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Electronic Structure of Nanoalloys:
A Guide of Useful Concepts and Tools

G. Tréglia, C. Goyhenex, C. Mottet, B. Legrand and F. Ducastelle

Abstract The aim of this lecture is to give an overlook about methods developed

in infinite (bulk) and semi-infinite (surface) metallic materials and some tracks to

extend them to finite size systems. In this framework we will first study the effect

of bond breaking and dimension lowering on electronic structure, at surfaces of

pure metals (surface states, atomic level shifts, reconstructions and relaxations)

and in monometallic clusters. Then we will illustrate the influence of chemical

ordering on electronic structure (and vice versa) by considering firstly bulk alloys

(diagonal versus off-diagonal disorder) and then bimetallic surfaces (stress effect

induced by either surface segregation or epitaxial growth). These two approaches

will then naturally be combined in the peculiar case of nanoalloys. The methods

will be developed following two main goals. The first one is to determine local

electronic densities of states (LDOS), the knowledge of which is essential to the

understanding and the analysis of nano-objects. The second one is to derive from

these LDOS energetic models well suited to both the degree of complexity of the

systems under study (bulk and surface crystalline structure, chemical ordering, …)

and their implementation in numerical simulations (Molecular Dynamics, Monte
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Carlo). The different sections of the lecture will be illustrated by examples issued

from studies performed on systems which can be considered as archetypal in the

nano-alloy community, such as CoPt, CoAu and CuAg.

1 Introduction

The peculiar properties of nanoalloys depend on the local electronic structure on

the various inequivalent sites resulting from their chemical and morphological

structures, which in turn depend on this electronic structure. It is then essential to

understand how these structures are coupled to one another and how they vary

with the metal species, the concentration and the orientation of the surface for

semi-infinite materials and/or the cluster size for finite ones. Modelling these

phenomena would indeed allow us to design the best suited binary system for a

given property.

The aim of this lecture is to give the tools for characterizing the electronic

structure of bimetallic clusters, and to show how they can be used to predict

both their atomic and chemical structures. These electronic structure methods

extend from ab initio calculations to semi-phenomenological models such as

Tight-Binding approximation for transition metals. Since the most commonly used

nanoalloys are made of metals of the end of the transition series, we will put some

emphasis on the latter by giving some details on moment and continued fraction

methods. We will underline how the electronic structure is modified at surface and

cluster sites, first for pure metals and then for bimetallic systems. Then, we

will show how the energetics of the system (cohesive energy, surface tension,

mixing energy) can be derived from electronic structure by using more or less

sophisticated many-body potentials (SMA: Second Moment Approximation, TBIM:
Tight-Binding Ising Model). This will allow us to get trends as a function of the

number of valence electrons for various properties such as the crystalline structure

of pure metals, the relaxation or reconstruction of surfaces, the shape of clusters

and finally the chemical structure of infinite systems (tendency to ordering or

phase separation) and finite ones (surface or site segregation). In turn, we will

illustrate the dependence of the local densities of states with respect to the equi-

librium (geometrical, chemical) environment defined as above.

2 Concepts and Methods (Pure Bulk Metal)

2.1 Chemical Bonding and Periodic Table

The Hamiltonian of a system with N nuclei located at R, and Ne electrons, located

at r with a spin r, writes in the most general way:
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This Hamiltonian acts on a many-body wave function U(x,R) which depends on

both nuclei (R) and electron (x % (r,r)) coordinates. Due to the mass difference

between the electrons and nuclei, we can decouple their respective movements

(adiabatic approximation) which allows one to write the total wave-function

as the product of those of the electrons w(x,R) and of the nuclei v(R):
U(x,R) = w(x,R).v(R). Solving exactly the Schrödinger equation Hw = Ew for the

electrons is only possible in the simple case of the hydrogen atom with only one

proton and one electron. In that case, using spherical coordinates, the solution

writes as the product of a radial function and of a spherical harmonic:

wnlm r; h;uð Þ ¼ Rl
n rð ÞYm

l h;/ð Þ ð2Þ

which involves three quantum numbers n (principal: n C 0), l (azimuthal:

n C l C 0) and m (magnetic: l C m C -l), plus a fourth number for the spin

(s = ± 1/2). The energy associated to the function wnlm only depends on

n (En = - E0/n
2, with E0 = 13.6 eV) so that the ground state of the system, which

corresponds to the minimal energy, is obtained by filling the respective levels as a

function of increasing n. All the electronic states corresponding to the same energy

are then labelled by n, even though their properties essentially depend on the value

of l, which drives the shape of the orbitals (see Fig. 1a), giving rise to the usual

denomination: ns (l = 0), np (l = 1), nd (l = 2), nf (l = 3), …. The magnetic

number gives the degeneracy of each state (i.e. the maximal number of electrons it

can contain) which, counting the spin, is: ns2, np6, nd10, nf 14, … .

In fact, the degeneracy of the different l-levels corresponding to a given n state

will then be lifted by introducing interaction between electrons for atoms con-

taining more than one electron, leading to the variation of Enl schematized in

Fig. 1b, which directly leads to the classification of all elements within the

Mendeleiev classification table. The various types of elements, characterized by

the nature of their valence electrons (s for simple metals, sp for covalent elements,

d for transition metals and sd for noble metals) are illustrated in Fig. 2.

2.2 One electron approximation: band structure

(Hartree–Fock, DFT)

In condensed matter, one has to deal with the general problem of Ne electrons

moving in the potential Vion of N fixed ions. The Hamiltonian then writes:

H ¼
X

Ne
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rið Þ
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The motions of the electrons are then correlated due to their Coulomb inter-

actions, which is a quantic many-body problem involving at least all valence

electrons (external shells). Assuming that a given (single) electron interacts with

all the others by means of an effective mean-field Veff(r), Eq. (3) reduces to a ‘‘one

electron’’ Hamiltonian, the eigenfunctions and eigenvalues of which are solutions

of the Schrödinger equation:

p2

2m
þ V ion

rð Þ þ Veff
rð Þ

� �

wa rð Þ ¼ eawa rð Þ ð4Þ

The ground state of the system at T = 0 K is obtained by stacking the electrons

in the lowest energy states available, leading to N-body states characterized by the

occupation numbers (or Fermi functions) fa which are defined such as fa = 1 if

ea\EF (EF being the Fermi level) and fa = 0 otherwise. The spatial density of

states is then defined as:

nðrÞ ¼
X

a

fa waðrÞj j2 ð5Þ

Fig. 1 Schematic orbitals (left) for the various (l,m) numbers and corresponding level energies

(right)

Fig. 2 Mendeleïev periodic classification table
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Within the Hartree approximation, the effective potential writes:

Veff
rð Þ ¼ VHðrÞ ¼ e2

Z

d~r0
nðr0Þ
rÿ r0j j ð6Þ

The Eq. (4) is solved by an iterative procedure, starting from an initial (guessed)

density of states n(r), which allows one to calculate Veff(r) using (6), then to solve

the Eq. (4) from which one obtains wa and then n(r) through (5). The procedure is

then iterated as long as self-consistency is not achieved.

Unfortunately, in spite of its physical content, this remains an approximation

which does not account for the correlated motion of all the electrons. In particular,

this Hartree approximation does not account for the Pauli principle and then totally

misses the existence of the so-called exchange and correlation hole which makes

electrons avoiding each other at short distance. This is somewhat corrected in the

Hartree–Fock approximation which improves the Hartree potential by including a

so-called exchange contribution, which damps the Coulomb potential contribution

for parallel spins. Unfortunately, this is a rather asymmetric way to treat the

electron interactions since all the electrons should avoid one another. Therefore,

whereas the electronic correlations are completely neglected in the Hartree

scheme, they are treated in a too much asymmetric way in the Hartree-Fock

approximation.

A main progress with the Density Functional Theory (DFT), which is the most

widely used ab initio method, is that it treats the correlations in a more symmetric

way. It is based on the Hohenberg and Kohn theorem [1], which assumes that the

ground state energy E0 of an inhomogeneous interacting electron gas under an

external potential Vion can be written as a functional of the charge density n(r),
E0 = E0[n(r)], which is minimum for the real density of the system. This leads to

write n(r) under the same ‘‘one electron’’ form as (5), using wave functions wa

which are solutions of a Hamiltonian similar to (4), but with now an effective

potential:

Veff ðrÞ ¼ VHðrÞ þ VxcðrÞ ð7Þ

which differs from (6) by the introduction of an exchange–correlation term Vxc,

which is the functional derivative of a contribution Exc[n(r)] to E0 [n(r)]:

VxcðrÞ ¼ oExc nðrÞ½ �
onðrÞ ð8Þ

All the difficulties are then transferred in this term which has to be approxi-

mated. Within the usual Local Density Approximation (LDA), one assumes that

Exc is a local functional of n(r), i.e., that it is defined from the knowledge of the

density at r only.

Exc nðrÞ½ � �
Z

nðrÞexc nðrÞ½ �dr ð9Þ
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exc(n) is the so-called ‘‘exchange and correlation’’ energy of a uniform electron

system with density n, which is widely taken as the average value of the exchange

potential for a free electron system (/ n1/3), weighted by an empirical factor

a (Xa method). When this local approximation fails, due to rapid variations of the

density, it can be corrected by introducing corrections linked to the gradient of the

density: ~rnð~rÞ (GGA: Generalized Gradient Approximation). Finally, inserting

Eqs. (7) an (8) in the Eq. (4) leads to the well-known Kohn–Sham equations which

have to be solved iteratively by using the same self-consistent procedure as already

described. From the resulting eigenvalues ea one can then access to the electronic

band structure, and from that to the density of states following:

nðEÞ ¼
X

a

dðE ÿ eaÞ ¼ TrdðE ÿ HÞ ð10Þ

where the operator d(E–H) is defined by: dðE ÿ HÞ:wa ¼ dðE ÿ eaÞ:wa and the

trace (Tr) is performed on the electronic states a. This is illustrated in the case of

Pd (Fig. 3).

Even though DFT is a non parameterized method, it requires performing some

important choices, in addition to that of the exchange–correlation term (LDA,

GGA). The first one is that of the electron potential among a wide variety: full

potential (FP), ‘‘muffin tin’’ (MT) potentials (the potential is calculated exactly in

spherical regions centred on the nuclei whereas it is taken equal to zero in the

interstitial region), atomic sphere approximation (ASA) or pseudopotentials (PP).

The latter have been developed to explain how a nearly-free behaviour of electrons

could be consistent with a potential Vion which diverges in the ion vicinity. Indeed

in this region, their wave functions oscillate rapidly to orthogonalize to the inner

shell states, leading to a large kinetic energy which almost compensates the

potential energy. One can then define weak pseudopotentials associated to pseudo-

nearly free wave functions (e.g. Ashcroft empty core [2]). The second choice is

that of the basis which determines the efficiency of the method depending on

the system under study. In this framework the plane waves basis provides the

Fig. 3 LMTO calculation of the band structure and density of states of Pd. The full line indicates

the d-partial LDOS and the dotted and dashed ones the s–p ones. Courtesy of S. Sawaya
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simplicity and speed of Fourier development whereas localised orbitals (Gaussians

for chemists, or numerical in SIESTA) have the advantage to give a quasi-atomic

view (consistent with Tight-Binding approximation, see later). Finally augmented

methods (APW) combine the best of these two opposite points of view, by cal-

culating wave functions at fixed energy inside an atomic sphere, which are mat-

ched to plane waves outside.

The DFT method not only gives very good results concerning both the band

structure and density of states, but also for the lattice parameter, elastic constants

and cohesive energies, at least when gradient corrections are taken into account.

This is very satisfying since this method is ab initio, i.e., ‘‘without parameters’’

(contrary to more empirical methods which will be developed later), which does

not mean that it is ‘‘without approximation’’ as shown above! Nevertheless, this

method remains less suited for non periodic systems, in presence of defects, and

tedious to use coupled with numerical simulations such as Molecular Dynamics…

even though Car-Parinello type methods [3] have been developed which take into

account simultaneously the movements of ions and electrons. But such methods

remain heavy to handle for large systems, which justify developing simpler

methods, using semi-empirical potentials suited to the system under study.

2.3 Tight-Binding Approximation and Local Density of States

The Tight-Binding (TB) method [4] starts from isolated atoms with discrete levels,

which form energy bands when the atomic wave functions overlap… but not too

much! It assumes that any one electron electronic state w(r), delocalised in the

solid, can be written as a linear combination of atomic orbitals (LCAO) n; kj i
where k labels the orbital at site n: wðrÞ ¼

P

n;k

akn n; kj i, which is the more justified

as the overlap between the orbitals is weak (d states of transition metals, sp valence

electrons of semi-conductors,…). The corresponding TB Hamiltonian then writes:

H ¼
X

n;k

n; kj iðek;0 þ akÞ n; kh j þ
X

n;m;k;l

n; kj ibklnm m; lh j ð11Þ

in which ek,0, ak and bklnm are respectively the atomic level, crystal field and

hopping integrals, the latter being rapidly damped (after 1st or 2nd neighbours)

and directly related to the bandwidth. Due to the spherical symmetry of atomic

potentials, the [b] matrix is diagonal for each l-value in the basis of spherical

harmonics with the z-axis along (m–n), with eigenvalues defined as the integrals r,
p, d according to the quantum magnetic number |m| = 0, 1, 2. This leads to

different hopping integrals labelled ssr, ppr, ppp, ddr, ddp, ddd (see Fig. 4) to

which are added integrals coupling two different l: spr, sdr, pdr, pdp. In this

framework, one can define d–d canonical parameters such as: |ddr| & 2 |ddp|,
ddd & 0 [5].
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The essential advantage of the method is that it allows working in the direct

space to calculate densities and energies, without resorting to diagonalisation of

the Hamiltonian, and then without need for the Bloch theorem. This allows one to

deal with non crystalline solids and defects. Indeed, one can derive n(E) from the

trace of d(E–H) Eq. (10) which can be calculated within any basis, and in par-

ticular in the basis of atomic orbitals |n,ki. More precisely, using mathematical

properties of d-functions, one can define in a simple way the local density of states

(LDOS) at a given site n0,

nn0ðEÞ ¼ lim
g!0þ

ÿ Im

p

X

k

n0; kh jGðE þ igÞ n0; kj i
" #

ð12Þ

without resorting to any periodicity condition (n0 can be a defect site), from the

projection of the Green function: G(z) = (z-H)-1 on the atomic orbital at site n0.
This projection writes as a continued fraction [6],

n0; kh jG zð Þ n0; kj i ¼ 1

zÿ a1 ÿ b2
1

zÿa2ÿ
b2
2

zÿa3ÿ
b2
3

............

ð13Þ

the coefficients of which can be calculated by two different ways. The first one

is to derive them from the knowledge of the p first moments lp of nn0ðEÞ:

lpðn0Þ ¼
Z

þ1

ÿ1

Epnn0ðEÞdE ¼
X

k

n0; kh jHp n0; kj i

¼
X

k;il;jm;...

n0; kh jH i; lj i i; lh jH j; mj i. . . :; :h jH n0; kj i ð14Þ

which gives more and more details on the LDOS when p increases, and are

obtained by counting closed paths on the lattice [6]. The second way is to calculate

them directly by constructing a new basis tridiagonalising H within the so-called

recursion method [7]. The LDOS is the most precise as the number of calculated

coefficients is large, since N pairs of exact coefficients ensure the LDOS to have

2 N exact moments. The problem is then to terminate the continued fraction. For a

Fig. 4 Schematic sp–sp and d–d hopping integrals
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bulk material, the coefficients converge towards asymptotic values a? and b?
which are related to band edges, at least for a band without gap [8], so that they can

be fitted to band structure calculations.

In this framework, restricting ourselves to d-orbitals as commonly admitted for

transition metals and using canonical Slater parameters, one obtains archetypal

LDOS for the different crystallographic structures shown in Fig. 5. As can be seen,

the fcc LDOS is characterized by a high peak in the upper part which is at the

origin of the possible occurrence of magnetism (see Sect. 2.5), whereas the bcc one

presents a quasi-gap in the middle of the band, which separates bonding states

from anti-bonding ones, which tends to favour strongly this structure for half-filled

d-band elements. However, it is worth noticing that at least at the end of the

transition series, it is necessary to take into account the s and p valence electrons

and their hybridization with the d ones to get a density of states in good agreement

with that derived from DFT calculations [9]. As can be seen in Fig. 6, this strongly

modifies the LDOS.

E

d

n(E) n(E)

E

ε εd

Fig. 5 Typical d-LDOS for fcc (left) and bcc (right) bulk structures
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Fig. 6 Influence of sp-d hybridization on the fcc LDOS
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2.4 Energetics and Link Between Electronic

and Crystallographic Structure

As usual in any mean-field approximation, the total band energy of the system is

not equal to the sum over the one-electron energies (ea), since it counts twice the

electron–electron interactions which have to be substracted once. The DFT band

energy then writes:

ELDA
b;0 ¼

X

a

faea ÿ
1

2

Z

drVHðrÞnðrÞ þ
Z

drnðrÞ exc nðrÞ½ � ÿ oexc nðrÞ½ �
onðrÞ

� �

ð15Þ

The total energy is then obtained by adding the ion–ion contribution to the band

one:

E0 ¼ EDFT
b;0 þ 1

2

Z

drV ionÿionðrÞnionðrÞ withV ionÿionðrÞ ¼
Z

dr0
nionðr0Þ
rÿ r0j j ð16Þ

where nion(r) is the ionic density: nion (r) = Z d(r-n), for Z charges at sites n.
Within the TB approximation, one can develop this equation, by introducing the

local density of states nn(E), and the corresponding charge Nnð¼
R EF nnðEÞdEÞ at

site n and by assuming charge neutrality (Nn = Zn ionic charge) [10]. The cohesive

energy is then obtained by subtracting the reference of isolated atoms:

Ecoh ¼
X

n;k

Z EF

ðE ÿ e0;kÞnknðEÞdE þ 1

2

X

n 6¼m

ZZ

drdr0
QnðrÞQmðr0Þ

r ÿ r0j j ð17Þ

The first term is the band energy (Ecoh,b) and the second one the pair interaction

(Ecoh,r) between neutral atoms with charge density: Qn (r) = Zn d(r-n)-Nn (r-n).
Unfortunately, Ecoh,r is not sufficient to account for the repulsive part of the

energy. Actually, the TB approximation fails to reproduce part of the repulsion at

short distance since it does not account for the non-orthogonality of wave func-

tions on different sites and for the compression of sp electrons which play an

important role before the Coulomb repulsion becomes really efficient.

Therefore, in a first step, we will put some emphasis on properties for which the

dependencewith d-band filling suggests that they aremainly driven by the band term.

This is in particular the case of the quasi-parabolic variation of the cohesive

energy but also of the atomic volume and bulk modulus experimentally evidenced

for each of the transition series (see Fig. 7). This parabolic behaviour is indeed

reproduced by calculating the band term of (17) from the previous LDOS. In fact,

the integral depending weakly on details of n(E), this band term can be approxi-

mated from a schematic rectangular density of states presenting the same second

moment (related to the mean width of the LDOS) as the exact one: Ecoh;b ¼
ÿNeð10ÿ NeÞb

ffiffiffi

Z
p

where b is an ‘‘effective’’ hopping integral, corresponding to

the Z first neighbours. Obviously, some features are not well reproduced in this

crude approximation, in particular the asymmetry of the trends which requires a
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larger number of exact moments and/or including sp-d hybridization to be

accounted for. The deep hole of Ecoh for the first series is attributed to magnetism.

On the other hand, as can be seen in Table 5.1, the crystalline structure of tran-

sition metals is clearly related to the band filling. As shown in Fig. 8 the main trends

are correctly reproduced by the TB calculation for the bcc/fcc as well as for hcp/fcc

systematics (which of course requires to go beyond secondmoment since hcp and fcc

structures are identical up to second neighbours), except for the nearly filled band for

which the bcc structure is found instead of fcc. Fortunately, this is corrected if one

takes into account sp-d hybridization which, as previously mentioned, plays a major

role at the end of transition series. In fact, in the case of the preference for hcp or fcc

structure, which involves a weak energy balance and an accuracy of the LDOS

beyond second moment, the sp-d hybridization plays a role on the overall trend,

consistently with the corresponding influence on the shape of the LDOS.

As shown in Fig. 8, the sp-contribution to the energy balance is small as

expected since the overall behaviour is driven by that of the partial d-band which

significantly differs from the non hybridized d-band. In the following, it has to be

kept in mind that the energetics only depends on the d-band, but once distorted by

the sp-d hybridization.
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Fig. 7 Experimental variation of the cohesive energy, atomic volume and bulk modulus along

transition metal series

Table 1 Crystallographic structure of transition metals

Ne 2 3 4 5 6 7 8 9 10

Sc Ti V Cr Mn Fe Co Ni Cu

Y Zr Nb Mo Tc Ru Rh Pd Ag

La Hf Ta W Re Os Ir Pt Au

HCP CC HCP FCC
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2.5 Magnetism Within TB Approximation

For a few metallic elements, the energy of the system can be lowered by shifting

the two spin bands, inducing different numbers of electrons with up and down
spins (N:, N;), and therefore a finite magnetic moment l = N: -N;. In the

framework of collinear magnetism and in absence of spin–orbit coupling, the up
and down states are decoupled, so that the sub-systems of up and down electrons

can be treated separately, keeping in mind that one must define a single Fermi

level (EF) for both spin directions in order to get the right total d-band filling

Ne = N: ? N;. Thus, in a canonical approach, each spin partial LDOS is obtained

from the paramagnetic one n0(E) by simply shifting its barycentre e0 by �De=2:

n" Eð Þ ¼ n0 E þ De

2

� �

n# Eð Þ ¼ n0 E ÿ De

2

� �

In that case, the magnetic moment is simply given by:

l ¼ N" EFð Þ ÿ N# EFð Þ ¼
Z

EFþDe
2

EFÿDe
2

n0ðEÞdE ð18aÞ
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Fig. 8 a Stabilities of fcc relative to bcc (a) and hcp (b) structures in the tight-binding framework

(note the two different orders of magnitudes). Effect of sp-d hybridization on the latter competition

is also shown in (b). From Refs. [9–11], copyright (2008), with permission from Elsevier
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which in the limit of weak magnetisation (small De) reduces to:

l ffi n0ðEFÞDe ð18bÞ

This means that the slope at the origin of the l-curve as a function of De

is nothing but the value of the paramagnetic density of states at the Fermi level.
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Fig. 9 a, a Self-consistent determination of l from the crossing point of Eqs. (18a) (blue dots)
and (18c) (green lines) for two values of U. The slope given by Eq. (18b) appears as the dotted

blue line b, b l2-dependence of band term of the energy (DEcoh,0, red dots) given by Eq. (20b)
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This is illustrated for an almost filled (Ne = 9) in Fig. 9a and for an almost half-

filled FCC d-band (Ne = 6) in Fig. 9a.

On the other hand, linearizing the Hamiltonian leads to a self-consistency

relation between the d-level shifts and the magnetic moment through the Coulomb

integral U which writes: De ¼ Ul=5, giving an other De-variation law for l:

l ¼ 5

U
De ð18cÞ

A self-consistent determination of the magnetic moment then requires finding

the crossing points of the two curves as a function of De for the actual value of the

U parameter. The asymptotic value of l being that which corresponds to a full up
d-band filling, the curve given by Eq. (18a) saturates at the value ls = 10 – Ne,

being then below the line given by Eq. (18b). That means that it can cross the

curve given by Eq. (18c) only if the so-called Stoner factor S0 ¼ Un0 EFð Þ=5 is

larger than unity (Stoner criterion). As can be seen, for a value of U which satisfies

this criterion (here U = 4 eV) this crossing point only exists for the saturation

value (ls = 1) for Ne = 9, which corresponds to the limit of strong ferromagne-

tism (full up band). At the opposite, different crossing points (l1, …, l5) are found

below the saturation value (ls = 4) for Ne = 6 (weak ferromagnetism), in

agreement with experiments. This is still clearer in Fig. 9(c, c), in which is plotted

(for U = 4 eV) the difference:

Dl ¼
Z

EFþDe
2

EFÿDe
2

n0ðEÞdE ÿ 5

U
De ð19Þ

In that case, the equilibrium value of l is the one that which minimizes the band

energy Eb:

Eb lð Þ ¼
Z EF

En"ðEÞdE þ
Z EF

En#ðEÞdE ÿ Nee0 þ
5

4
U

l

5

� �2

where the last two terms account for the double counting of interactions in the one-

electron term. Taking advantage of the self-consistent relation (18c), this energy

also writes:

Eb lð Þ ¼ Ecoh;0 N"
ÿ �

þ Ecoh;0 N#
ÿ �

ÿ 1

20
Ul2 ð20aÞ

with: Ecoh;0 Nrð Þ ¼
R Er

F En0ðEÞdE ÿ Nre0;E
r
F ¼ EF � De

2
depending on r ¼"; #.

The gain (or loss) in energy due to magnetism for a given d-band filling is then

given by:

DEb lð Þ ¼ DEcoh;0 Ne; lð Þ ÿ 1

20
Ul2 ð20bÞ
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DEcoh;0 Ne; lð Þ ¼ Ecoh;0 N"
ÿ �

þ Ecoh;0 N#
ÿ �

ÿ 2Ecoh;0 Neð Þ

As can be seen, for small values of the magnetic moment, the first term,

independent on U, is nothing but the second derivative of the curve Ecoh,0(Ne) at

the considered band filling. From the convexity of this curve, it appears that this

band term is positive and then disfavours magnetism whereas the second (mag-

netic) term is explicitly negative and then favours its occurrence. In the limit of

small values of the magnetic moment l or in the particular case where the LDOS

does not vary much around the Fermi level, the equations (20b) can be

developed into:

DEb lð Þ ffi l2

20

5

n0ðEFÞ
ÿ U

� �

ð21Þ

The balance between these two terms then gives the sign of the slope of DEb(l)

curve at the origin (l = 0). This allows to recover the previous Stoner criterion,

the critical value of U being Uc = 5/n0(EF) (2.2 eV for Ne = 9 and 3.8 eV for

Ne = 6). However, finding the actual value of the magnetic moment requires to go

beyond such approximations (small l or LDOS almost constant around the Fermi

level). One sees in Fig. 9(b, b) that the band term DEcoh,0 indeed deviates from a

simple l2 behaviour. This is still more apparent in Fig. 9(c, c) in which we plot

DEb given by Eq. (20b). As expected from the self-consistent treatment of l

(Fig. 9(a, a), DEb is decreasing up to the saturation value ls for Ne = 9 (strong

ferromagnetism), whereas one recovers five extrema (with three minima), corre-

sponding to the five crossing points of Fig. 9a for Ne = 6 (weak magnetism).

In the latter case, the equilibrium value corresponds to the absolute minimum

(l3 = 2.3). The relative stabilities of the three minima is obviously strongly

dependent on the value of U (in the range between Uc and 4.2 eV), or equivalently

from variations of the LDOS with respect to its equilibrium shape, due to variation

of interatomic distances (e.g. epitaxial growth, defects, dilation), which implies

that the magnetisation could change under small variations of experimental

conditions.

3 Pure Metal Surfaces and Clusters

3.1 Surface LDOS, Charge Self-Consistency

and Atomic Level Shifts

If one neglects the crystal field ak, two bulk parameters should vary at the surface:

first the hopping integrals bklnm that we will assume unchanged at the surface

(no relaxation), then the effective k levels ek. Let us first assume that the latter is

also unchanged at the surface. In that case, the first effect of bond breaking (DZ) is
to narrow the LDOS at the surface, due to simple second moment arguments.
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In addition, as can be seen in Fig. 10, the LDOS corresponding to the most open

surfaces (namely (110) and (100) for fcc, (100) and (111) for bcc) present quasi

surface states, which vanish beyond the surface layer.

However, once the Fermi level is fixed by the bulk density of states, keeping ek
unchanged at the surface (Fig. 11a) leads to an unrealistic electronic charge

transfer which must obey some self consistent rule, since this charge redistribution

modifies the potential and then shifts ek by dek,s.

This is illustrated in Fig. 11 for a single d-band. As can be seen the dependence

of ded,s with d-band filling follows some general trends: it changes sign near the

n(E ) n(E )

n(E ) n(E )

E

E E

E

εd εd

εd εd

n(E ) n(E )

n(E ) n(E )

E

E E

E

εd εd

εd εd

FCC
bulk

FCC
(111)

FCC
(100)

FCC
(110)

BCC
Bulk

BCC
(110)

BCC
(111)

BCC
(100)

Fig. 10 Surface LDOS for fcc (left) and bcc (right) low index surfaces

δVs/W

0.1

-0.1

0
10

Ne

second
moment

Z=12,∆Z=4

fcc(100)

bcc(100)

(a) (b)

Fig. 11 a Variation with the d band filling (for realistic and rectangular densities of states) of the

surface valence level shifts induced by the local charge neutrality requirement (from Ref. [12]).

b Experimental surface core level shifts for Ta and W low index surfaces (from Ref. [13],

copyright (1985), with permission from Elsevier)
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middle of the series (between W and Ta in the 5d series), its absolute value

increases with the number of broken bonds (fcc: |ded,110|[ |d e d,100|[ |d e d,111|),

with a maximum value of about W/10 (W: d-band width). Finally, it is worth

mentioning that this d level shift is almost rigidly followed by the core levels,

which is confirmed experimentally by core level spectroscopy [13].

Let us note that this charge neutrality condition at the surface is confirmed by

ab initio calculations. More precisely the DFT calculations even show that, when

considering sp-d hybridization, charge neutrality has to be achieved, not only for

each inequivalent site, but also for each orbital [14]. As can be seen in Fig. 12 for

the Au(111) surface the resulting LDOS’s compare satisfactorily to those of DFT

calculations. Moreover, sp-d hybridization leads to surface energies in better

agreement with experiments [15].

3.2 Relaxations and Reconstructions: Second Moment

Approximation

Due to the broken bonds, the surface atoms can undergo displacements with

respect to their bulk positions. In all cases, there is at least a vertical relaxation,

which is experimentally known to be inwards (contraction of the first interlayer

distance) for transition metals. In order to model this behaviour, we need not only

the band part of the energy but also the repulsive one. Unfortunately as already

mentioned, TB does not give such a repulsive part. To go beyond this difficulty,

the idea is to build a semi-phenomenological TB model in which the band part,

coming from the electronic structure, has a many-body character whereas the

repulsive one is a pairwise potential fitted to some physical properties. Subtracting

as usual (Sect. 2.4) the contribution due to this correction which is counted twice,

the Eq. (17) reduces to:

Fig. 12 Au density of states, calculated either by DFT (SIESTA) (left) or in the tight-binding

framework (right) with sp-d hybridization with 25 exact couples of coefficients. From Ref. [15]
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Ecoh ¼
X

n;k

Z EF

ðE ÿ e0;kÞnknðE; dekÞdE ÿ
X

k¼s;p;d

Nk
0dek þ A

X

R

e
ÿpð R

R0
ÿ1Þ ð22Þ

Since the integral does not depend on details of n(E), the band term can be

calculated from a schematic rectangular density of states under the single assumption

that it has the same second moment (SMA) as the exact one, which leads to [6, 16]:

Ecoh ¼ ÿb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

R

e
ÿ2qð R

R0
ÿ1Þ

s

þ A
X

R

e
ÿpð R

R0
ÿ1Þ ð23Þ

where b is an ‘‘effective’’ hopping integral, corresponding to the 1st neighbour

distance R0. In practice, for a given metal, the four parameters (A, b, p, q) are

determined by fitting experimental quantities such as the cohesive energy, lattice

parameter and elastic constants or the so-called universal equation [17]. Note that

this SMA-potential is similar to those derived elsewhere within the Embedded Atom

Model (EAM [18]) or within the Glue Model [19]. Its main advantage compared to

the latter is its physical transparency which clearly shows its limitations… and then

its possible improvements (increasing the number of exact moments).

The first success of SMA potentials is to reproduce the inwards surface

relaxation, which is found to be of the order of a few percents and proportional to

the number of broken bonds, contrary to simple pair potential models which

predict an outwards relaxation [13]. This comes from the stronger decrease with

coordination Z of the repulsive term compared to the attractive one (* HZ). One

has then to use such many body potentials to study surface atomic rearrangements.

In some cases, not only vertical but also lateral atomic rearrangements can occur,

changing the two-dimensional periodicity and leading to so-called surface recon-

structions. In those cases, one observes trendswhich can be either along the transition

series (zig-zag reconstruction of the (100) face of bcc crystals occurring for column

VIa but not for Va) or along a column ((110) missing row reconstruction or pseudo-

hexagonal densification of (100) fcc surfaces which only occurs in the 5d series).

Both trends are well interpreted in the framework of TB calculations. The physical

origin of the column sequence for fcc reconstructions, attributed to relativistic

effects, can be taken into account within SMA potentials through the increase of the

q parameter from the 1st series to the 3rd one [20]. On the other hand, understanding

the zig-zag reconstruction requires going beyond secondmoment arguments. Indeed,

as illustrated in Fig. 13a, it is due to the broadening of the quasi-atomic surface peak

of the local bcc (100) density of states under the lattice distortion, which leads to an

energy gain for d band filling around 5 (middle of the series) [21]. A similar detailed

description of the LDOS is also required to study the possible occurrence of an hcp/

fcc staking fault at the surface of late transition elements, in which case one also

needs to account for sp-d hybridization [9]. The corresponding fault energy is found

to be in good agreement with DFT calculations (see Fig. 13b). Its weak value for Au

is consistent with the experimental observation of the herringbone reconstruction

which leads atoms of the (111) surface layer to occupy both the hcp and the fcc sites.
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3.3 Monometallic Clusters: LDOS

Obviously, ab initio methods are particularly suited to the study of clusters with

very small sizes but become very cumbersome when these sizes reach those which

are useful for catalysis purposes (more than 100 atoms). The TB method is then

very useful, since it describes the electronic structure in a wide range of sizes, and

is able to give reliable site energies. Technically, for a finite cluster, the coefficient

bn ? 0 beyond a given level so that the continued fraction see Eq. (13) is trun-

cated leading to a discrete spectrum for the LDOS of any site. This is illustrated for

the central site of a 55 atoms cuboctahedron in Fig. 14.

Here also, when interested in elements of the end of transition series, it is

necessary to take into account the sp-d hybridization and to perform a self-con-

sistent treatment of the relation between charge and potential. This is achieved as

for surfaces by shifting the k-levels in a different way on each inequivalent site,

following the same neutrality rule per site and per orbital [23]. The variation of

these shifts for the different orbitals and sites as a function of their coordination

numbers is also plotted in Fig. 15a. Note that theses shifts can be directly related to

the activity of the corresponding sites [24], reflecting the high activity of the low

coordination sites.

The resulting surface LDOS present a band width which decreases with the site

coordination (from facets to edges and vertices) and are significantly modified near

the Fermi level depending on the site. Note that, in view of the arguments

developed in Sect. 2.5, this band narrowing could induce occurrence of magnetism

for clusters of elements which are non magnetic in the bulk. Moreover the cluster

symmetry has a strong influence on the density of states. The influence of size and

structure is illustrated in Fig. 15b where we plot the total density of states for

cuboctahedral and icosahedral (Ih) clusters, by taking the average of the densities

Fig. 13 a Influence of the dimer reconstruction on the (100) LDOS of bcc metals (from

Ref. [21]). b Variation of the surface fcc-hcp stacking fault energy with d band-filling from

self-consistent TB and DFT calculations (from Ref. [9], copyright (2008), with permission

from Elsevier)
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on inequivalent sites (vertices, edges, facets and core) weighted by the corre-

sponding number of sites [23].

From energetic calculations performed by Quenched Molecular Dynamics

within the SMA model, it appears that the competition between fcc and Ih

structures is strongly element dependent. Thus, while Ih Ag clusters are found

to be stable until 309 atoms, Au clusters recover their bulk fcc morphology

(Wulff polyhedron) beyond 13 atoms. This critical size strongly depends on the

local relaxation which differs remarkably between fcc-type and Ih clusters. The

Fig. 14 Variation of the bn coefficients for a bulk fcc structure and the central site of a 55-atoms

cuboctahedron (left) and corresponding LDOS (right). From Ref. [22]
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Fig. 15 a Core level shifts on the various surface sites of a 3,871 Pd cuboctahedron. b Variation

with size of the average LDOS for Pd cuboctahedra and icosahedra from self-consistent TB

calculations. From Ref. [23], copyright (1996), with permission from Elsevier
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latter adopt a very inhomogeneous atomic relaxation profile, in which the con-

traction of the intershell distance is not limited to the surface shell (as in fcc-type

structures) but is also present for the inner shells. More precisely, a considerable

core contraction is found in the Ih case, which increases as a function of the cluster

size [25]. A spectacular consequence of this contraction of the inner shells for the

Ih structure is the existence of a strong compressive pressure in the core which can

be relaxed by introducing constitutive vacancies [25]. The stability of these

vacancies increasing with the cluster size, a fourfold tetrahedral shaped cavity

becomes even more stable than the single one, but beyond the morphological

transition to fcc-type structures. Taking into account the stability domain of the Ih

relatively to fcc structure, there should then exist a stability range of size for Cu

and Ag icosahedra with a central constitutional vacancy but not for Au ones. Let us

recall however that SMA potentials are less suited than DFT calculations to model

too small clusters. Thus, for 13 atoms, DFT calculations find structures which are

neither Ih nor fcc [26].

4 Bulk Alloys AcB1-c: Link Between Electronic

and Chemical Structure

4.1 Influence of Chemical Ordering on LDOS

Extending the Tight-Binding Hamiltonian to the case of a binary alloy AcB1-c

requires to make its parameters depend on chemical configuration pin
� 	

, pin=1 if site

n is occupied by atom of i-species (i = A, B) and pin=0 if not, through the relation:

H ¼ Hd þ Hnd ð24Þ

Hd ¼
X

n;k

n; kj ienk n; kh j en ¼
X

i¼A;B

pine
i
nk

Hnd ¼
X

n;m;k;l

n; kj ibnmkl m; lh j bnmkl ¼
X

i;j¼A;B

pinp
j
mb

ij
nmkl

The parameter eik which appears in the diagonal contribution Hd is the bary-

centre of the partial ik-LDOS, projected on the k-orbital of atom of type i, while

the off-diagonal contribution Hnd involves the hopping integral between the

k-orbital at site n occupied by an atom of type i and l-orbital at site m occupied by

an atom of type j. Thus the modifications undergone when two elements (A,B) are

mixed into an AcB1-c alloy comes from two effects [10]. The first one, which is

called diagonal disorder effect, is induced by the difference in energy between the

barycentres of the valence (essentially d) bands of the A and B pure elements,

i.e., the corresponding atomic levels eAd;0 andeBd;0 (the index 0 refers to the pure

bulk value), and it is quantified by the parameter dd;0 ¼ eAd;0 ÿ eBd;0: The second
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one, which is called off-diagonal disorder effect, comes from the difference

between the hopping integrals for pure A and B elements, and therefore between

the pure A and B valence bandwidths WA and WB which are directly related (see

Sect. 2.3), so that it is quantified by the parameter dnd = WA
- WB. The relative

magnitude of these two parameters actually drives the redistribution of the elec-

tronic states with respect to those of pure elements and therefore induces the new

properties of the alloy with respect to those of the two isolated elements.

The values of eid;0 and Wi have been interpolated from ab initio calculations of

band structure and tabulated for all transition elements by D. A. Papaconstanto-

poulos [27]. Their systematic variation along the three transition metal series, i.e.,

as a function of the d band filling N i
d; is displayed in Fig. 16. As can be seen from

these trends, none of the diagonal and off-diagonal variations seems to prevail,

even though it has often been argued that the former prevailed on the latter [10]. In

addition both variations are clearly correlated, which means that one can expect

both effects to be important or not in the same time for a given system.

Once a given alloy has been characterized by a set of parameters (dd,0, dnd), let
us detail how to calculate more precisely the density of states for an alloy. In the

ordered case, the same methods (continued fraction, recursion) can be used as for

pure elements, taking just into account the ordered configuration of A and B atoms

to assign the levels eik and the hopping parameters b
ij
nmkl: The situation is more

complicated for a disordered system since it requires to calculate the average

value, over all configurations, of n(E) and therefore of G(E). In the absence of off-

diagonal disorder (dnd = 0), i.e., assuming that b
ij
nmkl ¼ bnmkl; the off-diagonal

part of the Hamiltonian (Hnd) is the same as for the pure elements, and only the

0
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Fig. 16 a Correlated variations of the d atomic level eid;0 and effective bandwidth Wi (* -8ddr)

interpolated from ab initio band structure calculations (results from Ref. [27]) along the three

transition metal series from which are derived (dd,0, dnd) for each alloy. (b) 2D (dd,0, dnd) map

used to classify the variation Ddd of dd,0 induced by the charge neutrality condition (from Ref.

[32], copyright (2011) by The American Physical Society)
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diagonal part (Hd) depends on the chemical configuration through en. If one notes

G0 = (zI-Hnd)-1 the Green function for the pure metal, one can calculate the

average Green function G, within a mean-field approximation, by introducing an

effective local potential R(z) such as:

GðzÞ ¼ zÿ H0 ÿ RðzÞð Þÿ1
withRðzÞ �

X

n

nj irðzÞ nh j ð25Þ

which means that in the average medium, the levels eik are replaced by r(z) at each
site. This effective potential can be determined by a self-consistency condition

which imposes that fixing the occupancy of a site and then making the average on

this site would lead to recover the same potential. This is the Coherent Potential
Approximation (CPA) [28], which leads to the condition:

X

i¼A;Bi

citi ¼ 0with ti ¼ ei ÿ r

1ÿ nh jGðzÞ nj i ei ÿ rð Þ ð26Þ

which is self-consistent since the Green function in the disordered state nh jGðzÞ nj i
depends on r(z) through the relation: nh jGðzÞ nj i ¼ G0ðzÿ rðzÞÞ which only

requires the knowledge of the Green function of the pure element. The alloy

densities of states obtained in this way (recursion method for ordered system, CPA

and continued fraction for disordered ones) [29] are in good agreement with those

obtained by LMTO calculations [30].

If one uses canonical parameters for the pure elements, the electronic structure

of the alloy depends on c and dd,0. In the case of weak diagonal disorder, per-

turbations at the lowest order lead to a density of states for the disordered alloy

which is almost the same as that of the pure metal, but centred on the average level

�e ¼ ceA þ 1ÿ cð ÞeB with an average bandwidth �W ¼ cWA þ 1ÿ cð ÞWB: On the

contrary, for a strong diagonal disorder, a gap is opened since electronic states for

the alloy have to lie between the bounds for the pure metals [10]. One can then

analyze schematically the effect of chemical ordering in the following way. In

the case of phase separation, the alloy density is the average of those of the pure

metals whereas the sub-bands are narrower in the case of perfect order since

the number of neighbours of the same type is reduced. For disordered systems,

the width is in between but tails are present due to the finite probability of finding

pure A and B clusters of any size. Finally, the total LDOS can be decomposed into

its partial contributions projected on each element. All these qualitative behaviours

are illustrated in Fig. 17.

4.2 Charge Self-Consistency and Atomic Level Shifts

It is worth pointing out that, up to now, a specific alloy has only be defined by the

set of values of (dd,0,dnd) and implicitly its crystallographic structure, without
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resorting to the respective number of electrons of each species per orbital N i
k.

However starting from the values in the pure elements N i
k;0 (which are consistent

with the respective atomic levels eik;0) while fixing a common Fermi level in the

alloy leads to some charge transfer between species and orbitals. This in turn

modifies the barycentres of the partial sub-bands eik, the procedure having to be

iterated up to convergence towards their self-consistent values. Thus, the param-

eter which actually drives the variation of the electronic structure between the

alloy and its pure constituents is not dd,0 but instead the difference between the

barycentres of the two alloy partial sub-bands with respectively A and B char-

acters: dd ¼ eAd ÿ eBd :
From the experimental point of view, as previously stated for surfaces, it is

difficult to identify such a shift of the d-bands under alloying due to their dis-

persion, but it is easier to follow the corresponding shift of the core levels.

However, although a lot of work has been made in the case of surface core-level

shifts in pure metals [13], only a few have been achieved for alloys. In the latter

case, the most documented work in the literature is due to Olovsson et al. [31] who

calculated core level binding energy shifts for various disordered alloys within

density functional theory (DFT) using the coherent potential approximation

(CPA). This allowed them to get good agreement with experimental data, but not a

unified physical picture permitting to predict the general behaviour of any alloy.

The main difficulty is then to determine the effective atomic level eik for each

partial i-sub-band and k-orbital in order to ensure the charge self-consistency. This

requires shifting these levels for each orbital k with respect to those in the bulk by

a value deik in order to satisfy a given rule on the different band fillings per orbital

and species N i
k. The local charge neutrality rule per site and per orbital already

justified for surfaces with only d electrons [14] detailed in Sect. 3.1 has been

extended to a neutrality per chemical species in the case of bimetallic compounds

[15]. Applying such a rule implies to ensure partial charge neutrality of each

(s, p, d) orbital and to find for each one the appropriate band shift deik;0 for each

E

E

E

n(E)

phase separation
c=0.5

disordered alloy
c=0.5

ordered alloy
c=0.5

ε εB A

nB(E)

nA(E)

Fig. 17 Schematic variation of the density of states upon alloying for strong diagonal disorder.

From Ref. [10]
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element. As an example, this procedure has been applied to predict the behaviour

of late transition series alloys constituted of one element of the first transition

series (Co, Ni, Cu) and the other elements of the second (Pd,Ag) and third (Pt,Au)

series, in terms of the single diagonal and off-diagonal disorder parameters, which

have been the subject of X-ray spectroscopy experiments and in addition are

extensively studied for their peculiar properties in various applications, and in

particular as nanoalloys. Adopting as a general rule that we denote respectively A

and B two elements such as dd;0 ¼ eAd;0 ÿ eBd;0 [ 0; the corresponding values of the

variations Ddd = dd – dd,0 under self-consistency are displayed in the 2D (dd,0, dnd)
mapping of Fig. 16 [32].

As can be seen, almost all the systems present a decrease of the diagonal

disorder parameter between 30 and 6%. Only two systems present an increase of

this parameter, which fall in a well delimited region of this map (dd,0.dnd[ 0,

dd,0\ dd,c). The widely commonly encountered decrease of the diagonal param-

eter under self-consistency is indeed expected [33] and can be intuitively under-

stood by considering that, in the absence of self-consistent treatment, the only way

to ensure d charge neutrality per chemical species in a mixed system should be to

consider two different unphysical Fermi levels for each sub-band, EA
F;0 and EB

F;0.

In most cases, and in particular when A and B are late transition series elements

with unfilled d-band, EA
F;0 and EB

F;0 are ordered in the same way as the corre-

sponding barycentres eAd;0 and eBd;0. This is illustrated schematically in Fig. 18, and

more precisely in the archetypal case of CoPt for which LDOS is represented for a

Fig. 18 Schematic (left) and TB (right) LDOS’s in (up) CoPt and (down) PtCu systems in the

L10 phase. The TB LDOS are presented before and after the charge self-consistency treatment
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L10 phase before any self-consistency. In such a situation the unphysical Fermi

levels Ei
F;0 fall into the upper part of the d LDOS’s. In view of the rather large

order of magnitude of the density of states in this region, Ei
F;0 weakly varies with

d-band filling, and in particular significantly less than the barycentre, so that the

epsilon sequence. In these conditions, the effect of self-consistency is obviously to

merge the two unphysical Fermi levels into an intermediate single one, which

requires opposite shifts of both d levels and then reduces their difference dd.

In view of these arguments, the only way to observe the reversal behaviour, i.e.
an increase of dd under self-consistency, should be to consider an alloy in which

one of the two elements is a noble metal, with a full d-band, for which the

unphysical Fermi level Ei
F;0 falls into the low density sp band, as schematically

shown in Fig. 18, in which case it must be strongly shifted to ensure local charge

neutrality. In such a situation, as can be guessed from Fig. 16a, except for PdCu

system, the barycentre of the noble element sub-band is lower in energy than that

of the transition element with unfilled d-band, which implies that, according to our

sign convention, A is the transition element and B the noble one. In that case,

according to Fig. 16a, one also satisfies dnd[ 0, except for B = Au. Then the

corresponding unphysical Fermi levels can be ordered in energy in the opposite

way compared to the barycentres of the sub-bands, provided that the latter are not

too distant (i.e., that dd,0 is not too large), and that the narrow band is located

below the larger one (dnd[ 0). In other words, one can expect a reversal behaviour

as soon as dd,0 and dnd have the same sign, provided that the former is not too

large. This is indeed what occurs in the PtCu system, as can be seen in the same

Fig. 18, for which the only way to achieve self-consistency is to move both levels

in opposite directions, leading to an increase of dd.

From this analysis one expects to observe different concentration dependence

of the d (and core) level lines under alloying in an AcB1-c alloy. Indeed in the

general case (decrease of dd), one should observe a symmetrical behaviour of the

curves associated to A and B where the level of each element decreases with

increasing concentration c, whereas one expects a non symmetrical behaviour in

the exceptional case (increase of dd), the atomic level of the non noble metal

remaining nearly constant on the overall concentration range close to its initial

bulk value. This is indeed what occurs as illustrated in Fig. 19 by the variation

of the d levels corresponding to each constituent as a function of Pt concen-

tration for the two alloys CoPt and PtCu. In the dilute limit, we show for the

matrix only the d levels of the atoms which are first neighbours of the impurity,

the other ones keeping their bulk value. The overall behaviour is found in

remarkable agreement with the evolution of core level shifts measured in XPS

experiments [34] which are recalled in the insets, even though the calculated

shifts are found larger than the experimental ones. Note that these curves also

allow us to follow the variation with concentration of the diagonal disorder

parameter dd with respect to the initial value calculated from pure metal data dd,0
which is found to be very weak in the general case (CoPt) but larger in the

exceptional one (PtCu). Finally, the influence of concentration and of the off-

184 G. Tréglia et al.

C
O
R
R
E
C
T
E
D
 In other words, one can expect a reversal behaviourIn other words, one can expect a reversal behaviour

same sign, provided that the former is not toosame sign, provided that the former is not too

This is indeed what occurs in the PtCu system, as can be seen in the sameThis is indeed what occurs in the PtCu system, as can be seen in the same

to achieve self-consistency is to move both levelsto achieve self-consistency is to move both levels

in opposite directions, leading to an increase ofin opposite directions, leading to an increase of

s analysis one expects to observe different concentration dependences analysis one expects to observe different concentration dependence

level lines under alloying in an Alevel lines under alloying in an A

(decrease of(decrease of dddd), one should observe a symmetrical behaviour of the), one should observe a symmetrical behaviour of the

iated to A and B where the level of each element decreases withto A and B where the level of each element decreases with

concentrationconcentration

casecase

P
R
O
O
F

, which implies that, according to our, which implies that, according to our

A is the transition element and B the noble one. In that case,A is the transition element and B the noble one. In that case,

0, except for B0, except for B

Fermi levels can be ordered in energy in the oppositeFermi levels can be ordered in energy in the opposite

d to the barycentres of the sub-bands, provided that the latter are notd to the barycentres of the sub-bands, provided that the latter are not

is not too large), and that the narrow band is locatedis not too large), and that the narrow band is located

In other words, one can expect a reversal behaviourIn other words, one can expect a reversal behaviour



diagonal disorder on the LDOS is illustrated in the Fig. 20 in the particular cases

of the CoAu [15] and CoPt systems. As can be seen, it compares satisfactorily to

that derived from DFT calculations.

4.3 Rigid Lattice TBIM

As previously stated for the pure metals, the total energy of the alloy, for a given

configuration, cannot be described as a sum of pair interactions. Nevertheless,

if one neglects (in a first time) the effect of off-diagonal disorder (dnd = 0) the

(small) part of the energy which depends explicitly on the configuration (and

which is essential in ordering problems) can be written as a sum of effective pair

interactions by developing the energy in a perturbative way with respect to the

disordered state [35]:

Ecoh pin
� 	ÿ �

¼ �EðcÞ þ 1

2

X

n;m;i;j

pin p
j
mV

ij
nm ð27Þ

V ij
nm ¼ ÿ Im

p

Z EF

dEtinðEÞt jmðEÞ
X

kl

�Gkl
nmðEÞ�Glk

mnðEÞ

in which the interatomic Green function: �Gkl
nmðEÞ ¼ nkh j�GðEÞ mlj i is calculated

using the CPA approximation developed in the previous section. Any energy

balance which accounts for changes in the chemical configuration (mixing or

ordering energies) will in fact involve the combination:
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d
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Fig. 19 Calculated shift of the atomic d level as a function of the concentration in Pt atoms

derived from TB calculations for Co and Pt atoms in CoPt alloy (a), and for Cu and Pt atoms

in CuPt alloy (b) (from Ref. [32], copyright (2011) by The American Physical Society).

The experimental absolute core level shifts taken from [34] are shown in the insets
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Vnm ¼ VAA
nm þ VBB

nm ÿ 2VAB
nm

ÿ �

2
ð28Þ

These effective pair interactions (EPI’s) have been shown to decrease rapidly

with the distance (n-m) (for the fcc structure: V1[[V2, V3, V4[[V5, …).

We will therefore limit ourselves to the first neighbour interactions which will be

denoted V = V1 in the following. In this framework the sign of V indicates the
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Fig. 20 Variation of the a Co-Au (from Ref. [15]) and b Co–Pt (courtesy of L. Zosiak) LDOS as

a function of concentration from DFT and self-consistent TB calculations
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tendency of the system to order (V[ 0) or to phase-separate (V\ 0). This sign

depends (weakly) on bulk concentration (which could change the tendency to

order or phase separate in a system in a few cases) and (strongly) on the average

d band filling �Ne ¼ cNA
e þ ð1ÿ cÞNB

e [35]. In practice, it is possible to calculate

V either directly from the above formula or indirectly from the expression of the

formation energies (per atom) of some ordered phases (Eform(L10) = -4 V,

Eform(L12) = -3 V), or from that of the solution energies Esol = -12 V. Thus

from the formation energy of the L10 phase for a realistic value of dd, calculated

using continued fractions with two exact levels (fourth moment approximation:

FMA) and a constant termination, one gets a typical variation of V shown in the

Fig. 21a [36]. A comparison with the EPI’s calculated with a larger set of exact

moments [35] shows that truncating the continued fraction expansion to the second

level is sufficient, which confirms the validity of the FMA [36]. As can be seen

alloys with a nearly half filled band tend to order whereas those with nearly filled

or empty bands tend to phase separate.

The main interest of such a simplified energetic model is that it can be effi-

ciently implemented for lattice Monte-Carlo simulations in order to investigate

ordering and segregation phenomena using appropriate values for the EPI’s (see

Fig. 21 (courtesy of J. Los): a Effects of diagonal (dd) and off-diagonal (dnd) disorder on the

d band LDOS, n(E), (left-hand side) for the L10 (solid line) and separated (dashed line) phases,
and on the band-filling (Ne) dependence of the effective pair interaction V (right-hand side), with
�W = 8 eV. (b) Ordering (shaded area) and demixing (white areas) domains in the parameter

space spanned by dnd and Ne for different values of dd. From Ref. [36], copyright (2011) by The

American Physical Society
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contribution by F. Ducastelle in Chap. 6). This approach was experimentally

validated for a wide range of systems but some exceptions remained, among

which, unfortunately, systems of high interest such as CoPt, NiPt or CuAu which

are predicted to phase separate although they are archetypal systems known to

form ordered phases. It has then be argued that these discrepancies could be due to

peculiar neglected effects, such as magnetism or spin–orbit coupling [10], without

any definite conclusion up to now.

In addition to these serious drawbacks, a major problem of this Ising model is

that it relies on a rigid lattice assumption which makes it completely unsuited to

study the effects of relaxation by atomic displacements in the case of a strong size-

mismatch between the constituents. In that case, a solution was to extend the semi-

empirical interatomic potentials previously developed for pure metal surfaces,

among which the previously described Second Moment Approximation (SMA).

However, in essence, this approximation only feels the off-diagonal disorder and

not the diagonal disorder, since a second moment calculation, consisting of two-

hopping closed paths starting from an atom, does not involve the atomic levels of

the neighbouring sites. The SMA is therefore not justified from the point of view

of the Ising model based exclusively on the diagonal disorder effect.

The simplest extension that treats alike both diagonal and off-diagonal disorder

effects is to use a LDOS based on a fourth moment approximation (FMA). Indeed

this procedure allows first to revisit the TB Ising model, up to now limited to the

diagonal disorder effect, by introducing off-diagonal disorder, and provides a well

founded basis for a new generation of empirical potentials for alloys beyond SMA,

based on the FMA, in particular for nanoalloys. Some typical LDOS’s and cor-

responding EPI’s for the L10 phase as a function of the average d band filling Ne

and different values of dd and dnd are shown in the same Fig. 21a. The case dd = 0

shows that the influence of off-diagonal disorder alone is to favour phase sepa-

ration for any d band filling. The behaviour of the EPI’s in the two limit cases

(dd = 0 or dnd = 0) can be easily understood from simple qualitative arguments

based on the respective band edges in the ordered and phase separated systems

previously given. Finally, one sees that coupling both effects significantly modifies

the previous curves by asymmetrising the d band filling dependence, in an opposite

way depending on the sign of dnd, which in particular displaces the range of

existence of ordering phases.

To generalize these curves, one can derive 3D maps from these EPI’s, which,

for a given concentration c, shows the tendency of a system to order or phase

separate as a function of dd, dnd (within the same physical ranges as in Fig. 16) and

Ne. Sections of these 3D maps for different concentrations and selected values of

dd are displayed in Fig. 21b. Each section shows the respective domains for the

existence of ordered and separated phases as a function of Ne (x-axis) and dnd
(y-axis). As can be seen, the effect of off-diagonal disorder strongly changes the

overall trends derived from calculations taking into account diagonal disorder only

(dnd = 0 in the maps). The most spectacular effect in this sense is probably the

opening of ordering tendency domains, for reasonable values of the off-diagonal

parameter, in the limits of small or large d band fillings for which only phase
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separation was predicted before. The overall effect of concentration is to shift the

ordering domains from larger to lower d band filling from one dilute limit to the

other. As a consequence, a given system can reverse its ordering tendency as a

function of concentration, in particular for the largest values of dd. However, let us

keep in mind that the solution energy is very sensitive to atomic relaxations around

the impurity which could change the map in the dilute case in presence of strong

size-mismatch e.g., in the CuAg case [37].

There remains to see to what extent the ordering behaviour of real systems such

as CoPt, NiPt or CuAu which could not be explained by considering only diagonal

disorder falls in the right place in the new domains. For this, we need to find the

right point in the appropriate map of Fig. 21b, depending on the actual value of the

parameters set (dd, dnd, Ne), dd (see Fig. 16) and Ne being issued from the self-

consistent treatment upon sp-d hybridization. One then finds (1,-2.9,8.35) for

CoPt which then now falls into an ordering region as it should in the map of

Fig. 21b without resorting to other effects such as magnetism or spin–orbit cou-

pling. A similar agreement should be found in the map corresponding to dd = 0.2

for NiPt (0.2, -3.4, 8.85). The new maps also allow us to find the right places for

alloys made of two noble metals, which slipped through the previous description,

and in particular to explain why two systems as close as CuAg (3.4, -0.6, 9.85)

and CuAu (1.6, -2.6, 9.75) present two opposite behaviours, phase separation in

the former case and ordering in the latter case.

5 Alloy Surfaces and Clusters

5.1 Alloy Surfaces

The LDOS at the surface of an alloy has to combine both bond breaking (as for

pure metal surfaces) and alloying (as in bulk systems) effects. In particular,

the self-consistency rule per species, site and orbital has to be applied for each

inequivalent surface site depending on its occupation by A or B atoms. As shown

in Fig. 22, for the CoAu system previously treated in the bulk (Fig. 20) but now in

the particular configuration of a Co layer deposited on Au(111), this rule allows

one to get LDOS in perfect agreement with DFT calculations.

At the difference of pure metal, the presence of the surface not only introduces

atomic but also chemical rearrangements. Indeed, due to broken bonds, the

equilibrium concentration at the surface has no reason to be the same as in the

bulk, which leads to the phenomenon of surface segregation. The natural way for

treating this problem is to extend to the case of surfaces the perturbation treatment

of the energy (with respect to configuration fluctuations) previously developed for

modelling the ordering processes in the bulk. This leads to the so-called Tight-

Binding Ising Model (TBIM) that extends the Eq. (27) into [38]:

Electronic Structure of Nanoalloys: A Guide of Useful Concepts and Tools 189

C
O
R
R
E
C
T
E
D
 

in the latter case.in the latter case.

5 Alloy Surfaces and Clusters5 Alloy Surfaces and Clusters

S at the surface of an alloy has to combine both bond breaking (as forS at the surface of an alloy has to combine both bond breaking (as for

surfaces) andsurfaces) and

stency rulstency rul

P
R
O
O
F

to other effects such as magnetism or spin–orbit cou-to other effects such as magnetism or spin–orbit cou-

A similar agreement should be found in the map corresponding toA similar agreement should be found in the map corresponding to

us to find the right places forus to find the right places for

of two noble metals, which slipped through the previous description,of two noble metals, which slipped through the previous description,

in particular to explain why two systems as close as CuAg (3.4,in particular to explain why two systems as close as CuAg (3.4,

opposite behaviours, phase separation inopposite behaviours, phase separation in

in the latter case.in the latter case.



HTBIM pin
� 	ÿ �

¼
X

n;i

pinh
i
n þ

1

2

X

n;m;i;j

pinp
j
mV

ij
nm ð29Þ

The main difference with the bulk case is the existence of sites which are no

longer equivalent from the geometrical point of view, leading to a local on-site

term:

hin ¼
Im

p

Z

EF

dE
X

k

log 1ÿ ei ÿ rn
ÿ �

�Gkk
nnðEÞ

� �

ð30Þ

In the simple case of a binary alloy pn ¼ pAn
ÿ �

; one can determine the con-

centration profile {cp} (cp =\pn[ for any site n in the pth plane parallel to the

surface: p = 0) as the one which minimises the free energy. Within mean-field

approximation (see B. Legrand contribution in Chap. 7), the segregation energy,

which accounts for the exchange of a A bulk atom with a B surface one, only

involves the double differences: Dhp ¼ ðhAp ÿ hBp Þ ÿ ðhAbulk ÿ hBbulkÞ: This local term
Dhp is negligible in the bulk (p[ 0) and almost identical to the difference in

surface energies for p = 0 (Dh0 * sA - sB) [38]. In fact, Dh0 is the main driving

force which leads to the segregation of the element with the lowest surface energy.

The EPI’s in Eq. (29) are also changed at the surface. More precisely, V Eq. (28) is

enhanced by a factor 1.5–2 with respect to its bulk value [38], at least in absence of

size-mismatch.

Finally, let us note that, up to now, the derivation of TBIM has been performed

on a rigid lattice, which is probably too crude in the case of large size mismatch

between the constituents. However, there are two ways to introduce this effect. The

first one is to add a third contribution to the segregation energy, DEsize
p ðcÞ 6¼ 0 if

p = 0 (and 1 for open surfaces). DEsize
0 ðcÞ can be calculated in both dilute limits
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Fig. 22 Co/Au(111) LDOS from self-consistent TB (left) and DFT (right) calculations. From

Ref. [15]
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(c ? 0,1) in the framework of SMA, by determining the four mixed A-B

parameters in order that A and B only differ by their size [39]. This leads to a

contribution which significantly differs from the one derived from elasticity theory

since the latter leads in both limits to the segregation of the impurity, whatever its

size. On the contrary, the SMA term is found strongly asymmetric, leading to a

segregation of the impurity when it is the largest only (at least for close-packed

surfaces). This comes from the anharmonicity of the potential which exhibits a

strong asymmetry between tensile and compressive pressures. Size-mismatch can

also strongly modify the EPI in the case of phase-separating systems such as

CuAg. Indeed, an SMA relaxation of a system containing two impurities shows

that bond breaking can reverse the sign of V at the surface, leading to surface

ordering in spite of bulk phase separation [37].

This so-called ‘‘three effects’’ rule (cohesive, alloying and size effects) proved

to be quantitatively relevant for many different environments (flat or vicinal sur-

faces, grain boundaries, clusters) in alloys of transition metals with a chemical

tendency to either phase separation (CuAg) or to ordering with a low mixing

energy, but not for systems with size-mismatch similar to Cu–Ag, but which

exhibit a strong tendency to order (CoPt). To elucidate the origin of this dis-

agreement, a second approach has been proposed which couples these three effects

(CTEM: Coupled Three Effects Model [40]), based on the systematic study of the

permutation enthalpies in the bulk and at the surface as a function of the value of

the mixed interaction parameter involved in the TBSMA potential. This allows one

to explain both previous observations, disagreement for CoPt and agreement for

CuAg, as due to the variation of the EPI’s at the surface and by the existence of

coupling coefficients between the three effects. More specifically, if one indeed

recovers that the surface EPIs are proportional to the bulk ones in the absence of

significant size-mismatch, they are found to differ by an additive constant value in

the presence of a strong size effect.

5.2 As a Conclusion: Nanoalloys

Determining the electronic structure of nanoalloys within TB approximation needs

to combine the features of pure metal clusters and alloy surfaces. This means that

one first has to extend the self-consistent neutrality rules per element, site and

orbital by shifting the atomic levels differently for vertices, edges, facets

depending on their occupation by A or B atoms to ensure the same orbital filling as

in their respective bulks (coupling Figs. 15a, 16b and 19). The resulting LDOS per

inequivalent surface sites should then also combine the features of those for pure

clusters (Fig. 15b) and semi-infinite alloys (Fig. 22).

From the energetic point of view, the coupling between segregation and

reconstruction [41] should be particularly important in bimetallic clusters, due to

the effects of finite matter (the available quantity of segregant matter could be

lower than the quantity of surface sites) and geometrical frustrations (coexistence
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of vertices, edges, facets with different orientations). In practice, this coupling

between chemical and atomic structure is now too strong to allow us to separate

them. A first attempt to achieve it is to mimic the case of alloy surfaces by

combining TBIM/CTEM (segregation and ordering) and SMA (distance depen-

dence of the interatomic potential) approaches, in order to be able to treat various

morphologies (fcc polyhedra, bcc dodecahedra, icosahedra) and to study the

competition or synergy between bulk ordering and surface segregation. This can

be done in both directions, either using TBIM/CTEM on a rigid lattice with

effective parameters (local field and EPI’s) calculated by SMA relaxation proce-

dure to account for size-mismatch, or reversely by using SMA potentials with

parameters ensuring the TBIM/CTEM prescriptions by reproducing mixing

energies and difference in surface energies between the constituents. This latter

point is not obvious. Actually, as shown in Fig. 23, the usual SMA potential with

parameters fitting bulk properties fails not only to reproduce the absolute values of

these surface energies (which are found too small by a factor of two) but also,

which is more important here, their variation from an element to the other. It is

indeed impossible to fit simultaneously both cohesive energies and surface ener-

gies with this type of potential. A possible solution could be to accept this global

lowering of the surface energies by introducing as an additional constraint in

determining the SMA parameters that of reproducing 0.6 si instead of si. As can be

seen in Fig. 23, this indeed allows recovering the good sequence from an element

to the others. Such new SMA potentials are under development [42].
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Fig. 23 a Experimental variation of the surface energy along the transition metal series. b SMA

surface energy as a function of experimental one for usual parameters fitting only the cohesive

energy (green line) and for parameters fitting also a value of surface energy of about 0.6 its actual

value
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This coupled approach allowed to evidence the coupling between atomic

relaxations and chemical arrangements, in two systems presenting opposite ther-

modynamics behaviours, CuPd [43] and CuAg [44] which respectively tend to

order and to phase separate. Thus in the CuPd case, for small sizes, if the usual

sequence of relative stabilities (icosahedron, fcc, and -well above- bcc dodeca-

hedron) was recovered in the disordered state, chemical ordering at low temper-

ature leads to a spectacular reversal in which the bcc structure is stabilized with

respect to fcc by chemistry, the icosahedron being destabilized by chemical order.

Moreover, a surface induced disorder is observed with respect to inner sites.

On the other hand, in the CuAg case, one finds that the segregation hierarchy based

on broken-bond arguments (preferential segregation to the vertices, less to edges,

and least to facets) is not at all universal and that the segregation driving forces for

cuboctahedral and icosahedral nanoalloys may differ, being similar for the vertex

and edge sites, but not for the sites of the triangular facets due to dilations of

orthoradial distances in the icosahedral structure.

The alternative solution to this mixed approach is to directly couple the

chemical and atomic requirements by giving up SMA/TBIM in favour of FMA

potentials. Indeed, the previous results on ordering trends in bulk alloys (Fig. 21)

not only allow to revisit the TB Ising model by accounting for both diagonal and

off-diagonal disorder effects, but also provide a well founded basis for a future

extensive use in nanoalloys of FMA interatomic potentials, up to now limited to

covalent materials [45] or pure metals [46]. Here also some work is currently done

for the archetypal CoPt and CuAg systems.
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