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In this article, we present a new data type agnostic algorithm calculating a concept lattice from heterogeneous and complex data. Our NextPriorityConcept algorithm is first introduced and proved in the binary case as an extension of Bordat's algorithm with the notion of strategies to select only some predecessors of each concept, avoiding the generation of unreasonably large lattices. The algorithm is then extended to any type of data in a generic way. It is inspired by the pattern structure theory, where data are locally described by predicates independent of their types, allowing the management of heterogeneous data.

Introduction

Formal Concept Analysis (FCA) is a branch of applied lattice theory, which originated from the study of relationship between Galois connections, closure operators, and orders of closed sets [START_REF] Barbut | Ordres et classifications : Algèbre et combinatoire[END_REF][START_REF] Ganter | Formal Concept Analysis[END_REF].

Starting from a binary relation between a set of objects and a set of attributes, formal concepts are built as maximal sets of objects in relation with maximal sets of attributes, by means of derivation operators forming a Galois connection whose composition is a closure operator [START_REF] Bertet | Lattices, closure systems and implication bases: A survey of structural aspects and algorithms[END_REF]. Concepts form a partially ordered set, called concept lattice, which represents the initial data. This lattice has proved to be useful in many fields, e.g. artificial intelligence, knowledge management, data-mining, machine learning, etc.

Many extensions from the original formalism, which was based on binary data, have been studied in order to work with non-binary data, such as numbers, intervals, sequences, trees, and graphs. The formalism of pattern structures [START_REF] Ganter | Pattern structures and their projections[END_REF][START_REF] Kaytoue | Pattern structures and concept lattices for data mining and knowledge processing[END_REF][START_REF] Kaytoue | Contributions to pattern discovery[END_REF] extends FCA to deal with non-binary data provided by space description organised as a semi-lattice in order to maintain a Galois connection between objects and their descriptions. Therefore, a pattern lattice represents the data where concepts are composed of objects together with their shared descriptions.

Logical Concept Analysis [START_REF] Ferré | A logical generalization of formal concept analysis[END_REF] is a generalization of FCA in which sets of attributes are replaced by logical expressions. The power set of attributes mentionned by the Galois connection is replaced by an arbitrary set of formulas to which are associated a deduction relation (i.e. subsumption), and conjunctive and disjunctive operations, and therefore forms a lattice. LCA is the fundamental base of Abstract Conceptual Navigation [START_REF] Ferré | Reconciling expressivity and usability in information access -from filesystems to the semantic web[END_REF] whose principle is to navigate in a conceptual space where places are logical concepts connected by navigation links.

Whether space description in pattern structures or conceptual space in LCA, these generalized spaces extends FCA to non binary data. However, they must be defined as a semi-lattice in a preliminary step, independently of the data, often with a large number of generated concepts and unreasonably large lattices that are uneasy to interpret. Pattern lattices are huge, often untractable [? ], and the need of approaches to drive the search towards the most relevant patterns is a current challenge. Moreover, pattern structures do not allow an easy management of heterogeneous datasets where several kinds of characteristics describe data.

In this paper, we present the NextPriorityConcept algorithm that computes a concept lattice from heterogeneous data, where:

• Patterns are locally selected and discovered: Indeed, patterns of each concept are locally discovered, and predecessors of a concept can be filtered according to a specific strategy. So patterns computed by our algorithm are more adapted to the data, and lattices are smaller. • Pattern mining for heterogeneous and complex data:

These patterns are formalized by predicates whatever the description of data, then we can merge patterns issued from distinct space descriptions, and manage heterogeneous data in a generic and agnostic way.

Preliminaries

Formal Concept Analysis

Let G, M, I be a formal context where G is a non-empty set of objects, M is a non-empty set of attributes and I ⊆ G × M is a binary relation between the set of objects and the set of attributes. Let (2 G , ⊆) ---→ ← --α β

(2 M , ⊆) be the corresponding Galois connection where:

• α : 2 G → 2 M is an application which associates a subset B ⊆ M to every subset A ⊆ G such that α(A) = {b : b ∈ M ∧ ∀a ∈ A, aIb};

• β : 2 M → 2 G is an application which associates a subset A ⊆ G to every subset B ⊆ M such that β(B) = {a : a ∈ G ∧ ∀b ∈ B, aIb}. A concept is a pair (A, B) such that A ⊆ G, B ⊆ M , B = α(A) and A = β(B). The set A is called the extent, whereas B is called the intent of the concept (A, B).
There is a natural hierarchical ordering relation between the concepts of a given context which is called the subconcept-superconcept relation:

(A 1 , B 1 ) ≤ (A 2 , B 2 ) ⇐⇒ A 1 ⊆ A 2 ( ⇐⇒ B 2 ⊆ B 1 )
The ordered set of all concepts makes a complete lattice called the concept lattice of the context, that is, every subset of concepts has an infimum (meet) and a supremum (join).

A basic algorithm

Bordat's theorem [START_REF] Bordat | Calcul pratique du treillis de Galois d'une correspondance[END_REF] states that there is a bijection between the immediate successors of a concept (A, B) and the inclusion maximal subsets of the following family defined on the objects G:

FS (A,B) = {α(a) ∩ B : a ∈ G \ A} (1)
Bordat's algorithm [START_REF] Bordat | Calcul pratique du treillis de Galois d'une correspondance[END_REF], that we also find in Linding's work [START_REF] Linding | Fast concept analysis[END_REF], is a direct implementation of 

FP (A,B) = {β(b) ∩ A : b ∈ M \ B} (2)
The NextPriorityConcept-Basic algorithm is a new version of Bordat's algorithm where recursion is replaced by a priority queue using the support of concepts. At each iteration, the concept (A, B) of maximal support is produced, then its immediate predecessors are computed by Predecessors-Basic ((A, B)) that returns the inclusion maximal sets of FP (A,B) , and then they are stored in the priority queue. Therefore, concepts are generated level by level, starting from the top concept (G, α(G)), and each concept is generated before its predecessors.

Data:

• G, M, (α, β) be a formal context Output:

• concepts ( This non-recursive version of Bordat's algorithm preserves its complexity. Therefore, we can state the following result:

Property 1. Algorithm NextPriorityConcept-Basic computes the concept lattice of G, M, (α, β) in O(|G||M | 2 • |B|) time.
We will introduce our NextPriorityConcept algorithm in two steps:

In Section 3, NextPriorityConcept-Basic algorithm is first modified in order to introduce the possibility to filter the new attributes considered during the immediate predecessor process according to a strategy σ of exploration.

In Section 4, the final version of NextPriorityConcept, inspired by pattern structures, extends the computation of concepts to heterogeneous dataset, where attributes P are predicates deduced from each characteristics of data according to a specific description.

NextPriorityConcept: filtering of concepts according to a strategy

Extension of the algorithm with strategies

For real data lattices are often too large, which hinders their ability to provide readability and explanation of the data. In this section, we extend the basic NextPriorityConcept-Basic algorithm to select only some predecessors at each iteration. Rather than considering all the attributes of M \ B to calculate the potential predecessor of a concept (A, B), we apply a filter on these candidate attributes. For example, we can select attributes of maximal support, or according to class information as explained later.

More formally, a strategy is an input application σ : 2 G → 2 M which associates a subset S ⊆ M of selected attributes to every subset A ⊆ G. Many strategies are possible. Let us introduce as examples the maximal support strategy σ max and the entropy strategy σ entropy :

• The maximal support strategy relies on the support of attributes:

σ max (A) = {b ∈ M \ α(A) : |β(α(A) ∪ {b})| maximal}
• The entropy strategy is a supervised strategy where objects have a class attribute:

σ entropy (A) = {b ∈ M \ α(A) : H class (β(α(A) ∪ {b})) minimal}
We introduce a new set P of selected attributes according to the strategy, and to avoid confusion, we will denote (A, D) a concept defined on G × P , and I P the corresponding relation between G and P . An attribute p = (D ∪ {b}) is added in P when b ∈ M is selected by the strategy σ, i.e. when b ∈ σ(A). Then b is in relation in the final context only with some objects in A, meaning "b only for the objects sharing D", denoted b|D.

We can observe that the same attribute b ∈ M can be selected several times with distinct meanings, b|D and b|D are not the same when D = D and produce distinct attributes in P . Therefore, P is not included in M .

To ensure that meets are correctly generated, we introduce a constraints propagation mechanism C that associates a set of attributes C[A] to process with each concept (A, D). More formaly, this propagation mechanism is an application C defined for the intent of any concept (A, D)

to 2 P by C[A] = C residual ∪ C cross where
• C residual is the set of residual constraints issued from the successor concept (A , D ) that generated (A, D) :

C residual = C[A ]\D
• C cross is the set of cross constraints issued from the others predecessors (A i , D i ) of (A, D):

C cross = ( i A i ∩ σ(A ))\D • and C[G] = ∅
The Predecessors-Strategy algorithm is a modified version of Predecessors-Basic to compute predecessors of a concept (A, D), where we only consider the attributes σ(A) given by the strategy, instead of the whole set M \ D of attributes. To ensure that meets will be computed, we also consider attributes issued from neigbor concepts through the constraint propagation mechanism C[A].

The NextPriorityConcept-Strategy algorithm considers a formal context G, M, (α, β) and a strategy σ as input, and computes the concept lattice of G, P, I P according to the input strategy in the same way of the NextPriorityConcept-Basic algorithm, with the additional control of the constraint propagation.

Inclusion-Max is similar, with a minimal test on the subset of objects A , but the list L is composed of pairs (A , d) instead of subsets A .

Proof and complexity analysis

Proof of the algorithm

Theorem 1. The NextPriorityConcept-Strategy algorithm computes all the concepts of G, P, (α P , β P ) , with a strategy σ as input.

Consider (A i , D i ) the concept generated at each iteration i of the main loop. To prove the theorem, we have to prove the two following lemmas:

Lemma 1. Let (A i , D i ) be a concept generated at iteration i, then (A i , D i ) is a concept of G, P, (α P , β P ) Proof The priority queue Q is initialized with (|G|, (G, α • β(∅))), and (G, α • β(∅)) = (A 0 , D 0 )
corresponds to the top concept on P , i.e. the concept of greatest support.

Let us introduce P i the set of selected attributes P at each iteration i. Since P is updated with new selected attributes at each iteration i, we have

P 0 ⊆ P 1 ⊆ . . . ⊆ P i . . . ⊆ P with P 0 being initialized with D 0 = α • β(∅). Let (A i , D i ) be the concept generated at iteration i. Let us prove that (A i , D i ) is a concept of the generated context G, P, I P . Clearly D i ⊆ P i and, since (A i × D i ) is added in I P at iteration i, then (A i , D i ) is a concept of the context G, P i , I P . Therefore we have to prove that (A i , D i ) is also a concept of G, P, I P . If (A i , D i
) is not a concept of G, P, I P , then there exists a selector p ∈ P such that p ∈ α(A i ) and p ∈ D i , thus p ∈ P i . From p ∈ α(A i ) we have A i ⊆ β(p). Let the iteration j that adds p in P , and let (A j , D j ) the concept generated at iteration j. Then p ∈ D j ⊆ P j and (A j × D j ) is added in I P , thus A j = β(p). From p ∈ P i and p ∈ P j , we deduce j > i. From A i ⊆ β(p) and A j = β(p), we deduce A i ⊂ A j and j < i since concept are generated according to the priority queue using the support. Thus a contradiction and (A i , D i ) is a concept of G, P, I P .

Lemma 2. Let (A, D) be a concept of G, P, (α P , β P ) , then there exists an iteration i such that

(A, D) = (A i , D i ). Proof Let (A, D) be a concept of G, P, I P . Then (A, D) is the meet of {(β(p), α • β(p)) p∈D }.
Let us prove that this meet is generated by the algorithm.

In the case where |D| = 0, then (A, D) is the top concept generated at the begining of the algorithm. In the case where |D| = 1, then (A, D) = (β(p), α • β(p)) generated by the iteration i that adds p in P .

In the case where |D| > 1, let p = p ∈ D such that i < j, where i is the iteration that adds p in P , and j is the iteration that adds p in P .

Let (A i , D i ) be the concept generated at iteration i and (A j , D j ) be the concept generated at iteration j.

Then (A i , D i ) = (β(p), α • β(p)) and (A j , D j ) = (β(p ), α • β(p )).
Let us prove that the meet (A i , D i ) ∧ (A j , D j ) is generated. We have two cases:

• If D i ⊂ D j then (A i , D i ) ≤ (A j , D j ) and (A j , D j ) is equal to (A i , D i ) ∧ (A j , D j ).
• If D i ⊂ D j then the iteration i adds p as constraint to all other concepts, thus p belongs to the set of constraints of A j , and is considered is the first loop of the Predecessors-Strategy algorithm to generate a potential immediate predecessor

S = (β(D j ∪ {p}), α • β(D j ∪ {p})) of (A j , D j ).
We have two cases again.

-In the case where S is inclusion minimal among all the potential immediate predecessors of (A j , D j ), then S is generated as immediate predecessor and corresponds to the meet

(A i , D i ) ∧ (A j , D j ).
-In the case where S is not inclusion minimal, then p belongs to the set of constraints of the generated immediate predecessors of (A j , D j ), and the meet (A i , D i ) ∧ (A j , D j ) will be generated as a predecessor of an immediate predecessor of (A j , D j ).

Therefore, the meet (A i , D i ) ∧ (A j , D j ) is generated thanks to the constraints propagation mechanism, which completes the proof.

Hence, we can state the following result considering the selectors p ∈ σ(A) ∪ C[A]:

Lemma 3. There is a bijection between the immediate predecessors of a concept (A, D) and the inclusion maximal subsets of the following family defined on the objects G:

FD (A,D) = {{a ∈ A : p(a)} : p ∈ (σ(A) ∪ C[A])} (3) 
The context G, P, I P generated by the strategy uses attributes defined in M . Each attribute p of the context G, P, I P is constructed as a conjunction of a non-empty subset of M . This is obviously not a subcontext of the context G, M, (α, β) but each attribute of the context G, P, I P is subsumed by at least an attribute of the context G, M, (α, β) .

Run-time analysis

Denote by B the collection of all formal concepts of G, M, (α, β) generated by the strategy σ, i.e. the concepts of G, P, (α P , β P ) ; and by c σ the cost of the strategy for a concept.

• the Predecessors-Strategy algorithm computes the predecessors of a concept. 

Memory analysis

At each step of the main loop in the NextPriorityConcept-Strategy algorithm, a set of predecessors is generated. The cardinality of these predecessors cannot exceed |P |. These predecessors will not be explored until all their predecessors have been examined (principle of the priority queue using the support of concepts). For each concept in the priority queue, a set of constraints is maintained whose cardinality cannot exceed |P |.

So the memory complexity of the NextPriorityConcept-Strategy algorithm is in

O(w |P | 2 )
where w is the width of the concept lattice. We consider the formal context digit in Table 1 as the first example. The classical concept lattice produced without strategy is displayed in Figure 2. The maximal support strategy σ max leads to the lattice whose Hasse diagram is displayed in Figure 1, where attributes and objects are indicated in respectively the first and the last concept where they appears. We also indicate the number (using $) and the support (using #) of each concept. The trace execution is in Table 2. The resulting context (G, P, I P ) displayed in Table 3 has been constructed using the initial one.

Example

We can observe that this second concept lattice contains only 9 concepts instead of 14.

The concepts for attributes p and s are not generated as immediate predecessors of the top concept since their support is not maximal. However, p appears in concept $5, generated as a predecessor of concept $3 equal to ({1, 3, 5, 7, 9}, o), thus introduced only for the odd digits {1, 3, 5, 7, 9}.

Therefore, p means prime property only for the odd digits, denoted by p|o. In the same way, s appears in concept $6 as a predecessor of concept $4 equal to ({0, 4, 6, 8}, ec), meaning square property for the even and composite digits, denoted by p|ec.

As second example, we consider the Lenses dataset from the UCI Machine Learning Repository 1 . This dataset is composed of 24 objects/patients described by 4 categorical attributes:

• age of the patient: young, pre-presbyopic, presbyopic • spectacle prescription: myope, hypermetrope • astigmatic: no, yes • tear production rate: reduced, normal and classified in 3 classes

• the patient should be fitted with hard contact lenses,

• the patient should be fitted with soft contact lenses, • the patient should not be fitted with contact lenses.

We consider the formal context composed of 9 binary attributes, i.e. the modalities of the 4 categorical attributes.

The classical concept lattice contains 109 concepts. With the entropy strategy σ entropy using the class information and by keeping only the two best entropy measures for the predecessors, we obtain a more compact lattice of 28 concepts displayed in Figure 3.

As long as a concept contains only one class, no new predecessors are generated by the strategy. Therefore, these concepts and their upper neighbors can be interpreted as a clustering of the data, each concept (A, D) among these clusters corresponding to a class c, and meaning that objects having attributes D belong to the class c. 

NextPriorityConcept: heterogeneous data as input

NextPriorityConcept algorithm: the final version

In the previous section, the new set P of attributes is introduced to store the selected attributes from which predecessors of a concept (A, D) are generated. It is easily observed that it is also possible to introduce new attributes at each iteration without changes. For example, we can consider

σ neg (A) = {b, - b : b ∈ M -α(A)
}, a strategy adding negative attributes as selector.

Our final NextPriorityConcept algorithm exploits this possibility to manage heterogeneous data as input. We use predicates describing objects independent of their types. In order to avoid confusion with classical binary attributes, we will use "characteristic" instead of "attribute".

More formally, we consider a heterogeneous dataset (G, S) as input where each characteristic s ∈ S can be seen as a mapping s : G → R s where R s is called the domain of s. Let p s be a predicate for a characteristic s and a ∈ G, we write p s (a) when s(a) verifies p s . For example, a numerical characteristic can be described by predicates of the form is smaller/greater than c where c a numerical value; a characteristic representing a (temporal) sequence can be described by predicates of the form contains s as (maximal) subsequence where s is a sequence; and a classical boolean characteristic b corresponds to the predicate possesses b.

We introduce the notion of description δ to provide predicates describing a set of objects, and we extend the notion of strategy σ to provide predicates (called selectors) to generate (select) the predecessors of a concept.

Characteristics of different domains must be processed separately since predicates are calculated differently according to the domain. However, characteristics of the same domain can be processed together or separately, and some characteristics may not be considered, or considered several times. Therefore, characteristics are given by a family S = (S i ) i≤d , where each S i contains characteristics of the same domain.

For example, for the well-known Iris database2 composed of class information and four numerical characteristics S = {sepal-length, sepal-width, petal-length, petal-width}, we can consider the petal characteristics together, and the sepal characteristics together (S 1 = {petal-length, petal-width} and S 2 = {sepal-length, setal-width}). We can also only consider the petal characteristics, and separately (S 1 = {petal-length} and S 2 = {petal-width}).

Predicates are provided according to a given S i , both to describe a set of objects, but also to compute the predecessors of a concept:

A description δ i is an application δ i : 2 G → 2 P which defines a set of predicates δ i (A) describing the characteristics of S i for any subset A of G.

A strategy σ i is an application σ i : 2 G → 2 P which defines a set of predicates σ i (A) (called selectors) for characteristics of S i from which the predecessors of a concept (A, D) are generated.

Therefore, the strategy σ(A) and the description δ(A) of a subset A of objects are defined from 2 G to 2 P by:

δ(A) = S i δ i (A) σ(A) = S i σ i (A)
Let us give some examples of strategies and descriptions for a set A ⊆ G of objects:

• For a numerical attribute S i = {s}: δ i (A) = {is greater than min a∈A s(a), is smaller than max a∈A s(a)} σ i (A) = {is greater than q 1 , is smaller than q 3 } where q 1 and q 3 are respectively the first and the third quantile of the values (s(a)) a∈A . • For a sequential attribute S i = {s} [START_REF] Boukhetta | Sequence mining using FCA and the NextPriorityConcept algorithm[END_REF]:

δ i (A) = { contains X as subsequences} where X is the set of longest most common subsequences of {s(a)} a∈A . σ i (A) = { contains X as subsequences} where sequences of X are obtained by an augmentation process of the longest most common subsequences of δ i (A), and thus a reduction of the sequences A containing these subsequences.

NextPriorityConcept and Predecessors-Description algorithms are very similar to the previous versions. NextPriorityConcept algorithm considers as input

• a heterogeneous dataset (G, S)

• (S i ) i≤d a family of S • δ a description • σ a strategy
This algorithm computes the formal context G, P, I P and its concepts, where P is the set of predicates describing the characteristics, I P = {(a, p) : p(a)} is the relation between objects and predicates, and (α P , β P ) is the associated Galois connection.

Predecessors-Description is a modified version of Predecessors-Strategy to compute predecessors of a concept (A, D), where we consider σ(A) and δ(A) given as input.

Discussions

Comparison with pattern structures

The predicates in the final set P are those issued from the descriptions since the predicates generated by the strategy are only used to generate predecessors. Our NextPriority-Concept algorithm can be run on a pattern structure over each domain of characteristics S i .

Formally, a pattern structure [START_REF] Ganter | Pattern structures and their projections[END_REF] is a triple (G, (D, ), δ) where G is a set of objects, (D, ) is a meet semi-lattice of potential objects descriptions, and δ : G → D associates to each object its description. Elements of D are ordered by the subsumption relation .

Let (2 G , ⊆) ----→ ← ---- α D β D
(D, ) be the corresponding Galois connection where:

• α D : 2 G → D is defined for A ⊆ G by α D (A) = g∈A δ(g). • β D : D → 2 G is defined, for d ∈ D by β D (d) = {g ∈ G : d δ D (d)}. Pattern concepts are pairs (A, d), A ⊆ G, d ∈ D such that α D (A) = d and A = β D (d).
d is a pattern intent, and is the common description of all objects in A. When partially ordered by

(A 1 , d 1 ) ≤ (A 2 , d 2 ) ⇐⇒ A 1 ⊆ A 2 ( ⇐⇒ d 2 d 1 )
, the set of all pattern concepts forms a lattice called the pattern lattice.

Theorem 2. If each description δ i verifies δ i (A) δ i (A ) for A ⊆ A, then NextPri-orityConcept algorithm computes the concept lattice of G, P, (α P , β P ) with O(|B| |G| |P | 2 (c σ + c δ )) run-time (where B is the number of concepts, and c σ and c δ are the costs of the strategy and the description depending on the algorithms chosen to describe the data and to select the predecessors), and using O(w |P | 2 ) space memory (where w is the width of the concept lattice).

Proof

We have an implicit description space D i by δ i for each subset S i of characteristics, where the description δ i (A) of a set A ⊆ G is a direct translation by predicates of its description in D i . A nice result in pattern structure establishes that there is a Galois connection between G and D i if and only if (D i , ) is a complete meet semi-lattice. Therefore, in order to maintain the final Galois connection (α P , β P ) between objects and predicates, each description δ i (A) must verify δ i (A)

δ i (A ) for A ⊆ A since δ i (A) δ i (A ) ⇐⇒ δ i (A) δ i (A ) = A.
Therefore, since NextPriorityConcept algorithm is a direct extension of NextPriorityConcept-Strategy algorithm to manage the set P of predicates issued from descriptions δ i , since the Galois connection is maintained between G and P , and since NextPriorityConcept-Strategy algorithm computes all the concepts of G, P, (α P , β P ) , we can deduce that NextPriorityConcept algorithm computes all the concepts of G, P, (α P , β P ) with the same complexity.

Corollary 1. If each description δ i verifies δ

i (A) δ i (A ) for A ⊆ A, then (2 G , ⊆) ----→ ← ---- α P β P (2 P ,
) is a Galois connection and α P • β P is a closure operator on P .

Proof This corollary is a direct consequence of Theorem 2. Since NextPriority-Concept algorithm computes the concept lattice of G, P, (α P , β P ) , then (α P , β P ) is a Galois connexion between 2 G and 2 P . Then, because of this Galois connexion, the composition α P • β P is a closure operator. Moreover, we can observe that α P corresponds to the description δ that associates a set of predicates to any subset A ⊆ G.

While patterns are globally computed in a preprocessing step using pattern structures, our NextPriorityConcept algorithm is a pattern discovery approach where predicates are discovered "on the fly", in a local way for each concept. This is made possible by the use of the priority queue (to ensure that each concept is generated before its predecessors) and the propagation of constraints (to ensure that meet will be computed). Therefore, predicates are well-suited to the data, and lattices are often smaller, with more relevant concepts. Moreover, the use of predicates mixed with specialized strategies and descriptions on each domain of characteristics allows mining of complex and heterogeneous data.

Processing of group of characteristics

When some characteristics are defined on the same domain, the family (S i ) i≤d offers the possibility to process them separately or together. An immediate way to process with several characteristics together would be to merge the predicates obtained in the individual case, both for the descriptions and for the strategies. But it is possible to obtain more relevant predicates by a specific process of a group of characteristics.

For example, for a group of k numerical characteristics s 1 , . . . s k , we can consider the k-dimensional points {(s j (a)) j≤k : a ∈ A} for a set A of objects, and their convex hull [START_REF] Belfodil | Mining Convex Polygon Patterns with Formal Concept Analysis[END_REF]. The description δ i (A) is then composed of predicates describing the borders of the convex hull, and the strategy σ i (A) is a way to cut the hull. For points in two dimensions, the convex hull is a polygon, and borders and cuts are lines. Clearly, for two sets A and A of objects such that A ⊆ A, the convex hull of A is included into the convex hull of A, and the intersection of two convex hulls is a convex hull. Therefore δ i (A) δ i (A )

For points in two and three dimensions, output-sensitive algorithms are known to compute the convex hull in time O(n log n), where n is the number of points. For dimensions d higher than 3, the time for computing the convex hull is O(n d/2 ) [START_REF] Chazelle | An optimal convex hull algorithm in any fixed dimension[END_REF]. This process therefore impacts on the costs c σ and c δ . Now consider a group of k boolean characteristics S i = {x 1 , . . . , x k }. The classical FCA approach describes a set of objects A by the set of attributes B = {x j : a ∈ A and x j (a) = 1} and the strategy of generation of immediate predecessors considers the set of all other attributes {x ∈ S i \ B} as selectors. These two sets described by predicates of the form possesses attribute x would respectively correspond to δ i (A) and σ i (A).

The use of predicates, and especially the possibility of introducing negative attributes, allows us to consider other descriptions of A. For example, we can consider a description δ i (A) by predicates for the disjunction of clauses:

a∈A j≤k

x j if x j (a) = 1 x j if x j (a) = 0
For a finer and minimal description, we can also consider the minimization of this boolean formulae using the well-known Quine-McCluskey algorithm (or the method of prime implicants), with a time complexity in O(3 n log n) [START_REF] Quine | The problem of simplifying truth functions[END_REF] where n is the number of attributes.

About strategies

A strategy proposes a way to cut the description δ i (A) by selectors from which predecessors of a concept (A, P ) are generated. These selected predicates are only used in this way at each step of the algorithm, but are not kept in the final set P of predicates, and several strategies are possible to generate predecessors of a concept (A, P ).

Therefore, our algorithm can be extended to improve the strategy management:

Meta-strategy: The strategy σ is defined as the union of the strategies (σ i ) i≤d for each part S i of attributes. It is possible to introduce a filter (or meta-strategy) on these selectors, as those introduced in Section 3:

• The maximal support meta-strategy relies on the support:

σ max (A) = {p ∈ S i δ i (A) : |π(p)| maximal}
• The entropy meta-strategy is a supervised strategy where objects have a class attribute:

σ entropy (A) = {p ∈ S i δ i (A) : H class (π(p)) minimal}
Interactivity: Several strategies are possible to generate predecessors of a concept, going from the naive strategy σ i naive that generates all the possible predecessors, to the silly strategy σ i silly = ∅ that generates no predecessors. Therefore we can extend our algorithm in an interactive way, where the user could choose or test several strategies for each concept in a user driven pattern discovery approach.

In classical FCA approach, the naive strategy considers all the possible attributes of M \B for a concept (A, B), and the corresponding lattice is often too large. The silly strategy allows one to introduce some attributes in concepts, but without considering them in the predecessor generation. This approach is interesting, e.g., for class attributes. Every possible strategy is between σ i naive and σ i silly when considering the set of generated predecessors, and it would be interesting to investigate the whole set of possible strategies. A strategy close to σ i naive increases the number of concepts, while a strategy close to σ i silly decreases the number of concepts. 4.2.4. Examples 4.2.4.1. Iris dataset with heterogeneous descriptions. Consider the well-known Iris dataset from the UCI Machine Learning Repository3 , composed of 150 objects described by 4 numerical characteristics sepal-length, sepal-width, petal-length, petal-width and classified in 3 classes Setosa, Versicolor, Virginica.

In this example, we consider the two petal characteristics separately, and the class characteristic, thus a combination of two numerical characteristics with a categorical one.

For each petal characteristics, we use a classical description by the two predicates the values are greater than the min and the values are smaller than the max. For the class characteristic, we use the predicate belongs to class. The strategy generates the two selectors is the value greater than the mean minus the standard deviation? and is the value smaller than the mean plus the standard deviation?, and is combined with a meta-strategy limiting new predecessors to those whose support is greater than 100.

We obtain the concept lattice displayed in Figure 4 composed of 30 concepts:

• concept $19 corresponds to objects whose class is Setosa • concept $20 corresponds to objects whose class is Virginica • concept $21 corresponds to objects whose class is Versicolor 4.2.4.2. Iris dataset with the entropy strategy. In the second example, we consider the Iris dataset and the four petal and sepal characteristics separately. We use the following entropy strategy which allows one to consider the entropy of a predecessor A of A, but also the entropy of the remaining set A \ A :

H = θ(H A ) + (1 -θ)H A-A
The more the value of θ increases, the more the number of predessors of A decreases.

By keeping only the predecessors with the best entropy, we obtain the concept lattice displayed in Figure 5 (with θ = 1/2) composed of 13 concepts. The Setosa iris are quickly separated according to their two petal characteristics (concept $3). Indeed, we can observe on the scatterplot in Figure 6 that this class is clearly separated from the two others. We obtain 4 concepts for classes virginica and versicolor:

• concept $10 and $11 correspond to objects whose class is Virginica, with only the two petal characteristics used in concept $10, while the sepal-length characteristic is introduced in concept $11.

• concept $5 and $9 correspond to objects whose class is Versicolor, Finally, we have varied the number k (Figure 7) of best entropy measures kept from 1 to 10 and computed:

• the number of concepts generated;

• the number of meet-irreducible;

• the number of join-irreducible.

Note that the total number of concepts generated would have been equal to 6516292 (Figure 8) if the naive strategy had been chosen (equivalent to keeping all predecessors).

4. 2.4.3. Numbers [36,48,56,64,84] and all their possible GCD and LCM as descriptions.

In this example, we consider the numbers [36,48,56,64,84] and the greatest common divisor (GCD) and least common multiple (LCM) of all their possible subsets as descriptions.

The strategy consists in adding a new is divisor of or is multiple of predicate using a combination of the prime numbers of the set of objects present in the concept. The concept lattice, displayed in Figure 9, is composed of 21 concepts. The last concept which is the absurd one (the extent is an empty set) is described by 2 predicates whose conjunction is always false.

4.2.4.4.

Digit dataset with minimal logical formula as descriptions. As last example, we consider the digit described by their properties composed, even, odd, prime and square given in Table 1.

These 5 characteristics are considered together, and we compute their minimal boolean formulae as description using the Quine-McCluskey algorithm [START_REF] Quine | The problem of simplifying truth functions[END_REF]. The strategy consists in trying to add an attribute or its negation at each step.

The concept lattice is displayed in Figure 10. We can observe that the maximum number of predecessors cannot exceed 5 since the predecessors are maximum per inclusion.

Conclusion

We have described our NextPriorityConcept algorithm for complex and heterogenous mining using a pattern discovery approach.

More precisely, our algorithm generates formal concepts using the dual version of Bordat's theorem for the generation of immediate predecessors (instead of immediate successors), and where recursion is replaced by a priority queue using the support of concepts to make sure that concepts are generated level by level, each concept being generated before its predecessors. Moreover, a constraint propagation mechanism ensures that meets are correctly generated.

Heterogeneous data are provided at input with a description mechanism and a predecessor generation strategy adapted to each kind of data, and generically described by predicates. Our algorithm is generic and agnostic since we use predicates whatever the characteristics.

It is implemented with a system of plugins for an easy integration of new characteristics, new description, new strategies and new meta-strategies. The python3 implementation of GALACTIC (GAlois LAttices, Concept Theory, Implicational systems and Closures) is available since January 2020. 5We have already implemented some descriptions and strategies plugins for boolean, numeric, categorical attributes, strings and sequences. We are currently working on descriptions and strategies for graphs and triadic data.

We plan to study more precisely the theoretical properties of the concept lattice computed. Indeed, this lattice seems to be a suborder of the lattice of the initial context, depending on the strategy. Therefore, it corresponds to a reduction of the concept space, and a better understanding of its properties would make it possible to envisage relevant reduction mechanisms of the search space.

  Bordat's theorem. This algorithm recursively computes the Hasse diagram of the concept lattice of a context G, M, (α, β) starting from the bottom concept (β(M ), M ) and by computing at each recursive call the immediate successors of a concept (A, B): the family FS (A,B) is first computed, then the inclusion maximal sets are selected.FS (A,B) is composed of the intent part of the immediate potential successors of (A, B). Each intent B is obtained by α(a) ∩ B, where a ∈ G \ A is a new potential object for a successor concept of (A, B). Indeed, as defined by the order relation between concepts, immediate successors of (A, B) are obtained by an increase of A by at least one new potential object a, and thus a reduction of B to B = α(a) ∩ B, and clearly B ⊂ B. Moreover, B must be maximal by inclusion in FS (A,B) , otherwise there exists B ∈ FS (A,B) such that B ⊂ B ⊂ B, then B is not the intent of an immediate successor of (A, B). If B is inclusion maximal in FS (A,B) , then (β(B ), B ) is an immediate successor of (A, B).Our NextPriorityconcept algorithm focuses on the objects and the dual version of Bordat's theorem. It considers the whole set G of objects at the beginning. Then, for each concept (A, B), it does not test a new potential object, but a new potential attribute b ∈ M \ B describing a subset of A. In this way, A decreases while B increases, which corresponds to the predecessor relation. This process corresponds to the dual version of Bordat's theorem stating that the immediate predecessors of (A, B) are the maximal inclusion subsets of the following family on the attributes M :

  Its run-time complexity is O(|G| |P | 2 c σ ) where O(|G| |P | 2 ) is the cost of Bordat's algorithm [9]. And the descendant constraints are updated in O(|P | 2 ). • the NextPriorityConcept-Strategy algorithm updates the priority queue in O(|G| |P |). Therefore we can deduce the run-time complexity of the NextPriorityConcept-Strategy algorithm: O(|B| |G| |P | 2 c σ ).
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Data:

• G, M, (α, β) a formal context • σ a strategy Output:

• the formal context G, P, I P • its concepts (A, D) begin /* Priority queue for the concepts */ Q ← [] ; /* Q is a priority queue using the support of concepts */ Q.push ((|G|, (G, α(G) • LP a set of predecessors begin