
HAL Id: hal-03038671
https://hal.science/hal-03038671

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

NextPriorityConcept: A new and generic algorithm
computing concepts from complex and heterogeneous

data
Christophe Demko, Karell Bertet, Cyril Faucher, Jean-François Viaud, Sergei

Kuznetsov

To cite this version:
Christophe Demko, Karell Bertet, Cyril Faucher, Jean-François Viaud, Sergei Kuznetsov. NextPrior-
ityConcept: A new and generic algorithm computing concepts from complex and heterogeneous data.
Theoretical Computer Science, 2020, 845, pp.1-20. �10.1016/j.tcs.2020.08.026�. �hal-03038671�

https://hal.science/hal-03038671
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

NextPriorityConcept: A new and generic algorithm
computing concepts from complex and heterogeneous data

Christophe Demkoa,∗, Karell Berteta, Cyril Fauchera, Jean-François Viauda, Sergei O.
Kuznetsovb

aL3i, La Rochelle University, France
bNational Research University Higher School of Economics, Moscow, Russia

Abstract

In this article, we present a new data type agnostic algorithm calculating a concept lattice
from heterogeneous and complex data. Our NextPriorityConcept algorithm is first
introduced and proved in the binary case as an extension of Bordat’s algorithm with
the notion of strategies to select only some predecessors of each concept, avoiding the
generation of unreasonably large lattices. The algorithm is then extended to any type
of data in a generic way. It is inspired by the pattern structure theory, where data are
locally described by predicates independent of their types, allowing the management of
heterogeneous data.

Keywords: Formal Concept Analysis, Lattice, Pattern Structures, Strategies,
Heterogeneous data

1. Introduction

Formal Concept Analysis (FCA) is a branch of applied lattice theory, which originated
from the study of relationship between Galois connections, closure operators, and orders
of closed sets [1, 2].

Starting from a binary relation between a set of objects and a set of attributes, formal
concepts are built as maximal sets of objects in relation with maximal sets of attributes,
by means of derivation operators forming a Galois connection whose composition is a
closure operator [3]. Concepts form a partially ordered set, called concept lattice, which
represents the initial data. This lattice has proved to be useful in many fields, e.g. artificial
intelligence, knowledge management, data-mining, machine learning, etc.

∗Corresponding author
Email addresses: christophe.demko@univ-lr.fr (Christophe Demko), karell.bertet@univ-lr.fr

(Karell Bertet), cyril.faucher@univ-lr.fr (Cyril Faucher), jean-francois.viaud@univ-lr.fr
(Jean-François Viaud), skuznetsov@hse.ru (Sergei O. Kuznetsov)

Preprint submitted to Elsevier February 8, 2021

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0304397520304837
Manuscript_0b8d2289e741f1307349edf030a7d73d

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304397520304837
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0304397520304837

Many extensions from the original formalism, which was based on binary data, have been
studied in order to work with non-binary data, such as numbers, intervals, sequences,
trees, and graphs. The formalism of pattern structures [4, 5, 6] extends FCA to deal
with non-binary data provided by space description organised as a semi-lattice in order
to maintain a Galois connection between objects and their descriptions. Therefore, a
pattern lattice represents the data where concepts are composed of objects together with
their shared descriptions.

Logical Concept Analysis [7] is a generalization of FCA in which sets of attributes are
replaced by logical expressions. The power set of attributes mentionned by the Galois
connection is replaced by an arbitrary set of formulas to which are associated a deduction
relation (i.e. subsumption), and conjunctive and disjunctive operations, and therefore
forms a lattice. LCA is the fundamental base of Abstract Conceptual Navigation [8]
whose principle is to navigate in a conceptual space where places are logical concepts
connected by navigation links.

Whether space description in pattern structures or conceptual space in LCA, these
generalized spaces extends FCA to non binary data. However, they must be defined
as a semi-lattice in a preliminary step, independently of the data, often with a large
number of generated concepts and unreasonably large lattices that are uneasy to interpret.
Pattern lattices are huge, often untractable [?], and the need of approaches to drive
the search towards the most relevant patterns is a current challenge. Moreover, pattern
structures do not allow an easy management of heterogeneous datasets where several
kinds of characteristics describe data.

In this paper, we present the NextPriorityConcept algorithm that computes a concept
lattice from heterogeneous data, where:

• Patterns are locally selected and discovered:
Indeed, patterns of each concept are locally discovered, and predecessors of a
concept can be filtered according to a specific strategy. So patterns computed by
our algorithm are more adapted to the data, and lattices are smaller.

• Pattern mining for heterogeneous and complex data:
These patterns are formalized by predicates whatever the description of data,
then we can merge patterns issued from distinct space descriptions, and manage
heterogeneous data in a generic and agnostic way.

2. Preliminaries

2.1. Formal Concept Analysis

Let 〈G,M, I〉 be a formal context where G is a non-empty set of objects,M is a non-empty
set of attributes and I ⊆ G×M is a binary relation between the set of objects and the set
of attributes. Let (2G,⊆) −−−→←−−−α

β
(2M ,⊆) be the corresponding Galois connection where:

• α : 2G → 2M is an application which associates a subset B ⊆ M to every subset
A ⊆ G such that α(A) = {b : b ∈M ∧ ∀a ∈ A, aIb};

2

• β : 2M → 2G is an application which associates a subset A ⊆ G to every subset
B ⊆M such that β(B) = {a : a ∈ G ∧ ∀b ∈ B, aIb}.

A concept is a pair (A,B) such that A ⊆ G, B ⊆M , B = α(A) and A = β(B). The set
A is called the extent, whereas B is called the intent of the concept (A,B). There is a
natural hierarchical ordering relation between the concepts of a given context which is
called the subconcept-superconcept relation:

(A1, B1) ≤ (A2, B2) ⇐⇒ A1 ⊆ A2(⇐⇒ B2 ⊆ B1)

The ordered set of all concepts makes a complete lattice called the concept lattice of the
context, that is, every subset of concepts has an infimum (meet) and a supremum (join).

2.2. A basic algorithm

Bordat’s theorem [9] states that there is a bijection between the immediate successors of
a concept (A,B) and the inclusion maximal subsets of the following family defined on
the objects G:

FS(A,B) = {α(a) ∩B : a ∈ G \A} (1)

Bordat’s algorithm [9], that we also find in Linding’s work [10], is a direct implementation
of Bordat’s theorem. This algorithm recursively computes the Hasse diagram of the
concept lattice of a context 〈G,M, (α, β)〉 starting from the bottom concept (β(M),M)
and by computing at each recursive call the immediate successors of a concept (A,B):
the family FS(A,B) is first computed, then the inclusion maximal sets are selected.

FS(A,B) is composed of the intent part of the immediate potential successors of (A,B).
Each intent B′ is obtained by α(a) ∩ B, where a ∈ G \ A is a new potential object
for a successor concept of (A,B). Indeed, as defined by the order relation between
concepts, immediate successors of (A,B) are obtained by an increase of A by at least
one new potential object a, and thus a reduction of B to B′ = α(a) ∩ B, and clearly
B′ ⊂ B. Moreover, B′ must be maximal by inclusion in FS(A,B), otherwise there exists
B′′ ∈ FS(A,B) such that B′ ⊂ B′′ ⊂ B, then B′ is not the intent of an immediate
successor of (A,B). If B′ is inclusion maximal in FS(A,B), then (β(B′), B′) is an
immediate successor of (A,B).

Our NextPriorityconcept algorithm focuses on the objects and the dual version of
Bordat’s theorem. It considers the whole set G of objects at the beginning. Then, for
each concept (A,B), it does not test a new potential object, but a new potential attribute
b ∈ M \ B describing a subset of A. In this way, A decreases while B increases, which
corresponds to the predecessor relation. This process corresponds to the dual version
of Bordat’s theorem stating that the immediate predecessors of (A,B) are the maximal
inclusion subsets of the following family on the attributes M :

FP(A,B) = {β(b) ∩A : b ∈M \B} (2)

3

The NextPriorityConcept-Basic algorithm is a new version of Bordat’s algorithm
where recursion is replaced by a priority queue using the support of concepts. At
each iteration, the concept (A,B) of maximal support is produced, then its immediate
predecessors are computed by Predecessors-Basic ((A,B)) that returns the inclusion
maximal sets of FP(A,B), and then they are stored in the priority queue. Therefore,
concepts are generated level by level, starting from the top concept (G,α(G)), and each
concept is generated before its predecessors.

Data:
• 〈G,M, (α, β)〉 be a formal context

Output:
• concepts (A,B) of the formal context

begin
/* Priority queue for the concepts */
Q← [] ; /* Q is a priority queue using the support of concepts */
Q.push((|G|, G)) ; /* Add the top concept into the priority queue */

while Q not empty do
/* Compute concept */
A← Q.pop() ; /* Get the concept with highest support */
B ← α(A) ; /* Compute the intent of this concept */
produce (A,B) ;

/* Update queue */
L← Predecessors-Basic((A,B),M, (α, β)) ;
forall the A′ ∈ L do

Q.push((|A′|, A′)) ; /* Add concept into the priority queue */
end

end
end

Algorithm 1: NextPriorityConcept-Basic

Data:
• (A,B) a concept
• M the set of attributes
• (α, β) the Galois connection

Result:
• L a set of predecessors of (A,B) represented by their extent

begin
L← ∅;
forall the b ∈M \B do

A′ ← β(b) ∩A ; /* Extent of a new potential predecessor */
L← Inclusion-Max(L,A′) ; /* Add A′ if maximal in L */

end
return L

end
Algorithm 2: Predecessor-Basic

4

Data:
• L a set of potential predecessors represented by their extent
• A a new potential predecessor

Result:
• inclusion maximal subsets of L ∪ {A}

begin
add← true;
forall the A′ ∈ L do

if A ⊂ A′ then
add← false ; /* A is not an immediate predecessor */
break

else if A′ ⊂ A then
L.remove(A′) ; /* Remove A′ as a possible predecessor */

end
end
if add then L.add(A); /* Add A as a predecessor */
return L

end
Algorithm 3: Inclusion-Max

This non-recursive version of Bordat’s algorithm preserves its complexity. Therefore, we
can state the following result:

Property 1. Algorithm NextPriorityConcept-Basic computes the concept lattice
of 〈G,M, (α, β)〉 in O(|G||M |2 · |B|) time.

We will introduce our NextPriorityConcept algorithm in two steps:

In Section 3, NextPriorityConcept-Basic algorithm is first modified in order to
introduce the possibility to filter the new attributes considered during the immediate
predecessor process according to a strategy σ of exploration.

In Section 4, the final version of NextPriorityConcept, inspired by pattern structures,
extends the computation of concepts to heterogeneous dataset, where attributes P are
predicates deduced from each characteristics of data according to a specific description.

3. NextPriorityConcept: filtering of concepts according to a strategy

3.1. Extension of the algorithm with strategies

For real data lattices are often too large, which hinders their ability to provide readability
and explanation of the data. In this section, we extend the basic NextPriorityConcept-
Basic algorithm to select only some predecessors at each iteration. Rather than consider-
ing all the attributes of M \B to calculate the potential predecessor of a concept (A,B),
we apply a filter on these candidate attributes. For example, we can select attributes of
maximal support, or according to class information as explained later.

More formally, a strategy is an input application σ : 2G → 2M which associates a subset
S ⊆M of selected attributes to every subset A ⊆ G. Many strategies are possible. Let

5

us introduce as examples the maximal support strategy σmax and the entropy strategy
σentropy:

• The maximal support strategy relies on the support of attributes:

σmax(A) = {b ∈M \ α(A) : |β(α(A) ∪ {b})| maximal}

• The entropy strategy is a supervised strategy where objects have a class attribute:

σentropy(A) = {b ∈M \ α(A) : Hclass(β(α(A) ∪ {b})) minimal}

We introduce a new set P of selected attributes according to the strategy, and to avoid
confusion, we will denote (A,D) a concept defined on G× P , and IP the corresponding
relation between G and P . An attribute p =

∧
(D ∪ {b}) is added in P when b ∈ M is

selected by the strategy σ, i.e. when b ∈ σ(A). Then b is in relation in the final context
only with some objects in A, meaning “b only for the objects sharing D”, denoted b|D.
We can observe that the same attribute b ∈M can be selected several times with distinct
meanings, b|D and b|D′ are not the same when D 6= D′ and produce distinct attributes
in P . Therefore, P is not included in M .

To ensure that meets are correctly generated, we introduce a constraints propagation
mechanism C that associates a set of attributes C[A] to process with each concept (A,D).
More formaly, this propagation mechanism is an application C defined for the intent of
any concept (A,D) to 2P by C[A] = Cresidual ∪ Ccross where

• Cresidual is the set of residual constraints issued from the successor concept (A′, D′)
that generated (A,D) :

Cresidual = C[A′]\D

• Ccross is the set of cross constraints issued from the others predecessors (Ai, Di) of
(A,D):

Ccross = (
⋃
i

Ai ∩ σ(A′))\D

• and C[G] = ∅

The Predecessors-Strategy algorithm is a modified version of Predecessors-Basic
to compute predecessors of a concept (A,D), where we only consider the attributes σ(A)
given by the strategy, instead of the whole set M \D of attributes. To ensure that meets
will be computed, we also consider attributes issued from neigbor concepts through the
constraint propagation mechanism C[A].

The NextPriorityConcept-Strategy algorithm considers a formal context
〈G,M, (α, β)〉 and a strategy σ as input, and computes the concept lattice of 〈G,P, IP 〉
according to the input strategy in the same way of the NextPriorityConcept-Basic
algorithm, with the additional control of the constraint propagation.

Inclusion-Max is similar, with a minimal test on the subset of objects A′, but the list
L is composed of pairs (A′, d) instead of subsets A′.

6

3.2. Proof and complexity analysis

3.2.1. Proof of the algorithm

Theorem 1. The NextPriorityConcept-Strategy algorithm computes all the con-
cepts of 〈G,P, (αP , βP)〉, with a strategy σ as input.

Consider (Ai, Di) the concept generated at each iteration i of the main loop. To prove
the theorem, we have to prove the two following lemmas:

Lemma 1. Let (Ai, Di) be a concept generated at iteration i, then (Ai, Di) is a concept
of 〈G,P, (αP , βP)〉

Proof

The priority queue Q is initialized with (|G|, (G,α ◦ β(∅))), and (G,α ◦ β(∅)) = (A0, D0)
corresponds to the top concept on P , i.e. the concept of greatest support.

Let us introduce Pi the set of selected attributes P at each iteration i. Since P is updated
with new selected attributes at each iteration i, we have P0 ⊆ P1 ⊆ . . . ⊆ Pi . . . ⊆ P with
P0 being initialized with D0 = α ◦ β(∅).

Let (Ai, Di) be the concept generated at iteration i. Let us prove that (Ai, Di) is a
concept of the generated context 〈G,P, IP 〉.

Clearly Di ⊆ Pi and, since (Ai × Di) is added in IP at iteration i, then (Ai, Di) is a
concept of the context 〈G,Pi, IP 〉. Therefore we have to prove that (Ai, Di) is also a
concept of 〈G,P, IP 〉.

If (Ai, Di) is not a concept of 〈G,P, IP 〉, then there exists a selector p ∈ P such that
p ∈ α(Ai) and p 6∈ Di, thus p 6∈ Pi. From p ∈ α(Ai) we have Ai ⊆ β(p). Let the
iteration j that adds p in P , and let (Aj , Dj) the concept generated at iteration j. Then
p ∈ Dj ⊆ Pj and (Aj ×Dj) is added in IP , thus Aj = β(p). From p 6∈ Pi and p ∈ Pj , we
deduce j > i. From Ai ⊆ β(p) and Aj = β(p), we deduce Ai ⊂ Aj and j < i since concept
are generated according to the priority queue using the support. Thus a contradiction
and (Ai, Di) is a concept of 〈G,P, IP 〉.

�

Lemma 2. Let (A,D) be a concept of 〈G,P, (αP , βP)〉, then there exists an iteration i
such that (A,D) = (Ai, Di).

Proof

Let (A,D) be a concept of 〈G,P, IP 〉. Then (A,D) is the meet of {(β(p), α ◦ β(p))p∈D}.
Let us prove that this meet is generated by the algorithm.

In the case where |D| = 0, then (A,D) is the top concept generated at the begining of
the algorithm. In the case where |D| = 1, then (A,D) = (β(p), α ◦ β(p)) generated by
the iteration i that adds p in P .

In the case where |D| > 1, let p 6= p′ ∈ D such that i < j, where i is the iteration that
adds p in P , and j is the iteration that adds p′ in P .

7

Let (Ai, Di) be the concept generated at iteration i and (Aj , Dj) be the concept generated
at iteration j. Then (Ai, Di) = (β(p), α ◦ β(p)) and (Aj , Dj) = (β(p′), α ◦ β(p′)).

Let us prove that the meet (Ai, Di) ∧ (Aj , Dj) is generated. We have two cases:

• If Di ⊂ Dj then (Ai, Di) ≤ (Aj , Dj) and (Aj , Dj) is equal to (Ai, Di) ∧ (Aj , Dj).

• If Di 6⊂ Dj then the iteration i adds p as constraint to all other concepts, thus p
belongs to the set of constraints of Aj , and is considered is the first loop of the
Predecessors-Strategy algorithm to generate a potential immediate predecessor
S = (β(Dj ∪ {p}), α ◦ β(Dj ∪ {p})) of (Aj , Dj). We have two cases again.

– In the case where S is inclusion minimal among all the potential immediate
predecessors of (Aj , Dj), then S is generated as immediate predecessor and
corresponds to the meet (Ai, Di) ∧ (Aj , Dj).

– In the case where S is not inclusion minimal, then p belongs to the set of
constraints of the generated immediate predecessors of (Aj , Dj), and the
meet (Ai, Di) ∧ (Aj , Dj) will be generated as a predecessor of an immediate
predecessor of (Aj , Dj).

Therefore, the meet (Ai, Di)∧ (Aj , Dj) is generated thanks to the constraints propagation
mechanism, which completes the proof.

�

Hence, we can state the following result considering the selectors p ∈ σ(A) ∪ C[A]:

Lemma 3. There is a bijection between the immediate predecessors of a concept (A,D)
and the inclusion maximal subsets of the following family defined on the objects G:

FD(A,D) = {{a ∈ A : p(a)} : p ∈ (σ(A) ∪ C[A])} (3)

The context 〈G,P, IP 〉 generated by the strategy uses attributes defined in M . Each
attribute p of the context 〈G,P, IP 〉 is constructed as a conjunction of a non-empty subset
of M . This is obviously not a subcontext of the context 〈G,M, (α, β)〉 but each attribute
of the context 〈G,P, IP 〉 is subsumed by at least an attribute of the context 〈G,M, (α, β)〉.

3.2.2. Run-time analysis

Denote by B the collection of all formal concepts of 〈G,M, (α, β)〉 generated by the
strategy σ, i.e. the concepts of 〈G,P, (αP , βP)〉; and by cσ the cost of the strategy for a
concept.

• the Predecessors-Strategy algorithm computes the predecessors of a concept.
Its run-time complexity is O(|G| |P |2 cσ) where O(|G| |P |2) is the cost of Bordat’s
algorithm [9]. And the descendant constraints are updated in O(|P |2).

• the NextPriorityConcept-Strategy algorithm updates the priority queue in
O(|G| |P |).

8

Therefore we can deduce the run-time complexity of the NextPriorityConcept-
Strategy algorithm: O(|B| |G| |P |2 cσ).

3.2.3. Memory analysis

At each step of the main loop in the NextPriorityConcept-Strategy algorithm, a
set of predecessors is generated. The cardinality of these predecessors cannot exceed |P |.
These predecessors will not be explored until all their predecessors have been examined
(principle of the priority queue using the support of concepts). For each concept in the
priority queue, a set of constraints is maintained whose cardinality cannot exceed |P |.
So the memory complexity of the NextPriorityConcept-Strategy algorithm is in
O(w |P |2) where w is the width of the concept lattice.

3.3. Example

Table 1: Digit context where c stands for composed, e for even, o
for odd, p for prime and s for square

c e o p s
0 X X X
1 X X
2 X X
3 X X
4 X X X
5 X X
6 X X
7 X X
8 X X
9 X X X

Table 2: Execution

Step C Q (A,P) |A|
0 {0123456789:∅} [(10,$0)] (0123456789,∅) 10
1 {04689:eo, 02468:co, 13579:ce} [(5,$1), (5,$2), (5,$3)] (04689,c) 5
2 {02468:co, 13579:ce, 0468:o} [(5,$2), (5,$3), (4,$4)] (02468,e) 5
3 {13579:ce, 0468:o} [(5,$3), (4,$4)] (13579,o) 5
4 {0468:o, 357:e, 9:e} [(4,$4), (3,$5), (1,$7)] (0468,ce) 4
5 {357:e, 9:e, 04:o} [(3,$5), (2,$6), (1,$7)] (357,op) 3
6 {9:e, 04:o, ∅:ceops} [(2,$6), (1,$7), (0,$8)] (04,ces) 2
7 {9:e, ∅:ceops} [(1,$7), (0,$8)] (9,cos) 1
8 {∅:ceops} [(0,$8)] (∅,ceops) 0
9 {} []

9

Table 3: Context of the lattice with the maximal support strategy
where (X) stands for the relations that are not considered

c e o p|o s|ec
0 X X X
1 X (X)
2 X (X)
3 X X
4 X X X
5 X X
6 X X
7 X X
8 X X
9 X X (X)

We consider the formal context digit in Table 1 as the first example. The classical
concept lattice produced without strategy is displayed in Figure 2. The maximal support
strategy σmax leads to the lattice whose Hasse diagram is displayed in Figure 1, where
attributes and objects are indicated in respectively the first and the last concept where
they appears. We also indicate the number (using $) and the support (using #) of each
concept. The trace execution is in Table 2. The resulting context (G,P, IP) displayed in
Table 3 has been constructed using the initial one.

We can observe that this second concept lattice contains only 9 concepts instead of 14.
The concepts for attributes p and s are not generated as immediate predecessors of
the top concept since their support is not maximal. However, p appears in concept $5,
generated as a predecessor of concept $3 equal to ({1, 3, 5, 7, 9}, o), thus introduced only
for the odd digits {1, 3, 5, 7, 9}.

Therefore, p means prime property only for the odd digits, denoted by p|o. In the same
way, s appears in concept $6 as a predecessor of concept $4 equal to ({0, 4, 6, 8}, ec),
meaning square property for the even and composite digits, denoted by p|ec.

As second example, we consider the Lenses dataset from the UCI Machine Learning
Repository1. This dataset is composed of 24 objects/patients described by 4 categorical
attributes:

• age of the patient: young, pre-presbyopic, presbyopic
• spectacle prescription: myope, hypermetrope
• astigmatic: no, yes
• tear production rate: reduced, normal

and classified in 3 classes

• the patient should be fitted with hard contact lenses,
• the patient should be fitted with soft contact lenses,

1https://archive.ics.uci.edu
10

$1: #5

c

$0: #10

$2: #5

e

['2']

$3: #5

o

['1']

$4: #4

['6', '8']

$7: #1

s

['9']

$5: #3

p

['3', '5', '7']

$6: #2

s

['0', '4']

$8: #0

Figure 1: Digit sample with greatest support strategy

11

$1: #5

c

$0: #10

$2: #5

e

$4: #4

s

$3: #5

o

$5: #4

p

$6: #4

['6', '8']
$7: #3

$11: #1

['2']

$9: #2

['1']

$8: #3

['3', '5', '7']

$10: #2

['0', '4']

$12: #1

['9']

$13: #0

Figure 2: Digit sample without strategy

12

• the patient should not be fitted with contact lenses.

We consider the formal context composed of 9 binary attributes, i.e. the modalities of the
4 categorical attributes.

The classical concept lattice contains 109 concepts. With the entropy strategy σentropy
using the class information and by keeping only the two best entropy measures for the
predecessors, we obtain a more compact lattice of 28 concepts displayed in Figure 3.

As long as a concept contains only one class, no new predecessors are generated by the
strategy. Therefore, these concepts and their upper neighbors can be interpreted as a
clustering of the data, each concept (A,D) among these clusters corresponding to a class
c, and meaning that objects having attributes D belong to the class c.

$1: #12

astigmatic == no

$0: #24

$2: #12

tear == normal

$3: #12

tear == reduced

class == no

['2', '6', '10', '14', '18', '22']

$7: #4

age == presbyopic
$4: #6

$5: #6

['0', '4', '8', '12']

$6: #6

astigmatic == yes

$12: #2
$8: #3

prescription == myope

$9: #3

prescription == hypermetrope

class == soft

['5', '13']

$13: #2

$14: #2

age == young

class == hard

$10: #3

prescription == myope

class == hard

['11', '19']

$11: #3

prescription == hypermetrope

$15: #2

prescription == myope

class == no

$16: #2

prescription == hypermetrope

$17: #1

age == young

class == soft

['1']

$18: #1

age == 'pre-presbyopic'

class == soft

['9']

$19: #1

['17']

$20: #1

['21']

$21: #1

['3']

$22: #1

['7']

$23: #1

age == 'pre-presbyopic'

class == no

['15']

$24: #1

age == presbyopic

class == no

['23']

$25: #1

['16']

$26: #1

['20']

$27: #0

Figure 3: Lenses dataset with the entropy strategy

4. NextPriorityConcept: heterogeneous data as input

4.1. NextPriorityConcept algorithm: the final version

In the previous section, the new set P of attributes is introduced to store the selected
attributes from which predecessors of a concept (A,D) are generated. It is easily observed
that it is also possible to introduce new attributes at each iteration without changes. For
example, we can consider σneg(A) = {b,

−
b : b ∈M − α(A)}, a strategy adding negative

attributes as selector.

Our final NextPriorityConcept algorithm exploits this possibility to manage hetero-
geneous data as input. We use predicates describing objects independent of their types.
In order to avoid confusion with classical binary attributes, we will use “characteristic”
instead of “attribute”.

13

More formally, we consider a heterogeneous dataset (G,S) as input where each charac-
teristic s ∈ S can be seen as a mapping s : G→ Rs where Rs is called the domain of s.
Let ps be a predicate for a characteristic s and a ∈ G, we write ps(a) when s(a) verifies
ps.

For example, a numerical characteristic can be described by predicates of the form is
smaller/greater than c where c a numerical value; a characteristic representing a (temporal)
sequence can be described by predicates of the form contains s as (maximal) subsequence
where s is a sequence; and a classical boolean characteristic b corresponds to the predicate
possesses b.

We introduce the notion of description δ to provide predicates describing a set of objects,
and we extend the notion of strategy σ to provide predicates (called selectors) to generate
(select) the predecessors of a concept.

Characteristics of different domains must be processed separately since predicates are
calculated differently according to the domain. However, characteristics of the same
domain can be processed together or separately, and some characteristics may not be
considered, or considered several times.
Therefore, characteristics are given by a family S = (Si)i≤d, where each Si contains
characteristics of the same domain.

For example, for the well-known Iris database2 composed of class information and four nu-
merical characteristics S = {sepal-length, sepal-width, petal-length, petal-width},
we can consider the petal characteristics together, and the sepal characteristics together
(S1 = {petal-length, petal-width} and S2 = {sepal-length, setal-width}). We
can also only consider the petal characteristics, and separately (S1 = {petal-length}
and S2 = {petal-width}).

Predicates are provided according to a given Si, both to describe a set of objects, but
also to compute the predecessors of a concept:

A description δi is an application δi : 2G → 2P which defines a set of predicates δi(A)
describing the characteristics of Si for any subset A of G.

A strategy σi is an application σi : 2G → 2P which defines a set of predicates σi(A)
(called selectors) for characteristics of Si from which the predecessors of a concept
(A,D) are generated.

Therefore, the strategy σ(A) and the description δ(A) of a subset A of objects are defined
from 2G to 2P by:

δ(A) =
⋃
Si

δi(A)

σ(A) =
⋃
Si

σi(A)

Let us give some examples of strategies and descriptions for a set A ⊆ G of objects:

2https://archive.ics.uci.edu

14

• For a numerical attribute Si = {s}:
– δi(A) = {is greater than mina∈A s(a), is smaller than maxa∈A s(a)}
– σi(A) = {is greater than q1, is smaller than q3} where q1 and q3 are respec-

tively the first and the third quantile of the values (s(a))a∈A.
• For a sequential attribute Si = {s} [11]:

– δi(A) = { contains X as subsequences} where X is the set of longest most
common subsequences of {s(a)}a∈A.

– σi(A) = { contains X ′as subsequences} where sequences of X ′ are obtained by
an augmentation process of the longest most common subsequences of δi(A),
and thus a reduction of the sequences A′ containing these subsequences.

NextPriorityConcept and Predecessors-Description algorithms are very similar
to the previous versions. NextPriorityConcept algorithm considers as input

• a heterogeneous dataset (G,S)
• (Si)i≤d a family of S
• δ a description
• σ a strategy

This algorithm computes the formal context 〈G,P, IP 〉 and its concepts, where P is the set
of predicates describing the characteristics, IP = {(a, p) : p(a)} is the relation between
objects and predicates, and (αP , βP) is the associated Galois connection.

Predecessors-Description is a modified version of Predecessors-Strategy to
compute predecessors of a concept (A,D), where we consider σ(A) and δ(A) given as
input.

4.2. Discussions

4.2.1. Comparison with pattern structures

The predicates in the final set P are those issued from the descriptions since the predicates
generated by the strategy are only used to generate predecessors. Our NextPriority-
Concept algorithm can be run on a pattern structure over each domain of characteristics
Si.

Formally, a pattern structure [4] is a triple (G, (D,u), δ) where G is a set of objects, (D,u)
is a meet semi-lattice of potential objects descriptions, and δ : G→ D associates to each
object its description. Elements of D are ordered by the subsumption relation v.

Let (2G,⊆) −−−−→←−−−−
αD

βD (D,u) be the corresponding Galois connection where:

• αD : 2G → D is defined for A ⊆ G by αD(A) = ug∈Aδ(g).
• βD : D → 2G is defined, for d ∈ D by βD(d) = {g ∈ G : d v δD(d)}.

Pattern concepts are pairs (A, d), A ⊆ G, d ∈ D such that αD(A) = d and A = βD(d). d
is a pattern intent, and is the common description of all objects in A. When partially
ordered by (A1, d1) ≤ (A2, d2) ⇐⇒ A1 ⊆ A2(⇐⇒ d2 v d1), the set of all pattern
concepts forms a lattice called the pattern lattice.

15

Theorem 2. If each description δi verifies δi(A) v δi(A′) for A′ ⊆ A, then NextPri-
orityConcept algorithm computes the concept lattice of 〈G,P, (αP , βP)〉 with
O(|B| |G| |P |2 (cσ + cδ)) run-time (where B is the number of concepts, and cσ and cδ
are the costs of the strategy and the description depending on the algorithms chosen to
describe the data and to select the predecessors), and using O(w |P |2) space memory
(where w is the width of the concept lattice).

Proof

We have an implicit description space Di by δi for each subset Si of characteristics,
where the description δi(A) of a set A ⊆ G is a direct translation by predicates of its
description in Di. A nice result in pattern structure establishes that there is a Galois
connection between G and Di if and only if (Di,u) is a complete meet semi-lattice.
Therefore, in order to maintain the final Galois connection (αP , βP) between objects
and predicates, each description δi(A) must verify δi(A) v δi(A′) for A′ ⊆ A since
δi(A) v δi(A′) ⇐⇒ δi(A) u δi(A′) = A.

Therefore, since NextPriorityConcept algorithm is a direct extension of
NextPriorityConcept-Strategy algorithm to manage the set P of predi-
cates issued from descriptions δi, since the Galois connection is maintained between
G and P , and since NextPriorityConcept-Strategy algorithm computes all the
concepts of 〈G,P, (αP , βP)〉, we can deduce that NextPriorityConcept algorithm
computes all the concepts of 〈G,P, (αP , βP)〉 with the same complexity.

�

Corollary 1. If each description δi verifies δi(A) v δi(A′) for A′ ⊆ A, then

(2G,⊆) −−−−→←−−−−
αP

βP (2P ,v) is a Galois connection

and αP ◦ βP is a closure operator on P .

Proof This corollary is a direct consequence of Theorem 2. Since NextPriority-
Concept algorithm computes the concept lattice of 〈G,P, (αP , βP)〉, then (αP , βP)
is a Galois connexion between 2G and 2P . Then, because of this Galois connexion,
the composition αP ◦ βP is a closure operator. Moreover, we can observe that αP
corresponds to the description δ that associates a set of predicates to any subset A ⊆ G. �

While patterns are globally computed in a preprocessing step using pattern structures,
our NextPriorityConcept algorithm is a pattern discovery approach where predicates
are discovered “on the fly”, in a local way for each concept. This is made possible
by the use of the priority queue (to ensure that each concept is generated before its
predecessors) and the propagation of constraints (to ensure that meet will be computed).
Therefore, predicates are well-suited to the data, and lattices are often smaller, with more
relevant concepts. Moreover, the use of predicates mixed with specialized strategies and
descriptions on each domain of characteristics allows mining of complex and heterogeneous
data.

16

4.2.2. Processing of group of characteristics

When some characteristics are defined on the same domain, the family (Si)i≤d offers
the possibility to process them separately or together. An immediate way to process
with several characteristics together would be to merge the predicates obtained in the
individual case, both for the descriptions and for the strategies. But it is possible to
obtain more relevant predicates by a specific process of a group of characteristics.

For example, for a group of k numerical characteristics s1, . . . sk, we can consider the
k-dimensional points {(sj(a))j≤k : a ∈ A} for a set A of objects, and their convex hull
[12]. The description δi(A) is then composed of predicates describing the borders of the
convex hull, and the strategy σi(A) is a way to cut the hull. For points in two dimensions,
the convex hull is a polygon, and borders and cuts are lines. Clearly, for two sets A and
A′ of objects such that A′ ⊆ A, the convex hull of A′ is included into the convex hull of
A, and the intersection of two convex hulls is a convex hull. Therefore δi(A) v δi(A′)

For points in two and three dimensions, output-sensitive algorithms are known to compute
the convex hull in time O(n logn), where n is the number of points. For dimensions d
higher than 3, the time for computing the convex hull is O(nbd/2c) [13]. This process
therefore impacts on the costs cσ and cδ.

Now consider a group of k boolean characteristics Si = {x1, . . . , xk}. The classical
FCA approach describes a set of objects A by the set of attributes B = {xj : a ∈
A and xj(a) = 1} and the strategy of generation of immediate predecessors considers the
set of all other attributes {x ∈ Si \B} as selectors. These two sets described by predicates
of the form possesses attribute x would respectively correspond to δi(A) and σi(A).

The use of predicates, and especially the possibility of introducing negative attributes,
allows us to consider other descriptions of A. For example, we can consider a description
δi(A) by predicates for the disjunction of clauses:

∨
a∈A

∧
j≤k

{
xj if xj(a) = 1
xj if xj(a) = 0

For a finer and minimal description, we can also consider the minimization of this
boolean formulae using the well-known Quine-McCluskey algorithm (or the method of
prime implicants), with a time complexity in O(3n logn) [14] where n is the number of
attributes.

4.2.3. About strategies

A strategy proposes a way to cut the description δi(A) by selectors from which predecessors
of a concept (A,P) are generated. These selected predicates are only used in this way at
each step of the algorithm, but are not kept in the final set P of predicates, and several
strategies are possible to generate predecessors of a concept (A,P).

Therefore, our algorithm can be extended to improve the strategy management:

17

Meta-strategy: The strategy σ is defined as the union of the strategies (σi)i≤d for each
part Si of attributes. It is possible to introduce a filter (or meta-strategy) on these
selectors, as those introduced in Section 3:

• The maximal support meta-strategy relies on the support:

σmax(A) = {p ∈
⋃
Si

δi(A) : |π(p)| maximal}

• The entropy meta-strategy is a supervised strategy where objects have a class
attribute:

σentropy(A) = {p ∈
⋃
Si

δi(A) : Hclass(π(p)) minimal}

Interactivity: Several strategies are possible to generate predecessors of a concept, going
from the naive strategy σinaive that generates all the possible predecessors, to the
silly strategy σisilly = ∅ that generates no predecessors. Therefore we can extend
our algorithm in an interactive way, where the user could choose or test several
strategies for each concept in a user driven pattern discovery approach.

In classical FCA approach, the naive strategy considers all the possible attributes of
M \B for a concept (A,B), and the corresponding lattice is often too large. The silly
strategy allows one to introduce some attributes in concepts, but without considering
them in the predecessor generation. This approach is interesting, e.g., for class
attributes. Every possible strategy is between σinaive and σisilly when considering
the set of generated predecessors, and it would be interesting to investigate the
whole set of possible strategies.
A strategy close to σinaive increases the number of concepts, while a strategy close
to σisilly decreases the number of concepts.

4.2.4. Examples

4.2.4.1. Iris dataset with heterogeneous descriptions. Consider the well-known Iris
dataset from the UCI Machine Learning Repository3, composed of 150 objects described by
4 numerical characteristics sepal-length, sepal-width, petal-length, petal-width
and classified in 3 classes Setosa, Versicolor, Virginica.

In this example, we consider the two petal characteristics separately, and the class
characteristic, thus a combination of two numerical characteristics with a categorical one.
For each petal characteristics, we use a classical description by the two predicates the
values are greater than the min and the values are smaller than the max. For the class
characteristic, we use the predicate belongs to class.

3https://archive.ics.uci.edu

18

$1: #125

'petal length'<=5.5

'petal width'<=2.4

$0: #150

'petal length'>=1.0
'petal length'<=6.9
'petal width'>=0.1
'petal width'<=2.5
class in {'Iris-setosa', 'Iris-virginica', 'Iris-versicolor'}

$4: #102

'petal width'>=0.5

'petal length'>=1.6

$2: #121

'petal width'<=1.9

'petal length'<=6.3

$5: #100

class in {'Iris-setosa', 'Iris-virginica'}

$9: #75 $8: #77$3: #114 $12: #71 $11: #73

$6: #100

class in {'Iris-setosa', 'Iris-versicolor'}

'petal length'<=5.1
'petal width'<=1.8

$15: #64 $14: #66

$7: #100

'petal length'>=3.0
'petal width'>=1.0
class in {'Iris-virginica', 'Iris-versicolor'}

$17: #52

$19: #50

'petal length'<=1.9
'petal width'<=0.6
class in {'Iris-setosa'}

['0', '1', '2', '3', '4', '5', ...]

$18: #52

$20: #50

'petal length'>=4.5
'petal width'>=1.4
class in {'Iris-virginica'}

['100', '102', '104', '105', '109', '117',
 ...]

$10: #75 $13: #71$22: #27

$23: #25

'petal width'>=1.5

['110', '112', '113', '114', '115', '121',
 ...]

$16: #64

$24: #23

$25: #21

['103', '107', '108', '125', '129', '130',
 ...]

$26: #16

$21: #50

class in {'Iris-versicolor'}

['50', '51', '52', '53', '54', '55', ...]

$27: #14

['101', '106', '111', '116', '119', '123',
 ...]

$28: #2

'petal length'<=1.7

['23', '43']

$29: #0

'petal length'>=nan
'petal length'<=nan
'petal width'>=nan
'petal width'<=nan
class in {}

Figure 4: Iris dataset with a minimum support (100) strategy using petal lengh, petal width and
class

19

The strategy generates the two selectors is the value greater than the mean minus the
standard deviation? and is the value smaller than the mean plus the standard deviation?,
and is combined with a meta-strategy limiting new predecessors to those whose support
is greater than 100.

We obtain the concept lattice displayed in Figure 4 composed of 30 concepts:

• concept $19 corresponds to objects whose class is Setosa
• concept $20 corresponds to objects whose class is Virginica
• concept $21 corresponds to objects whose class is Versicolor

4.2.4.2. Iris dataset with the entropy strategy. In the second example, we consider
the Iris dataset and the four petal and sepal characteristics separately. We use the
following entropy strategy which allows one to consider the entropy of a predecessor A′ of
A, but also the entropy of the remaining set A \A′ :

H = θ(HA′) + (1− θ)HA−A′

The more the value of θ increases, the more the number of predessors of A decreases.

By keeping only the predecessors with the best entropy, we obtain the concept lattice
displayed in Figure 5 (with θ = 1/2) composed of 13 concepts. The Setosa iris are
quickly separated according to their two petal characteristics (concept $3). Indeed, we
can observe on the scatterplot in Figure 6 that this class is clearly separated from the
two others. We obtain 4 concepts for classes virginica and versicolor:

• concept $10 and $11 correspond to objects whose class is Virginica, with only the
two petal characteristics used in concept $10, while the sepal-length characteristic
is introduced in concept $11.

• concept $5 and $9 correspond to objects whose class is Versicolor,

Finally, we have varied the number k (Figure 7) of best entropy measures kept from 1 to
10 and computed:

• the number of concepts generated;
• the number of meet-irreducible;
• the number of join-irreducible.

Note that the total number of concepts generated would have been equal to 6516292
(Figure 8) if the naive strategy had been chosen (equivalent to keeping all predecessors).

4.2.4.3. Numbers [36, 48, 56, 64, 84] and all their possible GCD and LCM as descriptions.
In this example, we consider the numbers [36, 48, 56, 64, 84] and the greatest common divi-
sor (GCD) and least common multiple (LCM) of all their possible subsets as descriptions.
The strategy consists in adding a new is divisor of or is multiple of predicate using a
combination of the prime numbers of the set of objects present in the concept.

4https://commons.wikimedia.org/wiki/File:Iris_dataset_scatterplot.svg
20

$1: #100

'petal width'>=1.0
'petal length'>=3.0
class in {'Iris-virginica', 'Iris-versicolor'}

'sepal width'<=3.8
'sepal length'>=4.9

['70', '100', '101', '102', '103', '104',
 ...]

$0: #150

'sepal width'>=2.0
'sepal width'<=4.4
'sepal length'>=4.3
'sepal length'<=7.9
'petal width'>=0.1
'petal width'<=2.5
'petal length'>=1.0
'petal length'<=6.9
class in {'Iris-setosa', 'Iris-virginica', 'Iris-versicolor'}

$3: #50

'petal width'<=0.6
'petal length'<=1.9
class in {'Iris-setosa'}

'sepal width'>=2.3
'sepal length'<=5.8

['0', '1', '2', '3', '4', '5', ...]

$2: #54

'petal width'<=1.7

'sepal width'<=3.4
'sepal length'<=7.2
'petal length'<=5.8

$6: #6

'petal length'>=5.0

'sepal width'>=2.2
'sepal width'<=3.0
'sepal length'>=6.0
'petal width'>=1.4

$4: #48

'petal length'<=4.9

'sepal length'<=7.0

$12: #0

'sepal width'>=nan
'sepal width'<=nan
'sepal length'>=nan
'sepal length'<=nan
'petal width'>=nan
'petal width'<=nan
'petal length'>=nan
'petal length'<=nan
class in {}

$10: #1

'petal width'>=1.7
class in {'Iris-virginica'}

'sepal width'>=2.5
'sepal width'<=2.5
'sepal length'<=4.9
'petal length'>=4.5
'petal length'<=4.5

['106']

$5: #47

'petal width'<=1.6
class in {'Iris-versicolor'}

['50', '51', '52', '53', '54', '55', ...]

$8: #3

'petal width'<=1.5

'sepal width'<=2.8
'sepal length'<=6.3
'petal length'<=5.6
class in {'Iris-virginica'}

['119', '133', '134']

$11: #1

'sepal length'>=7.2
'petal length'>=5.8
class in {'Iris-virginica'}

'sepal width'>=3.0
'petal width'<=1.6

['129']

$9: #2

'sepal length'<=6.7
'petal length'<=5.1
class in {'Iris-versicolor'}

['77', '83']

$7: #3

'petal width'>=1.6

'sepal width'>=2.7

Figure 5: Iris dataset with the entropy strategy
21

Figure 6: Iris dataset4

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 2 4 6 8 10 12

k

Concepts
Meet irreducible

Join irreducible

Figure 7: Analysis of the influence of the number of best entropy measures kept for the Iris dataset

22

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 20 40 60 80 100 120 140 160

Support

Iris dataset

Number of concepts per support

Figure 8: Number of concept per support for the Iris dataset

The concept lattice, displayed in Figure 9, is composed of 21 concepts. The last concept
which is the absurd one (the extent is an empty set) is described by 2 predicates whose
conjunction is always false.

4.2.4.4. Digit dataset with minimal logical formula as descriptions. As last example, we
consider the digit described by their properties composed, even, odd, prime and square
given in Table 1.

These 5 characteristics are considered together, and we compute their minimal boolean
formulae as description using the Quine-McCluskey algorithm [14]. The strategy consists
in trying to add an attribute or its negation at each step.

The concept lattice is displayed in Figure 10. We can observe that the maximum number
of predecessors cannot exceed 5 since the predecessors are maximum per inclusion.

5. Conclusion

We have described our NextPriorityConcept algorithm for complex and heterogenous
mining using a pattern discovery approach.

More precisely, our algorithm generates formal concepts using the dual version of Bordat’s
theorem for the generation of immediate predecessors (instead of immediate successors),
and where recursion is replaced by a priority queue using the support of concepts to
make sure that concepts are generated level by level, each concept being generated before
its predecessors. Moreover, a constraint propagation mechanism ensures that meets are
correctly generated.

Heterogeneous data are provided at input with a description mechanism and a predecessor
generation strategy adapted to each kind of data, and generically described by predicates.

23

$1: #4

D(value,1008)

$0: #5

M(value,4)
D(value,4032)

$2: #4

D(value,1344)

$3: #3

D(value,576)

$4: #3

M(value,12)

$5: #3

D(value,504)

$6: #3

D(value,336)

$7: #3

M(value,8)

$8: #2

M(value,16)
D(value,192)

$9: #2

D(value,144)

$10: #2

D(value,252)
$11: #2

$12: #2

M(value,28)
D(value,168)

$13: #2
$14: #2

D(value,448)

$15: #1

M(value,64)
D(value,64)

['64']

$16: #1

M(value,48)
D(value,48)

['48']

$17: #1

M(value,36)
D(value,36)

['36']

$18: #1

M(value,84)
D(value,84)

['84']

$19: #1

M(value,56)
D(value,56)

['56']

$20: #0

M(value,0)
D(value,1)

Figure 9: Numbers dataset with GCD and LCM as descriptions (M(value, x) represents the fact that the
value is a multiple of x and D(value, x) represents the fact that the value is a divisor of x

24

$3: #5

not c

(o or p)
(not e or p)
(o or not s)
(p or s)
(not e or not s)

$0: #10

(not c or not o or s)
(not c or e or s)
(c or o or p)
(not o or p or s)
(c or o or not s)
(e or p or s)
(not p or not s)
(not c or not p)
(c or not e or not s)
(c or p or s)
(not e or not o)
(c or not e or p)
(e or o)

$4: #5

not o
e

(c or not s)
(c or p)

$5: #5

not e
o

(not c or s)
(p or s)

$1: #6

(c or s)
not p

(not o or s)
(e or s)
(c or not e)
(c or o)

$2: #6

not s

(not c or e)
(not c or not o)
(not o or p)
(e or p)
(c or p)

$6: #5

c

$7: #4

s

$8: #4

p
$11: #3 $9: #4 $10: #4 $14: #2 $12: #3

$17: #1

['2']

$13: #3

['3', '5', '7']

$18: #1

['1']

$15: #2

['0', '4']

$16: #2

['6', '8']

$19: #1

['9']

$20: #0

False

Figure 10: Digit dataset with minimal logical formula as description
25

Our algorithm is generic and agnostic since we use predicates whatever the characteristics.
It is implemented with a system of plugins for an easy integration of new characteristics,
new description, new strategies and new meta-strategies. The python3 implementation of
GALACTIC (GAlois LAttices, Concept Theory, Implicational systems and Closures) is
available since January 2020.5

We have already implemented some descriptions and strategies plugins for boolean,
numeric, categorical attributes, strings and sequences. We are currently working on
descriptions and strategies for graphs and triadic data.

We plan to study more precisely the theoretical properties of the concept lattice computed.
Indeed, this lattice seems to be a suborder of the lattice of the initial context, depending
on the strategy. Therefore, it corresponds to a reduction of the concept space, and a better
understanding of its properties would make it possible to envisage relevant reduction
mechanisms of the search space.

Acknowledgements

Thanks are owed to Rokia Missaoui and Gaël Lejeune for their constructive and helpfull
comments. The work of Sergei O. Kuznetsov presented in Sections 1-3 was carried out
at St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of
Science and supported by the Russian Science Foundation grant no. 17-11-01276.

[1] M. Barbut, B. Monjardet, Ordres et classifications : Algèbre et combinatoire, Hachette, Paris, 1970,
2 tomes.

[2] B. Ganter, R. Wille, Formal Concept Analysis, Mathematical foundations, Springer Verlag, Berlin,
1999.

[3] K. Bertet, Ch. Demko, J.-F. Viaud, C. Guérin, Lattices, closure systems and implication bases: A
survey of structural aspects and algorithms, Theoretical Computer Science 743 (2018) 93–109.

[4] B. Ganter, S. O. Kuznetsov, Pattern structures and their projections, in: LNCS of International
Conference on Conceptual Structures (ICCS’01), 2001, pp. 129–142.

[5] M. Kaytoue, V. Codocedo, A. Buzmakov, J. Baixeries, S. O. Kuznetsov, A. Napoli, Pattern structures
and concept lattices for data mining and knowledge processing, in: In Proceedings of ECML-PKDDl,
2015, pp. 227–231.

[6] M. Kaytoue, Contributions to pattern discovery, Habilitation, University of Lyon, France (february
2020).

[7] S. Ferré, O. Ridoux, A logical generalization of formal concept analysis, Vol. 1867, 2000, pp. 371–384.
[8] S. Ferré, Reconciling expressivity and usability in information access - from filesystems to the

semantic web, Habilitation, University of Rennes 1, France (november 2014).
[9] J.-P. Bordat, Calcul pratique du treillis de Galois d’une correspondance, Mathématiques et Sciences

humaines 96 (1986) 31–47.
[10] C. Linding, Fast concept analysis, in: Working with Conceptual Structures-Contributions to ICC,

2002, pp. 235–248.
[11] S. Eddine Boukhetta, Ch. Demko, J. Richard, K. Bertet, Sequence mining using FCA and the

NextPriorityConcept algorithm, in: Concept Lattice and Applications (CLA’20), 2020.
[12] A. Belfodil, S. O. Kuznetsov, C. Robardet, M. Kaytoue, Mining Convex Polygon Patterns with Formal

Concept Analysis, in: C. Sierra (Ed.), The Twenty-Sixth International Joint Conference on Artificial
Intelligence (IJCAI), Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence Main track, Melbourne, Australia, 2017, pp. 1425–1432. doi:10.24963/ijcai.2017/197.
URL https://hal.archives-ouvertes.fr/hal-01573841

5https://galactic.univ-lr.fr
26

[13] B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete and Computational
Geometry 10 (1) (1993) 377–409.

[14] W. V. O. Quine, The problem of simplifying truth functions, The American Mathematical 59 (8)
(1952) 521–531.

27

Data:
• 〈G,M, (α, β)〉 a formal context
• σ a strategy

Output:
• the formal context 〈G,P, IP 〉
• its concepts (A,D)

begin
/* Priority queue for the concepts */
Q← [] ; /* Q is a priority queue using the support of concepts */
Q.push((|G|, (G,α(G)))) ; /* Add the top concept into Q */

/* Data structure for constraints */
C ← [] ; /* C is the descendant constraints map being ∅ by default */

/* Data structures for new attributes */
P ← ∅ ; /* P is the set of selected attributes */
IP ← ∅ ; /* IP is the new binary relation between G and P */

/* Immediate predecessors generation */
while Q not empty do

/* Compute concept */
(A,D)← Q.pop() ; /* Get the concept with highest support */
produce (A,D) ;

LP ← Predecessors-Strategy((A,D), P , IP , C, σ) ;

/* Update queue */
forall the (A′, D′) ∈ LP do

if (A′, D′) 6∈ Q then
Q.push((|A′|, (A′, D′))) ; /* Add new concept into Q */

end
end

delete C[A] ; /* Remove useless data */
end
return 〈G,P, IP 〉

end
Algorithm 4: NextPriorityConcept-Strategy

28

Data:
• (A,D) a concept
• P the set of selected attributes
• IP the new relation
• C the constraints
• σ a strategy

Result:
• LP a set of predecessors

begin
L← ∅;
forall the b ∈ (σ(A) ∪ C[A]) \D do

/* b is a new "potential" attribute for a predecessor */
A′ ← β(b) ∩A ; /* Compute the objects of D ∪ {b} */
/* Add (A′, b) if A′ maximum in L and included in A */
if A′ ⊂ A then L← Inclusion-Max(L,(A′, b));

end
N ← {b : (A′, b) ∈ L} ; /* N is the set of new constraints */
LP ← ∅;
forall the (A′, b′) ∈ L do

/* Update the selected attributes P and the relation IP */
if b′ ∈ σ(A) then

P ← P ∪ {b′} ; /* Update the set of selected attributes */
end
D′ ← α(A′) ∩ P ; /* Compute the extent of A′ */
LP .add((A′, D′)) ; /* (A′, D′) is a new concept */
IP ← IP ∪ (A′ ×D′) ; /* Update the new relation */
/* Compute residual and cross constraints */
C[A′]← C[A′] ∪ C[A] ∪N \D′

end
return LP

end
Algorithm 5: Predecessors-Strategy

29

Data:
• 〈G,S〉 a dataset
• (Si)i≤d a family of S
• δ a description
• σ a strategy

Output:
• the formal context 〈G,P, IP 〉
• its concepts (A,D)

begin
/* Priority queue for the concepts */
Q← [] ; /* Q is a priority queue using the support of concepts */
Q.push((|G|, (G, δ(G))) ; /* Add the top concept into Q */

/* Data structure for constraints */
C ← [] ; /* C is the descendant constraints map being ∅ by default */
/* Data structures for predicates */
P ← ∅ ; /* P is the set of all predicates */
IP ← ∅ ; /* IP is the binary relation between G and P */
/* Immediate predecessors generation */
while Q not empty do

(A,D)← Q.pop() ; /* Get the concept with highest support */
produce (A,D) ;
LP ← Predecessors-Desc((A,D), P , IP , C, σ, δ) ;
/* Update queue */
forall the (A′, D′) ∈ LP do

if (A′, D′) 6∈ Q then
Q.push((|A′|, (A′, D′))) ; /* Add concept into Q */

end
end
delete C[A] ; /* Remove useless data */

end
return 〈G,P, IP 〉

end
Algorithm 6: NextPriorityConcept

30

Data:
• (A,D) a concept
• P the set of predicates
• IP the binary relation between G and P
• C the constraints
• σ a strategy (issued from the σi)
• δ a description (issued from the δi)

Result:
• LP a set of predecessors

begin
L← ∅;
forall the p ∈ (σ(A) ∪ C[A]) \D do

/* p is a new “potential” selector to generate a predecessor */
A′ ← {a ∈ A : p(a)} ; /* A′ are the objects verifying D ∪ {p} */
/* Add (A′, p) if A′ maximum in L and included in A */
if A′ ⊂ A then L← Inclusion-Max(L,(A′, p));

end
N ← {p : (A′, p) ∈ L} ; /* N is the set of new constraints */
LP ← ∅;
forall the (A′, p′) ∈ L do

/* Update the selected attributes P and the relation IP */
if p′ ∈ σ(A) then

P ← P ∪ {p′} ; /* Update the set of selected predicates */
end
D′ ← δ(A′) ; /* D′ are the new predicates describing A′ */
LP .add((A′, D′)) ; /* (A′, D′) is a new concept */
IP ← IP ∪ (A′ ×D′) ; /* Update the new relation */
/* Compute cross constraints (X) and propagate constraints */
X ← {p′′ ∈ N : p′′(a) ∀a ∈ A′}
C[A′]← C[A′] ∪ C[A] ∪N \X

end
return LP

end
Algorithm 7: Predecessors-Desc

31

