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Abstract. One important property of group signatures is forward-secur-
ity, which prevents an attacker in possession of a group signing key to
forge signatures produced in the past. In case of exposure of one group
member’s signing key, group signatures lacking forward-security need to
invalidate all group public and secret keys (by re-initializing the whole
system) but also invalidate all previously issued group signatures. Most
of the existing forward-secure group signatures (FS-GS) are built from
number-theoretic security assumptions which are vulnerable to quan-
tum computers. The only post-quantum secure FS-GS scheme is built
from lattices by Ling et al. (PQCrypto 19) in the random oracle model,
following the classical framework of encrypt-then-prove, thus using non-
interactive zero-knowledge (NIZK) proofs. In this work, we achieve the
first FS-GS from lattices in the standard model. Our starting point is
the group signature of Katsumada and Yamada (Eurocrypt 19) which
replaces NIZK by attribute-based signatures (ABS), thus removing the
need for random oracles. We first modify the underlying ABS of Tsabary
(TCC 17) to equip it with forward-security property. We then prove that
by plugging it back in the group signature framework of Katsumada
and Yamada (Eurocrypt 19), we can design a FS-GS scheme secure in
the standard model with public key and signature size constant in the
number of users. Our constant size is achieved by relying on complexity
leveraging, which further implies relying on the subexponential hardness
of the Short Integers Solution (SIS) assumption.

1 Introduction

Group signatures were introduced as a new type of signatures by Chaum and van
Heyst [CvH91] in 1991 and they were designed to allow only members of a group
to sign messages while the identity of the signer remains hidden for the verifier
(anonymity). The latter can only ensure that a member belonging to the group
has signed the message. Moreover this property guarantees the unlinkability as
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well, preventing anyone to detect that two group signatures have been generated
by the same group member. Nevertheless, if necessary, the signature can be
opened by an entity called group manager who holds some secret information
and reveals the identity of the signer (traceability). These features make group
signatures very useful for real life applications including e-commerce systems,
anonymous online communications and trusted hardware attestations.

From their beginning until now, a great variety of constructions for group
signatures have been proposed, addressing different needs: in the random or-
acle model [CL04,BBS04] or standard model [BW06,Gro07], supporting static
groups [BMW03], dynamic groups [BSZ05] or partially dynamic groups and con-
structions based on different theoretical assumptions such as RSA [ACJT00], or
pairings [BBS04] for standard assumptions.

As for post-quantum constructions, there is a vast literature concerning
group signatures based on lattices, some of them being designed to support
most of the important properties listed above. Among them there are group sig-
natures in the static model [GKV10,CNR12,LLLS13,NZZ15,LNW15,LLNW16],
[LNWX18,BCN18,dPLS18], in the dynamic model where users have the flexi-
bility to join and leave the group [LNWX17], achieving partially dynamicity by
means of verifier-local revokability [LLNW14] (where new users can not join the
group but they can leave it being revoked), or using other tools to achieve par-
tial dynamicity [LLM+16,LMN16]. Concerning the random oracle model (ROM)
and the standard model, all of the existing lattice-based group signature schemes
are in the ROM except the construction by Katsumata and Yamada [KY19]. We
can further notice that the recent construction of non-interactive zero-knowledge
proof of knowledge (or NIZKPoK or NIZK) for all NP from [PS19] combined
with [BMW03] can be adapted in a group signature scheme in the standard
model in a straightforward manner (but very inefficiently as we explain in the
next subsection).

Forward-security [Son01,NHF09,LY10] is an important additional security
property sometimes considered in group signature constructions. Concerning lat-
tices, to the best of our knowledge there is one such construction in the ROM
model [LNWX19]. This property cuts the time into periods t and prevents at-
tackers from forging group signatures pertaining to past time periods t′ < t, even
if a secret group signing key is revealed at the current time period. As explained
in Song [Son01], in the context of group signatures, exposure of secret signing
keys is more damaging since an adversary being in the possession of a member’s
group signing key can produce signatures on behalf of the whole group, but still
remaining anonymous. As a consequence, all the public and secret keys of the
group need to be regenerated and all previously generated group signatures have
to be rendered invalid. We note that the solution to these problems is adding
a forward-secure mechanism to group signatures as was previously done first
for key exchange protocols ([Gün89],[DvOW92]) and then for digital signatures
([BM99],[IR01]), symmetric-key encryption ([BY03]) and public key encryption
systems ([CHK03]). This property aims to protect past use of private keys even
if an adversary breaks-in at the current moment of time. When entering a new
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time period t, a new secret key related to t is computed from the previous secret
key related to t − 1 through a one-way key evolution algorithm, the latter one
being deleted promptly afterwards.

1.1 Our contribution

Our main achievement in this paper is a lattice-based forward-secure group sig-
nature scheme without NIZK in the standard model with public key and sig-
nature size constant (independent) on the number of users. We note that this
is the first of its kind in the standard model as the only existing construction
[LNWX19] for group signatures from lattices achieving forward-security is in the
random oracle model. Our group signature corresponds to the transformation of
the lattice-based group signature from [KY19] using the idea from [LNWX19]
to obtain forward-security.

The main building block of our transformation is a lattice-based forward-
secure attribute-based signature scheme (FS-ABS) that we introduce later in
this paper as a novelty. We mention that there is a previous general construction
of FS-ABS due to [YLH+12] which combines the general primitive of credential
bundles (which can be instantiated with forward-secure digital signatures) and
non-interactive witness-indistinguishable (NIWI) proofs. Using this framework
one can achieve lattice-based FS-ABS as long as one can build forward-secure
digital signature and NIWI from lattices, but, to the best of our knowledge, there
is no construction in the lattice-settings for any of them. Therefore, we believe
that our construction of lattice-based FS-ABS is of self-interest.

We mention that our group signature scheme satisfies CCA-selfless-anonymity
(inherited from the base group signature scheme of [KY19]), a relaxation of the
CCA-full-anonymity, since the adversary is not in possession of all the secret
keys: he is missing the secret keys of the two members, whose identities compose
the challenge. As for the traceability property, we show that our scheme achieves
forward-secure traceability.

As already explained in [KY19], group signatures from lattices in the stan-
dard model can be achieved also by using the recent proposal for NIZK for all
NP from LWE [PS19] (published shortly after [KY19]) instead of the ABS. The
difference is that the ABS that we employ in our group signature scheme relies
only on the hardness of SIS, avoiding the potentially stronger LWE assump-
tion on which the NIZK mentioned above relies, leading to a potentially heavier
group signature construction. Another drawback of a potential instantiation of
group signatures using [PS19] is that the latter one relies on fully homomorphic
encryption for evaluating circuits making it very costly in time efficiency.

1.2 Overview of the building blocks for our construction

In order to have all the elements needed to give a technical overview of our
scheme, we start by describing three existing constructions: the group signa-
ture scheme of [KY19], the ABS proposed by Tsabary [Tsa17], and finally, the
forward-secure mechanism of the group signature construction of [LNWX19].

3



Group Signature Scheme without NIZK. The starting point of our work is
the recent lattice-based group signature scheme without NIZK in the standard
model [KY19]. Previous to this construction, all works on group signatures were
relying on the Sign-Encrypt-Prove framework defined by Bellare, Micciancio and
Warinschi [BMW03]. In this framework, to sign a message M , a user encrypts
both his certificate received from the group manager and a digital signature on
M . Finally, he proves in non-interactive zero-knowledge that every element is
well formed. Until recently (2019), constructing NIZK from lattices for any NP
language was a long-standing open problem and by that time Katsumata and Ya-
mada [KY19] proposed a group signature scheme that by-passed the utilization
of NIZK by replacing it with indexed attribute-based signature scheme (ABS).
Their idea is based on the fact that for group signatures the needed NIZK is
in the common reference string (CRS) model and, in the context of group sig-
natures, it resembles to designated-prover NIZK (DP-NIZK) where there is a
proving key kP that needs to be kept secret (and thus is not known to the veri-
fier, assuring zero-knowledge) and a verification key kV which is public. Anyway,
simply replacing NIZK in the CRS model with DP-NIZK is not enough since it
trivially breaks anonymity. The breakthrough idea of Katsumata and Yamada
was to view ABS as DP-NIZK. In attribute-based signatures, a signer with an
attribute x is provided a secret key skx from the authority and can anonymously
sign a message associated with a policy C using his secret key, if and only if, his
attribute satisfies the policy C. In particular, the signature hides the attribute
(anonymity) and users can not collude to pull their attributes together if none
of the attributes satisfies the policy associated to the message (unforgeability).
Now, an ABS can be seen as a DP-NIZK by the following association: the at-
tribute x is seen as a witness w and the ABS signing key skx can be set as the
proving key kP of the DP-NIZK. Thus proving that w is a valid witness to a
statement s i.e. (s, w) ∈ R for the NP relation R resorts to, firstly prepare a
circuit Cs(w) = R(s, w) that has the statement s hard-wired into it, secondly
sign a message associated with the policy Cs using the proving key kP = skx and
finally output the signature as the NIZK proof π. Anonymity and unforgeability
of the ABS assure the zero-knowledge property and soundness respectively.

Having shown a way of substituting the NIZK with ABS, it remains to in-
dicate how to use ABS to construct group signature. We briefly explain, in the
following, the general framework from [KY19]. The group manager issues for
user i a key Ki of a secret key encryption (SKE) scheme and an ABS signing
key ski||Ki where i||Ki is seen as an attribute. To sign a message M , the group
member i encrypts his identity under Ki obtaining cti = SKE.Enc(Ki, i) and cre-
ates an attribute-based signature for some policy Ccti which serves as a NIZK
proof of the fact that cti encrypts the identity. The circuit Ccti has the statement
cti hardwired such that Ccti(i||Ki) := (i = SKE.Dec(Ki, cti)). The traceability
property of the group signature holds from unforgeability of ABS and anonymity
holds from anonymity of the ABS and semantic security of the SKE.

As for the instantiation of the ABS from lattices, [KY19] gives two possible
solutions: the first one uses the ABS proposed by Tsabary [Tsa17] proven secure
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under the SIS assumption and the second one is an indexed ABS designed by
them, relying also on the SIS assumption. The need for the second construction
is explained by the problems encountered when trying to plug the first construc-
tion into a group signature. Tsabary’s scheme achieves selective unforgeability
which is not enough for security purposes of group signatures. Adaptiveness is
the required property and can be easily achieved via complexity leveraging with
the drawback that this approach requires a subexponential security loss. We re-
mark that in [KY19] they emphasize that they don’t really need adaptiveness but
rather something complementary to selectiveness called co-selective unforgeabil-
ity. Unfortunately, we can not achieve this property directly, without complexity
leveraging (see section 3.3 for more details). The two different ABS constructions
give two different group signature schemes with the following properties:

(i) Tsabary’s ABS gives rise to a group signature scheme with public key and
signature size constant (independent) in the number of users and whose
security relies on the hardness of LWE with polynomial approximation factor
and subexponential hardness of SIS with polynomial approximation factor.

(ii) The second ABS gives rise to a group signature scheme with public key
and signature size linear in the number of users whose security relies on the
hardness of LWE and SIS with polynomial approximation factors.

Attributed Based Signature from Constrained Signature of Tsabary.
The main building block of our group signature is an Attribute Based Signature
scheme. In the following we briefly explain the ABS developped in Tsabary’s
paper. First of all, the construction in Tsabary’s paper is not really an attribute-
based signature but rather a key-policy constrained signature or simply con-
strained signature. We note that the other flavour of constrained signatures, as
defined in [Tsa17], called message-policy constrained signature is equivalent to
attribute-based signatures. In constrained signatures, a signing key skf is as-
sociated with a policy f : {0, 1}∗ → {0, 1}, called the constraint, and a key
skf can sign a message x ∈ {0, 1}∗ only if the message satisfies the policy i.e.
f(x) = 0. In attribute-based signatures each key is associated with an attribute
x ∈ {0, 1}∗ and a key skx can sign a policy f only if the attribute satisfies
the policy i.e. f(x) = 0. A constrained signature can be easily transformed into
an attribute-based signature using universal circuits (which we denote Ux) as
briefly explained in [KY19] (but not done there), transformation that we apply
in Section 3 and that we sketch below.

The ABS scheme (as well as the original constrained signature of [Tsa17])
is built from lattice trapdoors. The verification key vk consists of a uniformly

sampled matrix
−→
A = [A1‖...‖A`] ∈ Zn×(m×`)

q (with ` the input size of the
circuit C) and a close to uniform matrix A ∈ Zn×pq while the master signing
key msk is a trapdoor for A denoted A−1

γ0 . The signing key skxi is associated to
an user i (we prefer the simplified version of this notation even though it would
be clearer to use skUxi as notation) and to an universal circuit Uxi (which has
the attribute hard-wired and takes as input the policy (circuit) and a message).

The secret key skxi is a trapdoor [A‖Axi ]
−1
γ where Axi =

−→
A ·HUxi

∈ Zn×mq is
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computed from
−→
A and Uxi using the function EvalF. This function, associated

with a function EvalFX, allows to compute HUxi
= EvalF(Uxi ,

−→
A), and HUxi ,x

=

EvalFX(Uxi ,x,
−→
A) both in Z(`m)×m and of bounded norm such that (

−→
A−x⊗G)·

HUxi ,x
=
−→
A ·HUxi

−Uxi(x)G mod q, where G is the gadget matrix. Then, the

manager can easily generate the secret key skxi using it’s own trapdoor A−1
γ0 . A

valid signature for a messageM , a circuit C and an attribute xi is a short vector σ

such that [A‖
−→
A−xi⊗G]·σ = 0 mod q. We note that for every tuple (C,M, xi),

a trapdoor [A‖
−→
A−xi⊗G]−1

γ′ can be derived from [A‖
−→
A−Uxi(C,M)G]−1

γ′ when
Uxi(C,M) = C(xi) = 0.

We remark that, at this stage, the unforgeability of the ABS can be eas-
ily broken, as explained in [KY19] because the message is not bounded to the
signature (both signature and verification just ignore the message) and a valid
signature for a pair of policy and message (C,M) is also valid for (C,M ′) for
M 6= M ′. Therefore, in the security game, we can not allow signature queries
and following the idea of [KY19], we use the fact that a scheme that is unforge-
able only when the adversary can not make signature queries can be generically
transformed into a scheme that is unforgeable even when the adversary is al-
lowed to make signature queries. In short, the idea in [KY19] is to answer the
signing queries using the secret key of a dummy user which does not exist in
the real system. We will need to partition the set of all possible message-policy
pairs into a challenge set and a controlled set (using admissible hash functions)
with the hope that the adversary asks queries that fall into the controlled set to
which the challenger can answer with the help of the dummy key. We also hope
that the attacker outputs a forgery in the challenge set to allow the simulator
to solve a hard problem.

Forward Secure Group Signature of [LNWX19]. Recall that for achieving
forward-secure group signature, one needs a one-way key evolving mechanism
for deriving secret keys for every period of time. Let us now briefly explain this
mechanism following the idea of [LNWX19]. Let T = 2d be the total number
of time periods, the time periods are represented in a binary tree, where each
time period is a leaf of the tree. Each user secret key for a time period t is then
associated with a sub-tree of depth d which uniquely defines the time period
t. Let z be a binary string (corresponding to a time period) of lenth dz. The
set Nodes(t←T−1) contains nodes for which bases (trapdoors) are derived at a
current period of time t and which allow to compute subsequent keys in the
key update algorithm using the bonsai tree technique [CHKP10]. Each user
will have associated a matrix corresponding to period time z ∈ Nodes(t←T−1):

Axi,z = [A‖Axi‖T
z[1]
1 ‖· · · ‖Tz[dz ]

dz
] where the last dz matrices corresponding to

the bits of dz are public. Therefore, the group signing key of user i at time t is
{Si||z, z ∈ Nodes(t←T−1)} which satisfies Axi,z ·Si||z = 0 mod q. The user is then
able to compute all possible Si||t by employing Si||z if z is an ancestor of t where
t is the binary representation of a period of time. The basis delegation technique
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allows users to compute trapdoor matrices for all the descendent nodes in the
set Nodes(t←T−1) and therefore to compute all the subsequent signing keys.

1.3 Our construction

We are now able to better explain our contribution. We start from the con-
strained signature of Tsabary, we transform it in an ABS (according to [KY19]
suggestion) as previously explained, we equip it with forward-security (following
the mechanism of [LNWX19]), then plug it into the group signature of [KY19].
Thus we achieve the first forward-secure group signature from lattices without
NIZK in the standard model having public key and signature size independent of
the number of users for which we managed to prove forward-secure traceability
and CCA-selfless anonymity. The drawback is that the security assumption on
which the GS scheme relies is SIS with subexponential hardness.

Our main building block is then a forward secure Attribute Based Signature
which is built using the idea from [LNWX19] having as starting point Tsabary’s
constrained signature. As explained in [LNWX19], the advantage of this method
is that it incurs only logarithmic dependency on T . Therefore our construction
achieves signature size and public key size constant in N and logarithmic in T .
We note that [LNWX19] applied it directly for building forward-secure group
signature (FS-GS) while we need to apply it first on our ABS to get forward-
secure attribute-based signatures (FS-ABS). Indeed, in an encrypt-then-prove
paradigm for group signatures, the transformation of [LNWX19] into a forward
secure group signature is independent of the encryption scheme and of the NIZK
scheme used to prove the membership. This is because the group secret key of a
user does not appear as input in the NIZK proof but is embedded in a ciphertext
on which the proof is performed. Instead, the paradigm on which we build our
construction uses an ABS to prove that the user belongs to the group, and the
ABS secret key is a direct component of the group secret key of a user. This
means that if we want to update the group secret key of a user, we need to
update the ABS secret key as well.

From this observation and the fact that the ABS built by Tsabary [Tsa17]
is based on lattice trapdoors which fit perfectly with bonsai trees, we can then
adapt the forward security mechanism of [LNWX19] to the ABS derived from
[Tsa17], and use the resulting ABS to get forward-secure group signature scheme.
We note that if we try to apply the same technique for the second ABS from
[KY19] (also built from lattice trapdoors) we can not get forward-security. The
problem is that the design of ABS forces us to keep the initial secret key derived
by the master authority for every user in order to be able to compute all the
other subsequent keys for the following periods of time. This means that an
adversary who gains access to a secret key for a certain period of time, would be
able to compute the secret keys for all periods of time (including previous ones).

The main difficulty encountered when trying to add forward security to the
ABS derived from [Tsa17] is then the way to deal with the trapdoors for each
of the time periods. This includes the trapdoors considered in the ABS con-
struction as well as in the simulation. Moreover this modification induces a new
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time parameter t, that has to be handled in the unforgeability proof. Indeed,
the construction of [Tsa17] has been designed to only consider a fixed matrix

A and a vector of matrices
−→
A linked to the attribute to generate and verify

signatures. But now we add log t additional matrices in order to integrate the
time parameter, in a similar way to [LNWX19]. This transformation implies that
the secret keys have to be modified according to the time period considered. It
means that a trapdoor update mechanism needs to be built from the trapdoor
construction of Tsabary, using tools introduced in the bonsai tree mechanism
[CHKP10], and the time component has to be dealt with in the different queries
from the simulation-based proof.

Finally, as we apply forward-secure property to an attribute-based construc-
tion in our case, we also have to handle an additional component which is the
attribute. A naive adaptation from the transformation of [LNWX19] (on a group
signature) to our construction (an attribute based signature) would not be se-
cure. Indeed, we have to deal with two types of trapdoor: the trapdoor inherent
to the ABS construction derived from [Tsa17], and the trapdoors given by the
matrices linked to the time parameter. In the security proof of the ABS scheme,
we need to simulate these two types of trapdoors according to each other, and
according to the time period considered, in order to be able to answer all the
queries of an attacker. At the same time, we expect all these trapdoors to vanish
when the forgery of the attacker is outputted, in order to be able to conclude
the simulation and then to argue about the security reduction getting a solution
to a hard problem.

Related work. The only previous work on forward-secure group signature
schemes from lattices is the work of [LNWX19] in the random oracle model using
NIZK achieving signature size Õ(λ(log N + log T )) and group public key size
Õ(λ2(log N + log T )). Our scheme is constant in the number of group members
and logarithmic in the number of time periods i.e. Õ(λlog T ) and group public
key size Õ(λ2log T ). Their scheme satisfies full-anonymity and forward-secure
traceability under SIS and LWE hardness.

Open problems. One open problem would be to achieve a group signature
scheme with the same properties without relying on complexity leveraging (that
we need to employ in the underlying ABS). Another open problem would be to
upgrade the anonymity property from selfless anonymity to full anonymity.

2 Preliminaries

2.1 Lattices and trapdoors

In this paper we use several values defined as follows: λ is the security parameter
and n, m and q ≥ 2 are integers such that n = poly(λ) and m ≥ nd log qe. The
discrete Gaussian distribution DZm,τ over Zm with parameter τ is the distribu-

tion where the probability of all x is proportional to e−π‖x‖/τ
2

. The norm of a
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matrix A = [a1, . . . ,am] ∈ Zn×mq , is denoted ‖A‖= maxj‖aj‖, j ∈ [m], and it is
the maximum of the Euclidean norm of its vectors.

Lattices. For a matrix A ∈ Zn×mq and u ∈ Znq that admits a solution to the

equation A ·x = u mod q, define the m-dimensional lattice: Λ⊥(A) = {x ∈ Zm :
A · x = 0 mod q} ⊆ Zm, and the coset Λ⊥u (A) = {x ∈ Zm : A · x = u mod q}.

We briefly remind the SIS assumption and its hardness.

Definition 1 (SISn,q,B,m). Given a uniformly chosen matrix A ∈ Zn×mq , find
nonzero integer vector s ∈ Zm such that ‖s‖∞≤ B and A · s = 0 mod q. SISn,q,B,m
is hard if for any adversary A, the probability to solve SIS is negligible, i.e. it
is bounded by negl(λ). SISn,q,B,m is sub-exponentially hard if the probability to
solve SIS is bounded by 2−O(nε) · negl(λ) for some constant 0 < ε < 1.

Trapdoors. For all v ∈ Znq , A−1
γ0 (v) is the random variable with discrete gaus-

sian distribution DZm,γ0 conditioned on A ·A−1
γ0 (v) = v mod q. A γ0-trapdoor

for A allows a procedure that can sample from A−1
γ0 (v) in time poly(n,m, log q)

for any v ∈ Znq . By overloading notation we denote a γ0-trapdoor for A by A−1
γ0 .

We define the gadget matrix G based on the vector g ∈ Zkq whose entries are

the power of two gt := [1 2 4 · · · 2k−1] and k = dlog qe. The matrix G is
the diagonal concatenation of g n times, i.e. G = g ⊗ In ∈ Zn×nkq .

Lemma 1 (Trapdoor generation [Ajt96,MP12]). There exists an efficient
procedure, that we call TrapGen(1n, 1m, q), with an efficiently computable value
m0 = O(n log q) such that for all m > m0 outputs a pair (A,A−1

γ0 ), where
A ∈ Zn×mq is at negligible distance from uniform and A−1

γ0 is a γ0-trapdoor for

A with γ0 = O(
√
n log q log n).

Lemma 2 (Leftover Hash Lemma [HILL99]). Let m,n, q > 1 be integers

such that m > 4n log q and q prime. Let A
$←− Zm×nq , r

$←− {0, 1}m, then (A,Ar)
is at negligible statistical distance from uniform distribution on Zm×nq × Znq .

2.2 Delegation functions

During different time periods, a signer will need to delegate some lattice trapdoor
from a previous period to a next one. We make use of the following lemmas.

Lemma 3 (Trapdoor extension [ABB10,MP12]). Let ∈ Zn×mq be a ma-
trix with trapdoor M−1

γ and N ∈ Zn×pq a matrix such that M = NS mod q where
S ∈ Zp×mq with s1(S) its largest singular value. Then we can use (M−1

γ ,S) to

sample from N−1
γ′ for any γ′ ≥ γ · s1(S).

Lemma 4 ([CHKP10, Lemma 3.2]). There is a deterministic polynomial-
time algorithm ExtBasis with the following properties: given an arbitrary A ∈
Zn×mq whose columns generate the entire group Znq , an arbitrary basis S ∈ Zm×m

of Λ⊥(A), and an arbitrary Ā ∈ Zn×m̄q , ExtBasis(S,A′ = A‖Ā) outputs a basis

S′ of Λ⊥(A′) ⊆ Zm+m̄ such that ‖S̃′‖= ‖S̃‖. Moreover the same holds even for
any permutation of the columns of A′.
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There exists a function RandBasis developed by [CHKP10], which verifies
the following lemma:

Lemma 5 ([CHKP10, Lemma 3.3]). Let S be a basis of a m-dimensional
integer lattice Λ and a parameter s ≥ ‖S̃‖·ω(

√
log n). The algorithm

RandBasis(S, s) outputs a new basis S′ of Λ such that, with overwhelming prob-
ability, S′ verifies ‖S′‖6 s ·

√
m. Moreover, for any two basis S0,S1 of the same

lattice and any s > max{‖S̃0‖, ‖S̃1‖}·ω(
√

log n), the outputs of RandBasis(S0, s)
and RandBasis(S1, s) are within negl(n) statistical distance.

We further need an important property of lattice trapdoors ([ABB10],[MP12]):

Lemma 6. For A ∈ Zn×pq and R ∈ Zp×mq with m = ndlog qe, one can compute
[A‖AR + G]−1

γ for γ = O(
√
mp ‖R‖∞).

2.3 Evaluation functions

In order to generate or check the validity of a signature, we need to execute
some evaluation of a function with a set of lattices as input. The output of this
evaluation is 1 if the function evaluated on an attribute x is not valid and 0 if
the evaluation is correct. We use the notations and definition of the evaluation
functions developed by Tsabary [Tsa17]. Moreover we denote [x1G|· · · |x`G] by
x⊗G with x = (x1, · · · , x`) ∈ {0, 1}`.

Theorem 1 ([Tsa17, Theorem 2.7]). There exist efficient deterministic al-
gorithms EvalF and EvalFX such that for all n, q, ` ∈ N, m = ndlog qe, and for

any sequence of matrices
−→
A = (A1, · · · ,Al) ∈ (Zn×mq )`, for any depth d boolean

circuit f : {0, 1}` → {0, 1} and for every x = (x1, · · · , x`) ∈ {0, 1}`, the outputs

Hf = EvalF(f,
−→
A), and Hf,x = EvalFX(f,x,

−→
A) are in Z(`m)×m and it holds that

‖Hf‖∞, ‖Hf,x‖∞6 (2m)d and (
−→
A − x⊗G) ·Hf,x =

−→
A ·Hf − f(x)G mod q.

As in [KY19], we employ secret key encryption (SKE) and one-time
signature (OTS), both from lattices, in order to build our group signature
scheme. We use the SKE scheme based on LWE from [KY19], which is a secret
key variant of [Reg05] and the OTS scheme from [Moh10]

2.4 Secret Key Encryption (SKE) from LWE

In this subsection we present the secret key encryption scheme from LWE defined
by [KY19]. Recall that we need SKE for our both proposals for group signature
scheme. The SKE scheme described below is IND-CPA secure and has a decryp-
tion circuit with O(log λ)-depth. We mention that for the security of the group
signature schemes that we presented in this paper, we need IND-CCA security
which can be achieved from IND-CPA security and message authentication codes
(MAC) scheme by a generic construction as explained in [KY19].

The SKE scheme below is a secret key variant of the Regev’s scheme [Reg05].
The parameters of the scheme are the following: λ is the security parameter, l
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is the dimension of the message space M = {0, 1}l, n = poly(λ), q is a prime
polynomially bounded with q ≥ 24n+ 2 and m = λ+ ndlog qe

SKE.Setup(1λ) Set the dimensions n and m of the matrix and the modulus q.
Output pp = (n,m, q).

SKE.Gen(pp) Sample two matrices S0
$←− Zn×mq and S1

$←− Zn×lq . Output the
secret key K = (S0,S1)

SKE.Enc(K,M) Parse K as (S0,S1). Sample a
$←− Znq \ {0},x0

$←− DZm,3
√
n and

x1
$←− DZl,3

√
n. Compute

c>0 := a>S0 + x>0 c>1 := a>S1 + x>1 + dq/2e ·M

where M ∈ {0, 1}l is considered as a row vector. Finally, output the cipher-
text ct := (a, c0, c1)

SKE.Dec(K, ct) Parse ciphertext as ct = (a, c0, c1) and check its validity. Com-
pute v>0 := c>0 − a>S0 and v>1 := c>1 − a>S1. If v0 /∈ [−3n, 3n]m, output
Invalid. Otherwise, recover Mi ∈ {0, 1}l for i ∈ [l] as follows: if the i-th
coefficient of v1 is in [−3n, 3n] then Mi is 0, otherwise, Mi is 1.

Correctness. This follows since we have ‖x0‖∞ , ‖x1‖∞ ≤ 3n with probability
1 and q ≥ 24n+ 2.

2.5 One-Time Signature (OTS) scheme

A one-time signature scheme is defined by the following algorithms:

OTS.KeyGen(1λ) is a randomized algorithm taking as input a security parameter
1λ and outputs a verification key ovk and a signing key osk.

OTS.Sign(osk,M) takes as input a secret key osk and a message M and outputs
a signature σ.

OTS.Verify(ovk, σ,M) takes as input a verification public key ovk, a message M
and a signature σ and outputs Valid or Invalid.

Correctness. For all λ, (ovk, osk) ∈ OTS.KeyGen(1λ), M in the message space
and σ ∈ OTS.Sign(osk,M),

OTS.Verify(ovk, σ,M) = Valid holds.
The security notion required for OTS scheme is the classical strong unforge-

ability with the difference that the adversary is allowed to make a single signing
query instead of polynomially many. We define it using a game model between
a challenger and an attacker A to define this security notion.

Setup: At the beginning of the game, the challenger runs OTS.KeyGen(1˘) →
(ovk, osk) and gives 1λ and ovk to A.

Signing Query: During the game A can perform a single signing query. When
receiving M , the challenger runs OTS.Sign(osk,M)→ σ and returns (M,σ)
to A.
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Forgery: Eventually A outputs (M∗, σ∗) as a forgery. Then A wins the game
if OTS.Verify(ovk, σ∗,M∗) = Valid and (M,σ) 6= (M∗, σ∗)

We then define the advantage of the attacker A as the probability that A
wins the above game.

We say that an OTS scheme is strongly unforgeable, if for all PPT adversary,
the advantage in the above game is negligible.

2.6 Admissible hash functions

Admissible hash functions represent a family of hash functions introduced
in [BB04], which allows to separate the input space into two sets, the challenge
set and the controlled set. In practice, in a simulation-based game, a simulator
owning a dummy key can answer to queries in the controlled set but not in the
challenge set, and the adversary is expected to make his forgery in the challenge
set, allowing the simulator to solve a hard problem.

We fit in the definition of admissible hash functions given in [KY19].
Intuitively, WldCmp is a string comparison function with wildcards which

takes as input three strings y, z, w and compares z and w only at those points
where yi = 1.

Definition 2 ([KY19, definition 1]). Let ` := `(λ) and `′ := `′(λ) be some
polynomials. We define the function WldCmp : {0, 1}`×{0, 1}`×{0, 1}` → {0, 1}
as

WldCmp(y, z, w) = 0⇔ ∀i ∈ [`], ((yi = 0) ∨ (zi = wi)),

where yi, zi and wi denote the i-th bit of y, z and w respectively. Let {Hλ :
{0, 1}`′(λ) → {0, 1}`(λ)}λ∈N be a family of admissible hash functions if there
exists an efficient algorithm AdmSmp that takes as input 1λ and Q ∈ N and
outputs (y, z) ∈ {0, 1}` × {0, 1}` such that for every polynomial Q(λ) and all
X∗, X(1), · · · , X(Q) ∈ {0, 1}`′(λ) with X∗ /∈ {X(1), · · · , X(Q)}, we have
Pr(y,z)[WldCmp(y, z,H(X∗)) = 0 ∧ (WldCmp(y, z,H(X(j))) = 1 ∀j ∈ [Q])] >
∆Q(λ), for a noticeable function ∆Q(λ), where the probability above is taken over

the choice of (y, z)
$←− AdmSmp(1λ, Q).

3 Forward-Secure Indexed Attribute-Based Signature
scheme from lattices

As already explained in the introduction, we replace the ABS scheme in the
general construction of [KY19] with a forward-secure indexed ABS. We start by
giving the definition and the security requirements of a forward-secure indexed
attribute based signature. We note that the ABS scheme supports multiple users
since it is designed as a building block for group signature scheme.

The starting point of our scheme is the constrained signature of [Tsa17]. We
first adapt it into an indexed attribute-based signature, by including an index
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i into the attribute x, following the idea of [KY19]. Moreover we extend this
construction to a forward-secure attribute-based signature scheme, by applying
a transformation similar to [LNWX19]. The idea of this transformation is that
we consider a pair of matrices Tb

j , b ∈ {0, 1} for every bit j of the time pe-

riod t considered. Then by concatenating these matrices Tb
j to the public key

of [Tsa17], we can include a time period t into the verification key and the sig-
natures. The technical difficulty that arises when using this transformation into
the Tsabary’s construction is simulating the secret keys for each period of time
and for each user, without possessing the master secret key. This can be done
by using “dummy” secret keys which vanish when the signature is made for an
identity and a time period chosen selectively by the adversary at the beginning
of the game, allowing the simulator to solve a hard problem (which is the SIS
problem). We then get a new forward-secure attribute-based signature scheme
which is independent of the number of users N , and only logarithmic on the
total number of periods T .

3.1 Framework and security properties

We denote {Cλ}λ∈N the set of circuits with domain {0, 1}k(λ) and range {0, 1}.
We bound the size of every circuit in {Cλ} by kc = poly(λ). We also denote
the space of messages as {Mλ}λ∈N, for which we bound the size elements by
km = poly(λ). Usually we simplify notation and just denote these spaces C and
M. We then define the forward-secure indexed attribute-based signature scheme
for the circuit class C:

Definition 3. A forward-secure indexed attribute-based signature (FSI-ABS)
scheme consists of the following algorithms:

ABS.Setup(1λ, 1N , 1T ) The setup algorithm takes as input λ the security pa-
rameter, N the size of the index space and T the number of time periods,
given in unary form, and it outputs a master public key mpk and a master
secret key msk.

ABS.KeyGen(msk, i, xi) The key generation algorithm takes as input the master
secret key msk, an index i ∈ [N ] and the attribute xi ∈ {0, 1}k. It outputs
skxi,0, the initial secret key associated to xi.

ABS.KeyUpdate(mpk, i, skxi,t, t+ 1) The key update algorithm takes as input the
master secret key msk, an index of an user i as well as its secret key for the
time t, skxi,t. It updates this key skxi,t for the next time period t + 1 and
outputs skxi,t+1.

ABS.Sign(mpk, skxi,t, C,M, t) The signing algorithm takes as input the master
public key mpk, a secret key skxi,t for the current period of time t, a circuit
C ∈ Cλ, a message M ∈Mλ and a time period t and it outputs an attribute-
based signature σ if C(xi) = 0.

ABS.Verify(mpk, C,M, σ, t) The verification algorithm takes as input the master
public key mpk, the circuit C, the message M , the attribute-based signature
σ and the time period t. This algorithm outputs Valid if the signature σ is
valid for the time period t and Invalid otherwise.
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For a FSI-ABS scheme, we require correctness and two security properties:
perfect-privacy and forward-secure policy-selective unforgeability. Perfect privacy
captures the idea that the attribute used to sign a message must remain anony-
mous. The unforgeability property says that even if users collude they can not
forge a signature on a message associated with a policy if none of the attributes
satisfies the policy.We note that we can not achieve selective unforgeability di-
rectly, but we start from no-signing-query and apply a transformation using
admissible hash functions to obtain selective unforgeability. We explain this in
more detail at the end of this section.

Correctness. We require that for all λ,N ∈ poly(λ), T ∈ N, t ∈ [T ], (mpk,msk)←
ABS.Setup(1λ, 1N , 1T ), i ∈ [N ], xi ∈ {0, 1}k, C ∈ Cλ such that C(xi) = 0, M ∈
Mλ, skxi,0 ← ABS.KeyGen(msk, i, xi), skxi,t ← ABS.KeyUpdate(mpk, i, skxi,t−1, t),
σ ← ABS.Sign(mpk, skxi,t, C,M, t), we have that ABS.Verify(mpk, C,M, σ, t) =
Valid.

Perfect privacy. A FSI-ABS scheme provides perfect privacy if for all λ,N ∈
poly(λ), T ∈ N, (mpk,msk) ← ABS.Setup(1λ, 1N , 1T ), x0, x1 ∈ {0, 1}k, i0, i1 ∈
[N ], C ∈ Cλ, t ∈ [T ], C(x0) = C(x1) = 0, M ∈Mλ,
skxb,0 ← ABS.KeyGen(msk, ib, xb) and skxb,t ← ABS.KeyUpdate(mpk, b, skxb,t−1, t),
the distributions ABS.Sign(mpk, skx0,t, C,M, t) and ABS.Sign(mpk, skx1,t, C,M, t)
are indistinguishable.

Forward-secure policy-selective unforgeability. We define the forward-secure
policy-selective unforgeability for an indexed attribute-based signature
scheme following the framework from [YLH+12]. We use a game model between
a challenger and an attacker A to define this security notion.

Setup: At the beginning of the game, the adversary A is given 1λ, 1N , 1T as
input. It then sends to the challenger the tuple (C∗,M∗, t∗) consisting of
a circuit, a message and a time period for which he is going to forge a
signature. The challenger gets (mpk,msk)← ABS.Setup(1λ, 1N , 1T ). It gives
mpk to A. At the start of each time period t ∈ [T ], the challenger announces
the beginning of t to A. During current time period t, the challenger responds
to A’s queries as follows:

Key Queries: A sends (i, xi, t) to the challenger and gets back skxi,t.
Signing Queries: A can perform some signing queries to the challenger during

the game.
If A queries (C,M, t, i), with M ∈ M, C ∈ C, i ∈ [N ] and C(xi) = 0, the
challenger generates σ ← ABS.Sign(mpk, skxi,t, C,M, t) and sends it to A.

Forgery: Eventually A outputs (C∗,M∗, σ∗, t∗) as a forgery. Then A wins the
game if:

1. C∗ ∈ C,
2. (C∗,M∗, t∗, ·) was not queried in a Signing query,
3. ABS.Verify(mpk, C∗,M∗, σ∗, t∗) = Valid,
4. C∗(xi) = 1 for any key queried by A respective to t and xi where t ≤ t∗.
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We then define the advantage of the attackerA against forward-secure policy-
selective unforgeability as the probability that A wins the above game. We say
that a scheme satisfies the forward-secure policy-selective unforgeability prop-
erty, if for all PPT adversary, the advantage in the above game is negligible.

In our ABS construction, we make use of two different flavours of unforge-
ability as in [KY19]:

– No-signing-query unforgeability: The game model of the no-signing-
query unforgeability is the same as policy-selective unforgeability, but the
attacker can not perform signature queries.

– Adaptive unforgeability: The game model of the adaptive unforgeability
is the same as the policy-selective unforgeability, but the attacker is not
asked anymore to give the tuple (C∗,M∗, t∗) at the beginning of the game,
he can rather choose it adaptively during the game.

3.2 Construction of FSI-ABS scheme from lattices

We adapt the constrained signature developed by Tsabary [Tsa17] to a forward-
secure attribute-based signature scheme. As explained by Katsumata and Ya-
mada [KY19], the signature scheme of Tsabary is not an attribute-based sig-
nature but a constrained signature. It means that in the constrained signature,
a user does not sign a circuit but an attribute. Then the role of the attribute
and the circuit are exchanged compared to an actual attribute-based signature
scheme. However, as explained in [KY19], we can turn a constrained signature
into an attribute-based signature: we consider a constraint space composed of all
d-depth bounded circuit Fd = {f : {0, 1}` → {0, 1}}, with ` = poly(λ), then a
constraint f can be seen as a universal circuit U(·, ·, x) (that we denote Ux(·, ·)),
which takes as input the circuit-message pair (C,M) (seen as a string of size `).

Our contribution is to build a forward-secure attribute-based signature scheme
meaning that the lifetime of the scheme is divided into T = 2d discrete periods.
To represent the time periods we use a binary tree, then each time period t is
associated with a leaf Bin(t). Following [BSSW06], for j ∈ [d + 1], we define a
time period’s “second sibling at depth j”. Intuitively, it corresponds to the right
neighbour at depth j of each node on the path from the root to the leaf Bin(t).

Sibling(j, t) =


(1) if j = 1 and Bin(t)[j] = 0
(Bin(t)[1], ...,Bin(t)[j − 1], 1) if 1 < j ≤ d and Bin(t)[j] = 0
⊥ if 1 6 j ≤ d and Bin(t)[j] = 1
Bin(t) if j = d+ 1

 .

We also define node set Nodes(t→T−1) to be {Sibling(1, t), ...,Sibling(d+1, t)}.
The goal of this set is to uniquely define the path to each leaf of the tree.

We consider also a function called bitstr which takes as input a message-circuit
pair (C,M) and which outputs its input seen as a string of bits. Then bitstr :
{0, 1}kc×{0, 1}km 7→ {0, 1}`, such that bitstr(C,M) = {C1, · · · , Ckc ,M1, · · · ,Mkm}.
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Selection of parameters Given the security parameter λ, the parameters m0, p, γ0

and τs are chosen according to TrapGen algorithm, T = 2d is chosen as a power
of 2, for d ∈ N, and is the number of time periods considered, and ` is the size
of input of the circuit. We choose parameters τu and B by referring to Theorem
1. Finally sj is dictated also by Lemma 3. Then we set:

– m = 4ndlog qe, m0 = O(n log q) > 4n log q,
– p = max{m0, (n+ 1)dlog qe+ 2λ},
– γ0 = O(

√
ndlog qelog n),

– τs = max{√p · ` · 2dm1.5+d, γ0},
– τu = τs ·

√
` · 2dm0.5+d,

– B = τu
√

(1 + d) · p+ ` ·m,
– sj = O(

√
nd log q)j+1 · ω(

√
logn)j+1 for j ∈ [d].

ABS.Setup(1λ, 1N , 1T ) On input the security parameter 1λ, 1N where N is
the number of indexes i ∈ [N ] and 1T where T is the number of time periods
T = 2d for some d ∈ N, it sets the parameters n,m, p, q, γ0 to be polynomial
in λ. Then, it generates:

• uniform matrix
−→
A = [A1‖...‖A`]

$←− Zn×`mq ,
• (A,A−1

γ0 )← TrapGen(1n, 1p, q), with A ∈ Zn×pq and A−1
γ0 its trapdoor,

• 2d matrices Tb
j

$←− Zn×pq for all j ∈ [d] and b ∈ {0, 1}.
The algorithm outputs: mpk = (A,

−→
A , {Tb

j}j∈[d],b∈{0,1}) and msk = (A−1
γ0 ).

ABS.KeyGen(msk, i, xi) On input the master secret key msk, the index i ∈
[N ] and the attribute xi ∈ {0, 1}k, it computes Uxi , HUxi

= EvalF(Uxi ,
−→
A) ∈

Fig. 1. A binary tree with time periods T = 23. In order to fill the set Nodes(t→T−1)

we begin with the leaf Bin(t) that we add in the set Nodes(t→T−1), together with its
sibling (which is its right neighbour), if it exists. Then recursively, we go up in the
tree to the parent of the node considered (coloured in red), and we add its sibling
(coloured in orange) to the set Nodes(t→T−1) (still if it exists). We keep going this way,
until we reach the root of the binary tree. We stop then and output the corresponding
list Nodes(t→T−1). On the path from node ε to the leaf node (001) we then have
Nodes(1→7) = {(1), (01),⊥, (001)}.
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Z`m×mq as defined in Theorem 1 and Axi =
−→
A ·HUxi

∈ Zn×mq . Then, it uses

A−1
γ0 to compute Rxi = [A‖Axi ]

−1. Then it determines the set Nodes(0→T−1)

and for z ∈ Nodes(0→T−1):

• if z =⊥, set skxi [z] =⊥,
• else it denotes dz as the bit-length of z, with dz 6 d, and computes the

matrix: Axi,z = [A‖Axi‖T
Bin(z)[1]
1 ‖· · · ‖TBin(z)[dz ]

dz
] ∈ Zn×((dz+1)p+m)

q ,
then it computes: Rxi,z ← RandBasis(ExtBasis(Rxi ,Axi,z), sdz ), and
set skxi [z] = Rxi,z,

Finally we get: skxi,0 = {skxi [z], z ∈ Nodes(0→T−1)}.
ABS.KeyUpdate(mpk, i, skxi,t, t+ 1) First parse the set skxi,t = {skxi [z], z ∈

Nodes(t→T−1)} and determine the set Nodes(t+1→T−1).
For z′ ∈ Nodes(t+1→T−1):

• if z′ =⊥, set skxi [z
′] =⊥.

• Otherwise, there exists exactly one z ∈ Nodes(t→T−1) which is a prefix
of z′ i.e. z′ = z‖y. There are two possibilities here:

1. if z′ = z then skxi [z
′] = skxi [z],

2. if z′ = z‖y for some non-empty y, then z is an ancestor of z′, and
from skxi [z] = Rxi,z it can delegate a basis
Rxi,z′ ← RandBasis(ExtBasis(Rxi,z,Axi,z′), sdz′ ), and set
skxi [z

′] = Rxi,z′ .

Finally output skxi,t+1 = {skxi [z′], z′ ∈ Nodes(t+1→T−1)}.
ABS.Sign(mpk, skxi,t, C,M, t) First compute x = bitstr(C,M). If Uxi(x) =

C(xi) 6= 0 output ⊥. Otherwise, first compute HUxi ,x
= EvalFX(Uxi ,x,

−→
A) ∈

Z`m×mq , as defined in Theorem 1, such that (
−→
A − x ⊗ G) · HUxi ,x

=
−→
A ·

HUxi
− Uxi(x)G = Axi as Uxi(x) = 0.

Compute
−→
Bt = [A‖

−→
A−x⊗G‖TBin(t)[1]

1 ‖· · · ‖TBin(t)[d]
d ] ∈ Zn×((d+1)p+`m)

q , and

Si =


Ip

HUxi ,x

Ip
· · ·

Ip

 ∈ Z((d+1)p+`m)×((d+1)p+m)
q .

We then have
−→
Bt ·Si = [A‖Axi‖T

Bin(t)[1]
1 ‖· · · ‖TBin(t)[d]

d ] = Axi,t. Since skxi,t
contains a trapdoor for Axi,t, we can apply the trapdoor extension from

Lemma 3 to obtain B−1
τu = [

−→
Bt]
−1 = [A‖

−→
A−x⊗G‖TBin(t)[1]

1 ‖· · · ‖TBin(t)[d]
d ]−1

τu ,

where A = Axi,t, B =
−→
Bt and S = Si using skxi,t = [Axi,t]

−1
τs .

Then the signer has a trapdoor for
−→
Bt and he can compute σx,t

$←−
−→
Bt

−1
(0).

ABS.Verify(mpk, C,M, σx,t, t). First, compute x = bitstr(C,M) and then
check that:

• [A‖
−→
A − x⊗G‖TBin(t)[1]

1 ‖· · · ‖TBin(t)[d]
d ] · σx,t = 0,

• ‖σx,t‖∞6 B.

If the verification passes, then output Valid, if not, output Invalid.
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Correctness. We fix an attribute xi ∈ {0, 1}k for user i ∈ [N ], a circuit C ∈ Cλ
such that C(xi) = 0, a time period t and a message M and let x = bitstr(C,M).
Consider (mpk,msk)← ABS.Setup(1λ, 1N , 1T ) and
σx,t ← ABS.Sign(mpk,ABS.KeyUpdate(mpk, i, skxi,t−1, t), C,M, t), since the sig-

nature σx,t 6=⊥ because of C(xi) = 0, we have that σx,t ∈ B−1
τu (0) = [A‖

−→
A −

x⊗G‖TBin(t)[1]
1 ‖· · · ‖TBin(t)[d]

d ]−1
τu (0) and

[A‖
−→
A−x⊗G‖TBin(t)[1]

1 ‖· · · ‖TBin(t)[d]
d ] ·σx,t = 0. Moreover, we know from lattice

trapdoor properties that samples from B−1
τu (0) have discrete Gaussian distribu-

tion over Zp+`m+dp
q with parameter τu and, therefore,

‖σx,t‖∞≤ τu
√

(1 + d) · p+ ` ·m = B and ABS.Verify(mpk, C,M, σx,t, t) = Valid.

3.3 Security proofs

Lemma 7. Our ABS scheme is perfectly private.

Proof. We consider the perfect privacy game defined in Section 3.1. We change
the way each signature σx,b is generated, with x = bitstr(C,M), b ∈ {0, 1}. We

use the trapdoor A−1
γ0 to compute [A‖

−→
A −x⊗G‖TBin(t)[1]

1 ‖· · · ‖TBin(t)[d]
d ]−1

τu (we

have τu > γ0). Then using this trapdoor, we compute σx,t,b = [A‖
−→
A − x ⊗

G‖TBin(t)[1]
1 ‖· · · ‖TBin(t)[d]

d ]−1
τu (0), b ∈ {0, 1}. This modification does not change

the distribution for each σx,t,b, b ∈ {0, 1}, which means that this change is sta-
tistically indistinguishable. Now the signature generation is totally independent
of the bit b. Then the ABS scheme is perfectly private. ut

Lemma 8. Our ABS satisfies forward-secure no-signing-query unforgeability as-
suming SISn,q,B′,m′ is hard, with B′ = (`(m+d)+1)B and m′ = (d+1)p+ ` ·m.

What we prove in this theorem is a weak property of unforgeability, where
an attacker is prohibited to make signing queries. Indeed, we do not include the
message to be signed in the different steps of the signature process and note
that if the attacker would be able to perform some signature query on a circuit
message pair (C,M) and get σ, he could just output the valid signature σ but
on a pair (C,M ′) with M ′ 6= M and win the unforgeability game.

However, in the context in which we intend to use the attribute-based signa-
ture, namely the group signature, this property of unforgeability is not enough.
We note that they face the same problem in [KY19] and introduce a reduction
from a (co-)selective unforgeable ABS to a no-signing-query ABS, using as a tool
the admissible hash function defined in Definition 2. Adapting in the same way
as their construction, we get a stronger unforgeability property, namely selective
unforgeability.

With the above lemma and the no-signing to selective transformation of
[KY19], we prove that the attribute-based signature derived from the constrained
signature of Tsabary [Tsa17] is forward-secure policy-selective unforgeable where
the adversary chooses its target circuit-message pair (C∗,M∗) for the forgery at
the beginning of the game. But still this security notion is not enough for our
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group signature scheme, we need adaptive security and we can only achieve it
by utilizing complexity leveraging as suggested in [KY19]. We have to randomly
guess (C∗,M∗) in the reduction from selective to adaptive security. Let us eval-
uate the reduction loss (as done in [KY19]): the length of the message M∗ is
bounded by poly(λ) and a circuit C∗ can be described by ovk and ct which can
be seen as binary strings with length poly(λ, log N) inducing a reduction loss
of 2−poly(λ,log N). To account for the loss in advantage we need to enlarge the
dimension n of the scheme to be poly(λ, log N)1/ε where ε is some constant in
(0, 1) requiring subexponential hardness of the SIS problem. As mentioned in
the introduction, co-selective unforgeability (where the adversary has to make
all the key queries at the beginning of the game but he can choose the target
policy adaptively) would be enough for our scheme but we can not achieve it
directly since in the unforgeability game we need to target policy associated to
the forgery to be chosen at the beginning of the game so that we can build the
public matrix for which we solve the SIS problem.

Proof. To prove this lemma, we will show that for any PPT adversary A against
the forward secure no-signing-query unforgeability of the ABS scheme with ad-
vantage ε, we can build a PPT algorithm B that solves SIS with probability at
least ε − negl(λ). Therefore, by assuming the hardness of the SIS problem, we
conclude that ε is negligible. The proof is done in a sequence of games where
the first game is identical to the forward-secure no-signing-query unforgeability
game defined in Section 3.1.

Game 0: The first game is the forward-secure no-signing-query unforgeability
game between adversary A and the challenger.

Game 1: In this game, we change the way the public matrices
−→
A and Tb

j (with
b ∈ {0, 1} and j ∈ [d]) are generated. Upon receiving (M∗, C∗, t∗), the
challenger denotes y∗ = bitstr(C∗,M∗) and does the following:

– Generates (A,A−1
γ0 ) as before and then samples

−→
RA

$←− {0, 1}p`×m and

computes
−→
A = A

−→
RA+y∗⊗G, the new distribution of

−→
A is at negligible

distance from the uniform distribution on Zn×`m thanks to Lemma 2 (as
p ≥ 4n log q),

– Generates R
Bin(t∗)[j]
j

$←− {0, 1}p×p and computes T
Bin(t∗)[j]
j = AR

Bin(t∗)[j]
j ,

using Lemma 2, the actual distribution of T
Bin(t∗)[j]
j is at negligible dis-

tance from the uniform distribution on Zn×pq ,

– Generates T
1−Bin(t∗)[j]
j for all j ∈ [d] via

(T
1−Bin(t∗)[j]
j ,Sj)← TrapGen(1n, 1p, q), the new distribution of

T
1−Bin(t∗)[j]
j is at negligible distance from the uniform distribution thanks

to Lemma 1.
Finally, we can argue that the Game 0 and Game 1 are statistically
indistinguishable.

Game 2: In this game, we change the way the challenger answers key queries.
For a key query (i, xi, t), there are two possibilities:
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t ≤ t∗ : In this case, from the conditions that A has to meet in order to win
the forward-secure no-signing-query selective unforgeability game after
outputting the forgery, the attacker can not query a key on an attribute
xi such that Uxi(y

∗) = C∗(xi) = 0, then Uxi(y
∗) = 1.

By Theorem 1, we have (
−→
A − y∗ ⊗ G) · Hxi,y∗ = Axi − Uxi(y∗)G =

Axi −G.

Then, we have Axi = (
−→
A −y∗⊗G) ·Hxi,y∗ + G = A ·

−→
RA ·Hxi,y∗ + G.

This allows (by Lemma 6) to compute Rxi = [A||Axi ]
−1
τs = [A||A ·

−→
RA ·

Hxi,y∗+G]−1
τs given A,

−→
RA and Hxi,y∗ . We remark that the parameters

from Lemma 6 are satisfied as ‖Hxi,y∗‖∞≤ (2m)d and
√
mp ‖

−→
RAHxi,y∗‖∞≤

√
mp `m ·‖Hxi,y∗‖∞≤

√
p ·`2dm1.5+d ≤ τs. Then,

having Rxi , the challenger can compute skxi,t using ABS.KeyGen and
ABS.KeyUpdate algorithms.

t > t∗ : In this case, the condition Uxi(y
∗) = C∗(xi) = 1 is not necessarily

verified. Indeed, because of the forward-security, an attacker can ask a
key for (C∗,M∗), for a time period t > t∗, and therefore C∗(xi) = 0, in
which case we can not compute the keys as previously. Then, for each
node z ∈ Nodes(t→T−1), the challenger first computes the smallest index
dz,t such that 1 ≤ dz,t ≤ d and Bin(t∗)[dz,t] 6= z[dz,t]. Then he computes
skxi [z] = RandBasis(ExtBasis(Sdz,t ,Axi,z), sdz,t). Finally, he sets skxi,t
as in the ABS scheme and sends it to the adversary.

The distribution of skxi,t remains the same in both cases. Note that in the
second case, when t > t∗, RandBasis algorithm outputs bases that are sta-
tistically close when taking as input two different bases of the same lattice.
Thus, Game 1 and Game 2 are statistically indistinguishable.

Game 3: Finally, we change the way the challenger samples A. Instead of sam-
pling it with a trapdoor as in ABS.Setup, he simply samples an uniform

A
$←− Zn×mq , so that the distribution is close to the one in the previous game

and the two games are statistically indistinguishable.
Then, we replace the challenger in Game 3 with an algorithm B for which we
give the description below and which solves the SIS problem using a forged
signature generated by the adversary.
Algorithm B is given A ∈ Zn×mq uniform and then he plays the forward-
secure no-signing-query unforgeability game with A using matrix A.
Assume that A produces a valid forgery σy∗,t∗ for (y∗ = bitstr(M∗, C∗), t∗)
given at the beginning of the game. Then σy∗,t∗ 6= 0, ‖σy∗,t∗‖∞6 B and

[A‖
−→
A − y∗ ⊗G‖TBin(t∗)[1]

1 ‖· · · ‖TBin(t∗)[d]
d ] · σy∗,t∗ = 0,

and [A‖A
−→
RA‖AR

Bin(t∗)[1]
1 ‖· · · ‖AR

Bin(t∗)[d]
d ] · σy∗,t∗ =

A · [I‖
−→
RA‖RBin(t∗)[1]

1 ‖...‖RBin(t∗)[d]
d ] · σy∗,t∗ = 0.

Since
∥∥∥[I‖
−→
RA‖RBin(t∗)[1]

1 ‖...‖RBin(t∗)[d]
d ] · σy∗,t∗

∥∥∥
∞

6 (`(m+d)+1)‖σy∗,t∗‖∞=

(`(m+ d) + 1)B ≤ B′,
it means that [I‖

−→
RA‖RBin(t∗)[1]

1 ‖...‖RBin(t∗)[d]
d ] · σy∗,t∗ is a valid solution for

SISn,q,B′,m′ . ut
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Lemma 9. Our ABS satisfies FS adaptive unforgeability under the subexponen-
tial hardness of SIS.

4 Forward-Secure Group Signature Scheme

In this section we present the construction of our forward-secure group signature
(FS-GS) scheme from lattices.

4.1 Framework and security properties

We use the model of forward-secure group signature scheme formalized in [NHF09]
and [LNWX19] and we give the definition below.

Definition 4. A forward-secure group signature scheme consists of the following
algorithms:

GS.KeyGen(1λ, 1N , 1T ) is a randomized algorithm taking as input a security pa-
rameter λ, number of users N and number of time periods T . Its output
consists of a group public key gpk, an opening key gok and a set of initial
user secret keys {gski,0}i∈[N ].

GS.KeyUpdate(gpk, gski,t, i, t+ 1) is a randomized algorithm that takes as input
the group public key gpk, the secret key gski,t of user i at time t, a user i
and a time period t+ 1 and outputs gski,t+1, the secret signing key of user i
at time t+ 1.

GS.Sign(gpk, gski,t, i,M, t) takes as input the group public key gpk, the ith user
secret key gski,t at time t, the index i of the user, a message M ∈ {0, 1}∗
and the current time interval t and outputs a group signature Σ.

GS.Verify(gpk,M,Σ, t) takes as input the group public key gpk, a message M ,
a signature Σ and the time period t. It outputs either Valid or Invalid. Valid
indicates that Σ is a valid signature on M at time period t w.r.t gpk.

GS.Open(gpk, gok,M,Σ, t) takes as input the group public key gpk, the opening
key gok, a message M , a signature Σ and time interval t and outputs an
identity or Invalid if it fails to identify the signer.

We require two security properties: forward-secure traceability and CCA-selfless
anonymity.

Correctness. We require that for all λ,N ∈ poly(λ), T ∈ N,
(gpk, gok, {gski,0}i∈[N ])← GS.KeyGen(1λ, 1N , 1T ), ∀i ∈ [N ], all M ∈ {0, 1}∗, all
gski,t ← GS.KeyUpdate(gpk, gski,t−1, i, t) and for all t ∈ [T ], the following equa-
tions hold:

GS.Verify(gpk,M,GS.Sign(gpk, gski,t, i,M, t), t) = Valid, and
GS.Open(gpk, gok,M,GS.Sign(gpk, gski,t, i,M, t), t) = i.
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CCA-selfless anonymity. We say that a forward-secure group signature scheme
provides CCA-selfless anonymity if no PPT adversary A has non-negligible
advantage in the following game.

Setup: At the begining of the game, adversary A is given 1λ, 1N , 1T as input
and sends i∗0, i

∗
1 ∈ [N ] to the challenger. The challenger runs

GS.KeyGen(1λ, 1N , 1T ) to produce a public key gpk, a secret key gok and
users secret keys gsk = {gski,0}i∈[N ] and gives (gpk, {gski,0}i∈[N ]\{i∗0 ,i∗1}) to
A.

Queries: At the begining of each time period, the challenger increments a
counter t and notifies A about it. During current time interval t, A can
make the following queries unbounded polynomially many times.

Signing: On input index b ∈ {0, 1} and message M, the challenger generates
and outputs a signature Σ generated for member ib and period t as
Σ← GS.Sign(gpk, gski∗b ,t

, i,M, t)

Opening: When receiving a query (M,Σ, t) from A, the challenger runs
GS.Open(gpk, gok,M,Σ, t) and returns the result to A.

Challenge phase: At some period t∗ ∈ {1, .., T}, A chooses its target message

M∗. The challenger then flips a coin d∗
$←− {0, 1}, computes and returns

GS.Sign(gpk, gski∗
d∗ ,t

∗ , i∗d∗ ,M
∗, t∗) to A.

Queries: After the challenge phase, A may continue to make signing and open-
ing queries unbounded polynomially many times. She may not make an open
query for (M∗,Σ∗, t∗).

Guess: Eventually, A outputs d′ and wins if d′ = d∗.

We define the advantage of A as |Pr[d′ = d∗]− 1/2| where the probability is
taken over the randomness of the challenger and the adversary. A forward-secure
group signature scheme is said to be CCA-selfless anonymous if the advantage
of any adversary A is negligible in the above game.

Forward-secure traceability. A group signature scheme has the forward-secure
traceability property if no PPT adversary A has non-negligible advantage in
the following game where he maintains a list CU which is set to be empty at the
beginning of the game.

Setup: At the beginning of the game, the challenger runs GS.KeyGen and ob-
tains (gpk, gok, {gski,0}i∈[N ]). The adversary A is given (gpk, gok).

Queries: During the game, A can make the following queries unbounded poly-
nomially many times.

Signing: On input index i ∈ {1, .., N}, a message M and a period time t,
the challenger generates and outputs a signature Σ generated for member
i and period t as Σ← GS.Sign(gpk, gski,t, i,M, t) if (i, t) /∈ CU .

Corrupt: Given an index i and time moment t, the challenger returns gski,t
to A if (i, t) /∈ CU . The challenger adds (i, t) to CU .

Forgery: A eventually comes up with a signature Σ∗ on a message M∗ and a
time period t∗. We say that A wins the game if:
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1. GS.Verify(gpk,M∗,Σ∗, t∗)→ Valid.
2. Only one of the following two conditions is satisfied concerning the execu-

tion of the opening algorithm where i∗ = GS.Open(gpk, gok,M∗,Σ∗, t∗):
(a) The opening algorithm fails i.e. i∗ = Invalid
(b) The message M∗ was not sent in a signing query before and one of

the following is true: (i∗, t∗) /∈ CU or (i∗, t∗) ∈ CU but A did not
obtain gski∗,t such that t ≤ t∗.

We define the advantage of A as the probability that he wins the above
game, where the probability is taken over the randomness of the challenger and
the adversary. A GS scheme is said to satisfy forward-secure traceability if the
advantage of any adversary A is negligible in the above game.

4.2 Forward-secure group signature from lattices

We now describe our lattice-based FS-GS scheme which employs the FSI-ABS
scheme given in the previous section and which satisfies CCA-selfless anonymity
and traceability. As the ABS used is forward-secure, we show that the group
signature is also forward-secure, so we consider that the lifetime of the scheme is
divided into T time periods. When entering a new period of time, a new secret
key is computed from the current one and afterwards the current key is deleted
promptly.

GS.KeyGen(1λ, 1N , 1T ) On input security parameter λ, the number of group
members N and the total number of time periods T = 2d, the algorithms
works as follows: First sample pp ← SKE.Setup(1λ) and (mpk,msk) ←
ABS.Setup(1λ, 1N , 1T ), then, for i ∈ [N ], sample Ki ← SKE.Gen(pp) and
compute skxi,0 as ski||Ki,0 ← ABS.KeyGen(msk, i, i||Ki)i∈[N ].
Output gpk = (pp,mpk), gok = {Ki}i∈[N ], gski,0 = (i,Ki, ski||Ki,0).

GS.KeyUpdate(gpk, gski,t, i, t + 1) It calls the key update algorithm of the
ABS and returns gski,t+1 = (i,Ki,ABS.KeyUpdate(mpk, i, skt,i, t+ 1)).

GS.Sign(gpk, gski,t, i,M, t) In order to sign a message, the user samples

(ovk, osk) ← OTS.KeyGen(1λ) and computes the encryption of his identity
under the key Ki as ct← SKE.Enc(Ki, i||ovk). Then, he computes

σ ← ABS.Sign(mpk, ski||Ki , C[ovk, ct],M, t),

where the circuit C[ovk, ct] is defined as follows:

C[ovk, ct](i||Ki)

Hardwired constants: a verification key ovk of OTS and
ciphertext ct of SKE

– Retrieve i ∈ [N ] and Ki from the input. If this is impossible, return 1.
– Compute SKE.Dec(Ki, ct) = i′||ovk′. If i′ = i and ovk′ = ovk output 0.

Otherwise, output 1.

Finally run τ ← OTS.Sign(osk,M‖σ).
The signature consists of Σ = (ct, ovk, σ, τ).
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GS.Verify(gpk,M,Σ, t). On input gpk, a message M , a group signature Σ on
M and a period time t, check that ABS.Verify(mpk, C[ovk, ct],M, σ, t) = Valid
and OTS.Verify(ovk, τ,M‖σ) = Valid; if one of these verification condition
does not hold, return Invalid. Otherwise return Valid.

GS.Open(gpk, gok,M,Σ, t). First run GS.Verify(gpk,M,Σ, t) and return In-
valid if the verification result does not hold. Otherwise, parse Σ→ (ct, ovk, σ, τ).
Since the manager does not know the identity of the user who produced
the signature, he has to find it by trial and error, i.e. he computes di ←
SKE.Dec(Ki, ct) for i ∈ [N ] and outputs the smallest index i such that
di 6= Invalid. If there is no such i, return Invalid.

4.3 Security

Correctness. The correctness of the FS-GS scheme follows directly from the
correctness of OTS, ABS and SKE.

We prove that a signature Σ = (ct, ovk, σ, τ) ← GS.Sign(gpk, gski,t, i,M, t)
that was correctly generated passes the verification. We have OTS.Verify(ovk, τ,M‖σ) =
Valid by the correctness of OTS. Then, by the correctness of SKE we have
C[ovk, ct](i||Ki) = 0 and therefore ABS.Verify(mpk, C[ovk, ct], σ,M, t) = Valid.

Theorem 2 (Traceability). If ABS is forward-secure (adaptively) unforgeable
and SKE has key-robustness then the group signature scheme constructed above
has the forward-secure traceability property.

Proof. We fix an adversary A and we consider the traceability game that he is
playing with a challenger. Let (M∗,Σ∗, t∗) be the forgery output by A which
can be of either type:

– Type I forgeries are those for which the Open algorithm fails to identify the
signer. We define E1 to be the event thatA wins the game and GS.Open(gpk, gok,M∗,Σ∗, t∗) =
Invalid holds.

– Type II forgeries are those for which the Open algorithm traces to an un-
corrupted member or to a corrupted member that requested keys for time
periods after t∗. We define E2 to be the event that A wins the game and
GS.Open(gpk, gok,M∗,Σ∗, t∗) = i∗ such that i /∈ CU or i∗ ∈ CU but A did
not query gski∗,t for t ≤ t∗.

We handle the two kind of forgeries in the following two lemmas.

Lemma 10. If ABS is forward-secure adaptively unforgeable then Pr[E1] =
negl(λ).

Proof. This is a proof by contradiction where we assume that E1 happens with
non-negligible probability ε and show how to construct an adversary B that
breaks the adaptive unforgeability of ABS with the same probability.

The game begins when the challenger sends B the public key mpk. Then B
sets gpk = (pp,mpk), generates gok = {Ki}i∈[N ] and and gives (gpk, gok) to A.
During the game, B answers to the queries of A, for a certain period of time t,
as follows:
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– For a corrupt query for (i, t), B makes a key query (i, i‖Ki, t) to its challenger
who returns ski‖Ki,t. Then B returns gski,t = (i,Ki, ski‖Ki,t) to A.

– To a signing query (i,M, t), B answers as follows: B samples (ovk,osk)
$←

OTS.KeyGen(1k), computes ct
$← SKE.Enc(Ki, i|| ovk) and makes a signing

query (M,C[ovk, ct], t) to its challenger who replies with σ. Then, B runs
OTS.Sign(osk, M||σ) and returns Σ = (ovk, ct, σ, τ) to A.

At the end, A will output a forgery (M∗,Σ∗ = (ovk∗, ct∗, σ∗, τ∗), t∗). If
GS.Verify(gpk, M∗,Σ∗, t∗) = Valid and GS.Open(gpk, gok, M∗,Σ∗, t∗) = Invalid
does not hold then B aborts. Otherwise, B outputs (M∗, C[ovk∗, ct∗], σ∗, t∗) as
its forgery.

We show that B wins the game whenever E1 happens. We note that GS.Verify(gpk,M∗,Σ∗, t∗)
= Valid implies ABS.Verify(mpk,C[ovk∗, ct∗], σ∗, t∗) = Valid. We need to show
C[ovk∗, ct∗](i||Ki) = 1 for all i ∈ N for which B has made a corrupt query for
time t ≤ t∗ . It is easy to see that since GS.Open(gpk, gok, M∗,Σ∗, t∗) = Invalid
holds, there is no i ∈ [N ] so that SKE.Dec(Ki, ct

∗) = Valid. We immediately
have that C[ovk∗, ct∗](i||Ki) = 1 for all i ∈ N and any time t of the corrupt
query. Since B’s simulation is perfect, we conclude that B wins the game with
probability ε. This concludes the proof of the lemma.

Lemma 11. If ABS is forward-secure adaptively unforgeable and SKE has key-
robustness then Pr[E2] = negl(λ).

This is a proof by contradiction where we assume that E2 happens with non-
negligible probability ε and show how to construct an adversary B that breaks the
forward-secure unforgeability of ABS with non-negligible probability. We denote
by E the event that A wins the game and GS.Open(gpk, gok,M∗,Σ∗, t∗) = i∗

such that i /∈ CU or i∗ ∈ CU but A did not query gski∗,t for t ≤ t∗. We consider
the following sequence of games where Fi represents the probability that E
occurs and the challenger does not abort in Game i.

Game 0: The first game is the forward-secure traceability game between adver-
sary A and challenger. Assume that Pr[F0] = ε.

Game 1: In this game, the challenger makes a guess for i∗ as j∗
$←− [N ] and for

time t∗ as z∗ at the beginning of the game and aborts if j∗ 6= i∗ and z∗ 6= t∗

at the end of the game. Note that the view of A is independent from j∗ and
GS.Open outputs only two possible symbols: an integer i ∈ [N ] and Invalid,
therefore we have Pr[F1] = ε/(N ∗ T ).

Game 2: Here, the challenger aborts the game when his guess (j∗, z∗) turns out
to be false (meaning that j∗ 6= i∗ or t∗ 6= z∗) . This can happen when A
makes a corruption query for j∗ at time t 6 t∗ or i∗, t∗ defined at the end
of the game do not equal to j∗, z∗ respectively. This change does not have
any effect on the probability, therefore Pr[F1] = Pr[F2].

Game 3: In this game, the challenger aborts at the end of the game if |{i ∈ [N ] :
SKE.Dec(Ki, ct

∗) 6= Invalid }|6= 1 for the forgery (M∗,Σ∗ = (ovk∗, ct∗, σ∗, τ∗), t∗)
output by A at the end of the game. We show that the probability to have
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E and |{i ∈ [N ] : SKE.Dec(Ki, ct
∗) 6= Invalid }|6= 1 happening at the same

time is negligibly small. We note that E implies that ∃i ∈ [N ] such that
SKE.Dec(Ki, ct

∗) 6= Invalid and together with the abort condition results in
|{i ∈ [N ] : SKE.Dec(Ki, ct

∗) 6= Invalid }|≥ 2. Further we show that the prob-
ability of having the last inequality is negligible.

Pr[|{i ∈ [N ] : SKE.Dec(Ki, ct
∗) 6= Valid }|≥ 2]

≤ Pr
[
pp← SKE.Setup(1k),Kj ← SKE.Gen(pp) for j ∈ [N ] : ∃ct∗,∃i, i∗ ∈ [N ]
s.t. i 6= i∗,SKE.Dec(Ki, ct

∗) 6= Valid,SKE.Dec(Ki∗ , ct
∗) 6= Valid

]

≤
∑

i,i∗∈[N ]s.t.i6=i∗
Pr

[
pp← SKE.Setup(1k),Ki,K

∗
i ← SKE.Gen(pp) : ∃ct∗,∃i, i∗ ∈ [N ]

s.t.i 6= i∗,SKE.Dec(Ki, ct
∗) 6= Valid,SKE.Dec(Ki∗ , ct

∗) 6= Valid

]
≤ N(N − 1)/2 · negl(λ) = negl(λ).

where the second inequality is by the union bound and the third one is by
the key-robustness of SKE. Therefore |Pr[F2]− Pr[F3]|= negl(λ).
We then replace the challenger in Game 3 with an adversary B against the
forward-secure unforgeability of ABS with advantage Pr[E3].
First, the challenger sends B the public key mpk. Then B sets gpk =(pp,mpk),
generates gok = {Ki}i∈[N ] and and gives (gpk, gok) to A. During the game,
B answers to the queries of A as follows for a certain period of time t.

– For a corrupt query for (i, t): If i = j∗ and t = z∗, B aborts. Else, he
makes a key query (i, xi = i||Ki, t) to its challenger who returns skxi,t.
Then B returns gski,t = (i,Ki, skxi,t) to A.

– To a signing query (i,M, t), B answers as follows: B samples (ovk,osk)
$← OTS.KeyGen(1k), computes ct

$← SKE.Enc(Ki, i|| ovk) and makes a
signing query (M,C[ovk, ct], t) to its challenger who replies with σ. Then,
it runs OTS.Sign(osk, M ||σ) and returns Σ = (ovk, ct, σ, τ) to A.

At the end, A will output a forgery (M∗,Σ∗ = (ovk∗, ct∗, σ∗, τ∗), t∗). In
this case, there are two situations where B aborts: if either GS.Verify(gpk,
M∗,Σ∗, t∗) = Valid or i∗ = j∗ does not hold where i∗ = GS.Open(gpk, gok,M∗,Σ∗, t∗)
or t∗ 6= z∗. It also aborts if |{i ∈ [N ] : SKE.Dec(Ki, ct

∗) 6= Invalid }|6= 1. Oth-
erwise, B outputs (M∗, C[ovk∗, ct∗], σ∗) as its forgery.
In the following we show that B wins the game whenever event F3 oc-
curs. We verify that the conditions for the winner of the forward-secure
unforgeability game are satisfied. Since GS.Verify(gpk,M∗,Σ∗, t∗) = Valid we
have ABS.Verify(mpk, C[ovk∗, ct∗], σ∗,M, t∗) = Valid. We then show that
C[ovk∗, ct∗](i||Ki) = 1 for any key queried by B respective to xi with i ∈
[N ] \ {i∗} and t where t ≤ t∗. We note that C[ovk∗, ct∗](i||Ki) = 1 is true
since SKE.Dec(K∗i , ct

∗) 6= Invalid and |{i ∈ [N ] : SKE.Dec(Ki, ct
∗) 6= Invalid

}|= 1. Moreover, C[ovk∗, ct∗](i||Ki) = 1 for any time period since the secret
keys Ki involved in the circuit does not depend on the time period.
It remains to show that B has never made signing queries for (M∗, C[ovk∗, ct∗], t∗).
BecauseA has won the game, we haveM∗ 6= M which implies (M∗, C[ovk∗, ct∗], t∗) 6=
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(M,C[ovk, ct], t). Therefore we have that the winning probability of B is ex-
actly Pr[F3]. This concludes the proof of the lemma.

This concludes the proof of the theorem since it follows that the advantage
of the adversary A in the traceability game is negligible.

The following theorem addresses the CCA-selfless anonymity of the above GS
scheme. We omit the proof and mention that it is a straightforward adaptation
of the CCA-selfless anonymity proof from [KY19, Th. 5].

Theorem 3 (CCA-selfless anonymity). If ABS is perfectly private and adap-
tive unforgeable, OTS is strongly unforgeable and SKE is IND-CCA secure and
key-robust, then GS constructed as above is CCA-selfless anonymous.
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dPLS18. Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based
group signatures and zero-knowledge proofs of automorphism stability. In
ACM Conference on Computer and Communications Security, pages 574–
591. ACM, 2018.

DvOW92. Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentica-
tion and authenticated key exchanges. Des. Codes Cryptogr., 2(2):107–125,
1992.

GKV10. S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group sig-
nature scheme from lattice assumptions. In ASIACRYPT, volume 6477 of
Lecture Notes in Computer Science, pages 395–412. Springer, 2010.

Gro07. Jens Groth. Fully anonymous group signatures without random oracles. In
ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages
164–180. Springer, 2007.

Gün89. Christoph G. Günther. An identity-based key-exchange protocol. In EURO-
CRYPT, volume 434 of Lecture Notes in Computer Science, pages 29–37.
Springer, 1989.

HILL99. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM J. Comput.,
28(4):1364–1396, 1999.

IR01. Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal sign-
ing and verifying. In CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 332–354. Springer, 2001.

28



KY19. Shuichi Katsumata and Shota Yamada. Group signatures without NIZK:
from lattices in the standard model. In EUROCRYPT (3), volume 11478
of Lecture Notes in Computer Science, pages 312–344. Springer, 2019.

LLLS13. Fabien Laguillaumie, Adeline Langlois, Benôıt Libert, and Damien Stehlé.
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