇 𝑘 with the 𝑟 𝑖𝑘 held fixed. The objective function 𝐽 is a quadratic function of 𝜇 𝑘 , and it can be minimized by setting its derivative with respect to 𝜇 𝑘 to zero giving∑︀𝑖 𝑟 𝑖𝑘 𝑥 𝑖 ∑︀ 𝑖 𝑟 𝑖𝑘 .

		otherwise.	(5.15)
	2	∑︁

𝑖

𝑟 𝑖𝑘 (𝑥 𝑖 -𝜇 𝑘 ) = 0

5.3. Clustering

which we can easily solve for 𝜇 𝑘 to give

𝜇 𝑘 =

Machine Learning Exercises 1. Analyse clusters

  

	sklearn import cluster, datasets	
	import matplotlib.pyplot as plt	
	import seaborn as sns # nice color	
	%matplotlib inline	
	iris = datasets.load_iris()	
	X = iris.data[:, :2] # use only sepal length and sepal width
	y_iris = iris.target	
	km2 = cluster.KMeans(n_clusters=2).fit(X)	
	km3 = cluster.KMeans(n_clusters=3).fit(X)	
	km4 = cluster.KMeans(n_clusters=4).fit(X)	
	plt.figure(figsize=(9, 3))	
	plt.subplot(131)	
	plt.scatter(X[:, 0], X[:, 1], c=km2.labels_)	
	plt.title("K=2, J=%.2f" % km2.inertia_)	
	plt.subplot(132)	
	plt.scatter(X[:, 0], X[:, 1], c=km3.labels_)	
	plt.title("K=3, J=%.2f" % km3.inertia_)	
	plt.subplot(133)	
	plt.scatter(X[:, 0], X[:, 1], c=km4.labels_)#.astype(np.float))
	plt.title("K=4, J=%.2f" % km4.inertia_)	
	Text(0.5, 1.0, K=4, J=27.99 )	
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  For each sample 𝑖, evaluate the responsibilities for each class 𝑘 using the current parameter values𝑝(𝑘 | 𝑥 𝑖 ) = 𝒩 (𝑥 𝑖 | 𝜇 𝑘 , Σ 𝑘 )𝑝(𝑘) ∑︀ 𝐾 𝑘=1 𝒩 (𝑥 𝑖 | 𝜇 𝑘 , Σ 𝑘 )𝑝(𝑘) 2. M step.For each class, re-estimate the parameters using the current responsibilities

						(continued from previous page)
	𝜇 new 𝑘 pystatsml.plot_utils.plot_cov_ellipse(cov=gmm3.covariances_[i, :], pos=gmm3. = 𝑁 1 ∑︁ 𝑝(𝑘 | 𝑥 𝑖 )𝑥 𝑖 (5.18) ˓→means_[i, :], 𝑁 𝑘 𝑖=1 facecolor= none , linewidth=2, edgecolor=colors[i])
	Σ new 𝑘 plt.scatter(gmm3.means_[i, 0], gmm3.means_[i, 1], edgecolor=colors[i], = 1 𝑁 ∑︁ 𝑝(𝑘 | 𝑥 𝑖 )(𝑥 𝑖 -𝜇 new 𝑘 )(𝑥 𝑖 -𝜇 new 𝑘 ) 𝑇 marker="o", s=100, facecolor="w", linewidth=2) 𝑁 𝑘 𝑖=1 plt.title("K=3")	(5.19)
	plt.subplot(133)	𝑝 new (𝑘) =	𝑁 𝑘 𝑁		(5.20)
	3. Evaluate the log-likelihood plt.scatter(X[:, 0], X[:, 1], c=[colors[lab] for lab in gmm4.predict(X)]) # .
	˓→astype(np.float))		𝑁		{︃ 𝐾	}︃
		∑︁	ln	∑︁	𝒩 (𝑥|𝜇 𝑘 , Σ 𝑘 )𝑝(𝑘)	,
		𝑖=1		𝑘=1
	and check for convergence of either the parameters or the log-likelihood. If the convergence
	criterion is not satisfied return to step 1.
	import numpy as np				
	from sklearn import datasets			
	import matplotlib.pyplot as plt		
	import seaborn as sns # nice color
	import sklearn				
	from sklearn.mixture import GaussianMixture
	import pystatsml.plot_utils			
	colors = sns.color_palette()			
	iris = datasets.load_iris()			
	X = iris.data[:, :2] # sepal length (cm) sepal width (cm)
	y_iris = iris.target			
	gmm2 = GaussianMixture(n_components=2, covariance_type= full ).fit(X)
	gmm3 = GaussianMixture(n_components=3, covariance_type= full ).fit(X)
	gmm4 = GaussianMixture(n_components=4, covariance_type= full ).fit(X)
	plt.figure(figsize=(9, 3))			
	plt.subplot(131)				
	plt.scatter(X[:, 0], X[:, 1], c=[colors[lab] for lab in gmm2.predict(X)])#,␣
	˓→color=colors)				
	for i in range(gmm2.covariances_.shape[0]):
	pystatsml.plot_utils.plot_cov_ellipse(cov=gmm2.covariances_[i, :], pos=gmm2.
	˓→means_[i, :],				
		facecolor= none , linewidth=2, edgecolor=colors[i])
	plt.scatter(gmm2.means_[i, 0], gmm2.means_[i, 1], edgecolor=colors[i],
	marker="o", s=100, facecolor="w", linewidth=2)
	plt.title("K=2")				
	plt.subplot(132)				
						(continues on next page)

1. E step. plt.scatter(X[:, 0], X[:, 1], c=[colors

[lab] 

for lab in gmm3.predict(X)]) for i in range(gmm3.covariances_.shape

[START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF]

): for i in range(gmm4.covariances_.shape[0]): pystatsml.plot_utils.plot_cov_ellipse(cov=gmm4.covariances_[i, :], pos=gmm4. ˓→means_[i, :], facecolor= none , linewidth=2, edgecolor=colors[i]) plt.scatter(gmm4.means_[i, 0], gmm4.means_[i, 1], edgecolor=colors[i],

  The main advantage of agglomerative hierarchical clustering over 𝐾-means clustering is that you can benefit from known neighborhood information, for example, neighboring pixels in an image.

	from sklearn import cluster, datasets	
	import matplotlib.pyplot as plt	
	import seaborn as sns # nice color	
	iris = datasets.load_iris()	
	X = iris.data[:, :2] # sepal length (cm) sepal width (cm)
	y_iris = iris.target	
	ward2 = cluster.AgglomerativeClustering(n_clusters=2, linkage= ward ).fit(X)
	ward3 = cluster.AgglomerativeClustering(n_clusters=3, linkage= ward ).fit(X)
	ward4 = cluster.AgglomerativeClustering(n_clusters=4, linkage= ward ).fit(X)
	plt.figure(figsize=(9, 3))	
	plt.subplot(131)	
	plt.scatter(X[:, 0], X[:, 1], c=ward2.labels_)	
	plt.title("K=2")	
	plt.subplot(132)	
	plt.scatter(X[:, 0], X[:, 1], c=ward3.labels_)	
	plt.title("K=3")	
	plt.subplot(133)	
	plt.scatter(X[:, 0], X[:, 1], c=ward4.labels_) # .astype(np.float))
	plt.title("K=4")	
	Text(0.5, 1.0, K=4 )	
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  Hence most data points are closer to the boundary of the sample space than to any other data point. The reason that this presents a problem is that prediction is much more difficult near the edges of the training sample. One must extrapolate from neighboring sample points rather than interpolate between them. (Source: T Hastie, R Tibshirani, J Friedman.The Elements of Statistical Learning: Data

	Mining, Inference, and Prediction.* Second Edition, 2009.)*
	• Structural risk minimization provides a theoretical background of this phenomenon. (See
	VC dimension.)

pyplot as plt import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler

  

	from sklearn import datasets
	from sklearn import metrics
	from sklearn.model_selection import train_test_split
	np.set_printoptions(precision=2)
	pd.set_option( precision , 2)
	5.6

get_ipython().run_line_magic( matplotlib , inline ) import matplotlib.

.1 Support Vector Machines (SVM)

  SVM are based kernel methods require only a user-specified kernel function 𝐾(𝑥 𝑖 , 𝑥 𝑗 ), i.e., a similarity function over pairs of data points (𝑥 𝑖 , 𝑥 𝑗 ) into kernel (dual) space on which learning algorithms operate linearly, i.e. every operation on points is a linear combination of 𝐾(𝑥 𝑖 , 𝑥 𝑗 ).

  5.49)Where 𝜎 (or 𝛾) defines the kernel width parameter. Basically, we consider a Gaussian function centered on each training sample 𝑥 𝑖 . it has a ready interpretation as a similarity measure as it decreases with squared Euclidean distance between the two feature vectors.

	(continued from previous page)
	# Usefull internals: indices of support vectors within original X
	np.all(X_train[svm.support_, :] == svm.support_vectors_)
	Out:
	bAcc: 0.97, AUC: 0.99 (AUC with proba: 0.99)
	True
	Non linear SVM also exists for regression problems.
	dataset
	X, y = datasets.load_breast_cancer(return_X_y=True)
	X_train, X_test, y_train, y_test = \
	train_test_split(X, y, test_size=0.5, stratify=y, random_state=42)
	Preprocessing: unequal variance of input features, requires scaling for svm.

sklearn.ensemble import RandomForestClassifier

  

	forest = RandomForestClassifier(n_estimators = 100)
	forest.fit(X_train, y_train)
	y_pred = forest.predict(X_test)
	y_prob = forest.predict_proba(X_test)[:, 1]
	print("bAcc: %.2f, AUC: %.2f " % (
	metrics.balanced_accuracy_score(y_true=y_test, y_pred=y_pred),
	metrics.roc_auc_score(y_true=y_test, y_score=y_prob)))
	Out:
	bAcc: 0.93, AUC: 0.98
	Extra Trees (Low Variance)

6 Cross-validation for both model (outer) evaluation and model (inner) selection

  With classification problems it is essential to sample folds where each set contains approximately the same percentage of samples of each target class as the complete set. This is called stratification. In this case, we will use StratifiedKFold with is a variation of k-fold which returns stratified folds. Usually the error function 𝐿() are, at least, the sensitivity and the specificity. However other function could be used.

	print("Train r2:%.2f" % np.mean(r2_train)) scores = cross_validate(estimator=mod, X=X, y=y, cv=cv, from sklearn.model_selection import StratifiedKFold	(continued from previous page) (continued from previous page) (continued from previous page)
	print("Test r2:%.2f" % np.mean(r2_test)) X, y = datasets.make_classification(n_samples=100, n_features=100, shuffle=True, scoring=[ balanced_accuracy , roc_auc ])
	Out: print("Test AUC:%.2f; bACC:%.2f" % (scores[ test_roc_auc ].mean(), n_informative=10, random_state=42)
	Train r2:0.99 mod = lm.LogisticRegression(C=1, solver= lbfgs ) scores[ test_balanced_accuracy ].mean()))
	Test r2:0.67 cv = StratifiedKFold(n_splits=5) Out:	
	Scikit-learn provides user-friendly function to perform CV: # Lists to store scores by folds (for macro measure only) Test AUC:0.86; bACC:0.80	
	cross_val_score(): single metric bacc, auc = [], []	
	from sklearn.model_selection import cross_val_score for train, test in cv.split(X, y): 5.7.5 Cross-validation for model selection	
	scores = cross_val_score(estimator=estimator, X=X, y=y, cv=5) print("Test r2:%.2f" % scores.mean()) mod.fit(X[train, :], y[train]) Combine CV and grid search: Re-split (inner split) train set into CV folds train/validation folds bacc.append(metrics.roc_auc_score(y[test], mod.decision_function(X[test, :]))) auc.append(metrics.balanced_accuracy_score(y[test], mod.predict(X[test, :]))) and build a GridSearchCV out of it:
	cv = KFold(n_splits=5, shuffle=True, random_state=42) # Outer split: print("Test AUC:%.2f; bACC:%.2f" % (np.mean(bacc), np.mean(auc))) X_train, X_test, y_train, y_test =\ scores = cross_val_score(estimator=estimator, X=X, y=y, cv=cv) print("Test r2:%.2f" % scores.mean()) Out: train_test_split(X, y, test_size=0.25, shuffle=True, random_state=42)
	Out: Test AUC:0.86; bACC:0.80 cv_inner = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
	Test r2:0.73 Test r2:0.67 # Cross-validation for model selection cross_val_score(): single metric lm_cv = GridSearchCV(lm.LogisticRegression(), { C : 10. ** np.arange(-3, 3)},
	scores = cross_val_score(estimator=mod, X=X, y=y, cv=5) cv=cv_inner, n_jobs=5)	
	cross_validate(): multi metric, + time, etc.	
	# Fit, indluding model selection with internal CV print("Test ACC:%.2f" % scores.mean()) from sklearn.model_selection import cross_validate lm_cv.fit(X_train, y_train)	
	Out: scores = cross_validate(estimator=mod, X=X, y=y, cv=cv, # Predict	
	scoring=[ r2 , neg_mean_absolute_error ]) y_pred_test = lm_cv.predict(X_test) Test ACC:0.80
	print("Test bACC: %.2f" % metrics.balanced_accuracy_score(y_test, y_pred_test))
	print("Test R2:%.2f; MAE:%.2f" % (scores[ test_r2 ].mean(), Provide your own CV and score	
	However other function (MAE, MSE) can -scores[ test_neg_mean_absolute_error ].mean())) def balanced_acc(estimator, X, y, **kwargs): be used. Out:
	CV with explicit loop: return metrics.recall_score(y, estimator.predict(X), average=None).mean() Out: """Balanced acuracy scorer.""" Test bACC: 0.63
	Test R2:0.67; MAE:55.27 from sklearn.model_selection import KFold estimator = lm.Ridge(alpha=10) CV for classification: stratifiy for the target label scores = cross_val_score(estimator=mod, X=X, y=y, cv=cv, scoring=balanced_acc) print("Test bACC:%.2f" % scores.mean()) 5.7.cv_outer = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) cv = KFold(n_splits=5, shuffle=True, random_state=42) r2_train, r2_test = list(), list() Out: cv_inner = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
	for train, test in cv.split(X): # Cross-validation for model (inner) selection Test bACC:0.80 lm_cv = GridSearchCV(lm.Ridge(), { alpha : 10. ** np.arange(-3, 3)}, estimator.fit(X[train, :], y[train]) r2_train.append(metrics.r2_score(y[train], estimator.predict(X[train, :]))) cross_validate(): multi metric, + time, etc. cv=cv_inner, n_jobs=5)
	r2_test.append(metrics.r2_score(y[test], estimator.predict(X[test, :]))) CV with explicit loop: from sklearn.model_selection import cross_validate # Cross-validation for model (outer) evaluation
	scores = cross_validate(estimator=mod, X=X, y=y, cv=cv_outer,
		(continues on next page) (continues on next page) (continues on next page)

  Here, we are trying an example of Stacking and compare it to a Bagging & a Boosting. We note that, many other applications (datasets) would show more difference between these techniques.

	from sklearn.ensemble import AdaBoostClassifier
	from sklearn.tree import DecisionTreeClassifier
	from sklearn.datasets import load_breast_cancer
	import pandas as pd
	import numpy as np
	from sklearn.model_selection import train_test_split
	from sklearn.metrics import confusion_matrix
	from sklearn.preprocessing import LabelEncoder
	from sklearn.metrics import accuracy_score
	from sklearn.metrics import f1_score
	from sklearn.ensemble import RandomForestClassifier
	from sklearn.linear_model import LogisticRegression
	breast_cancer = load_breast_cancer()
	x = pd.DataFrame(breast_cancer.data, columns=breast_cancer.feature_names)
	y = pd.Categorical.from_codes(breast_cancer.target, breast_cancer.target_names)
	# Transforming string Target to an int
	encoder = LabelEncoder()
	binary_encoded_y = pd.Series(encoder.fit_transform(y))
	#Train Test Split
	train_x, test_x, train_y, test_y = train_test_split(x, binary_encoded_y, random_

5.8. Ensemble learning: bagging, boosting and stacking

torchvision import torch.nn as nn import torch.nn.functional as F from skorch import NeuralNetClassifier import skorch

  

	import numpy as np
	from time import time
	import matplotlib.pyplot as plt
	import pandas as pd
	import seaborn as sns
	from sklearn.model_selection import train_test_split
	from sklearn.model_selection import GridSearchCV
	from sklearn.metrics import classification_report
	from sklearn.metrics import confusion_matrix
	# Preprocesing
	from sklearn import preprocessing
	from sklearn.pipeline import make_pipeline
	from sklearn.pipeline import Pipeline
	from sklearn.feature_selection import SelectKBest, f_classif
	# Dataset
	from sklearn.datasets import fetch_lfw_people
	# Models
	from sklearn.decomposition import PCA
	import sklearn.manifold as manifold
	import sklearn.linear_model as lm
	import sklearn.svm as svm
	from sklearn.neural_network import MLPClassifier # from sklearn.ensemble import RandomForestClassifier •
	# from sklearn.ensemble import GradientBoostingClassifier Out:
	# Pytorch Models
	import torch
	import # Use [skorch](https://github.com/skorch-dev/skorch). Install:
	# conda install -c conda-forge skorch
	device = torch.device( cuda if torch.cuda.is_available() else cpu )
	• PCA with LogisticRegression with L2 regularization

  Note that to simplify, do not use pipeline (scaler + CNN) here. But it would have been simple to do so, since pytorch is warpped in skorch object that is compatible with sklearn.

	5.10.10 PCA with LogisticRegression with L2 regularization 5.10.11 Basic ConvNet	(continued from previous page) (continued from previous page) (continued from previous page)
	preprocessing.MinMaxScaler(), GridSearchCV(estimator=MLPClassifier(random_state=1, max_iter=400), X = self.nonlin(self.dense0(X)) pca_lrl2_cv = make_pipeline( X = self.softmax(self.output(X)) X_test_s = scaler.transform(X_test).reshape(-1, 1, h, w)	CHAPTER
	param_grid=mlp_param_grid, PCA(n_components=150, svd_solver= randomized , whiten=True), return X t0 = time()	SIX
	cv=5, n_jobs=5)) GridSearchCV(lm.LogisticRegression(max_iter=1000, class_weight= balanced , fit_intercept=False), cnn.fit(X_train_s, y_train) Sources: print("done in %0.3fs" % (time() -t0))
	t0 = time() mlp = NeuralNetClassifier( # Match the parameters with sklearn { C : 10. ** np.arange(-3, 3)}, • ConvNet on MNIST
	mlp_cv.fit(X_train, y_train) print("done in %0.3fs" % (time() -t0)) SimpleMLPClassifierPytorch, criterion=torch.nn.NLLLoss, cv=5, n_jobs=5)) • NeuralNetClassifier y_pred = cnn.predict(X_test_s) print(classification_report(y_test, y_pred, target_names=target_names)) DEEP LEARNING
	print("Best params found by grid search:") max_epochs=100, t0 = time() class Cnn(nn.Module):	
	print(mlp_cv.steps[-1][1].best_params_) batch_size=200, pca_lrl2_cv.fit(X=X_train, y=y_train) """Basic ConvNet Conv(1, 32, 64) -> FC(100, 7) -> softmax.""" Out:
	y_pred = mlp_cv.predict(X_test) print(classification_report(y_test, y_pred, target_names=target_names)) optimizer=torch.optim.Adam, # optimizer=torch.optim.SGD, optimizer__lr=0.001, print("done in %0.3fs" % (time() -t0)) print("Best params found by grid search:") def __init__(self, dropout=0.5, fc_size=4928, n_outputs=7, debug=False): super(Cnn, self).__init__() done in 39.086s precision recall f1-score support 6.1 Backpropagation
	Out: done in 128.638s Best params found by grid search: { activation : relu , alpha : 0.0001, hidden_layer_sizes : (100,), solver : ˓→ adam } precision recall f1-score support optimizer__betas=(0.9, 0.999), optimizer__eps=1e-4, optimizer__weight_decay=0.0001, # L2 regularization # Shuffle training data on each epoch iterator_train__shuffle=True, device=device, verbose=0) print(pca_lrl2_cv.steps[-1][1].best_params_) y_pred = pca_lrl2_cv.predict(X_test) print(classification_report(y_test, y_pred, target_names=target_names)) print(confusion_matrix(y_test, y_pred, labels=range(n_classes))) Out: self.conv1 = nn.Conv2d(1, 32, kernel_size=3) Ariel Sharon 0.79 0.79 0.79 19 6.1.1 Course outline: self.conv2 = nn.Conv2d(32, 64, kernel_size=3) Colin Powell 0.95 0.90 0.92 59 self.conv2_drop = nn.Dropout2d(p=dropout) Donald Rumsfeld 0.79 0.77 0.78 30 1. Backpropagation and chaine rule self.fc1 = nn.Linear(fc_size, 100) self.fc2 = nn.Linear(100, n_outputs) George W Bush 0.88 0.95 0.91 133 Gerhard Schroeder 0.71 0.89 0.79 2. Lab: with numpy and pytorch 27 self.fc1_drop = nn.Dropout(p=dropout) Tony Blair 0.90 0.78 0.84 36 self.debug = debug Hugo Chavez 0.78 0.39 0.52 18 %matplotlib inline
	Ariel Sharon Colin Powell Donald Rumsfeld George W Bush Gerhard Schroeder done in 0.333s scaler = preprocessing.MinMaxScaler() 0.76 0.84 0.88 0.85 0.68 0.77 0.89 0.91 0.77 0.74 Best params found by grid search: accuracy X_train_s = scaler.fit_transform(X_train) { C : 0.1} macro avg 0.83 0.78 X_test_s = scaler.transform(X_test) precision recall f1-score support 0.80 19 0.86 59 0.72 30 0.90 133 0.75 0.86 322 0.79 322 weighted avg 0.86 0.86 0.85 322 Out: t0 = time() 27 Hugo Chavez 1.00 0.39 0.56 18 Tony Blair 0.73 0.83 0.78 36 mlp.fit(X_train_s, y_train) print("done in %0.3fs" % (time() -t0)) Ariel Sharon 0.50 0.89 0.64 19 Colin Powell 0.85 0.78 0.81 59 Donald Rumsfeld 0.66 0.77 0.71 30 done in 116.626s 5.10.12 ConvNet with Resnet18 precision recall f1-score support	
	• tol, default=1e-4 mlp_param_grid = {"hidden_layer_sizes": # Configurations with 1 hidden layer: [(100, ), (50, ), (25, ), (10, ), (5, ), # Configurations with 2 hidden layers: (100, 50, ), (50, 25, ), (25, 10, ), (10, 5, ), # Configurations with 3 hidden layers: (100, 50, 25, ), (50, 25, 10, ), (25, 10, 5, )], "activation": ["relu"], "solver": ["adam"], alpha : [0.0001]} mlp_cv = make_pipeline( (continues on next page) (continues on next page) (continues on next page) def forward(self, X, **kwargs): X_train_s = scaler.fit_transform(X_train).reshape(-1, 1, h, w) # preprocessing.StandardScaler(), accuracy 0.83 322 macro avg 0.82 0.76 0.77 322 weighted avg 0.84 0.83 0.83 322 5.10.8 MLP with pytorch and no model selection class SimpleMLPClassifierPytorch(nn.Module): """Simple (one hidden layer) MLP Classifier with Pytorch.""" def __init__(self): super(SimpleMLPClassifierPytorch, self).__init__() self.dense0 = nn.Linear(1850, 100) self.nonlin = nn.ReLU() self.output = nn.Linear(100, 7) weighted avg 0.80 0.79 0.78 322 scaler = preprocessing.MinMaxScaler() self.softmax = nn.Softmax(dim=-1) y_pred = mlp.predict(X_test_s) print(classification_report(y_test, y_pred, target_names=target_names)) Out: done in 3.142s precision recall f1-score support Ariel Sharon 0.70 0.84 0.76 19 Colin Powell 0.92 0.75 0.82 59 Donald Rumsfeld 0.62 0.70 0.66 30 George W Bush 0.81 0.92 0.86 133 Gerhard Schroeder 0.71 0.56 0.63 27 Hugo Chavez 0.88 0.39 0.54 18 Tony Blair 0.78 0.78 0.78 36 accuracy 0.79 macro avg 0.77 0.70 0.72 322 verbose=0) 322 George W Bush 0.94 0.71 0.81 133 Gerhard Schroeder 0.61 0.74 0.67 class Resnet18(nn.Module): Ariel Sharon 0.93 0.68 0.79 19 27 Hugo Chavez 0.44 0.67 0.53 """ResNet 18, pretrained, with one input chanel and 7 outputs.""" Colin Powell 0.93 0.93 0.93 59 18 Tony Blair 0.69 0.75 0.72 Donald Rumsfeld 0.90 0.87 0.88 30 36 accuracy 0.74 322 macro avg 0.67 0.76 0.70 x = torch.relu(self.fc1_drop(self.fc1(x))) George W Bush 0.84 0.96 0.90 133 def __init__(self, in_channels=1, n_outputs=7): x = torch.softmax(self.fc2(x), dim=-1) Gerhard Schroeder 0.80 0.74 0.77 27 super(Resnet18, self).__init__() return x Hugo Chavez 0.91 0.56 0.69 18 322 weighted avg 0.79 0.74 0.75 # self.model = torchvision.models.resnet18() Tony Blair 0.94 0.81 0.87 36 322 self.model = torchvision.models.resnet18(pretrained=True) torch.manual_seed(0) accuracy 0.87 322 [[17 0 1 0 0 1 0] [ 4 46 2 3 1 0 3] [ 3 1 23 0 0 2 1] [ 8 5 8 94 4 12 2] [ 1 0 0 1 20 0 5] [ 0 1 0 1 3 12 1] [ 1 1 1 1 5 0 27]] cnn = NeuralNetClassifier( macro avg 0.89 0.79 0.83 322 # original definition of the first layer on the renset class Cnn, weighted avg 0.88 0.87 0.87 322 # self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, max_epochs=100, # bias=False) lr=0.001, train_split=skorch.dataset.CVSplit(cv=5, stratified=True), padding=3, bias=False) device=device, self.model.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, optimizer=torch.optim.Adam, # one channel input (greyscale): Total running time of the script: ( 5 minutes 46.507 seconds)

def forward(self, x):

x = torch.relu(F.max_pool2d(self.conv1(x), 2)) x = torch.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))

# flatten over channel, height and width = 1600 x = x.view(-1, x.size(1) * x.size(2) * x.size(3)) if self.debug: # trick to get the size of the first FC print("### DEBUG: Shape of last convnet=", x.shape, ". FC size=", np.prod(x.shape[1:])) # Last layer num_ftrs = self.model.fc.in_features self.model.fc = nn.Linear(num_ftrs, n_outputs) (continues on next page)

Backpropagation with PyTorch: nn source

  Manually update weights using gradient descent. Wrap in torch.no_grad() # because weights have requires_grad=True, but we don t need to track this # in autograd. # An alternative way is to operate on weight.data and weight.grad.data. # Recall that tensor.data gives a tensor that shares the storage with # tensor, but doesn t track history. # You can also use torch.optim.SGD to achieve this. (np.arange(len(losses_tr)), losses_tr, "-b", np.arange(len(losses_val)),␣ 10 111.97289276123047 250.04209899902344 20 65.83244323730469 201.63694763183594 30 53.70908737182617 183.17051696777344 40 48.719329833984375 173.3616943359375 [<matplotlib.lines.Line2D at 0x7f95ff2ad978>, <matplotlib.lines.Line2D at 0x7f95ff2adac8>]

	with torch.no_grad():
	W1 -= learning_rate * W1.grad
	W2 -= learning_rate * W2.grad
	# Manually zero the gradients after updating weights
	W1.grad.zero_()
	W2.grad.zero_()
	y_pred = X_val.mm(W1).clamp(min=0).mm(W2)
	# Compute and print loss using operations on Tensors.
	# Now loss is a Tensor of shape (1,)
	# loss.item() gets the scalar value held in the loss.
	loss_val = (y_pred -Y).pow(2).sum()
	if t % 10 == 0:
	print(t, loss.item(), loss_val.item())
	losses_tr.append(loss.item())
	losses_val.append(loss_val.item())
	return W1, W2, losses_tr, losses_val
	W1, W2, losses_tr, losses_val = two_layer_regression_autograd_train(X=X_iris_tr,␣
	˓→Y=Y_iris_tr, X_val=X_iris_val, Y_val=Y_iris_val,
	lr=1e-4, nite=50)
	plt.plot˓→losses_val, "-r")
	0 8307.1806640625 2357.994873046875
	(continues on next page)

  continues on next page) # is called. Checkout docs of torch.autograd.backward for more details. optimizer.zero_grad() # Backward pass: compute gradient of the loss with respect to model

	# parameters
	loss.backward()
	# Calling the step function on an Optimizer makes an update to its
	# parameters
	optimizer.step()
	with torch.no_grad():
	y_pred = model(X_val)
	loss_val = loss_fn(y_pred, Y_val)
	if t % 10 == 0:
	print(t, loss.item(), loss_val.item())
	losses_tr.append(loss.item())
	losses_val.append(loss_val.item())
	return model, losses_tr, losses_val
	model, losses_tr, losses_val = two_layer_regression_nn_optim_train(X=X_iris_tr,␣
	˓→Y=Y_iris_tr, X_val=X_iris_val, Y_val=Y_iris_val,
	lr=1e-3, nite=50)
	plt.plot(np.arange(len(losses_tr)), losses_tr, "-b", np.arange(len(losses_val)),␣
	˓→losses_val, "-r")
	0 92.271240234375 83.96189880371094
	10 64.25907135009766 59.872535705566406
	20 47.6252555847168 50.228126525878906
	30 40.33802032470703 50.60377502441406
	40 38.19448471069336 54.03163528442383
	[<matplotlib.lines.Line2D at 0x7f95ff200080>,
	<matplotlib.lines.Line2D at 0x7f95ff2001d0>]

  /lib/python3.7/site-packages/torch/nn/modules/module.py in _apply(self, /lib/python3.7/site-packages/torch/nn/modules/module.py in _apply(self,

			(continued from previous page)
	428	def register_backward_hook(self, hook):
	~/anaconda3˓→ fn)	
	200 201 os.makedirs(WD, exist_ok=True) def _apply(self, fn): .home(), "data", "pystatml", "dl_cifar10_pytorch") for module in self.children(): --> 202 module._apply(fn) os.chdir(WD) 203 print("Working dir is:", os.getcwd()) os.makedirs("data", exist_ok=True) 204 def compute_should_use_set_data(tensor, tensor_applied):
	os.makedirs("models", exist_ok=True)
	import numpy as np ~/anaconda3˓→ fn) import torch 200 def _apply(self, fn): import torch.nn as nn 201 for module in self.children(): import torchvision --> 202 module._apply(fn) import torchvision.transforms as transforms 203
	204	def compute_should_use_set_data(tensor, tensor_applied):
	# Device configuration
	device = torch.device( cuda if torch.cuda.is_available() else cpu )
	˓→ fn) # Hyper-parameters 222 num_epochs = 5 223 learning_rate = 0.001 --> 224	# with torch.no_grad(): with torch.no_grad(): param_applied = fn(param)
	225 # Image preprocessing modules should_use_set_data = compute_should_use_set_data(param,␣ ˓→param_applied) transform = transforms.Compose([ transforms.Pad(4), 226 if should_use_set_data:
	transforms.RandomHorizontalFlip(),
	transforms.RandomCrop(32), ~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in convert(t) transforms.ToTensor()]) 422
	423 # CIFAR-10 dataset def convert(t): --> 424 return t.to(device, dtype if t.is_floating_point() else None,␣ train_dataset = torchvision.datasets.CIFAR10(root= data/ , ˓→non_blocking) train=True, 425 transform=transform, download=True) 426 return self._apply(convert)
	val_dataset = torchvision.datasets.CIFAR10(root= data/ ,
			train=False,
			transform=transforms.ToTensor())
	# Data loader
	train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
			batch_size=100,
			shuffle=True)
	val_loader = torch.utils.data.DataLoader(dataset=val_dataset,
			(continues on next page)

~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in _apply(self, RuntimeError: CUDA error: all CUDA-capable devices are busy or unavailable 6.2. Multilayer Perceptron (MLP) AlexNet (2012, Alex Krizhevsky, Ilya Sutskever and Geoff Hinton)

  Datasets shape:", {x: dataloaders[x].dataset.data.shape for x in [ train ,

		(continued from previous page)
	import torchvision torch.Size([84])		
	import torchvision.transforms as transforms torch.Size([10, 84]) # load best model weights	
	torch.Size([10]) model.load_state_dict(best_model_wts)		
	Total number of parameters = 83126		
	# Device configuration Epoch 0/24 return model, losses, accuracies		
	device = torch.device( cuda if torch.cuda.is_available() else cpu ) ----------	
	train Loss: 2.3041 Acc: 10.00%		
	# Hyper-parameters val Loss: 2.3033 Acc: 10.00% 6.4.2 CIFAR-10 dataset		
	num_epochs = 5		
	learning_rate = 0.001 Epoch 5/24 ----------Source Yunjey Choi		
	# Image preprocessing modules train Loss: 2.2991 Acc: 11.18% WD = os.path.join(Path.home(), "data", "pystatml", "dl_cifar10_pytorch")	
	transform = transforms.Compose([ val Loss: 2.2983 Acc: 11.00% os.makedirs(WD, exist_ok=True)		
	transforms.Pad(4), os.chdir(WD)		
	transforms.RandomHorizontalFlip(), Epoch 10/24 print("Working dir is:", os.getcwd())		
	transforms.RandomCrop(32), ----------os.makedirs("data", exist_ok=True)		
	transforms.ToTensor()]) train Loss: 2.2860 Acc: 10.36% os.makedirs("models", exist_ok=True)		
	val Loss: 2.2823 Acc: 10.60%		
	# CIFAR-10 dataset # Image preprocessing modules		
	train_dataset = torchvision.datasets.CIFAR10(root= data/ , Epoch 15/24 transform = transforms.Compose([	
	----------transforms.Pad(4),	train=True,	
	train Loss: 2.1759 Acc: 18.83% transforms.RandomHorizontalFlip(),	transform=transform,	
	val Loss: 2.1351 Acc: 20.74% transforms.RandomCrop(32),	download=True)	
	transforms.ToTensor()])		
	val_dataset = torchvision.datasets.CIFAR10(root= data/ , Epoch 20/24	
	# CIFAR-10 dataset	train=False,	
	transform=transforms.ToTensor()) train_dataset = torchvision.datasets.CIFAR10(root= data/ ,	
		train=True,	
	# Data loader	transform=transform,	
	train_loader = torch.utils.data.DataLoader(dataset=train_dataset, download=True)	
		batch_size=100,	
	shuffle=True) test_dataset = torchvision.datasets.CIFAR10(root= data/ ,	
		train=False,	
	val_loader = torch.utils.data.DataLoader(dataset=val_dataset, transform=transforms.ToTensor())	
		batch_size=100,	
	# Data loader	shuffle=False)	
	train_loader = torch.utils.data.DataLoader(dataset=train_dataset,	
	# Put together train and val	batch_size=100,	
	dataloaders = dict(train=train_loader, val=val_loader) shuffle=True)	
	# Info about the dataset val_loader = torch.utils.data.DataLoader(dataset=test_dataset,	
	data_shape = dataloaders["train"].dataset.data.shape[1:] batch_size=100,	
	D_in = np.prod(data_shape)	shuffle=False)	#
	import torch.nn as nn D_out = len(set(dataloaders["train"].dataset.targets))	
	# 3x3 convolution def conv3x3(in_channels, out_channels, stride=1): return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) # Put together train and val print("(continues on next page) (continues on next page) dataloaders = dict(train=train_loader, val=val_loader)

˓→ val ]}) print("N input features:", D_in, "N output:", D_out) Working dir is: /home/ed203246/data/pystatml/dl_cifar10_pytorch ---------train Loss: 2.0159 Acc: 25.35% val Loss: 1.9878 Acc: 26.90% Training complete in 7m 26s Best val Acc: 28.98% # Info about the dataset data_shape = dataloaders["train"].dataset.data.shape[1:] (continues on next page)
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Distributions and density plot

Distributions with seaborn ax = sns.displot(x="salary", hue="management", kind="kde", data=salary, fill=True) (continued from previous page) print("tables can be merge using shared columns") print(gm.head())

Out:

tables can be merge using shared columns participant_id session gm_vol 0 sub-S1-0002 ses-01 

Descriptive Statistics

Load excel file brain_vol.xlsx import os import pandas as pd import seaborn as sns import statsmodels.formula.api as smfrmla import statsmodels.api as sm brain_vol = pd.read_excel(os.path.join(WD, "data", "brain_vol.xlsx"), 

Precision matrix

In statistics, precision is the reciprocal of the variance, and the precision matrix is the matrix inverse of the covariance matrix.

It is related to partial correlations that measures the degree of association between two variables, while controlling the effect of other variables.

import numpy as np

Cov = np.array([[1.0, 0.9, 0.9, 0.0, 0.0, 0.0], [0.9, 1.0, 0.9, 0.0, 0.0, 0.0], [0.9, 0.9, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.9, 0.0], [0.0, 0.0, 0.0, 0.9, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]]) # Arbitrary choice of K=2 components from sklearn.manifold import MDS mds = MDS(dissimilarity= precomputed , n_components=2, random_state=40, max_ 

Determining the number of components

We must choose 𝐾 * ∈ {1, . . . , 𝐾} the number of required components. Plotting the values of the stress function, obtained using 𝑘 ≤ 𝑁 -1 components. In general, start with 1, . . . 𝐾 ≤ 4.

Choose 𝐾 * where you can clearly distinguish an elbow in the stress curve.

Thus, in the plot below, we choose to retain information accounted for by the first two components, since this is where the elbow is in the stress curve. # LDA with scikit-learn lda = LDA() proj = lda.fit(X, y).transform(X) y_pred_lda = lda.predict(X) errors = y_pred_lda != y print("Nb errors=%i, error rate=%.2f" % (errors.sum(), errors.sum() / len(y_pred_ ˓→lda)))

Nb errors=10, error rate=0.05

Logistic regression

Logistic regression is called a generalized linear models. ie.: it is a linear model with a link function that maps the output of linear multiple regression to the posterior probability of class 1 𝑝(1|𝑥) using the logistic sigmoid function:

def logistic(x): return 1 / (1 + np.exp(-x))

x = np.linspace(-6, 6, 100) plt.plot(x, logistic(x)) plt.grid(True) plt.title( Logistic (sigmoid) ) Text(0.5, 1.0, Logistic (sigmoid) )

(continued from previous page) errors = y_pred_l2 != y print("Nb errors=%i, error rate=%.2f" % (errors.sum(), errors.sum() / len(y))) Probas of 5 first samples for class [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] 

Lasso logistic regression (ℓ 1 -regularization)

The objective function to be minimized is now the combination of the logistic loss -log ℒ(𝑤) with a penalty of the L1 norm of the weights vector. In the two-class case, using the 0/1 coding we obtain: ax = sns.relplot(x=y_score, y=y_prob, hue=y_pred, height=2, aspect=1.5) _ = ax.set_axis_labels("decision function", "Probability").tight_layout() print("bAcc: %.2f, AUC: %.2f (AUC with proba: %.2f)" % ( metrics.balanced_accuracy_score(y_true=y_test, y_pred=y_pred), metrics.roc_auc_score(y_true=y_test, y_score=y_score), metrics.roc_auc_score(y_true=y_test, y_score=y_prob)))

(continues on next page) (continued from previous page) import sklearn.linear_model as lm from sklearn.model_selection import train_test_split, KFold, PredefinedSplit from sklearn.model_selection import cross_val_score, GridSearchCV import sklearn.metrics as metrics X, y = datasets.make_regression(n_samples=100, n_features=100, n_informative=10, random_state=42)

Train, validation and test sets

Machine learning algorithms overfit taining data. Predictive performances MUST be evaluated on independant hold-out dataset. • Outer (train/test) split of model evaluation.

• Inner train/validation split of model selection (more frequent situation).

• Inner and outer splits, leading to two nested CV. Out:

Split dataset in train/test sets for model evaluation

Test AUC:0.85; bACC:0.74, Time: 0.03s

Models with built-in cross-validation

Let sklearn select the best parameters over a default grid. Both of these algorithms will print, Accuracy: 0.77 (+/-0.07). They are equivalent.

Boosting

In sequential methods the different combined weak models are no longer fitted independently from each others. The idea is to fit models iteratively such that the training of model at a given step depends on the models fitted at the previous steps. "Boosting" is the most famous of these approaches and it produces an ensemble model that is in general less biased than the weak learners that compose it.

Boosting methods work in the same spirit as bagging methods: we build a family of models that are aggregated to obtain a strong learner that performs better. def label_proportion(x, decimals=2): """Labels s proportions.""" unique, counts = np.unique(x, return_counts=True) return dict(zip(unique, np.round(counts / len(x), decimals)))

However, unlike bagging that mainly aims at reducing variance, boosting is a technique that consists in fitting sequentially multiple weak learners in a very

Download the data

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

# introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape [1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape [START_REF]for boot_i in range(nboot): boot_tr = np.random.choice(orig_all, size=len(orig_all), replace=True) boot_te = np.setdiff1d(orig_all, boot_tr, assume_unique=False) Xtr[END_REF] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) 

Backpropagation summary

Backpropagation algorithm in a graph: 1. Forward pass, for each node compute local partial derivatives of ouput given inputs 2. Backward pass: apply chain rule from the end to each parameters -Update parameter with gradient descent using the current upstream gradient and the current local gradient -Compute upstream gradient for the backward nodes Think locally and remember that at each node: -For the loss the gradient is the error -At each step, the upstream gradient is obtained by multiplying the upstream gradient (an error) with the current parameters (vector of matrix). -At each step, the current local gradient equal the input, therfore the current update is the current upstream gradient time the input.

import numpy as np import matplotlib.pyplot as plt import seaborn as sns import sklearn.model_selection

Lab: with numpy and pytorch

Load iris data set

• Plot data with seaborn So one test data batch is a tensor of shape: . This means we have 1000 examples of 28x28 pixels in grayscale (i.e. no rgb channels, hence the one). We can plot some of them using matplotlib. def forward(self, X): X = X.view(-1, self.d_in) X = self.linear1(X) return F.log_softmax(self.linear2(X), dim=1)

Train the Model

• First we want to make sure our network is in training mode.

• Iterate over epochs

• Alternate train and validation dataset

• Iterate over all training/val data once per epoch. Loading the individual batches is handled by the DataLoader.

• Set the gradients to zero using optimizer.zero_grad() since PyTorch by default accumulates gradients.

• Forward pass:

model(inputs): Produce the output of our network.

torch.max(outputs, 1): softmax predictions.

criterion(outputs, labels): loss between the output and the ground truth label.

• In training mode, backward pass backward(): collect a new set of gradients which we propagate back into each of the network's parameters using optimizer.step().

• We'll also keep track of the progress with some printouts. In order to create a nice training curve later on we also create two lists for saving training and testing losses. print("Output shape=", output.shape, "label shape=", preds.shape) print("Accuracy = {:.2f}%".format((example_targets == preds).sum().item() * 100. / ˓→ len(example_targets)))

show_data_label_prediction(data=example_data, y_true=example_targets, y_ -------- -------------------------------------------------------------------------- 

Architectures

Transfer Learning Tutorial

Sources:

• cs231n @ Stanford • Sasank Chilamkurthy Quote cs231n @ Stanford:

In practice, very few people train an entire Convolutional Network from scratch (with random initialization), because it is relatively rare to have a dataset of sufficient size. Instead, it is common to pretrain a ConvNet on a very large dataset (e.g. ImageNet, which contains 1.2 million images with 1000 categories), and then use the ConvNet either as an initialization or a fixed feature extractor for the task of interest.

These two major transfer learning scenarios look as follows:

• ConvNet as fixed feature extractor:

-Take a ConvNet pretrained on ImageNet, -Remove the last fully-connected layer (this layer's outputs are the 1000 class scores for a different task like ImageNet)

-Treat the rest of the ConvNet as a fixed feature extractor for the new dataset.

In practice:

-Freeze the weights for all of the network except that of the final fully connected layer. This last fully connected layer is replaced with a new one with random weights and only this layer is trained.

• Finetuning the convnet:

fine-tune the weights of the pretrained network by continuing the backpropagation.