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Gallinari1,2

1 Criteo AI Lab, Criteo, Paris, France
as.karkar@criteo.com

2 LIP6, Sorbonne Université, Paris, France
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Abstract. Neural networks have been achieving high generalization per-
formance on many tasks despite being highly over-parameterized. Since
classical statistical learning theory struggles to explain this behaviour,
much effort has recently been focused on uncovering the mechanisms
behind it, in the hope of developing a more adequate theoretical frame-
work and having a better control over the trained models. In this work,
we adopt an alternative perspective, viewing the neural network as a
dynamical system displacing input particles over time. We conduct a
series of experiments and, by analyzing the network’s behaviour through
its displacements, we show the presence of a low kinetic energy bias in
the transport map of the network, and link this bias with generalization
performance. From this observation, we reformulate the learning problem
as follows: find neural networks that solve the task while transporting
the data as efficiently as possible. This offers a novel formulation of the
learning problem which allows us to provide regularity results for the
solution network, based on Optimal Transport theory. From a practical
viewpoint, this allows us to propose a new learning algorithm, which
automatically adapts to the complexity of the task, and leads to networks
with a high generalization ability even in low data regimes.

Keywords: Deep Learning · Optimal Transport · Dynamical Systems

1 Introduction

Deep neural networks (DNNs) have repeatedly shown their ability to solve a wide
range of challenging tasks, while often having many more parameters than there
are training samples. Such a performance of over-parametrized models is counter-
intuitive. They seem to adapt their complexity to the given task, systematically
achieving a low training error without suffering from over-fitting as could be
expected [2,25,40]. This is in contradiction with the classical statistical practice of
selecting a class of functions complex enough to represent the coherent patterns
in the data, and simple enough to avoid spurious correlations [3,16]. Although
this behavior has sparked much recent work towards explaining neural networks’
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success [10,20,26,28], it still remains poorly understood. Among the factors to
consider are the implicit biases present in the choices made for the parametrization,
the architecture, the parameter initialization and the optimization algorithm,
and that contribute all to this success. Our aim in this work is to uncover some
of these hidden biases and highlight their link with generalization performance
through the lens of dynamical systems.

We will focus on residual networks (ResNets) [18,19], now ubiquitous in
applications. This family of models has made it possible to learn very complex
non-linear functions by improving the trainability of very deep networks, and has
thus improved generalization. Links have been derived between these networks and
dynamical systems: a ResNet can be seen as a forward Euler scheme discretization
of an associated ordinary differential equation (ODE) [35]:

xk+1 = xk + vk(xk) ←→ ∂txt = vt(xt) (1)

This link has yielded many exciting results, e.g. new architectures [23] and
reversible networks [7]. Here, we make use of this analogy and analyze the behavior
of residual networks by studying their associated differential flows. Adopting this
dynamical point of view allows us to leverage the theories and mathematical
tools developed to study, approximate and apply differential equations.

More specifically, we conduct experiments to observe how neural networks dis-
place their inputs–seen as particles–through time. We measure a strong empirical
correlation between good test performance and neural networks with low kinetic
energy along their transport flow. From this, we reformulate the training problem
as follows: retrieve the network which solves the task using the principle of least
action, i.e. expending as little kinetic energy as possible. This problem, in its
probabilistic formulation, is tightly linked with and inspired by the well-known
problem of finding an optimal transportation map [31]. This yields new insights
into neural networks’ generalization capabilities, and provides a novel algorithm
that automatically adapts to the complexity of the data and robustly improves
the network’s performance, including in low data regimes, without slowing down
the training. To summarize, our contributions are the following:

– Through the dynamic viewpoint, we highlight the low-energy bias of ResNets.
– We formulate a Least Action Principle for the training of Neural Networks.
– We prove existence and regularity results for networks with minimal energy.
– We provide an algorithm for retrieving minimal energy networks compatible

with different architectures, which leads to better generalization performance
on different classification tasks, without complexifying the architecture.

We introduce in Section 2 some background on Optimal Transport (OT) and
highlight the link between the dynamical formulation of OT and ResNets. We
describe in Section 3 the general setting of our analysis. Section 4 provides
empirical evidence illustrating our point. The formal framework of networks
trained with minimized energy and a practical algorithm are described in Section 5.
Experiments on standard classification tasks are provided in Section 6. The code
is available online at github.com/skander-karkar/LAP.
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2 Background

This section outlines the main elements of the formalism and reasoning of our
work. Supplementary Material A gives more details about Optimal Transport.

2.1 Optimal Transport

The principle of least action is central to many fields in physics, mathematics and
economics. It is found in classical and relativistic mechanics, thermodynamics,
quantum mechanics [11,13,14], etc.. It broadly states that the dynamical trajec-
tory of a system between an initial and final configuration is one that makes a
certain action associated with the system locally stationary [14]. One mathemati-
cal theory which can be associated with this general idea is the theory of Optimal
Transport which was initially introduced as a way of finding a transportation map
minimizing the cost of displacing mass from one configuration to another [31].

Formally, let α and β be absolutely continuous distributions compactly sup-
ported in Rd, and c : Rd × Rd → R a cost function. Consider a transportation
map T : Rd → Rd that satisfies T]α = β, i.e. that pushes1 α to β. The total cost
of the transportation then depends on all the individual contributions of costs
of transporting (infinitesimal) mass from each point x to T (x), and finding the
optimal transportation map amounts to solving:

min
T

Cstat(T ) =

∫
Rd

c(x, T (x))dα(x)

s.t. T]α = β

(2)

A standard choice for c is the p-th power of a norm of Rd, i.e. c(x, y) = ‖x− y‖p,
but other costs can be used, defining different variants of the problem. This cost
induces, through the p-th root of the minimal value of (2), a distance Wp between
any two distributions α and β of finite p−th moment, called the p-Wasserstein
distance [27].

In [4], the link between Optimal Transport and the principle of least action
was made by showing that the static transportation can equivalently be viewed
as a dynamical one that minimizes an action as it gradually displaces particles of
mass in time. In other words, instead of directly pushing samples of α to β in Rd
using T , we can displace mass from α according to a continuous flow with velocity
vt : Rd → Rd. This implies that the density µt at time t satisfies the continuity
equation ∂tµt +∇ · (µtvt) = 0, assuming that initial and final conditions are given
respectively by µ0 = α and µ1 = β. In this case, the optimal displacement is the
one that minimizes the action ‖vt‖pLp(µt)

:

min
v

Cdyn(v) =

∫ 1

0

‖vt‖pLp(µt)
dt

s.t. ∂tµt +∇ · (µtvt) = 0, µ0 = α, µ1 = β

(3)

1 T]α is the push-forward measure: T]α(B) = α(T−1(B)) for any measurable set B.
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where ‖vt‖pLp(µt)
=

∫
Rd ‖vt(x)‖pdµt(x) for costs c(x, y) = ‖x − y‖p with p > 1.

In this case, minimizers exist and the two transport costs are the same, i.e.
Cstat(T ) = Cdyn(v) at the optimums. For p = 2 and the Euclidean norm, the
dynamical cost Cdyn(v) corresponds to the kinetic energy.

2.2 Link with Residual Networks

The dynamical formulation in (3) explicitly describes the evolution in time of the
density µt, starting from an input distribution α. In this form, the link between
deep residual networks and dynamical Optimal Transport is not clear. However,
it is possible to adopt an alternate viewpoint which helps make it immediate.
Instead of explicitly describing the density’s evolution, we describe the paths
φx : [0, 1]→ Rd, t 7→ φxt taken by particles from α at position x, when displaced
along the flow v. The continuity equations can then equivalently be written as:

∂tφ
x
t = vt(φ

x
t ) (4)

See chapters 4 and 5 of [31] for details. We can now note the resemblance
between the residual network (1) and equation (4). Rewriting the conditions as
necessary, the dynamical formulation (3) can equivalently be represented by:

min
v

Clag(v) =

∫ 1

0

‖vt‖pLp((φ·
t)]α)

dt

s.t. ∂tφ
x
t = vt(φ

x
t ),

φ·0 = id,

(φ·1)]α = β

(5)

where φ·t : x ∈ Rd 7→ φxt ∈ Rd corresponds to the transport map induced by the
flow, up until time t. As both formulations are equivalent, we have that for any
flow v, Clag(v) = Cdyn(v). Moreover, optimal transportation plans in the static (2)
and dynamical (5) cases coincide: if T and φ·t, are respectively solutions to (2)
and (5), we have that T = φ·1.

This link allows us to associate residual networks with a local action for each
layer, which induces a global transportation cost Clag, and taking p = 2 and the
Euclidean norm allows us to refer to the network’s kinetic energy.

3 General Setting

In order to better understand the inner workings of a DNN, it is essential to
adopt a viewpoint in which the different driving mechanisms become apparent
and are decoupled.

Decomposing a DNN We consider the following model of a deep neural network
f where computations are separated into the three steps, i.e. f = F ◦ T ◦ ϕ (this
is similar to [22] and corresponds to the general structure of recent deep models
or to the structure of components of a deep model [19,36,39]):
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1. Dimensionality change: Starting from an input distribution D in Rn, a
transformation ϕ is applied, transforming it into α = ϕ]D, a distribution in Rd.
This corresponds to the first few layers present in most recent architectures
and represents a change of dimensionality. ϕ is known as the encoder.

2. Data Transport: Then α is transformed by a mapping T : Rd → Rd, which
we see as a transport map. Here, the dimensionality doesn’t change and, if
this part of the network is a sequence of residual blocks, T can be written as
the discretized flow of an ODE.

3. Task-specific final layers: A final function F : Rd → Y is applied to T]α
in order to compute the loss L associated with the task at hand, e.g. F could
be a perceptron classifier. Like ϕ, F is typically made up of a few layers.

The focus of this work is on analyzing the second phase, Data Transport, and we
assume that the encoder ϕ is pretrained and fixed (this will be relaxed in some
experiments later). To solve a complex non-linear task for which a DNN is needed,
the data has to be transformed in a non-trivial way, meaning that this is an
essential phase, e.g. in the case of classification, T]α needs to be linearly separable
if F is linear. This model is quite general, as many ResNet-based architectures
[36,39] alternate modules that change the dimensionality (step 1) and transport
modules that keep the dimensionality fixed (step 2) and according to [21], the
transport modules have similar behaviour. The model can then be considered as
a simplified ResNet, sometimes called a single representation ResNet. Note that
[30] finds that networks that keep the same resolution remain competitive.

The set of admissible targets As recent neural architectures have systematically
achieved near-zero training error [2,3,20,40], we place ourselves in this regime,
which makes it possible to model this as a hard constraint. For some tasks, this
constraint over T is obvious: in a generative setting for example, T]α must be
equal to some prescribed distribution β which is the target of the generation
process. But in general, T is less strictly constrained and the condition depends
on F and L. This leads us to define a set of admissible targets for the task:

SF,L = {β ∈ P(Rd) | L(F, β) = 0} (6)

with β = T]α. In general, L is fixed while F is learned jointly with T . This set
is supposed to be non-empty for some F and, in general, it will contain many
distributions. The goal of the learning task can then be reformulated as:

Find (T, F ) such that T]α ∈ SF,L (7)

An important observation is that, even when SF,L is reduced to a singleton, the
problem is still strongly under-constrained and it is possible to obtain many such
(T, F ) that lead to poor generalization. One can then ask why this is not the
case in practice, as good generalization performance is usually achieved.

The case of classification Even though our framework is general, we focus our
experiments on classification tasks, with L being the cross entropy loss. The task
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consists in separating N classes. Let us denote αi the class distributions which are
supposed to be distributions in Rd of mutually disjoint supports, meaning that
there is no ambiguity in the class of data points, and such that α =

∑
i αi/N . One

wants to find a transformation T of these distributions such that all transported
distributions can be correctly classified by a classifier F . When F is linear, SF,L
is the set of distributions which have N components that are linearly separated
by F . Note that we place ourselves in a noiseless ideal setting where perfect
classification is possible. The question we examine in this work is then twofold:

– What are the properties characterizing mappings reached by standard residual
architectures with common hyper-parameters?

– Can we find a criteria to automatically select mappings with desirable prop-
erties in order to improve performance and robustness?

4 Empirical Analysis of Transport Dynamics in ResNets

Before introducing our framework, we conduct an exploratory analysis of the
impact of the network’s inner dynamics on generalization. We present below
two experiments. The first one highlights how good generalization performance
is closely related to low transport cost for classification tasks on MNIST and
CIFAR10. This cost therefore appears as a natural characterisation of the com-
plexity and disorder of a network. The second experiment, performed on a toy
2D dataset, visualizes the transport induced by the blocks of a ResNet.

We consider ResNets where, after encoding, a data point x0 is transported by
applying xk+1 = xk + vk(xk) for K residual blocks and then classified using F .
We measure the disorder/complexity of a network by its transport cost which is
the sum of the displacements induced by its residual blocks: C(v) =

∑
k ‖vk(xk)‖22.

This quantity corresponds to the kinetic energy of the total displacement.

Transportation cost and generalization on MNIST and CIFAR10. In order to
study the correlation between the transport cost of a residual network and its
generalization ability on image data, we train convolutional 9-block ResNets with
different initializations (orthogonal and normal with different gains), for 10-class
classification tasks MNIST and CIFAR10. In Figure 2, each point represents a
trained network and gives the transport cost C as a function of the test accuracy
of the network. This experiment clearly highlights the strong negative correlation
between transport cost and good generalization. This illustrates the importance of
the implicit initialization bias and motivates initialization schemes which favour
a low kinetic energy. We believe a number of factors contribute to this low energy
bias: small initialization gains tend to bias ‖vk(xk)‖22 towards small values, and
training using gradient descent does not change this much.

Visualizing network dynamics on 2D toy data. This experiment provides a 2D
visualization of the transport dynamics inside a network. The task is 2-class
classification of a non-linearly separable dataset (two concentric circles, from
sklearn) that contains 1000 points with a train-test split of 80%-20%, see Figure



A Principle of Least Action for the Training of Neural Networks 7

1 top left. The network is a ResNet containing 9 residual blocks, followed by a
fixed linear classifier. Each residual block contains two fully connected layers
separated by a batch normalization and a ReLU activation.

Fig. 1. Transformed circles test set by a ResNet9 after blocks 1, 5 and 9 after training;
first row with good initialization; second row with a N (0, 5) initialization; third row
with a N (0, 5) initialization and the transport cost added to the loss

With the cross-entropy loss alone, the behaviour of a well trained and carefully
initialized network achieving 100% test accuracy is illustrated in the first row
of Figure 1. With a N (0, 5) initialization, significantly bigger than an “optimal”
initialization, the test accuracy drops to 98% (average of 100 runs) and the
transport becomes chaotic (Figure 1, second row). Adding the transport cost to
the loss improves the test accuracy (99.7% on average) of this badly initialized
network and the movement becomes more controlled (third row of Figure 1).
Thus, controlling transport improves the behavior and generalization ability of
the network. This allows to explicitly control the network whereas implicit biases
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such as “good” initialization rely on heuristics. In Supplementary Material C.4,
more experiments show that in other situations that deviate from the ideal setting
where the task is perfectly solved, e.g. when using a network which is too large
or too small, or a small training set, controlling the transport cost also improves
generalization.

Fig. 2. Test transport against test accuracy of ResNet9 models on MNIST (left) and
CIFAR10 (right) with fitted linear regressions, where each color indicates a different
initialization (either orthogonal or normal with varying gains)

5 Least Action Principle for Training Neural Networks

The previous section has shed some light on the low energy bias of networks
as well as on its potential benefits on test accuracy. In this section, we take a
step further and make this implicit bias explicit by considering a formulation
for training that enforces minimal kinetic energy, closely related to the problem
of Optimal Transport. This allows us to prove the existence of minimizers, and
exhibit interesting regularity properties of the minimal energy neural networks
which may explain good generalization performance.

5.1 Formulation

We consider costs c(x, y) = ‖x− y‖p (where ‖.‖ is a norm of Rd), with p > 1, and
suppose that α ∈ Pp(Rd) (the set of absolutely continuous measures on Rd with
finite p-th moment). We assume that the space of classifiers is compact, that the
loss L is continuous, that the set ∪F∈FSF,L is at a finite p-Wasserstein distance
Wp from α (in particular, it is non-empty) and that all its bounded subsets are
totally bounded (i.e. can be covered by finitely many subsets of any fixed size).
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These properties depend on the choice of the loss L and of a class of functions F
for the classifier F .

Returning to the transport problem as defined in Section 2.1, a natural way
to select a robust model, given the empirical observations of Section 4, is to select,
among the maps which transport α to SF,L and thus solve the task, one with a
minimal transport cost. This gives us the following optimization problem:

inf
T,F

C(T ) =

∫
Rd

c(x, T (x))dα(x)

subject to T]α ∈ SF,L
(8)

The equivalent dynamical version for c(x, y) = ‖x− y‖p is, as per Section 2.2,

inf
v,F

∫ 1

0

‖vt‖pLp((φ·
t)]α)

dt

subject to ∂tφ
x
t = vt(φ

x
t )

φ·0 = id

(φ·1)]α ∈ SF,L

(9)

where ‖vt‖pLp((φ·
t)]α)

=
∫
Rd ‖vt‖pd(φ·t)]α. The result below shows that these

two problems are equivalent and that the infima are realized as minima:

Theorem 1. The infima of (8) and (9) are finite and are realized through a
map T which is (or a velocity field v which induces) an optimal transportation
map. When c(x, y) = ‖x− y‖p, then (8) and (9) are equivalent.

Proof. From the hypothesis above, there exists β ∈ SF,L at a finite distance from
α. Taking any transport map between α and β, we see that the infima are finite.

Consider (8) and take a minimizing sequence (Ti, Fi)i. Set βi = (Ti)]α. Then
(C(Ti))i converges to the infimum which is strictly bounded by M > 0. Then,
by definition, for i large enough, W p

p (α, βi) ≤ C(Ti) ≤ M . So that (βi)i is a
bounded sequence in ∪FSF,L. By the hypothesized total boundedness of bounded
subsets and as Pp(Rd) endowed with Wp is a complete metric space (see [6] for
a proof), up to an extraction, (βi)i converges to β? in the closure of ∪FSF,L.
Moreover, up to an extraction, (Fi)i also converges to F ? by compactness of the
class of classifiers. Taking T ? the OT map between α and β? (see Supplementary
Material A for existence of OT maps), we then have, by continuity of L,

T ?] α = β? ∈ SF?,L

and C(T ?) ≤ lim C(Ti) by optimality of T ?, which means, since (C(Ti))i is a
minimizing sequence, that C(T ?) minimizes (8). So (T ?, F ?) is a minimizer and
T ? is an OT map.

Finally, there exists, by dynamical OT theory (Supplementary Material A),
a velocity field v?t inducing the OT map between α and β? which then gives a
minimizer (v?, F ?) for (9). By the same reasoning, taking a minimizing sequence
(v(i), Fi)i and the induced maps Ti shows that both problems are equivalent. ut
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Note that uniqueness doesn’t hold anymore, as the constraint T]α ∈ SF,L
in (9) is looser than in standard OT. However, as we show in the following
section, the fact that the optimization problems are solved by OT maps will give
regularity properties for the models induced by these optimization problems.

5.2 Regularity

Intuitively, the fact that we minimize the energy of the transport map transforming
the data is akin to the core idea of Occam’s razor: among all the possible networks
that correctly solve the the task, the one transforming the data in the simplest
way is selected. Moreover, it is possible to show that this optimal transformation is
regular: our formulation provides an alternate view on generalization for modern
deep learning architectures in the overparametrized regime.

Optimal maps can be as irregular as needed in order to fit the target distri-
bution, however in much the same way as successfully trained DNNs, optimal
maps are still surprisingly regular. In a way, they are as regular as possible
given the constraints which is exactly the type of flexibility needed. However, the
constraints in (8) and (9) are looser than in the standard definitions of Optimal
Transport. Still, supposing that the input data distribution has a nicely behaved
density, namely bounded and of compact support, with the same hypothesis as
above, we have the following, which is mainly a corollary of Theorem 1:

Proposition 2. Consider T ? the OT map induced by (8) (or (9)) given by
Theorem 1. Take X, respectively Y , an open neighborhood of the support of α,
respectively of T ?] α, then T ? is differentiable, except on a set of null α measure.

Additionally, if T ? doesn’t have singularities, there exists η > 0 and A,
respectively B, relatively closed in X, respectively Y , such that T ? is η-Hölder
continuous from X \A to Y \B. Moreover, if the two densities are smooth, T ?

is a diffeomorphism from X \A to Y \B.

Proof. This is a consequence of Theorem 1, the hypothesis made in this section
and the regularity theorems stated in Supplementary Material B. ut

There are two main results in Proposition 2: the first gives α-a.e. differentia-
bility. This is already as strong as might be expected from a classifier: there are
necessarily discontinuities at the frontiers between different classes. The second is
even more interesting: it gives Hölder continuity over as large a domain as possible,
and even a diffeomorphism if the data distribution is well-behaved enough. We
recall that a function f is η-Hölder continuous for η ∈]0, 1] if ∃ M > 0 such that
‖f(x) − f(y)‖ ≤ M‖x − y‖η for all x, y. η measures the smoothness of f , the
higher its value, the better. In particular, in the case of classification, this means
that the Hausdorff dimension along the frontiers between the different classes is
scaled by less than a factor of 1/η in the transported domain. If the densities are
smooth, the dimension even becomes provably smaller by this result.

Intuitively, this means that, in these models, the data is transported in a
way that preserves and simplifies the patterns in the input distribution. In the
following, we propose a practical algorithm implementing these models and use it
for standard classification tasks, showing an improvement over standard models.
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5.3 Practical Algorithm

We propose an algorithm for training ResNets using the least action principle
by minimizing the kinetic energy. Starting from problem (9) with p = 2 and the
Euclidean norm, we first discretize the differential equation via a forward Euler
scheme, which yields φxk+1 = φxk + vk(φxk). The discretized flow vk is parameterized
by a residual block, giving a standard residual architecture. The residual blocks,
along with a classifier F , are parametrized by θ. Next, the constraint (φ·1)]α ∈
SF,L is rewritten as L(F, (φ·1)]α) = 0, denoted L(θ) = 0 below. Finally, as we
only have access to a finite set X of samples x from α, we use a Monte-Carlo
approximation of the integral w.r.t the distributions (φ·t)]α, to obtain:

min
θ

C(θ) =
∑
x∈X

K−1∑
k=0

‖vk(φxk)‖22

s.t. φxk+1 = φxk + vk(φxk),

φx0 = x, ∀ x ∈ X ,
L(θ) = 0

(10)

Is is easy to see that the min-max problem minθ maxλ>0 C(θ) + λ L(θ)
yields the same solution, as the first two constraints are satisfied trivially. If
the constraint L(θ) = 0 corresponding to solving the task, which includes the
classifier F , is not verified, this will cause the second term to grow unbounded,
and the solution will thus be avoided by the minimization. This min-max problem
can be solved using an iterative approach, starting from some initial λ0 and θ0:{

θi+1 = arg min
θ
C(θ) + λi L(θ)

λi+1 = λi + τ L(θi+1)
(11)

The minimization is done via SGD for a number of steps s, where a step
means a batch, starting from the previous parameter value θi. This algorithm is
similar to Uzawa’s algorithm used in convex optimization [31]. In practice, it is
more stable to divide the minimization objective in (11) by λi, yielding:

Algorithm: Training neural networks with Least Action Principle (LAP-
Net)

Input: Training samples, step size τ , number of steps s, initial weight λ0
Initialization: Initialize the parameters θ0 and set i = 0
while not converged do

1. Starting from θi, perform s steps of stochastic gradient descent:
1.1. θ0i+1 = θi
1.2. θli+1 = θl−1i+1 − ε(∇C(θ

l−1
i+1)/λi +∇L(θl−1i+1)) for l from 1 to s

1.3. θi+1 = θsi+1

2. Update the weight λi+1 = λi + τ L(θi+1) and increment i← i+ 1

Output: Learned parameters θ
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While the high non-convexity makes it difficult to ensure exact optimality, we
can still have some induced regularity when reaching a “good” local minimum:

Proposition 3. Suppose (F θ
?

, T θ
?

) is reached by the optimization algorithm
such that T θ

?

is an ε−OT map between α and its push-forward2. Then we have,
with the same notations as in Proposition 2,

∀x, y ∈ X \A, ‖T θ
?

(x)− T θ
?

(y)‖ ≤ O(ε+ ‖x− y‖η)

Proof. We simply write the decomposition:

T θ
?

(x)− T θ
?

(y) = T θ
?

(x)− T ?(x) + T ?(x)− T ?(y) + T ?(y)− T θ
?

(y)

and use the triangular inequality: the first and third terms are smaller than ε by
hypothesis while Hölder continuity applies for the second by Proposition 2. ut

This shows that minimizing the transport cost still endows the model with some
regularity, even in situations where the global minimum is not reached.

6 Experiments

MNIST Experiments The base model is a ResNet with 9 residual blocks. Two
convolutional layers first encode the image of shape 1 × 28 × 28 into shape
32× 14× 14. A residual block contains two convolutional layers, each preceded by
a ReLU activation and batch normalization. The classifier is made up of two fully
connected layers separated by batch normalization and a ReLU activation. We
use an orthogonal initialization [32] with gain 0.01. This and all vanilla models
and their training regimes are implemented by following closely the cited papers
that first introduced them and our method is added over these training regimes.
More implementation details are in Supplementary Material C.3.

When using the entire training set, the task is essentially solved (99.4% test
accuracy). We penalize the transport cost as presented in Section 5.3, using
λ0 = 5, τ = 1 and s = 5. The performance barely drops (99.3% test accuracy),
and we can visualise the preservation of information from the point of view of a
pretrained autoencoder (see Supplementary Material C.1). From the experiments
in two dimensions, we suspect that adding the transport cost helps when the
training set is small. For performance comparisons, we average the highest
test accuracy achieved over 30 training epochs (over random orthogonal weight
initializations and random subsets of the complete training set). We find that
adding the transport cost improves generalization when the training set is very
small (Table 1). We see that the improvement becomes more important as the
training set becomes smaller and reaches an increase of almost 14 percentage
points in the average test accuracy.

2 By this, we mean that ‖T θ
?

− T ?‖∞ ≤ ε where T ? is the OT map.
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Table 1: Average highest test accuracy and 95% confidence interval of ResNet9
over 50 instances on MNIST with training sets of different sizes (in %)

Training set size ResNet LAP-ResNet (Ours)

500 90.8, [90.4, 91.2] 90.9, [90.7, 91.1]

400 88.4, [88.0, 88.8] 88.4, [88.0, 88.8]

300 83.5, [83.0, 84.1] 86.2, [85.8, 86.6]

200 74.9, [73.9, 75.9] 82.0, [81.5, 82.5]

100 56.4, [54.9, 58.0] 70.0, [69.0, 71.0]

CIFAR10 Experiments We run the same experiments on CIFAR10. The architec-
ture is exactly the same except that the encoder transforms the input which is of
shape 3× 32× 32 into shape 100× 16× 16. For our method, we use λ0 = 0.1,
τ = 0.1 and s = 50. We average the highest test accuracy achieved over 200
training epochs over random orthogonal weight initializations and random subsets
of the complete train set. Here, we find that adding the transport cost helps for all
sizes of the train set (which has 50 000 images in total). The increase in average
precision becomes more important as the train set becomes smaller (Table 2).

Table 2: Average highest test accuracy and 95% confidence interval of ResNet9
over 20 instances on CIFAR10 with training sets of different sizes (in %)

Training set size ResNet LAP-ResNet (Ours)

50 000 91.49, [91.40, 91.59] 91.94, [91.84, 92.04]

30 000 88.61, [88.47, 88.75] 89.41, [89.31, 89.50]

20 000 85.73, [85.59, 85.87] 86.74, [86.61, 86.87]

10 000 79.25, [79.00, 79.49] 80.90, [80.74, 81.06]

5 000 70.32, [70.00, 70.63] 72.58, [72.36, 72.79]

4 000 67.80, [67.55, 68.07] 70.12, [69.81, 70.42]

CIFAR100 experiments On CIFAR100, results using a ResNet are in Supple-
mentary Material C.2. We also used the ResNeXt [36] architecture: the residual
block of a ResNeXt applies x+

∑
i wi(x) with the functions wi having the same

architecture but independent weights, followed by a ReLU activation. We used
the ResNeXt-50-32×4d architecture detailed in [36]. This is a much bigger and
state-of-the-art network, as compared with the single representation ResNet used
so far. It also extends the experimental results beyond the theoretical framework
in three ways: the embedding dimension changes between the residual blocks,
a block applies xk+1 = ReLU(xk +

∑
i wk,i(xk)) and the encoder is no longer

fixed. We found that penalizing
∑
i wk,i(xk) or xk+1−xk is essentially equivalent.

Table 3 shows consistent accuracy gains as our method (with λ0 = 1, τ = 0.1 and
s = 5) corrects a slight overfitting of the bigger ResNeXt compared to ResNet.
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Table 3: Average highest test accuracy and 95% confidence interval of ResNeXt50
over 10 instances on CIFAR100 with training sets of different sizes (in %)

Training set size ResNeXt LAP-ResNeXt (Ours)

50 000 72.97, [71.79, 74.14] 76.11, [75.32, 76.89]

25 000 62.55, [60.18, 64.92] 64.11, [62.25, 65.96]

12 500 45.90, [43.16, 48.67] 48.23, [46.39, 50.07]

An important observation is that adding the transport cost significantly
reduces the variance in the results. This is expected as the model becomes more
constrained and can be seen as an advantage, especially in cases where the results
vary more with the initialization (e.g. transfer learning). This is illustrated by the
width of the 95% confidence intervals in the tables above often becoming narrower
when the transport cost is penalized. Finally, we could also have considered a
relaxation of the optimization program by considering a fixed weight λ, which
provides a simpler and quite competitive benchmark (see Supplementary Material
C.2). The training’s progress is shown there as well, and we see that the training
is not slowed down by our method.

7 Related work

That ResNets [18,19] are naturally biased towards minimally transforming their
input, especially for later blocks and deeper networks, is already shown in [21],
which found that earlier blocks learn new representations while later blocks only
slowly refine those representations. [17] found that the deeper the network the
more its blocks minimally move their input. Both were inspirations for this work.
The ODE point of view of ResNets has inspired new architectures [7,15,23,29].
Others were inspired by numerical schemes to improve stability, e.g. [7] add
a penalty term that encourages the weights to vary smoothly from layer to
layer and [41] replicate an Euler scheme and study the effect of diminishing
the discretization step-size. More recently, [37] accelerate the training of [8]’s
model for generative tasks using the link with dynamical transport. But most
often, regularization is achieved by penalization of the weights (e.g. spectral norm
regularization [38], smoothly varying weights [7]).

OT theory was used in [33] to analyse deep gaussian denoising autoen-
coders (not necessarily implemented through residual networks) as transport
systems. In the continuous limit, they are shown to transport the data distribu-
tion so as to decrease its entropy. Closer to this work, the dynamical formulation
of OT is used in [9] for the problem of unsupervised domain translation.

8 Discussion and Conclusion

In this work, we have studied the behavior of ResNets by adopting a dynamical
systems perspective. This viewpoint leverages the vast literature in this field.
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More specifically, we have analyzed ResNets’ complexity through the lens of
the transport cost induced by the data displacement across the model’s blocks.
We find that due to a certain number of factors, this transport cost is biased
towards small values. Moreover, this cost is negatively correlated to test accuracy,
which has brought us to consider explicitly minimizing it. This leads us to present
a novel generic formulation for training neural networks, based on the least action
principle, closely related to the problem of Optimal Transport: amongst all the
neural networks that correctly solve the task, select the one that transforms
the data with the lowest cost. Note that even though we have only considered
residual networks as they induce an ODE flow, this framework can be applied to
any architecture by considering the static formulation (8) of the problem.

We have proven general results of existence and regularity for models trained
within our framework, studied their behaviour in low-dimensional settings when
compared to vanilla models and shown their efficiency on standard classification
tasks. We also found that the training is stabilized in an adaptive fashion without
being slowed down.

An important property of our method which is yet to be tested and is hinted
at by the regularity results and by the lower variance in the performances is
the robustness of the models, more specifically in adversarial contexts. This will
be one important venue of future work. Another interesting avenue of research
would be to experiment with alternative transportation costs.
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32. A. M. Saxe, J. L. Mcclelland, and S. Ganguli. Exact solutions to the nonlinear

dynamics of learning in deep linear neural network. In ICLR, 2014.
33. S. Sonoda and N. Murata. Transport analysis of infinitely deep neural network.

JMLR, 2019.
34. C. Villani. Optimal Transport: Old and New. Springer-Verlag, 2008.
35. E. Weinan. A proposal on machine learning via dynamical systems. Commun.

Math. Stat, 2017.
36. S. Xie et al. Aggregated residual transformations for deep neural networks. In

CVPR, 2017.
37. H. Yan, J. Du, V. Tan, and J. Feng. On robustness of neural ordinary differential

equations. In ICLR, 2020.
38. Y. Yoshida and T. Miyato. Spectral norm regularization for improving the general-

izability of deep learning. arXiv, 2017.
39. S. Zagoruyko and N. Komodakis. Wide residual networks. In BMVC, 2016.
40. C. Zhang et al. Understanding deep learning requires rethinking generalization. In

ICLR, 2017.
41. J. Zhang et al. Towards robust resnet: A small step but a giant leap. In IJCAI,

2019.



A Principle of Least Action for the Training of Neural Networks 17

A Some Elements of Optimal Transport Theory

We state here the most important results of Optimal Transport theory and
its dynamical formulation. Our main reference is [31]. [34] is another classical
reference. The dynamical formulation of OT has been of great importance, both
theoretically and practically. It stems mainly from the work of Benamou and
Brenier [4].

A.1 Optimal Transport

OT studies the task of “transporting” mass from one configuration to another
while minimizing the effort as described by a certain ground cost c. Let α and β
be two absolutely continuous distributions. The Monge formulation of OT is:

min
T

C(T ) =

∫
Rd

c(x, T (x))dα(x)

s.t. T]α = β

(12)

We then have the following result, proven for example in Theorem 1.17 of
[31], which gives a condition on the cost under which problem (12) has a unique
minimum.

Theorem 4. α, β absolutely continuous measures on Rd. If c(x, y) = h(x− y),
with h strictly convex, then there exists a unique T such that C(T ) is minimal.

A.2 Dynamical Formulation

Instead of directly pushing samples of α to β in Rd, we can view α and β as
points in a space of measures, and consider trajectories from α to β in this
space.A way to transport the probability mass from α to β is a curve between
two points in this space. The curve corresponding to the optimal mapping is
the shortest one, in other words it is the geodesic curve between α and β. More
formally, we introduce the Wasserstein metric space Wp(Rd), i.e. the space of
absolutely continuous measures of Rd with finite p-th moment endowed with the
Wasserstein distance:

Wp(µ, ν) = min
T]µ=ν

C(T )
1
p

when costs c(x, y) = ‖x− y‖pq are considered, for q, p > 1. The OT map can then
be seen as a trajectory of minimal length between α and β, in other words a
geodesic. The following result (from Theorem 5.27 of [31]) motivates this approach:

Theorem 5. Wp is a geodesic space, meaning that, for any measures µ, ν ∈Wp,
there exists a geodesic curve (µt)t∈[0,1] between µ and ν.
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Thus, according to this result, finding the optimal mapping between two
distributions amounts to finding a curve of minimal length in a certain abstract
measure space. However, it still does not provide much in the way of a practically
useful algorithm. The following theorem makes a formal link with fluid dynamics
and basically states that moving probability masses from one distribution to
another is the same as moving fluid densities from one configuration to another
under a certain velocity field [31]:

Theorem 6. Given α and β absolutely continuous w.r.t. the Lebesgue measure
and (µt)t∈[0,1] the geodesic curve with µ0 = α and µ1 = β, we can associate a
vector field vt ∈ Lp(µt) that solves the continuity equation3:

∂tµt +∇ · (µtvt) = 0

with:

W p
p (α, β) =

∫ 1

0

‖vt‖pLp(µt)
dt

In other words, the geodesic curve (µt)t∈[0,1] between the two distributions and
the minimal energy velocity vector field v solve the continuity equation. Moreover,
the energy along this path is precisely equal to the Wasserstein distance W p

p (α, β).
If this vector field of minimal energy v could be obtained, probability mass could
be displaced according to the flow defined by the continuity equation, and the
geodesic curve could be retrieved. Thus, we can reformulate the problem as a
problem of optimal control, where v is the control variate:

min
v

Cdyn(v) =

∫ 1

0

‖vt‖pLp(µt)
dt

s.t. ∂tµt +∇ · (µtvt) = 0, µ0 = α, µ1 = β

(13)

B Regularity of Optimal Transport Maps

In this section, we recall some classical and more recent results of regularity for
Optimal Transport mappings. This is an intricate subject and the problem was
open for some time after OT theory had been established. The most important
results have been established through the study of the Monge-Ampère equation
by Caffarelli then De Philippis and Figalli. Extensions for larger families of costs
were developed by Ma, Trudinger and Wang [24] but this is out of the scope of
this work. In particular, Theorem 6.27 of [1] gives a classical almost-everywhere
regularity result:

Theorem 7. If c(x, y) = ‖x−y‖p for p > 1, and α and β have compact supports
with d(supp(α), supp(β)) > 0, then the optimal transportation map T between
α and β is α − a.e. differentiable and its Jacobian ∇T (x) has non-negative
eigenvalues α− a.s.
3 ∂t is the partial derivative operator w.r.t. variable t, and ∇· the divergence operator

w.r.t. space.
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More recently, results summarized below, which correspond to Theorems 4.23,
4.24 and Remark 4.25 of [12], state that the optimal transportation map has one
degree of regularity more than the initial transported density:

Theorem 8. Suppose there are X,Y , bounded open sets, such that the densities
of α and β are null in their respective complements and bounded away from
zero and infinity over them respectively. Then, if Y is convex, there exists η > 0
such that the OT map T between α and β is C0,η over X. If Y isn’t convex,
there exists two relatively closed sets A,B in X,Y respectively, such that T ∈
C0,η(X \A, Y \B), where A and B are of null Lebesgue measure.

Moreover, if the densities are in Ck,η, then C0,η can be replaced by Ck+1,η in
the conclusions above. In particular, if the densities are smooth, then the transport
map is a diffeomorphism (between the reduced input and target domains if the
target support is not convex).

C Additional Results

C.1 Visualization of the Transport on MNIST

If we pretrain an autoencoder on MNIST, we can use its encoder as the encoder
of the ResNet and freeze it during training. This makes it possible to visualize
the transport of the data by decoding, using the pretrained decoder, the output
of each residual block. We show this below on MNIST. In Figure 3, we see the
decodings of a basic ResNet trained to achieve 99.4% test accuracy.

Fig. 3. Decodings of the internal representations (the outputs of the residual blocks)
after training a ResNet9 on MNIST (og: original image, ae: encoding, b1: output of
block 1...)
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We add the transport cost with λ0 = 5, τ = 1 and s = 5. The performance
barely drops (99.3% test accuracy) but we can see in Figure 4 the effect of the
regularization as the decodings change much less.

Fig. 4. Decodings of the internal representations (the outputs of the residual blocks)
after training a LAP-ResNet9 on MNIST (og: original image, ae: encoding, b1: output
of block 1...)

C.2 Additional Results with Fixed λ

In this section, we show some additional experimental results with a model where,
instead of using an adaptive optimization algorithm, we simply take the transport
cost as a regularizer, thus giving us a minimization objective:

L(θ) + λ C(θ)

This is an easier and more straightforward method, simply considering a relaxed
constraint in the optimization problem. Aside from the advantage of simpler im-
plementation, it allows for easier fine-tuning of the regularization hyper-parameter
which is useful when the datasets and networks are big. The adaptivity is lost
but this still leads to better test accuracy than the non-regularized networks.
Results on the same tasks as in Section 6 are below.
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Table 4: Average highest test accuracy and 95% confidence interval of ResNet9
over 20 instances on CIFAR10 with training sets of different sizes (in %)

Training set size ResNet LAP-ResNet Regularized ResNet, λ = 0.2

50 000 91.49, [91.40, 91.59] 91.94, [91.84, 92.04] 91.36, [91.28, 91.44]

30 000 88.61, [88.47, 88.75] 89.41, [89.31, 89.50] 88.50, [88.38, 88.61]

20 000 85.73, [85.59, 85.87] 86.74, [86.61, 86.87] 85.82, [85.70, 85.93]

10 000 79.25, [79.00, 79.49] 80.90, [80.74, 81.06] 80.15, [80.02, 80.28]

5 000 70.32, [70.00, 70.63] 72.58, [72.36, 72.79] 72.03, [71.71, 72.34]

4 000 67.80, [67.55, 68.07] 70.12, [69.81, 70.42] 69.64, [69.35, 69.94]

1 000 49.22, [48.69, 49.74] 51.14, [50.69, 51.59] 50.38, [49.92, 50.82]

500 41.55, [41.14, 41.96] 42.92, [42.54, 43.29] 42.30, [41.88, 42.73]

100 26.98, [25.98, 27.97] 25.34, [24.63, 26.10] 27.53, [26.59, 28.47]

Table 5: Average highest test accuracy and 95% confidence interval of ResNet9
over 10 instances on CIFAR100 with training sets of different sizes (in %)

Training set size ResNet LAP-ResNet Regularized ResNet, λ ∈ {0.05, 0.2}

50 000 72.32, [72.08, 72.56] 72.43, [72.25, 72.61] 72.62, [72.41, 72.83]

25 000 64.34, [64.10, 64.57] 64.34, [64.11, 64.58] 64.76, [64.52, 65.00]

10 000 49.27, [48.84, 49.69] 50.57, [50.34, 50.80] 50.46, [50.19, 50.72]

5 000 34.74, [33.90, 35.58] 37.97, [37.68, 38.27] 38.44, [37.99, 38.89]

1 000 15.66, [15.23, 16.08] 16.42, [16.10, 16.75] 16.03, [15.55, 16.52]

Table 6: Average highest test accuracy and 95% confidence interval of ResNeXt50
over 10 instances on CIFAR100 with training sets of different sizes (in %)

Training set size ResNeXt LAP-ResNeXt Regularized ResNeXt, λ = 0.01

50 000 72.97, [71.79, 74.14] 76.11, [75.32, 76.89] 75.96, [74.92, 77.01]

25 000 62.55, [60.18,64.92] 64.11, [62.25, 65.96] 64.10, [62.36, 65.84]

12 500 45.90, [43.16, 48.67] 48.23, [46.39, 50.07] 47.77, [45.93, 49.62]

Finally, we point out that the least action principle acts by speeding up
training in the first epochs as seen for the training of ResNeXt50 models on
CIFAR100 in Figure 5. Batch training times are similar for the 3 models in Figure
5 on the same hardware (around 0.7 seconds).
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Fig. 5. Test accuracy during training of ResNeXt50 models on CIFAR100

C.3 Implementation Details

These are further implementation details about the experiments in Sections 6
and C.2. Orthogonal initialization with gain 0.01 is used for all ResNet models.
Kaiming initialization is used for all ResNeXt models. SGD is used for training
all models. The momentum is always set to 0.9 and weight decay to 0.0001.
For ResNet models, the learning rate is 0.01 and is divided by 5 at epochs
120, 160 and 200 (when the training goes that far). For ResNeXt models, the
learning rate is 0.1 and is divided by 10 at epochs 150, 225 and 250. Batch
size is 128 for all experiments. Architectures of ResNet [18] and ResNeXt [36]
blocks are standard and exactly as in the references. The ResNets used are single
representation ResNets (i.e. containing one residual stage) with 9 blocks. The
ResNeXt architecture used is the ResNeXt-50-32×4d from [36].

C.4 Additional Results on 2D Toy Data

Here is a comparison of our method with batch normalization (BN), which
is known to impact the loss surface’s geometry [5].We find that our method
cooperates well with BN to improve test accuracy on the same 2D task as in
Section 4 when the model is too small (1 block, Table 7), too big (100 blocks,
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Table 8), badly initialized (N (0, 5) initialization, Table 9) and when the dataset
is small (50 points, Table 10). LAP-ResNets use λ0 = 0.1, τ = 0.1 and s = 5.

Table 7: Average test accuracy and 95% confidence interval over 100 instances
on the circles 2D dataset with 1000 points and 1 block (in %)

No batch normalization Batch normalization

ResNet 76.6, [73.1, 80.2] 75.4, [72.3, 78.6]

Regularized ResNet, λ = 0.005 76.5, [73.0, 80.0] 75.6, [72.2, 78.9]

LAP-ResNet 82.1, [79.5, 84.7] 84.6, [81.5, 87.6]

Table 8: Average test accuracy and 95% confidence interval over 100 instances
on the circles 2D dataset with 1000 points and 100 blocks (in %)

No batch normalization Batch normalization

ResNet 89.1, [87.2, 91.00] 99.4, [99.0, 99.8]

Regularized ResNet, λ = 0.09 69.7, [65.6, 73.7] 99.5, [98.9, 1.00]

LAP-ResNet 75.7, [72.8, 78.6] 99.8, [99.7, 1.00]

Table 9: Average test accuracy and 95% confidence interval over 100 instances
on the circles 2D dataset with a N (0, 5) initialization (in %)

No batch normalization Batch normalization

ResNet 90.2, [88.8, 91.5] 98.0, [97.2, 98.8]

Regularized ResNet, λ = 0.04 89.7, [88.2, 91.3] 99.7, [99.5, 99.9]

LAP-ResNet 79.1, [75.3, 83.0] 99.4, [99.0, 99.8]

Table 10: Average test accuracy and 95% confidence interval over 100 instances
on the circles 2D dataset with 50 points and 9 blocks (in %)

No batch normalization Batch normalization

ResNet 88.2, [85.5, 90.1] 92.9, [90.9, 94.9]

Regularized ResNet, λ = 0.04 93.5, [91.4, 95.6] 94.4, [92.4, 96.3]

LAP-ResNet 95.8, [94.0, 97.6] 96.0, [94.6, 97.3]
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