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Abstract—In this letter, the outage performance of a two-
user downlink non-orthogonal multiple access (NOMA) time-
varying network without any knowledge on the channel state
or distribution at the base station (BS) is investigated. Build-
ing on reinforcement learning techniques and, more precisely,
on multi-armed bandits (MAB), we propose a novel adaptive
NOMA scheme that optimally tunes which user should perform
successive interference cancellation (SIC) jointly with the power
allocation at the BS. Remarkably, our proposed scheme requires
only a single bit (ACK-type) of feedback from each user and is
still able to outperform OMA, as demonstrated by the numerical
results in many settings of interest including stochastic and even
non-stationary (adversarial) ones.

Index Terms—Adaptive NOMA with no CSIT/CDIT, time-
varying wireless networks, reinforcement learning, multi-armed
bandits, malicious jamming

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is a promising
technology for 5G and future generation communication sys-
tems aiming at solving the radio spectrum scarcity and en-
abling massive device connectivity [1]–[5]. Unlike orthogonal
multiple access (OMA) used up to 4G, NOMA allows mul-
tiple users to share resources (frequency, time or code) by
using superposition coding at the transmitter and successive
interference cancellation (SIC) at the receiver to cope with
the multi-user interference.

Several studies showed that power-domain NOMA (in
the uplink or downlink) can outperform OMA in terms of
throughput or energy efficiency [6]–[10] when channel state
information at the transmitter (CSIT) is available, as well
as in terms of outage probability [11]–[14] when channel
distribution information at the transmitter (CDIT) is available.
Under perfect CSIT, the order under which the messages are
decoded by SIC is based on the quality of the channels. When
the BS does not have access to CSIT but to CDIT, NOMA
can still improve both the achievable rate and the outage
probability compared to OMA, by carefully allocating power
to each of the served users and using a SIC ordering that is
either based on the channel statistical characteristics [12], [13]
or on a 1-bit feedback mechanism related to the channel state
(known at the receiver end) [15].

This work has been supported by the ELIOT ANR-18-CE40-0030 and
FAPESP 2018/12579-7 project and by IRCICA, CNRS USR 3380, Lille,
France.

All the above cited works studying NOMA networks assume
either perfect CSIT or CDIT. Such information may be difficult
to obtain at the transmitter side or even to be fed back from
the receivers in practice. For instance, in dense IoT networks,
when taking into account the users’ heterogeneity, mobility
and connectivity patterns, the network may vary too quickly to
reasonably assume perfect CSIT and may vary in a completely
arbitrary way (even non stationary) to assume CDIT.

To the best of our knowledge, this letter is the first to
investigate NOMA networks with no CSIT and no CDIT. More
precisely, we investigate a time-varying downlink NOMA
network, in which a base station (BS) serves two users over
wireless channels with no access to CSIT or CDIT. Our
main contribution lies in the design of a novel adaptive
NOMA scheme that jointly allocates the overall power of
the BS to the two users and decide which user performs
SIC decoding to minimize the network outage probability.
To circumvent the lack of channel knowledge at the BS, our
novel scheme exploits reinforcement learning techniques, more
precisely the so-called multi-armed bandits (MAB) [16], that
have a relatively low complexity and rely only on a single
bit of information from each user. Our numerical simulations
illustrate the enormous potential of our adaptive NOMA
scheme outperforming its OMA counterpart in many settings
of interest, including the presence of a malicious jammer.

MABs have recently been used in NOMA networks in [17],
[18]. However, these works investigate the uplink NOMA
setting, in which SIC decoding is performed at the unique
receiver (having access to perfect channel state information)
and is less complex compared to our downlink case. Moreover,
the problems in [17], [18] are quite different and consist
in throughput and energy-efficiency maximization problems
(assuming perfect CSIT) respectively, as opposed to our outage
minimization problem with no CSIT/CDIT.

II. SYSTEM MODEL

We consider a NOMA downlink network composed of a
single-antenna transmitter, i.e., the BS (which can be an IoT
access point or celullar access point etc.) and two1 single-

1Our analysis and results in this work carry over the more general case of
multiple receivers that have been paired and assigned to orthogonal frequency
bands. Pairing is a common operation in NOMA networks to reduce the
complexity of the SIC decoding, which is relevant for IoT devices with limited
power and computational resources [8], [19], [20].
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antenna receivers (IoT or cellular users). At each time slot
t, the BS transmits a signal to both users via superposition
coding. The received signal at each user k ∈ {1, 2} at time t

writes thus as y(t)k = h
(t)
k

(√
P

(t)
1 s

(t)
1 +

√
P

(t)
2 s

(t)
2

)
+ n

(t)
k .

We consider a stochastic channel model (e.g., Rayleigh
fading, Rice, etc) that varies at each time instant t. The
noise term n

(t)
k follows the complex Gaussian distribution

n
(t)
k ∼ CN (0, σ2

nk
), similarly to s(t)k ∼ CN (0, 1), the message

intended for user k of normalized average power. Let P (t)
k

denote the power allocated by the BS to receiver k at time t,
and Pmax denote the total power budget available at the BS,
which is fully exploited: P (t)

1 + P
(t)
2 = Pmax as in [8], [12].

Also, each user k needs to meet some quality of service (QoS)
requirement given as the minimum or target rate Rth

k .
Throughout this letter, we assume that both receivers have

perfect knowledge of their own channel (which can be ob-
tained through pilot-based channel estimation for instance) but
that no CSIT nor CDIT is available at the transmitter side.

Under perfect CSIT [4], NOMA is performed as follows.
The user i who encounters better channel condition |hi|/σ2

ni >
|hj |/σ2

nj , j ∈ {1, 2} \ {i} carries out SIC decoding, whereas
the weakest user j performs single user detection (SUD).
Hence, the strongest user i first detects the message of the
weakest user j, cancels it out and then decodes his own signal
without interference. The weakest user j decodes his own
message directly by treating the interference as noise. Usually,
more power is allocated by the BS to the weakest user for
fairness reasons and to minimize the overall outage of the
network.

When the BS does not have access to perfect CSIT, it
cannot decide without error which user encounters better
channel conditions, the users’ decoding schemes (SIC or
SUD) and its own optimal power allocation, which inevitably
leads to outage events [11]–[13]. All latter works investigate
the outage probability and assume perfect CDIT. Based on
this information, an expression of the outage probability is
provided (even in closed-form depending on the statistics of
the channel) and then optimized via classical techniques.

To the best of our knowledge, our work is the first to
minimize the outage probability in a downlink NOMA network
with no CDIT at the BS. By exploiting reinforcement learning
techniques, we propose a new adaptive NOMA scheme, in
which the users’ decoding choice and the power allocation
at the BS are jointly tuned based on past transmissions and
relying on a single bit of feedback from each user. The
feedback information is of ACK-type and conveys whether
the users’ QoS constraints have been met during the past
transmission.

In the remaining of this letter, we reserve the indices i and
j to denote the user performing SIC and the user performing
SUD, respectively. At each time step t, user i starts by
decoding the message intended for user j, which requires the

rate R(t)
j→i = log
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)
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denotes the instantaneous signal-to-interference-plus-noise ra-
tio (SINR) at user i. The achievable data rate of user i and j to
detect their own message are respectively R(t)

i = log(1+Γ
(t)
i )

and R
(t)
j→j = log(1 + Γ
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and
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denote the instantaneous signal-to-

noise ratio (SNR) at user i after removing the interference
signal, and the SINR at user j respectively. Since user i is cho-
sen to carry out SIC, it will be allocated less power to ensure
that the weakest user j does not suffer from outage too often,
which would have a negative impact on the network outage.
Furthermore, because the BS is assumed to transmit at full
power Pmax, one can write the allocated power to user i and
j respectively as P (t)

i = α(t)Pmax and P (t)
j = (1−α(t))Pmax,

with α(t) ∈ (0, 1/2).
To sum up, the network outage probability is defined as

PNOMA
out , P
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with Γth
i , 2R

th
i − 1 and Γth

j , 2R
th
j − 1.

Ideally, we would like to find the best power allocation
α ∈ (0, 1/2) at the BS and the best choice i ∈ {1, 2} defining
the user decoding schemes that minimize jointly the outage
probability above. The issue is that the analytical expression
of the outage probability requires the perfect knowledge of
the distribution of the channel gains (or CDIT), which is
unavailable in our case. Furthermore, in practical settings in
which users’ mobility and connectivity patterns are taken into
account, the channels may vary in a completely arbitrary way
and may even be non-stationary.

All this leads to an unknown objective function which
cannot be minimized via classical optimization techniques.
Instead, we propose to exploit reinforcement learning and
MABs to propose iterative and adaptive schemes that exploit
past transmissions and do not rely on CSIT/CDIT.

III. MULTI-ARMED BANDITS FOR ADAPTIVE NOMA
WITH NO CSIT/CDIT

As already mentioned, we exploit here the MAB framework
to design iterative policies a(t) , (α(t), i(t)) that minimize
the outage probability of a wireless downlink NOMA system
in the absence of CSIT and CDIT. For this, we assume a
discrete set: Qα = {α1, α2, . . . , αM} of choices for the
power allocation variable α. This quantization will obviously
induce an optimality loss compared with the continuous set
α ∈ (0, 1/2), which will be evaluated in details via numerical
simulations in Sec. IV. We then denote by A = Qα × {1, 2}
the set of arms or policies representing the possible choices
of the joint optimization variable a , (α, i).

A generic dynamic policy for adaptive NOMA in this
framework can be described as follows and is summarized
in Algorithm 1. At each iteration t, the decision maker or
the BS selects an arm a(t) ∈ A defining both its power
allocation policy α(t) and the users’ decoding schemes i(t)

for the transmission. Then, the BS informs the users of their
decoding schemes i(t), which can be conveyed via 1-bit. Then,
both users perform their respective decoding schemes and
determine if they met their QoS requirements and send a one-
bit ACK feedback. Based on this feedback, the BS computes
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the binary reward u(t)(a(t)) defined in (2) and updates the arm
selection process.

u(t)(a(t))=

{
1, if Γ

(t)
i ≥ Γth

i ∩min(Γ
(t)
j→j ,Γ

(t)
j→i) ≥ Γth

j

0, otherwise.
(2)

Algorithm 1 Adaptive NOMA via MABs

initialize t = 1, a(1) = (1/4, 1)
repeat

1-bit broadcast of the users’ decoding schemes i(t)

transmit data via policy a(t) = (α(t), i(t)) ∈ A
receive a 1-bit ACK feedback from each user
compute u(t)(a(t)) in eq. (2)
update policy a(t+1) ← a(t) based on u(t)(a(t))
t← t+ 1

until transmission ends

The main idea of such iterative schemes is to learn the best
policy or arm that obtains maximal expected reward, without
knowing the statistics of the rewards of each arm in advance
and based only on past observations. The notion of merit that
allows one to evaluate the performance of a specific dynamic
policy a(t) in the MAB framework is that of the average regret
[21] defined as: RegT = µ∗− 1

T

∑T
t=1 u

(t)(a(t)),where µ∗ rep-
resents the maximal expected reward given as µ∗ = max

a∈A
µ(a),

with µ(a) = E[u(t)(a)] being the unknown expected reward
of an arbitrary arm a ∈ A. Intuitively, the average regret
measures the gap between cumulative reward of the dynamic
policy a(t),∀t ∈ {1, . . . , T}, compared with the fixed optimal
policy a∗ = arg max

a∈A
µ(a) chosen at each iteration.

A dynamic policy a(t) is said to have the no-regret prop-
erty if lim supT→∞RegT ≤ 0. This means that a no-
regret dynamic policy performs at least as good as the best
fixed policy maximizing the expected reward when the time
horizon grows large. The link between no-regret policies
and our initial problem of minimizing the outage probability
is straightforward and lies in that maximizing the expected
reward is equivalent to minimizing the outage probability since
µ(a) = E[u(t)(a)] = 1− PNOMA

out .
In what follows, we focus on two well-known MAB policies

that have the property of no regret by specifying the updating
rule of the policy in our Algorithm 1 (a(t+1) ← a(t)). Namely,
UCB and EXP3 are investigated because they optimally trade-
off between data exploration and exploitation to reach the best
regret decay rates in the stochastic and adversarial MABs,
respectively.

A. Upper Confidence Bound (UCB)

UCB is a deterministic no-regret algorithm designed specif-
ically for stochastic environments which enjoys an opti-
mal decay rate of the average regret such that RegT =
O(log T/T ) [21]. Under UCB, the updating policy rule is

a(t+1) = arg max
a∈A

(
µ̂(t)
a +

√
δ log t

2n
(t)
a

)
, where n(t)a denotes the

number of times arm a was selected up to iteration t, µ̂(t)
a

denotes the empirical mean reward of arm a:

µ̂
(t)
a =

∑t
τ=1 u

(τ)(a)1[a(τ)=a]

n
(t)
a

, where 1[·] is the indicator
function and δ is the learning parameter that tradeoffs between
data exploration and exploitation.

B. Exponential weights for exploration and exploitation
(EXP3)

EXP3 is a different and random no-regret algorithm de-
signed for more general environments going beyond the
stochastic case [22]. The regret decay rate of EXP3 is RegT =
O(1/

√
T ), hence slower than UCB in stochastic environments,

but having the advantage of accounting for arbitrary dynamics
that may even be adversary as we will see in Sec. IV.

Under EXP3, the updated policy a(t+1) ∈ A is drawn
randomly following a discrete distribution:

p(t)(a) = (1− γ)
exp(ηG(t)(a))∑|A|
b=1 exp(ηG(t)(b))

+
γ

|A|
, ∀a ∈ A

where |A| = 2M is the number of arms, G(t)(a) is the
cumulative estimated reward of an arbitrary arm a given as
G(t)(a)=

∑t
τ=1 û

(τ)(a)1[aτ =a], with û(t)(a)=u(t)(a)/p(t)(a)
and γ, η are the learning parameters that tradeoff between
data exploration and exploitation.

Complexity of adaptive NOMA: Both UCB and EXP3
induce a linear complexity O(|A|) per learning iteration. Also,
EXP3 requires at most O(1/ε2) iterations to reach an average
regret below ε > 0 due to its O(1/

√
T ) regret decay rate; and

since the regret decay of UCB is O(log T/T ) (much better
than EXP3), UCB will require much less iterations compared
to EXP3. Moreover, NOMA relying on perfect CSIT or CDIT
involves a high-resolution feedback channel, whereas our
proposed adaptive NOMA scheme via reinforcement learning
requires only a single bit of feedback.

IV. SIMULATION RESULTS

In this section, we investigate the outage performance of
our proposed adaptive NOMA schemes when no CSIT/CDIT
is available at the transmitter. Four cases depending on the res-
olution of the power allocation interval quantization (0, 1/2)
are considered: a) M = 1 or 2 arms; b) M = 3 or 6 arms;
c) M = 7 or 14 arms; and d) M = 15 or 30 arms. The
quantization is uniform and obtained by dichotomy such that
for M = 1 (2 arms), we have A = {0.25}×{1, 2}; for M = 3
(6 arms), we have A = {0.125, 0.25, 0.375} × {1, 2}; etc.

As a comparison benchmark, we consider a conventional
OMA system where the BS serves both users by time shar-
ing. The achievable rate at user k ∈ {1, 2} thus write as

R
(t),OMA
k = 1

2 log
(

1 + Γ
(t),OMA
k

)
, where Γ

(t)
k =

|h(t)
k |

2Pmax

σ2
nk

denotes the instantaneous SNR at user k. Note that under
OMA, the outage probability writes as
POMA
out , P

[
R

(t),OMA
1 ≤ Rth

1 ∪R
(t),OMA
2 ≤ Rth

2

]
.

We evaluate our schemes in a common downlink NOMA
setup [23] assuming Rayleigh channels h(t)k ∼ CN (0, σ2

hk
),

and setting the network parameters as: Pmax/σ
2
k = 20 dB

for k ∈ {1, 2}, σ2
h1

= 1, σ2
h2

= 0.1, Γth
1 = 1 (Rth

1 = 1
bpcu), Γth

2 = 3 (Rth
2 = 2 bpcu), unless otherwise specified.

Both algorithms are run over a T = 104 time horizon and the
provided results are averaged over N = 103 random runs.
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Tunning the learning parameters: δ, γ and η that tradeoff
between data exploration and exploitation can lead to very
poor performance if badly chosen. From a theoretical perspec-
tive, they should be chosen such that δ∗ > 2, η∗ = γ

|A| and

γ∗ =
√
|A| ln |A|
(e−1)T in order to reach the optimal regret decay

rate by minimizing the regret’s upper bound [21], [22]. In
practice, these values can be further improved to obtain better
performance [24]–[26]. Based on numerical experiments, the
following values were chosen: δ = 1 instead of δ∗ > 2 (for
UCB in Fig. 1 and Fig. 3), γ = γ∗ = 0.0464 and η = 0.02
instead of η∗ = 0.0033 (for EXP3 in Fig. 1).

In Fig. 1, we compare the outage performance obtained with
UCB and EXP3 using a set of 14 arms (M = 7) with the fixed
optimal arm a∗ (computed offline and requiring CDIT) using
a set of 14 arms (M = 7) as well as with OMA. Notice that
both algorithms converge towards a∗, the best offline solution
by exploiting only 1-bit of feedback from the users as opposed
to perfect CSIT or CDIT. Surprisingly, our proposed adaptive
NOMA schemes quickly outperform OMA (after less than
100 iterations). Finally, UCB performs better than EXP3 as
expected in stochastic environments.
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Fig. 1. Outage of adaptive NOMA (via UCB or EXP3) relying on a 1-bit
feedback compared to OMA and the best offline policy. Our schemes greatly
outperforms OMA in terms of outage probability.

Fig. 2 depicts the outage performance of our adaptive
NOMA schemes for different number of arms and M ∈
{1, 3, 7, 15} as a function of the QoS requirement Γth

2 of user
2. Here, aside from the OMA benchmark, we also include the
optimal outage probability obtained over a continuous power
allocation policy α ∈ (0, 1/2), to assess the optimality loss of
our adaptive NOMA schemes based on quantization.

First, we remark that our adaptive NOMA schemes cannot
decrease the outage performance compared to OMA and that
the gap between both access techniques is maximized for
moderate QoS requirement, and can go up to 48% in the case
of 30 arms. Also, we can see that increasing the number of
arms, which increases the resolution of our power allocation
quantization, allows to reduce the gap with the continuous
optimal NOMA transmission scheme. At last, for low QoS
requirements two arms are sufficient for outage optimality;
however, as the QoS requirement increases, the number of
arms has to increase.
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Fig. 2. Impact of the number of arms on the outage probability. The outage
decays with the number of arms. The quantization incurred optimality loss
becomes negligible when choosing carefully the number of arms.

So far, we have compared NOMA and OMA from an outage
probability perspective. Since our adaptive NOMA approach
relies on an iterative procedure, we also consider here the
convergence speed. In Fig. 3, we compare the number of
iterations required for adaptive NOMA with UCB to reach
a regret of 10% for M ∈ {1, 3, 7, 15}. When the number of
arms is increased, the longer it takes until UCB reaches the
10% level of regret. This can be explained by the fact that,
when increasing the number of possible arms or policies, the
duration of the exploration search for the best arm naturally
increases.

To sum up, Fig. 1 and Fig. 3 highlight an important tradeoff
between outage optimality and latency of our adaptive NOMA
schemes based on MAB. Indeed, the number of arms needs
to be large enough to reduce the optimality loss caused by
our quantization, but not too large to insure fast convergence.
Hence, the best tradeoff and number of arms will depend on
the specific application.
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Fig. 3. Impact of the number of arms on the speed of the adaptive NOMA
scheme with UCB (iterations required to reach 10% regret). The exploration
search increases with the number of arms.

Let us now consider the presence of a malicious jammer
whose aim is to put the network systematically in outage.
For simplicity, we assume A = {0.4} × {1, 2} (only two
arms) and set δ = 1 for UCB, γ = γ∗ = 0.009, η = 0.02
for EXP3. The jammer is assumed to have knowledge of the
network, more precisely, it knows the set of actions and the
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adaptive NOMA algorithm used at the base station. Since UCB
is a purely deterministic algorithm, the jammer can anticipate
precisely the arm or action chosen by the base station and
is able to adjust its jamming power such that the network is
systematically put in outage. This leads to a non-vanishing
linear regret. The jammer cannot impact the network to such
an extent when the base station is using EXP3. Indeed, with
EXP3 the arm is randomly chosen following a probability
distribution and cannot be perfectly anticipated even is such
worst-case adversarial settings.

The outage performance of our adaptive NOMA schemes
in the presence of a malicious jammer are depicted in Fig. 4.
We can see that UCB is always in outage, as expected; and
that EXP3 can still reach the best offline policy.
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Fig. 4. Outage of adaptive NOMA (via UCB or EXP3) relying on a 1-bit
feedback compared to OMA and the best offline policy in the presence of a
malicious jammer. UCB is always in outage, while EXP3 outperforms OMA
and reaches the best offline policy.

V. CONCLUSIONS AND PERSPECTIVES

In this letter, we investigated the outage probability of a
two-user downlink NOMA network in which no channel state
or distribution information is available at the transmitter side.
To overcome the lack of information, we exploit the multi-
armed bandit (MAB) framework and propose a novel adaptive
NOMA scheme relying on a single bit of feedback. In our
scheme, the transmitter decides both the decoding schemes
of the two receivers as well as its allocated transmit power
based on two well-known reinforcement learning algorithms,
namely UCB and EXP3. Our numerical results demonstrate
the enormous potential of our adaptive NOMA scheme relying
on 1-bit feedback by outperforming OMA in many settings
of interest including stochastic and even non-stationary (ad-
versarial) ones. Furthermore, our simulations show that the
number of possible arms needs to be chosen sufficienly large
to compensate for the power allocation quantization, but not
too large to allow a fast outage decay.

Interesting future work includes taking into account user
mobility and heterogeneous connectivity patterns, multiple
users with and without pairing.
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