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Abstract: In this paper, we propose a methodology to detect the topology of a dynamic network
that is based on the analysis of the uncertainty of the static characteristic of the matrix of
transfer functions between the external excitations and the node signals.
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1. INTRODUCTION

This paper contributes to the efforts of developing tech-
niques for the identification of large-scale or interconnected
systems. In these efforts, we can distinguish two main lines
of research. The first line consists in determining a model
of the network when the interconnection structure (i.e. the
topology) of the network is known (see e.g, (Haber and
Verhaegen, 2013; Van den Hof et al., 2013; Gevers and
Bazanella, 2015). The second line consists in determining
the topology of the unknown network (see e.g. (Gonçalves
and Warnick, 2008; Yuan et al., 2011; Materassi and Sala-
paka, 2012; Materassi et al., 2013)). This paper belongs to
this second line of research.

We consider a dynamical network made up of Nmod nodes.
A given node wi of such a network can be written as
a function of the other nodes wk (k 6= i) and as a
function of known external excitations and unknown noise
excitations (Van den Hof et al., 2013). In this paper,
we are interested in determining the topology of such
a network i.e. in determining for each possible pairs
of nodes wi and wk whether there exists a non-zero
causal transfer function Gik(z) linking these two nodes.
To achieve this objective, one can of course use the node
measurements to identify these transfer functions in a
direct manner (Van den Hof et al., 2013) or in an indirect
way (i.e. by first estimating the transfer between the
external excitations and the different nodes and then by
back-computing the transfer between the nodes) (Yuan
et al., 2011; Materassi and Salapaka, 2012). Due to the
presence of the unknown noise excitations, even if a given
transfer functionGik(z) is identically zero, its estimate will
not be equal to zero. Consequently, it may be difficult in
practice to determine the exact topology of the network
if we only look at the estimates of the different transfer
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functions Gik(z). In order to avoid these issues, different
sparsity-inducing approaches have been considered. In
(Chiuso and Pillonetto, 2012; Materassi et al., 2013), one
considers algorithms that favour sparse solutions. In (Yuan
et al., 2011) and in another section of (Materassi et al.,
2013), one considers algorithms that compare the quality
of models identified when supposing that some of the
transfer functions Gik(z) are indeed equal to zero. In
(Materassi et al., 2013), a forward selection approach is
used while, in (Yuan et al., 2011), all possible topologies
are tested and the quality of the identified models are
compared using a criterion penalizing a large number of
connections.

In this paper, we develop a topology detection method that
is based on the analysis of the uncertainty of the identified
network model. For this purpose, we will take inspiration
from (Yuan et al., 2011) that shows that the topology
of the network can be determined via the inversion of
the static characteristic of the transfer matrix between
the external excitations and the different nodes signals
(the method in (Yuan et al., 2011) is thus an indirect
approach). We will however not only consider the estimate
of this static characteristic but also its uncertainty. Using
this uncertainty, we will be able to derive an uncertainty
interval for the static gain of each transfer function Gik(z).
If this uncertainty interval contains zero, we will then
conclude that Gik(z) is equal to zero. We analyze the
property of this decision rule and we show that we can
increase our confidence in this decision rule by reducing the
length of the confidence intervals, which can be achieved
by an appropriate experiment design.

Notations: The matrix In denotes the identity matrix of
dimension n. The matrix

X1 0 0

0
. . . 0

0 0 Xn





will be denoted diag(X1, ..., Xn) when the elements Xi

(i = 1, ..., n) are scalar quantities, while it will be denoted
bdiag(X1, ..., Xn) when the elements Xi (i = 1, ..., n) are
matrices.. For a matrix A, AT denotes the transpose of A.
Finally, ⊗ denotes the Kronecker product.

2. NETWORK DESCRIPTION

We consider a stable dynamic network made up of Nmod
nodes that are each characterized by a scalar valued
measurable signal wi(t) (i = 1, ..., Nmod). The vector
w̄(t) = (w1(t), w2(t), ..., wNmod

(t))T obeys the following
equation (Van den Hof et al., 2013):

w̄(t) = G0(z) w̄(t) + r̄(t) + v̄(t) (1)

G0(z) =

 0 G0,12(z) ... G0,1Nmod
(z)

G0,21(z) 0 ... G0,2Nmod
(z)

... ... ... ...
G0,Nmod1(z) G0,Nmod2(z) ... 0

 (2)

where r̄(t) = (r1(t), r2(t), ..., rNmod
(t))T is a vector of

external excitation signals that can be freely chosen
by the user e.g., for identification purposes (r̄(t) = 0
in normal operations) and where the vector v̄(t) =
(v1(t), v2(t), ..., vNmod

(t))T represents the process noise
acting on the network and is assumed to be a stationary
stochastic process.

For the sequel, we will need the following closed-loop
expression of (1):

w̄(t) = T0(z)r̄(t) + v̄cl(t) (3)

where the transfer matrix T0(z) = (INmod
−G0(z))

−1
is

stable since the network is assumed stable and where
v̄cl(t) = T0(z)v̄(t). Note that the stochastic process v̄cl(t)
can always be modeled as

v̄cl(t) = H0(z)ē(t) (4)

for some matrix of transfer functions H0(z) that is
stable, inversely stable and that is also monic (i.e.
H0(∞) = INmod

) and for some white noise vector ē(t) =
(e1(t), e2(t), ..., eNmod

(t))T such that Eē(t)ēT (t) = Σ0 > 0
and Eē(t)ēT (t−τ) = 0 for all τ 6= 0. It is important to note
that T0(z) and H0(z) can be both very complex matrices
of transfer functions.

Remark. The stochastic process v(t) in (1) can also be
written as v(t) = D0(z)ē(t) with a transfer matrix D0(z)
which is stable, inversely stable and monic. If G0(z) is
stable and if G0(∞) = 0, then the transfer matrix H0(z)
describing vcl(t) is given by T0(z)D0(z). If G0(z) does not
have these two properties, H0(z) will have a more complex
expression.

3. TOPOLOGY DETECTION PROBLEM

As mentioned in the introduction, in this paper, we wish
to determine the topology of the network, i.e. we wish to
determine which off-diagonal elements G0,ik(z) of G0(z)

are nonzero transfer functions and which off-diagonal ele-
mentsG0,ik(z) are identically equal to zero. In other words,
the topology detection problem consists in discriminating
between the following hypotheses:

{H0 : G0,ik(z) = 0

H1 : G0,ik(z) 6= 0
(5)

for all off-diagonal elements G0,ik(z) of G0(z) in (1). In this
paper, we will develop a topology detection procedure un-
der the following assumption on G0(z) that will generally
hold in practice.

Assumption 1. Consider the network configuration de-
scribed in Section 2. For any arbitrary transfer function
G0,ik(z) in G0(z) (see (2)), if the static gain G0,ik(1)
of G0,ik(z) is equal to zero, then the transfer function
G0,ik(z) is also equal to zero.

As shown in (Yuan et al., 2011), we can under this
assumption derive the topology of the network by simply
inspecting the inverse Q0 of the static characteristic T0 =
T0(1) of the closed-loop transfer matrix T0(z). This inverse
Q0 is indeed given by:

Q0 = T −1
0 = (INmod

−G0(1)) (6)

Consequently, we see that, under Assumption 1, any
arbitrary transfer function G0,ik(z) (i 6= k) in G0(z)
(see (2)) is equal to zero if and only if

Q0,ik = 0 (7)

where Q0,ik is the (i, k)-entry of the matrix Q0 ∈
RNmod×Nmod . In other words, under Assumption 1, (5) is
equivalent to:

{H0 : Q0,ik = 0

H1 : Q0,ik 6= 0
(8)

4. ESTIMATE OF T0 AND ITS UNCERTAINTY

To be able to discriminate between H0 and H1, since Q0 is
unknown, we will use an estimate Q̂ of Q0. This estimate
Q̂ of Q0 will be given as:

Q̂ = T̂ −1 (9)

where T̂ is an estimate of T0. It is very difficult to
derive a reliable decision rule for the hypothesis test (8)
based on such an estimate. Indeed, even if the actual off-
diagonal entry Q0,ik of Q0 is identically equal to zero,

the off-diagonal entry Q̂ik of Q̂ will not be equal to zero.
Consequently, in this paper, we will propose a decision
rule for (8) by combining Q̂ik with its uncertainty. For

this purpose, we need to derive an estimate T̂ of T0

and its uncertainty. Since we are only interested in an
estimate of the static characteristic of T0(z) (and not
an estimate of T0(z)), the identification problem can be
strongly simplified.



Since we wish to characterize the uncertainty of T̂ , we
will nevertheless need to derive a model of H0(z). Using
time series analysis (Box et al., 2015), this can be done in
advance based on normal operation data (i.e., data w̄(t)
collected on (1) when r(t) = 0). Using an AR structure

allows to estimate a model Ĥ(z) = Â(z)−1 of H0(z) by
solving a least-squares optimization problem. Referring to
Theorem 3.1 in (Ljung and Wahlberg, 1992), Ĥ(ejω) will
tend to H0(ejω) if the number of estimation data tends
to infinity and if the order of the AR model increase at
a suitable rate with this number of estimation data. In
practice, the order of the AR model is chosen in such a way
that the residuals Ĥ−1(z)w̄(t) are whitened. The obtained
AR model will be used to derive the estimate of T0.

The estimate of the static matrix T0 will be determined
via Nmod identification experiments leading each to an
estimate of one column of T0. More precisely, the kth

experiment (k = 1, ..., Nmod) allows to determine an

estimate T̂k of the kth column T0,k of T0. For this purpose,
we apply to the network (1) an excitation vector r̄(t) where
all the elements except rk(t) are zero and where rk(t) is
equal to the constant αk for all t:

r̄(t) = αk m̄k ∀t (10)

where m̄k (k = 1, . . . , Nmod) denotes a unit (column)
vector of dimension Nmod for which the kth entry is equal
to 1 and the other entries are equal to zero. After the end
of the transient, the vector w̄(t) that is collected during
such an experiment obeys the following relation:

w̄(t) = T0,k αk +H0(z)ē(t) (11)

Consequently, an estimate T̂k of T0,k (and an estimate

Σ̂ of the covariance matrix Σ0 of ē) can be obtained by

considering the model Ĥ(z) of H0(z) and the following
simple prediction error criterion (Ljung, 1999):

min
Tk, Σ

1

N

Nk+Nk,ss∑
t=Nk,ss

ε̄Tk (t, Tk) Σ−1 ε̄k(t, Tk) (12)

ε̄k(t, Tk) = Ĥ−1(z) (w̄(t)− Tk αk) (13)

where Tk is a column vector of dimension Nmod, Σ is
a square matrix of dimension Nmod, Nk + Nk,ss is the
duration of the kth experiment and Nk,ss is the moment

where w̄H(t) = Ĥ−1(z)w̄(t) reaches steady-state in this
kth experiment. For Nk,ss ≤ t ≤ Nk + Nk,ss, ε̄k(t, Tk) =

w̄H(t) − ΦTk with Φ = αkĤ
−1(1). Consequently, (12) is

basically a least-squares optimization problem for which
the procedure in (Ljung, 1999, page 485) can be used.

Using the framework of (Ljung and Wahlberg, 1992) de-

scribed above, Ĥ(ejω) can be made to converge to H0(ejω)

at a sufficiently fast rate so that the estimate T̂k obtained
via (12) is asymptotically normally distributed around

T0,k with a covariance matrix PTk = (1/Nk)
(
ΦTΣ−1

0 Φ
)−1

(Ljung, 1999). Using the estimate Σ̂ of Σ̄0, PTk can thus
be estimated as:

PTk ≈
1

α2
k Nk

(
Ĥ(1) Σ̂ ĤT (1)

)
(14)

Combining the estimates of the columns of T0 obtained
in the Nmod experiments, we can deduce the following
estimate T̂ of T0:

T̂ =
(
T̂1, T̂2, ..., T̂Nmod

)
(15)

Let us also analyze the variance/uncertainty of this esti-

mate. For this purpose, let us denote by θ0 (resp. θ̂) the
vector of dimension N2

mod made up of the vectorization of

the columns of T0 (resp. T̂ ) i.e.

θ0 =
(
T T0,1, T T0,2, ..., T T0,Nmod

)T
(16)

θ̂ =
(
T̂ T1 , T̂ T2 , ..., T̂ TNmod

)T
(17)

From the reasoning above, it is clear that θ̂ is (asymptot-
ically) normally distributed around θ0 with a covariance
matrix Pθ given by:

Pθ = bdiag
(
PT1 , PT2 , ..., PTNmod

)
(18)

with PTk (k = 1, ..., Nmod) defined in (14).

5. DECISION RULE FOR (8)

As we will show in the next section, using θ̂ and its
covariance matrix Pθ, we will be able to derive, for each
off-diagonal entry Q0,ik of Q0, an uncertainty interval
Iik = [Qminik , Qmaxik ] that contains Q0,ik (modulo a given
probability level). Based on this uncertainty interval Iik,
we propose the following decision rule for the hypothesis
test (8) (equivalent to (5)):

{
0 ∈ Iik =⇒ H0

0 6∈ Iik =⇒ H1

(19)

When we assume that Q0,ik ∈ Iik, this decision rule has
the following properties for an uncertainty interval Iik of
length Lik = Qmaxik −Qminik . If Q0,ik = 0 (i.e., under H0),
this decision rule will always yield the right decision i.e.,
to decide H0. If Q0,ik 6= 0 (i.e., under H1), the properties
of (19) will depend on the absolute value |Q0,ik| of the
unknown Q0,ik. If |Q0,ik| is larger than the length Lik of
the interval Iik, the decision rule (19) will always yield
the right decision i.e., to decide H1. If Q0,ik 6= 0 and
|Q0,ik| < Lik, the decision rule (19) may yield, depending
on the actual value of Iik, to a good or a false decision. It
is thus clear that a small Lik will increase the reliability
of the decision rule (19). We will see in the sequel that
the smaller Pθ, the smaller the lengths Lik of the intervals
Iik will be. Consequently, the reliability of the decision
rule (19) can be improved by an appropriate design of the
identification experiments described in Section 4.



To be able to use the decision rule (19), we need a manner
to determine the intervals Iik for each pair (i, k). This is
done in the next section.

Remark. One could wonder whether we could not also
derive a decision rule based on the inverse of the AR
model Ĥ(z) of H0(z) and its uncertainty. This is indeed
the case, but only under more restrictive assumptions
on the network described in Section 2. For this let us
refer to the remark at the end of Section 2. If G0(z)
is stable and satisfies G0(∞) = 0, we have H−1

0 (1) =
D−1

0 (1)Q0. Consequently, if, in addition, D0(z) is assumed
diagonal, the topology of the network can be determined
by inspecting H−1

0 (1) and an alternative decision rule can
thus be determined by considering the uncertainty of the
identified model Ĥ(z) of H0(z).

6. DETERMINATION OF THE UNCERTAINTY
INTERVALS

6.1 Introduction

Using the statistical properties of θ̂ (see Section 4), it is
clear that the following ellipsoid U is a β%-confidence

region for the modeling error δ0 = θ0 − θ̂:

U :=
{
δ ∈ RN2

mod | δTP−1
θ δ < χ

}
(20)

where Pr(χ2(N2
mod) < χ) = β. This ellipsoid U can

be considered as an uncertainty set for the unknown
modeling error δ0. From now onwards, we will therefore

assume that δ0 = θ0 − θ̂ ∈ U or, in other words, that

θ0 ∈ {θ | θ = θ̂ + δ and δ ∈ U}. If, for a given
vector δ ∈ U , we denote by T (δ), the matrix obtained

from the de-vectorization of the vector θ := θ̂ + δ, we
have that T̂ = T (0) and T0 = T (δ0). Moreover, since
Q0 = T (δ0)−1 and δ0 ∈ U , we have also that the unknown

(i, k)-entry Q0,ik of Q0 lies in the following set Iorigik ={
Qik(δ) ∈ R | Q(δ) = T (δ)−1 and δ ∈ U

}
where Qik(δ)

is the (i, k)-entry of Q(δ).

The set Iorigik defined in the previous paragraph is an in-
terval since the matrix inversion is a continuous operation.
Consequently, this interval could be used in the decision
rule (19) since Iorigik contains Q0,ik (modulo a certain
probability level). However, this will not be possible since

we cannot compute an explicit expression for Iorigik . To
show this, let us observe that Iik,orig is also equal to

[copt,origik −
√
ρopt,origik , copt,origik +

√
ρopt,origik ] where copt,origik

and ρopt,origik are the solutions of the following optimization
problem:

min
cik, ρik

ρik (21)

s.t. (Qik(δ)− cik)
2
< ρik ∀δ ∈ U (22)

As usual in robustness analysis (Zhou and Doyle, 1998), we
cannot determine exactly the solutions of the above opti-
mization problem. However, we can use convex relaxation
to replace the constraint (22) by an alternative constraint
that is linear in the decision variables cik and ρik and that
implies (22). If we denote by coptik and ρoptik the solutions of
the convex optimization problem consisting in minimizing

ρik under the convex constraint mentioned above. Then,

the computable interval Iik = [coptik −
√
ρoptik , c

opt
ik +

√
ρoptik ]

is such that Iorigik ⊆ Iik and can thus be used in the
decision rule (19). In the next subsections, we show how
we can derive a convex constraint that implies (22).

6.2 LFT description of Qik(δ)

To be able to determine a convex alternative for (22), a
first step is to rewrite the quantity Qik(δ) in an Linear
Fractional Transform (LFT) in the variable δ. As we will
see below, this can be done by first rewriting T (δ) as an
LFT in δ. For an arbitrary δ ∈ U , the mapping ȳ = T (δ)ū
can be expressed in the LFT framework as follows:

p̄ = INmod
⊗ δ︸ ︷︷ ︸

=∆(δ)

q̄ (23)

(
q̄
ȳ

)
=

(
M11 M12

M21 M22

)
︸ ︷︷ ︸

=M

(
p̄
ū

)
(24)

where M is given by:

M =

(
M11 M12

M21 M22

)
=

 0 INmod

(m̄T
1 , ..., m̄

T
Nmod

)⊗ INmod
T̂


with m̄k (k =, 1, ..., Nmod) and T̂ = T (0) as defined in

Section 4. In the sequel, we will use ȳ = F(M,∆(δ))ū as
a shorthand notation for the LFT (23)-(24).

Let us consider the same δ ∈ U as well as the inverse
mapping ū = Q(δ)ȳ = T−1(δ)ȳ. This inverse mapping can
also be expressed in the LFT framework with (23) and:(

q̄
ū

)
=

(
N11 N12

N21 N22

)
︸ ︷︷ ︸

=N

(
p̄
ȳ

)
(25)

where N can be derived from M :

N =

(
N11 N12

N21 N22

)
=

(
M11 −M12M

−1
22 M21 M12M

−1
22

−M−1
22 M21 M−1

22

)
In other words, we have ū = Q(δ)ȳ = F(N,∆(δ))ȳ. This

LFT of the inverse mapping can be adapted to each entry
of the matrix Q(δ). In particular, for the same δ ∈ U , the
scalar mapping ui = Qik(δ)yk can be rewritten as the LFT
made up of (23) and:(

q̄
ui

)
=

(
N11 N :,k

12

N i,:
21 N ik

22

)
︸ ︷︷ ︸

=Nik

(
p̄
yk

)
(26)

where N ik
22 represents the (i, k)-entry of the matrix N22,

where N :,k
12 represents the kth column of the matrix N12

and finally where N i,:
21 represents the ith row of the matrix

N21. Consequently, we have that Qik(δ) = F(Nik,∆(δ))
for any δ ∈ U .

6.3 Set of multipliers related to the uncertainty set U

Another crucial ingredient to determine a convex alterna-
tive for (22) is to associate, with the set U , a so-called set
of multipliers (Safonov, 1980).



Definition 1. Consider the set U defined in (20). We define
the set of multipliers AU as a set of affinely parametrized
Hermitian matrices A (of dimension Nmod(N

2
mod + 1) ×

Nmod(N
2
mod + 1)) that all have the following property:(

INmod

INmod
⊗ δ

)T

A

(
INmod

INmod
⊗ δ

)
≥ 0 ∀δ ∈ U (27)

In other words, A ∈ AU =⇒ (27).

We have derived an extensive parametrization of the set
of multipliers AU corresponding to U in our previous
contribution (Barenthin et al., 2008, Proposition 2). That
the parametrization of AU is extensive is important since
the more extensive the parametrization of the set of
multipliers, the tighter the embedding Iik of Iorigik will be
(Safonov, 1980).

6.4 LMI optimization to determine the uncertainty interval

We have now all the elements to derive the convex alterna-
tive for (22). We will for this purpose use a result in (Dinh
et al., 2014) and adapt it to our situation.

Proposition 1. Consider the LFT F(Nik,∆(θ)) for Qik(θ)
(see (23)-(26)) and the set of multipliers AU associated to
U (see Definition 1). Then, the constraint (22) holds for
given cik and ρik if we can find a matrix A ∈ AU such that
the following LMI constraint holds: −1 X (cik)

X (cik)T KTAK +

(
0 0
0 −ρik

) < 0 (28)

with X (cik) =
(
N i,:

21 N ik
22 − cik

)
and K =

(
N11 N

:,k
12

I 0

)
.

Proof. First, let us observe that the matrix inequality (28)
is linear in the decision variables A, cik and ρik. Conse-
quently (28) is indeed an LMI. Subsequently, using the
Schur complements, (28) is equivalent to:

KTAK +

(
0 0
0 −ρik

)
+ X (cik)TX (cik) < 0 (29)

Let us now consider the LFT (23)-(26) for a given δ ∈ U
and for yk = 1 and let us consider the corresponding
signals p̄, q̄ and ui = Qik(δ). Let us then pre- and post-
multiply the constraint (29) with (p̄T , 1) and (p̄T , 1)T ,
respectively. Using (26), this yields:(

q̄
p̄

)T
A

(
q̄
p̄

)
+ (ui − cik)2 < ρik (30)

Since p̄ = (INmod
⊗δ)q̄ and ui = Qik(δ), we can rewrite (30)

as follows:

q̄T
(

INmod

INmod
⊗ δ

)T
A

(
INmod

INmod
⊗ δ

)
q̄+(Qik(δ)−cik)2 < ρik

(31)
The above reasoning can be done for any value of δ ∈ U .
In other words, for the matrix A ∈ AU for which (28)
holds, (31) holds true for all δ ∈ U . Consequently, using
Definition 1, we have therefore that the existence of A ∈
AU such that (28) holds implies that, for each δ ∈ U ,
(Qik(δ)− cik)2 < ρik; which is the desired result.

Using Proposition 1, we can now compute the uncertainty
interval Iik containing Q0,ik for each pair (i, k) such that

i 6= k. Indeed, this interval Iik is given by Iik = [coptik −√
ρoptik , c

opt
ik +

√
ρoptik ] where coptik and ρoptik are the solutions

of the LMI optimization problem consisting in finding the
smallest value of ρik for which we can find a scalar cik
and a matrix A ∈ AU such that the LMI constraint (28)
holds. In this LMI optimization problem, when we speak of
finding a matrix A ∈ AU , we more precisely mean finding
the free parameters in the affine structure of the matrix A.

Remark. The results above only hold if Q(δ) = T (δ)−1 is a
valid operation for all δ ∈ U . Since Q(δ) = F(N,∆(δ)) i.e.,

Q(δ) = N22+N21∆(δ) (I −N11∆(δ))
−1
N12, the operation

Q(δ) = T (δ)−1 is valid for a given δ ∈ U if and only
if the determinant of I − N11∆(δ) is not equal to zero.
We have thus to verify that det(I − N11∆(δ)) 6= 0 for all
δ ∈ U or equivalently that the loop [N11 ∆(δ)] is stable
for all δ ∈ U (Zhou and Doyle, 1998). This is a classical
robustness analysis problem that can e.g., be treated using
the tools in (Barenthin et al., 2008).

7. NUMERICAL ILLUSTRATION

Let us consider a network (1) with Nmod = 3 nodes and

G0(z)
∆
=

(
0 0 G0,13(z)

G0,21(z) 0 0
G0,31(z) G0,32(z) 0

)
(32)

with G0,21(z) = 0.095z−1

1−0.905z−1 , G0,31(z) = 0.181z−1

1−0.819z−1 and

G0,32(z) = 0.259z−1

1−0.741z−1 and G0,13(z) = 0.3 G0,32(z). More-

over, v̄(t) = (I3 ⊗ 1
1−0.7z−1 )ē(t) (i = 1, 2, 3) with ē(t) a

white noise vector of covariance matrix Σ0 = 0.1I3. Since
G0(z) is stable and G0(∞) = 0, the transfer matrix H0(z)
in (4) is given by T0(z)(I3 ⊗ 1

1−0.7z−1 ) (see the remark at

the end of Section 2).

In this network, we see that the transfer functions G0,ik

(i 6= k) that are equal to zero are the transfer function
G0,12(z) and G0,23(z). Let us compute the inverse Q0 of
the static gain matrix T0 of the transfer matrix T0(z) =

(INmod
−G0(z))

−1
:

Q0 =

(
1 0 −0.3
−1 1 0
−1 −1 1

)
. (33)

We indeed observe that Q0,12 and Q0,23 are the sole entries
Q0,ik in Q0 that are equal to zero.

Following the procedure in Section 4, we identify an AR
model Ĥ(z) = Â−1(z) of H0(z) using 10000 samples of
w̄(t) collected on (1) with r̄(t) = 0. A polynomial matrix

Â(z) having entries of degree 5 is sufficient to whiten

Ĥ−1(z)w̄(t) = Â(z)w̄(t). This AR model is then used to
subsequently identify the columns of T0 via three identifi-
cation experiments and the identification criterion (12). In
these three experiments, we choose αk = 1 and Nk = 800
(k = 1, 2, 3). This allows to deduce an estimate T̂ of T0

(see (15)) and we then obtain the following estimate of
Q0:



Q̂ = T̂ −1 =

(
1.1523 −0.1243 −0.3011
−1.0373 1.0850 −0.0276
−0.9523 −0.9678 0.9739

)
(34)

We observe that Q̂12 = −0.1243 and Q̂23 = −0.0276 are
smaller than the other Q̂ik (i 6= k), but not extremely
small. To have an idea of the uncertainty of the estimates

Q̂ik (i 6= k), the estimate of the covariance matrix Pθ of θ̂
(see (17) and (18)) is used to determine the uncertainty
ellipsoid U (the confidence level is chosen equal to 95%
and χ is thus chosen equal to 16.919). In our case, U
indeed contains θ0. We then use the procedure described
in Section 6 to derive the uncertainty intervals Iik corre-
sponding to each non-diagonal entry Q̂ik of Q̂. In Table 1,
we give these intervals Iik = [Qminik , Qmaxik ] together with
their length Lik and the true coefficients Q0,ik. We observe
that, for all pairs (i, k), the true coefficient Q0,ik lies in its
confidence interval Iik. Even though the lengths Lik of
these intervals are relatively large with respect to |Q0,ik|,
the decision rule (19) allows to correctly conclude that
the true unknown non-diagonal entries Q0,13, Q0,21, Q0,31,
Q0,32 are all non-zero since 0 is not an element of their
confidence interval and that bothQ0,12 andQ0,23 are equal
to zero since 0 lies in both I12 and I23.

We have repeated the above procedure 500 times with
different realizations of the noise vector ē in each step (i.e.

the identification of Ĥ(z) and of T̂ ) and we have observed
that θ0 lies in U in 93.8% of these Monte Carlo simulations
(which is close to the prescribed confidence level of 95%)
and also that all these Monte Carlo simulations allowed to
correctly determine the topology of the network using (19).
If αk = 0.5 (k = 1, 2, 3) instead of αk = 1 (k =
1, 2, 3), the correct topology is determined in 42.4% of the
cases. Indeed, if αk is decreased, the covariance matrix Pθ
(see (14)) is increased and, consequently, U has a larger
volume and the size Lik of the intervals are therefore larger
and, as discussed below (19), the decision rule (19) is then
less reliable. What we in fact observe is that other intervals
than I12 and I23 contain zero and, consequently, (19)
wrongly conclude that the corresponding non-diagonal
entries of Q0 are zero.

Table 1.

(i, k) Q0,ik Qmin
ik Qmax

ik Lik

(1, 2) 0 -0.4142 0.1271 0.5413

(1, 3) -0.3 -0.5036 -0.1151 0.3885

(2, 1) -1 -1.4553 -0.7351 0.7203

(2, 3) 0 -0.2193 0.1764 0.3957

(3, 1) -1 -1.2891 -0.6738 0.6153

(3, 2) -1 -1.2417 -0.7425 0.4992

8. CONCLUDING REMARKS

In this paper, we derive a topology detection procedure
that is based on a decision rule involving uncertainty
intervals. We have seen that the decision rule can become
unreliable if the length Lik of the intervals is large. More
precisely, the decision rule (19) is, when we observe that 0
lies in Iik, not really in state of distinguishing between
elements Q0,ik that are really zero and elements Q0,ik

that have a nonzero value such that |Q0,ik| < Lik. If we

assume that a nonzeroQ0,ik cannot be smaller than a given
small threshold ε, the decision rule (19) will always lead
to the right decision if each interval Iik containing zero
has a length Lik < ε. In future work, we will design the
experimental conditions of the identification experiment of
Section 4 to achieve this objective.
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