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Abstract. Approx-SVP is a well-known hard problem on lattices, which
asks to find short vectors on a given lattice, but its variant restricted to
ideal lattices (which correspond to ideals of the ring of integers OK of a
number field K) is still not fully understood. For a long time, the best
known algorithm to solve this problem on ideal lattices was the same as
for arbitrary lattice. But recently, a series of works tends to show that
solving this problem could be easier in ideal lattices than in arbitrary
ones, in particular in the quantum setting.
Our main contribution is to propose a new “twisted” version of the
PHS (by Pellet-Mary, Hanrot and Stehlé 2019) algorithm, that we call
Twisted-PHS. As a minor contribution, we also propose several improve-
ments of the PHS algorithm. On the theoretical side, we prove that our
Twisted-PHS algorithm performs at least as well as the original PHS al-
gorithm. On the practical side though, we provide a full implementation
of our algorithm which suggests that much better approximation factors
are achieved, and that the given lattice bases are a lot more orthogonal
than the ones used in PHS. This is the first time to our knowledge that
this type of algorithm is completely implemented and tested for fields of
degrees up to 60.

Keywords: Ideal Lattices, Approx-SVP, PHS Algorithm

1 Introduction

Lattice-based cryptography is one of the more promising post-quantum solution
to build cryptographic constructions, as shown by the large number of lattice-
based submissions to the recent NIST post-quantum competition. Among those
submissions, and the other recent more advanced constructions, several hard
problems are used to build the security proofs, such as the Learning With Er-
rors (LWE) problem [Reg05], its ring [SSTX09,LPR10] or module [LS15] variants
(respectively Ring-LWE and Module-LWE) or the NTRU problem [HPS98]. In
particular the Ring variant of the Learning With Errors problem is widely used
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as it seems to allow a nice trade-off between security and efficiency. Indeed, it is
defined in a ring, usually R = Z/〈xn + 1〉 for n a power of 2, whose structure al-
lows constructions having a much better efficiency than if based on unstructured
problems like LWE. Concerning its hardness, there exists quantum worst-case
to average case reductions [SSTX09,LPR10,PRS17] from the approx Shortest
Vector Problem on ideal-lattices (Approx-id-Svp) to the Ring-LWE problem.

Approx-Svp is a well-known hard problem on lattices, which asks to find short
vectors on a given lattice, but its variant restricted to ideal lattices (correspond-
ing to ideals of the ring of integers R of a number field K) is still not fully under-
stood. For a long time, the best known algorithm to solve this problem on ideal
lattices was the same as for arbitrary lattices. The best trade-off in this case is
given by Schnorr’s hierarchy [Sch87], which allows to reach an approximation fac-

tor 2Õ(nα) in time 2Õ(n1−α), for α ∈ (0, 1), using the BKZ algorithm. But recently,
a series of works [CGS14,EHKS14,BS16,CDPR16,CDW17,DPW19,PHS19a] tends
to show that solving this problem could be easier in ideal lattices than in arbi-
trary ones, in particular in the quantum setting.

Hardness of Approx-SVP on ideal lattices. This series of works starts
with a claimed result [CGS14] of a quantum polynomial-time attack against a
scheme named Soliloquy, which solves the approx-SVP problem on a principal
ideal lattice. The algorithm has two steps: the first one is solving the Principal
Ideal Problem (PIP), and finds a generator of the ideal, the second one is solv-
ing a Closest-Vector Problem (CVP) in the log-unit lattice to find the shortest
generator of the ideal. On one hand, the results of [EHKS14,BS16] on describ-
ing a quantum algorithm to compute class groups and then solve PIP in arbi-
trary degree number fields allow to have a quantum polynomial-time algorithm
for the first step. On the other hand, a work by Cramer et al. [CDPR16] pro-
vides a full proof of the correctness of the algorithm described by [CGS14], and
then concludes that there exists a polynomial-time quantum algorithm which

solve Approx-SVP on ideal lattices for an approximation factor 2Õ(
√
n). In 2017,

Cramer, Ducas and Wesolowski [CDW17] show how to use the Stickelberger lat-
tice to generalize this result to any ideal lattice in prime power cyclotomic fields.
The practical impact of their result was evaluated by the authors of [DPW19] by
running extensive simulations. They conclude that the CDW algorithm should
beat BKZ-300 for cyclotomic fields of degree larger than 24000.

In parallel, Pellet-Mary, Hanrot and Stehlé [PHS19a] proposed an extended
version of [CDPR16,CDW17] which is now proven for any number fields K.
The main feature of their algorithm, that we call PHS, is to use an exponential
amount of preprocessing, depending only onK, in order to efficiently combine the
two principal resolution steps of [CDW17], namely the Cpmp (Close Principal
Multiple Problem) and the Sgp (Shortest Generator Problem). Combining these
two steps in a single Cvp instance provides some guarantee that the output of
the Cpmp solver has a generator which is “not much larger” than its shortest
non-zero vector. Hence, the PHS algorithm in a number field K of degree n and
discriminant ∆K is split in two phases, given ω ∈ [0, 1/2]:
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1. The preprocessing phase builds a specific lattice, depending only on the
field K, together with some hint allowing to efficiently solve Approx-Cvp

instances. This phase runs in time 2Õ(log|∆K |) and outputs a hint V of bit-

size 2Õ(log1−2ω|∆K |).
2. The query phase reduces each Approx-id-Svp challenge to an Approx-Cvp

instance in this fixed lattice. It takes as inputs any ideal of OK , whose
algebraic norm has bit-size bounded by 2poly(log|∆K |), the hint V, and runs

in time 2Õ(log1−2ω|∆K |)+TSu(K). It outputs a non-zero element x of the ideal

which solve approx-SVP with an approximation factor 2Õ(logω+1|∆K |/n).

The term TSu(K) denotes the running time for computing S-unit groups which
can then be used to compute class groups, unit groups, and class group discrete
logarithms [BS16]. In the quantum world, TSu(K) = Õ

(
ln|∆K |

)
is polynomial,

as shown in [BS16], building upon [EHKS14]. In the classical world, it remains
subexponential in ln|∆K |, i.e. TSu(K) = exp Õ(lnα|∆K |), where α = 1/2 for
prime power cyclotomic fields [BEF+17], and α = 2/3 in the general case [BF14],
being recently lowered to 3/5 by Gélin [Gél17].

Forgetting about the preprocessing cost, the query phase beats the tradi-
tional Schnorr’s hierarchy [Sch87] when log|∆K | ≤ Õ(n1+ε) with ε = 1/3 in the
quantum case, and ε = 1/11 in the classical case [PHS19a, Fig. 5.3]. It should
be noted however that these bounds on the discriminant are not uniform as the
approximation factor varies, e.g. for an approximation factor set to 2

√
n, the time

complexity of the PHS algorithm asymptotically beats Schnorr’s hierarchy only
in the quantum case and only for ε ≤ 1/6.

Our contribution. Our main contribution is to propose a new “twisted” ver-
sion of the PHS [PHS19a] algorithm, that we call Twisted-PHS. As a minor
contribution, we also propose several improvements of the PHS algorithm, in a
optimized version described in §3.3. On the theoretical side, we prove that our
Twisted-PHS algorithm performs at least as well as the original PHS algorithm,
using the same Cvp solver using a preprocessing hint by Laarhoven [Laa16].

On the practical side though, we provide a full implementation of our al-
gorithm, which suggests that much better approximation factors are achieved
and that the given lattice bases are much more orthogonal than the ones used
in [PHS19a]. To our knowledge, this is the first time that this type of algo-
rithm is completely implemented and tested for fields of degrees up to 60. As a
point of comparison, experiments of [PHS19a] constructed the log-S-unit lattice
for cyclotomic fields of degrees at most 24, all but the last two being principal
[PHS19a, Fig. 4.1]. We shall also mention the extensive simulations performed
by [DPW19] using the Stickelberger lattice in prime power cyclotomic fields.
Adapting these results to our construction is not immediate, as we need explicit
S-units to compute our lattice. This is left for future work.

We explain our experiments in §5, where we evaluate three algorithms: the
original PHS algorithm, as implemented in [PHS19b]; our optimized version Opt-
PHS (§3.3), and our new twisted variant Tw-PHS (§4). We target two families
of number fields, namely non-principal cyclotomic fields Q(ζm) of prime conduc-
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Fig. 1.1 – Approximation factors reached by Tw-PHS, Opt-PHS and PHS for
cyclotomic fields of conductors 23, 29, 31, 37, 41, 43, 47 and 53 (in log scale).

tors m ∈ J23, 71K, and NTRU Prime fields Q(zq) where zq is a root of xq−x−1,
for q ∈ J23, 47K prime. These correspond to the range of what is feasible in a
reasonable amount of time in a classical setting. For cyclotomic fields, we man-
aged to compute S-units up to Q(ζ71) for all factor bases in less than a day, and
all log-S-unit lattice variants up to Q(ζ61). For NTRU Prime fields, we managed
all computations up to Q(z47).

Experiments. We chose to perform three experiments to test the performances
of our Twisted-PHS algorithm, and to compare it with the two other algorithms:

– We first evaluate the geometric characteristics of the lattice output by the
preprocessing phase: the root Hermite factor δ0, the orthogonality defect δ,
and the average θavg vector basis angle, as described in details in Section 2.6.
The last one seems difficult to interpret as it gives similar results in all cases,
but the two other seem to show that the lattice output by Twisted-PHS is
of better quality than in the two other cases. It shows significantly better
root Hermite factor and orthogonality defect than any other lattice.

– For our second experiment, we evaluate the Gram-Schmidt log norms of each
produced lattice. We propose two comparisons, the first one is before and
after BKZ reduction to see the evolution of the norms in each case: it shows
that the two curves are almost identical for Twisted-PHS but not for the
other PHS variant. The second one is between the lattices output by the
different algorithms, after BKZ reduction. The experiments emphasises that
the decrease of the log norms seems much smaller in the twisted case than
in the two other. Those two observations seems to corroborate the fact that
the Twisted-PHS lattice is already quite orthogonal.

– Finally, we implemented all three algorithms from end to end and used them
on numerous challenges to estimate their practically achieved approximation
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factors. This is to our knowledge the first time that these types of algo-
rithms are completely run on concrete examples. The results of the experi-
ments, shown in Fig. 1.1 suggest that the approximation factor reached by
our algorithm increases very slowly with the dimension, in a way that could
reveal subexponential or even better. We think that this last feature would
be particularly interesting to prove.

Technical overview. We first quickly recall the principle of the PHS algorithm
described in [PHS19a], which is split in two phases. The first phase consists in
building a lattice that depends only on the number field K and allowing to
express any Approx-id-Svp instance in K as an Approx-Cvp instance in the lat-
tice. This preprocessing chooses a factor base FB, and builds an associated lattice
consisting in the diagonal concatenation of some log-unit related lattice and the
lattice of relations in the class group ClK between ideals of FB, with explicit
generators. It then computes a hint of constrained size for the lattice to facilitate
forthocoming Approx-Cvp queries. Concretely, they suggest to use Laarhoven’s

algorithm [Laa16], which outputs a hint V of bit-size bounded by 2Õ(log1−2ω|∆K |)

that allows to deliver answers for approximation factors Õ(log|∆K |ω) in time
bounded by the bit-size of V [Laa16, Cor. 1–2]. The second phase reduces the
resolution of Approx-id-Svp to a single call to an Approx-Cvp oracle in the lat-
tice output by the preprocessing phase, for any challenge ideal b in the maximal
order of K. The main idea of this reduction is to multiply the principal ideal
output by the Cldl of b on FB by ideals in FB until a “better” principal ideal
is reached, i.e. having a short generator.

Our first contribution is to propose three improvements of the PHS algo-
rithm. The first one consists in expliciting a candidate for the isometry used in
the first preprocessing phase to build the lattice, and to use its geometric prop-
erties to derive a smaller lattice dimension, while still guaranteeing the same
proven approximation factor. The last two respectively modify the composition
of the factor base and the definition of the target vector in a way that signifi-
cantly improves the approximation factor experimentally achieved by the second
phase of the algorithm. Although these improvements do not modify the core of
PHS algorithm and have no impact on the asymptotics, they nevertheless are of
importance in practice, as shown by our experiments in Section 5.

We now explain our main contribution, called Twisted-PHS, which is based
on the PHS algorithm. As in PHS algorithm, our algorithm relies on the so-
called log-S-unit lattice with respect to a collection FB of prime ideals, called the
factor base. This lattice captures local informations on FB, not only on (infinite)
embeddings, to reduce a close principal multiple of a target ideal b to a principal
ideal containing b which is guaranteed to have a somehow short generator. The
main feature of our algorithm is to use the Product Formula to describe this
log-S-unit lattice. This induces two major changes in PHS algorithm:

1. The first one is twisting the p-adic valuations by lnN (p), giving weight to
the fact that using a relation increasing the valuations at big norm ideals
costs more than a relation involving smaller norm ideals.
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2. The second one is projecting the target directly inside the log-S-unit lattice
and not only into the unit log-lattice corresponding to fundamental units.

Actually, the way our twisted version uses S-units with respect to FB to reduce
the solution of the Cldl problem can be viewed as a natural generalization of the
way classical algorithms reduce principal ideal generators using regular units.

Adding weights lnN (p) to integer valuations at any prime ideal p intuitively
allows to make a more relevant combination of the S-units we use to reduce the
output of the Cldl, quantifying the fact that increasing valuations at big norm
prime ideals costs more than increasing valuations at small norm prime ideals.
Besides, the product formula induces the possibility to project elements on the
whole log-S-unit lattice instead of projecting only on the subspace corresponding
to the log-unit lattice. As a consequence, it maintains inside the lattice the size
and the algebraic norm logarithm of the S-units. At the end, the Cvp solver
in this alternative lattice combines more efficiently the goal of minimizing the
algebraic norm for the Cpmp while still guaranteeing a small size for the Sgp
solution in the obtained principal multiple.

In Section 4, we describe two versions of our Twisted-PHS algorithm. The

first one, composed by A(Laa)
tw-pcmp and A(Laa)

tw-query is proven to perform at least as
well as the original PHS algorithm with the same Cvp solver using a prepro-
cessing hint by Laarhoven. But in practice, we propose two alternative algo-

rithms A(bkz)
tw-pcmp and A(np)

tw-query with the following differences. Algorithm A(bkz)
tw-pcmp

performs a minimal reduction step of the lattice as sole lattice preprocessing

to smooth the input basis. Algorithm A(np)
tw-query resorts to Babai’s Nearest Plane

algorithm for the Cvp solver role. Experimental evidence in §5 suggest that
these algorithms perform remarkably well, because the twisted description of
the log-S-unit lattice seems much more orthogonal than expected. Proving this
property would remove, in a quantum setting, the only part that is not polyno-
mial in ln|∆K |.

2 Preliminaries

Notations. A vector is designated by a bold letter v, its i-th coordinate by vi
and its `p-norm, p ∈ N∗ ∪ {∞}, by ‖v‖p. As a special case, the n-dimensional
vector whose coefficients are all 1’s is written 1n. All matrices will be given using
row vectors, Dv is the diagonal matrix with coefficients vi on the diagonal, In is
the identity and 1n×n denotes the square matrix of dimension n filled with 1’s.

2.1 Number fields, ideals and class groups

In this paper, K always denotes a number field of degree n over Q and OK its
maximal order. The algebraic trace and norm of α ∈ K, resp. denoted by Tr(α)
andN (α), are defined as the trace and determinant of the endomorphism x 7→ αx
of K, viewed as a Q-vector space. The discriminant of K is written ∆K and
can be defined, for any Z-basis ω1, . . . , ωn of OK , as det

(
Tr(ωiωj)

)
i,j

. Most

complexities of number theoretic algorithms depend on ln|∆K |.
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The fractional ideals of K are designated by gothic letters, like b, and form a
multiplicative group IK . The class group ClK of K is the quotient group of IK
with its subgroup of principal ideals PK

def
:=
{
〈α〉, for all α ∈ K

}
. The class

group is a finite group, whose order hK is called the class number of K. For any
ideal b ∈ IK , the class of b in ClK is denoted by

[
b
]
.

We will specifically target two families of number fields, widely used in cryp-
tography [Pei16]: cyclotomic fields Q(ζm), where ζm is a primitive m-th root of
unity, and NTRU Prime [BCLV17] fields Q(zq), where zq is a root of xq − x− 1
for q prime. Both families have discriminants of order nn. More exactly, for
cyclotomic fields OQ(ζm) = Z[ζm], so we have [Was97, Pr. 2.7]:

∆Q(ζm) = (−1)ϕ(m)/2 mϕ(m)∏
p|m p

ϕ(m)/(p−1) . (2.1)

For NTRU Prime fields, the situation is marginally more involved, as Z[zq] is
maximal if and only if its discriminant D0 = qq − (q − 1)q−1 [Swa62, Th. 2] is
squarefree [Kom75, Th. 4] :

∆Q(zq) =
∏
p|D0

pvp(D0) mod 2, where pvp(D0) divides exactly D0. (2.2)

Note however that there is strong evidence that such D0’s are generically square-
free, say with probability roughly 0.99 [BMT15, Conj. 1.1]. Actually, we checked
that the conductor of Z[zq] is not divisible by any of the first 106 primes for
all q ≤ 1000 outside the set {257, 487}, for which 592 | D0.

2.2 The product formula

Let (r1, r2) be the signature of K with n = r1 + 2r2. The real embeddings
of K are numbered from σ1 to σr1 , whereas the complex embeddings come in
pairs

(
σj , σj

)
for j ∈ Jr1 + 1, r2K. Each embedding σ of K into C induces an

archimedean absolute value |·|σ on K, such that for α ∈ K, |α|σ = |σ(α)|; two
complex conjugate embeddings yield the same absolute value. Thus, it is common
to identify the set S∞ of infinite places of K with the embeddings of K into C up
to conjugation, so that S∞ =

{
σ1, . . . , σr1 , σr1+1, . . . , σr1+r2

}
. The completion

of K with respect to the absolute value induced by an infinite place σ ∈ S∞ is
denoted by Kσ; it is R (resp. C) for real places (resp. complex places).

Likewise, let p be a prime ideal of OK above p ∈ Z of residue degree f .
For α ∈ K, the largest power of p that divides 〈α〉 is called the valuation of α
at p, and denoted by vp(α); this defines a non-archimedean absolute value |·|p
on K such that |α|p = p−vp(α). This absolute value can also be viewed as induced
by any of the f embeddings of K into its p-adic completion Kp ⊆ Cp, which is
an extension of Qp of degree f . Hence, the set S0 of finite places of K is specified
by the infinite set of prime ideals of OK , and Ostrowski’s theorem for number
fields ([Con, Th. 3], [Nar04, Th. 3.3]) states that all non archimedean absolute
values on K are obtained in this way, up to equivalence.
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Probably the most interesting thing is that these absolute values are tied
together by the following product formula ([Con, Th. 4], [Nar04, Th. 3.5]):∏

σ∈S∞

|α|[Kσ:R]σ ·
∏

p∈S0⊃pZ
|α|[Kp:Qp]

p

(
= |N (α)| ·

∏
p∈S0

N (p)−vp(α)
)

= 1. (2.3)

As all but finitely many of the |α|v’s, for v ∈ S∞∪S0, are 1, their product is really
a finite product. Note that the S∞ part is |N (α)|, and each term of the S0 part
can be written as N (p)−vp(α). This formula is actually a natural generalization
to number fields of the innocuous looking product formula for r ∈ Q, written
as: |r| ·

∏
p prime p

−vp(r) = 1.

2.3 Unit groups

Let O×K be the multiplicative group of units of OK , i.e. the group of all elements
of K of algebraic norm ±1, and let µ

(
O×K
)

be its torsion subgroup of roots of
unity of K. Classically, the logarithmic embedding from K to Rr1+r2 is defined
as [Coh93, Def. 4.9.6]: Log∞ α = ([Kσ : R] · ln|σ(α)|)σ∈S∞ . The sum of the coor-

dinates of Log∞ α is precisely ln|N (α)|, so that Log∞O×K lies in the trace zero
hyperplane Rr1+r20 =

{
y ∈ Rr1+r2 :

∑
i yi = 0

}
.

Dirichlet’s unit theorem [Nar04, Th. 3.13] states that O×K is a finitely gener-
ated abelian group of rank ν = r1+r2−1. Further, its image Log∞O×K under the
logarithmic embedding is a lattice, called the log-unit lattice, which spans Rr1+r20 :
there exist fundamental torsion-free elements ε1, . . . , εν ∈ O×K such that:

O×K ' µ
(
O×K
)
× εZ1 × · · · × εZν . (2.4)

Let ΛK = (Log∞ εi)1≤i≤ν be any Z-basis of Log∞O×K . The regulator of K,
written RK , quantifies the density of the unit group in K. It is defined as the

absolute value of the determinant of Λ
(j)
K , where Λ

(j)
K is the submatrix of ΛK

without the j-th coordinate, for any j ∈ J1, r1 + r2K. The volume of Log∞O×K ,√
det(ΛKΛT

K), is tied to RK by the following classical formula [Neu99, Pr. I.7.5]:

Vol
(
Log∞O×K

)
=
√

1 + ν ·RK . (2.5)

On the S-unit group. The S-unit group generalizes the unit group O×K by
allowing inverses of elements whose valuations are non zero exactly over a cho-
sen finite set of primes of S0. Let FB =

{
p1, . . . , pk

}
be such a factor basis,

and let O×K,FB denote the S-unit group of K with respect to FB. Formally, we

have O×K,FB =
{
α ∈ K : ∃e1, . . . , ek ∈ Z, 〈α〉 =

∏
p
ej
j

}
. Similarly, it is possible

to define a S-logarithmic embedding [Nar04, §3, p.98] from K to Rr1+r2+k:

Log∞,FB α =
([
Kv : Qv

]
·ln|α|v

)
v∈S∞∪FB

=
(

Log∞ α,
{
−vp(α)·lnN (p)

}
p∈FB

)
.

(2.6)
From the product formula (2.3), we see that the image of O×K,FB lies in the trace

zero hyperplane of Rr1+r2+k. This fact is used to prove the following theorem:
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Theorem 2.1 (Dirichlet-Chevalley-Hasse [Nar04, Th. III.3.12]). The S-
unit group is a finitely generated abelian group of rank ]S∞+]FB−1. Further, the
image Log∞,FB

(
O×K,FB/µ

(
O×K
))

is a lattice which spans the (ν+k)-dimensional

hyperplane Rr1+r2+k0 =
{
y ∈ Rr1+r2+k :

∑
i yi = 0

}
. In other words, there exist

fundamental torsion-free S-units η1, . . . , ηk ∈ O×K,FB such that:

O×K,FB ' µ
(
O×K
)
× εZ1 × · · · × εZν × ηZ1 × · · · × ηZk .

Let ΛK,FB =
(
{Log∞,FB εi}, {Log∞,FB ηj}

)
be a row basis of Log∞,FBO×K,FB,

which will be called the log-S-unit lattice. Using that Log∞,FB εi is uniformly zero
on coordinates corresponding to finite places, the shape of ΛK,FB is:

ΛK,FB
def
:=



ΛK 0

Log∞ η1
...

(
−vpj (ηi) lnN (pj)

)
1≤i,j≤k

Log∞ ηk


. (2.7)

Similarly, Th. 2.1 allows to define the S-regulator RK,FB of K wrpt. FB as
the absolute value of any of the (r1+r2+k) minors of ΛK,FB. The value of RK,FB
is given by the following proposition:

Proposition 2.2. Let h
(FB)
K the cardinal of the subgroup Cl

(FB)
K of ClK gener-

ated by classes of ideals in FB. Then, the S-regulator RK,FB writes as:

RK,FB = h
(FB)
K RK

∏
p∈FB

lnN (p).

Proof. Remark that RK,FB is the determinant (e.g.) of the submatrix Λ
(r1+r2)
K,FB

where the (r1 +r2)-th column is removed, so is the product of detΛ
(r1+r2)
K = RK

and of the determinant of the (unchanged) square bottom right part of ΛK,FB. By
definition of O×K,FB, the matrix

(
−vpj (ηi)

)
i,j

generates the lattice of all relations

in ClK between ideals of FB, i.e. is the kernel of the following map:

fFB : (e1, . . . , ek) ∈ Zk 7−→
∏
j

[
pj
]ej ∈ ClK ,

whose image is precisely Cl
(FB)
K . Thus, det(ker fFB) is h

(FB)
K = ]

(
Zk/ ker fFB

)
,

and twisting each column by lnN (p) for p ∈ FB yields the result.

We stress that the S-regulator could not be consistently defined anymore if
these twistings by the lnN (p)’s were removed, as in this case, the property that
all columns sum to 0 disappears. Finally, the volume of the log-S-unit lattice is
tied to RK,FB by the following:

Vol
(
Log∞,FBO×K,FB

)
=
√

1 + ν + k · h(FB)
K RK

∏
p∈FB

lnN (p). (2.8)
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Using flat logarithmic embeddings. We also define a flat logarithmic em-
bedding from K to Rr1+2r2 , as in [PHS19a,BDPW20], and defined as follows:

Log∞ α =
({

ln|σi(α)|
}
i∈J1,r1K,

{
ln|σr1+j(α)|, ln|σr1+j(α)|

}
j∈J1,r2K

)
. (2.9)

As for j ∈ J1, r2K, |α|σr1+j = |α|σr1+j , Log∞K spans the (r1 + r2)-dimensional

space L0 =
{
y ∈ Rn : yr1+2j−1 = yr1+2j , j ∈ J1, r2K

}
. Similarly, we define a flat

S-logarithmic embedding from K to L = L0 × Rk by:

Log∞,FB α =
(

Log∞ α,
{
−vp(α) · lnN (p)

}
p∈FB

)
. (2.10)

For convenience, we denote by H0 (resp. H) the span of the log-unit (resp. log-S-
unit) lattice under these flat embeddings, i.e. H0 = L0 ∩Rn0 and H = L∩Rn+k0 .

The flat embeddings impact the volume of the log-unit and log-S-unit lattices
given in Eqs. (2.5) and (2.8). It is given in following proposition, which generalizes
[BDPW20, Lem. A.1]:

Proposition 2.3. Under the flat S-logarithmic embedding, the log-S-unit lattice
has volume:

Vol
(
Log∞,FBO×K,FB

)
=
√
n+ k · 2−r2/2 · h(FB)

K RK
∏

p∈FB
lnN (p).

Using an empty factor basis, this implies Vol
(
Log∞O×K

)
=
√
n · 2−r2/2 ·RK .

Proof. Let Λ̃K,FB be a row basis of Log∞,FBO×K,FB, whose shape is the same

as ΛK,FB in Eq. (2.7) except that Log∞ is systematically used instead of Log∞.

The proof explicits the transition matrix from the truncated matrix Λ
(ν+k)
K,FB ,

whose determinant is RK,FB, to Λ̃K,FB, and computes its volume.

Let P =
(
Iν+k

∥∥−1ν+k
)

be such that ΛK,FB = Λ
(r1+r2+k)
K,FB · P . Obtain-

ing Λ̃K,FB from ΛK,FB requires to halve and expand the coordinates correspond-
ing to complex places, all other coordinates staying identical. Let F be the
transition matrix verifying Λ̃K,FB = ΛK,FB · F , i.e. the block diagonal matrix
with three blocks: Ir1 , the (r2× 2r2) block of vectors (. . . , 1/2, 1/2, . . . ), and Ik.

Then Λ̃K,FB = Λ
(r1+r2+k)
K,FB · (PF ). For k ≥ 1, or k = 0 and r2 = 0, (PF ) writes

as
(
F−1

∥∥−1ν+k
)
, where F−1 is F without its last column and its last row. We

compute:

(PF )(PF )T = 1(ν+k)×(ν+k) +D(1r1‖(1/2)·1r2‖1k−1).

Using Lem. A.1 to obtain that the determinant of this matrix is (n + k)2−r2

completes the proof, except in the case k = 0, r2 > 0. In this specific case, (PF )
writes as the first (n−2) columns of F−1, concatenated twice with (−1/2) ·1ν , so
that (PF )(PF )T = 1

2 ·
(
1ν×ν+D(2·1r1‖1r2−1)

)
. This last matrix has volume n·2−r2

as expected.
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2.4 Number theoretic bounds

This section presents several number theoretic bounds, which are useful to eval-
uate the complexity and correctness of the algorithms of this paper. All given
bounds rely on the Generalized Riemann Hypothesis (GRH).

Analytic class number formula. The residue κK = lims→1(s − 1)ζK(s) is
linked to hKRK through the so-called analytic class number formula [Neu99,

Cor. 5.11(ii)], which states that κK = 2r1 (2π)r2RKhK

ωK
√
|∆K |

, where ωK = ]µ
(
O×K
)
.

Actually, computing κK is much easier than computing directly hK or RK (see
e.g. [BF15]) and is generally performed as a first step towards these quantities.

The best currently known explicit bound is [Lou00, Th. 1] κK ≤
( e ln|∆K |

2(n−1)
)n−1

.

It implies the following upper bound on hKRK , as precisely shown in [BDPW20,
Lem. 2.3], which can then be used to control the volume of the log-S-unit lattice:

ln
(√

n
2r2 · hKRK

)
≤ 1

2 ln|∆K |+ n ln ln|∆K |+ n(1− lnn). (2.11)

Class Group Generators. An important characteristic of the chosen factor
bases in this paper is to generate ClK . It is hence useful to bound both hK and
the norms of the generating prime ideals. Note that, as for any finite group,
any non redundant generating set of ClK must have at most log hK elements.
Not much is generically known about the class number, so that the analytic
estimation above is traditionally used to obtain hK ≤ Õ

(√
|∆K |

)
. Let pmax be

any prime ideal of maximum norm inside a generating set of ClK which has the
smallest possible maximum norm. Bach proved that [Bac90, Th. 4]:

N (pmax) ≤ 12 ln2|∆K |. (2.12)

In practice though, this upper bound on the ratio tK
def
:= N (pmax)/ ln2|∆K | ≤ 12

is much too large. Experimental evidence suggest that tK > 0.7 only occurs in
pathological cases [BDF08, §6], and as noted in [BDF08, p.1186], “it even looks
plausible that the average value of N (pmax) as the discriminant of K increases
is O(ln|∆K |)1+ε for any ε > 0”.

Prime Ideal Theorem. In order to constitute sufficiently large sets of prime
ideals of polynomially bounded norms, it is useful to know the density of prime
ideals in K. This is the object of the Prime Ideal Theorem, also known as the
Chebotarev Density Theorem, which essentially states that prime ideals have
more or less the same asymptotic behaviour as prime numbers.

Let πK(x) = ]
{
p : p prime ideal, N (p) ≤ x

}
, and ϑK(x) =

∑
N (p)≤x lnN (p).

In [Lan03, Subsect. II.4-5], Landau proved the following asymptotic equivalences:

πK(x) ∼x→∞
∫ x

2

dt

ln t
, and ϑK(x) ∼x→∞ x. (2.13)
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The general rough intuition is that each prime p ∈ Z yields on average one
prime ideal in K of norm p. Of course, this global behaviour is not valid locally:
for instance in cyclotomic fields Q(ζm), ideals of prime norm p come in batches
of ϕ(m) elements for primes p ≡ 1 mod m, whose density is by Dirichlet’s arith-
metic progression theorem about 1/ϕ(m).

Unfortunately, whereas even for reasonably small bounds these asymptotic
estimations yield astonishingly good results in practice, only effective versions
are rigorously applicable.

Theorem 2.4 (Explicit Prime Ideal Theorem [GM16, Cor. 1.4]). Under
GRH, ∀x ≥ 3:∣∣∣∣πK(x)− πK(3)−

∫ x

3

dt

ln t

∣∣∣∣ ≤ √x · [c1(x) · ln|∆K |+ c2(x) · n lnx+ c3(x)
]
,

with c1(x) =
(

1
2π−

ln ln x
π ln x + 5.8

ln x

)
, c2(x) =

(
1
8π−

ln ln x
2π ln x+ 3.6

ln x

)
, c3(x) =

(
0.3+ 14

log x

)
.

This can be used to show that a polynomial bound in ln|∆K | yields suffi-
ciently many prime ideals, like in [PHS19a, Cor. 2.9]. A precise version of that
statement is given in [BDPW20, Lem. A.3]: for x ≥ max

{
(12 ln|∆K | + 8n +

28)4, 3 · 1011
}

, πK(x) ≥ x
2 ln x . Note how frightening looks the condition on x.

2.5 Algorithmic number theory

In this paper, the most useful number theoretic algorithms are S-unit group
related computations. More precisely, Biasse and Song proved [BS16] that com-
puting S-unit groups for well chosen factor bases yields class groups, unit groups
and class group discrete logarithms. The running time of these S-unit group
related computations is denoted by TSu(K). Under the GRH:

– in the quantum world, TSu(K) = Õ
(
ln|∆K |

)
is polynomial, as shown in

[BS16], building upon [EHKS14];
– in the classical world, it remains subexponential in ln|∆K |, i.e. TSu(K) =

exp Õ(lnα|∆K |) where α = 1/2 for prime power cyclotomic fields [BEF+17],
α = 2/3 in the general case [BF14], recently lowered to 3/5 by Gélin [Gél17].

For our exposition, the most important problem to be considered is probably
the Class Group Discrete Logarithm Problem (Cldl). Solving this problem re-
mains the major bottleneck in the classical query complexity of the algorithms
proposed in [CDW17,PHS19a].

Problem 2.5 (Class Group Discrete Logarithm (ClDL) [BS16]). Given

a set FB of prime ideals generating a subgroup Cl
(FB)
K of ClK , and a fractional

ideal b st.
[
b
]
∈ Cl

(FB)
K , output α ∈ K and vi ∈ Z st. 〈α〉 = b ·

∏
pi∈FB pvii .

This definition slightly differs from the one used in [CDW17, §3], as we also
require an explicit generator for the trivial class. Indeed, this element is a byprod-
uct of the reduction from Cldl to some S-units computation, as explicited in
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[CDW17, §B]. It is also worth noting that the Principal Ideal Problem (Pip),
i.e. that asks for a generator of b if it exists, is encompassed in this definition of
the Cldl problem, using FB = ∅ [BS16, Alg. 2].

The following two problems are used in [CDPR16,CDW17] and we recall
them for completeness. The resolution of Sgp can be reduced to a closest vector
problem in the log-unit lattice, as is folklore in computational number theory.

Problem 2.6 (Close Principal Multiple Problem (CPMP) [CDW17,
§2.2]). Given a fractional ideal b, output a “reasonably small” integral ideal c

such that
[
c
]

=
[
b
]−1

.

Problem 2.7 (Shortest Generator Problem (SGP)). Given a = 〈α〉, prin-
cipal ideal generated by some α ∈ K, find the shortest α′ ∈ a such that a = 〈α′〉.

2.6 Lattices geometry and hard problems

Let L be a lattice. For any p ∈ N∗ ∪ {∞} and 1 ≤ i ≤ dimL, the i-th

minimum λ
(p)
i (L) of L for the `p-norm is the minimum radius r > 0 such

that {v ∈ L : ‖v‖p ≤ r} has rank i [NV10, Def. 2.13]. For any t in the span of L,
the distance between t and L is distp(t, L) = infv∈L‖t− v‖p, and the covering
radius of L wrpt. `p-norm is µp(L) = supt∈L⊗R distp(t, L). For the euclidean
norm, we omit p = 2 most of the time.

A fractional ideal b of K can be seen, under the canonical embedding, as
a full rank lattice in Rn, called an ideal lattice, of volume

√
|∆K | · N (b). The

arithmetic-geometric mean inequality, using that |N (α)| ≥ N (b) for all α ∈ b,
and the Minkowski’s inequality [NV10, Th. 2.4] imply:

N (b)1/n ≤ λ(∞)
1 (b) ≤

√
|∆K |

1/n
N (b)1/n (2.14)

√
n · N (b)1/n ≤ λ(2)1 (b) ≤

√
n ·
√
|∆K |

1/n
N (b)1/n (2.15)

More precisely, λ1(b) ≤ (1+o(1))
√

2n/πe·Vol1/n(b), and the Gaussian Heuristic

for full rank random lattices [NV10, Def. 2.8] predicts λ1(b) ≈
√
n/2πe·Vol1/n(b)

on average. In the case of ideal lattices, this yields a pretty good estimation of
the shortness of vectors, even if λ1(b) is not known precisely.

We will consider the following algorithmic lattice problems. Both problems
can be readily restricted to ideal lattices under the labels Approx-id-Svp and
Approx-id-Cvp.

Problem 2.8 (Approximate Shortest Vector Problem (Approx-SVP)
[NV10, Pb. 2.2]). Given a lattice L and an approximation factor γ ≥ 1, find a
vector v ∈ L such that ‖v‖ ≤ γ · λ1(L).

Problem 2.9 (Approximate Closest Vector Problem (Approx-CVP)
[NV10, Pb. 2.5]). Given a lattice L, a target t ∈ L⊗R and an approximation
factor γ ≥ 1, find a vector v ∈ L such that ‖t− v‖ ≤ γ · dist(t, L).
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Actually, it will be more convenient to work with a slightly modified version of
Approx-Cvp, where the output is required to be at distance absolutely bounded
by some B, independently of the target distance to the lattice. By abuse of
terminology, we still call this variant Approx-Cvp.

Evaluating the quality of a lattice basis. Let B = (b1, . . . ,bn) be a basis of
a full rank n-dimensional lattice L, and let the Gram-Schmidt Orthogonalization
of B be GSO(B) = (b?1, . . . ,b

?
n). Approximation algorithms usually attempt to

compute a good basis of the given lattice, i.e. whose vectors are as short and as
orthogonal as possible. These lattice reduction algorithms, such as LLL [LLL82]
or BKZ [CN11], try to limit the decrease of the Gram-Schmidt norms ‖b?i ‖:
intuitively, a wide gap in this sequence reveals that bi is far from orthogonal
to
〈
b1, . . . ,bi−1

〉
. Evaluating the quality of a lattice basis is actually a tricky

task that depends partly on the targeted problem (see e.g. [Xu13]). We will use
the following geometric metrics:

1. the root-Hermite factor δ0 is widely used to measure the performance of
lattice reduction algorithms [NS06,GN08,CN11], especially for solving Svp-
like problems:

δn0 (B) =
‖b1‖

Vol1/n L
. (2.16)

Experimental evidence suggest that on average, LLL achieves δLLL0 ≈ 1.02

[NS06,GN08] and BKZ with block size b achieves δBKZb0 ≈
(
b

2πe (πb)1/b
)1/(2b−2)

for b ≥ 50 [Che13,CN11].
2. the normalized orthogonality defect δ [MG02, Def. 7.5] captures the global

quality of the basis, not just of the first vector, and is especially useful
for Cvp-like problems e.g. if the lattice possesses abnormally short vectors:

δn(B) =

∏n
i=1‖bi‖
VolL

. (2.17)

For purely orthogonal bases δ = 1, and by Minkowski’s second theorem

[NV10, Th. 2.5], its smallest possible value is
(∏

i λi(L)/VolL
)1/n ≤√1 + n

4 .
3. the minimum vector basis angle, defined as [Xu13, Eq. (15)]:

θmin(B) = min
1≤i<j≤n

min
{
θij , π − θij

}
for θij =

arccos
〈
bi,bj

〉
‖bi‖‖bj‖

. (2.18)

We propose to consider also the mean vector basis angle θavg(B), which
averages over all min

{
θij , π − θij

}
.

3 The PHS algorithm

This section describes the PHS algorithm for solving the approximate id-Svp, as
introduced by Pellet-Mary, Hanrot and Stehlé in [PHS19a], and discusses several
improvements. The PHS algorithm extends the techniques from [CDPR16,CDW17]
to any number field K and is split in two phases:
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1. the preprocessing phase Apre-proc, described in §3.1, builds a specific lattice
together with some hint allowing to efficiently solve Approx-Cvp instances;

2. the query phase Aquery, detailed in §3.2, reduces each Approx-id-Svp chal-
lenge to an Approx-Cvp instance in this fixed lattice.

More precisely, under the GRH and several heuristic assumptions detailed in
[PHS19a, H. 1–6], they prove the following theorem:

Theorem 3.1 ([PHS19a, Th. 1.1]). Let ω ∈ [0, 1/2] and K be a number field
of degree n and discriminant ∆K with a known basis of OK . Under some con-
jectures and heuristics, there exist two algorithms Apre-proc and Aquery such that:

– Algorithm Apre-proc takes as input OK , runs in time 2Õ(log|∆K |) and outputs

a hint V of bit-size 2Õ(log1−2ω|∆K |);
– Algorithm Aquery takes as inputs any ideal b of OK , whose algebraic norm

has bit-size bounded by 2poly(log|∆K |), and the hint V output by Apre-proc, runs

in time 2Õ(log1−2ω|∆K |)+TSu(K), and outputs a non-zero element x ∈ b such

that ‖x‖2 ≤ 2Õ(logω+1|∆K |/n) · λ1(b).

We start by describing the preprocessing phase Apre-proc in §3.1, then the
query phase Aquery in §3.2, and recall the proof of Th. 3.1 in detail. We thereafter
discuss several algorithmic and theoretic minor improvement in §3.3.

3.1 Preprocessing of the number field

From a number field K and a size parameter ω ∈ [0, 1/2], the preprocessing
phase consists in building and preparing a lattice Lphs that depends only on the
number field K and allows to express any Approx-id-Svp instance in K as an
Approx-Cvp instance in Lphs. The most significant part of this preprocessing is
devoted to the computation of a hint of constrained size that can be used to
facilitate those forthcoming Approx-Cvp queries.

We first define the lattice which is used in [PHS19a], discuss how the au-
thors derive its dimension from volume considerations, and then expose the full
preprocessing algorithm.

Definition of the lattice Lphs. Let FB =
{
p1, . . . , pk

}
be a set of prime

ideals generating the class group ClK . The lattice Lphs proposed in [PHS19a,
§3.1] consists in the diagonal concatenation of some log-unit related lattice and
the lattice of relations in ClK between ideals of FB, with explicit generators.
Formally, it is generated by the (ν + k) rows of the following square matrix:

BLphs
def
:=



c ·BΛ 0

c · fH0
(h(0)
η1 )

... ker fFB =
(
−vpj (ηi)

)
1≤i,j≤k

c · fH0
(h(0)
ηk

)


, (3.1)
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– where fH0 is an isometry from H0 ⊂ Rn to Rν , where H0 is the intersection of
the span L0 of Log∞OK , i.e. L0 =

{
y ∈ Rn : yr1+2i = yr1+2i+1, 0 ≤ i < r2

}
,

and of the trace zero hyperplane Rn0 = 1⊥n ;
– the matrix BΛ is a row basis of fH0

(
Log∞O×K

)
;

– the bottom right part of BLphs generates the lattice of all relations in ClK
between ideals of FB, i.e. is the kernel of fFB :

(
e1, . . . , ek

)
∈ Zk 7→

∏
j

[
pj
]ej

;
– each row basis vector vi = (vi1, . . . , vik) of ker fFB is associated to ηi ∈ K

such that 〈ηi〉·
∏
j p

vij
j = OK , thus vij = −vpj (ηi), and h(0)

ηi = πH0

(
Log∞ ηi

)
,

where πH0
is the projection on H0 in Rn;

– c is a scaling parameter whose value depends on fH0
(set later to n3/2/k).

Note that this definition differs from the one given in [PHS19a, §3.1] by a sign
change in the last k coordinates. This is a purely editorial detail allowing to use
the same convention through the exposition of the algorithm and its proof.

The condition that the factor base generates ClK guarantees that for any
challenge ideal there exists a solution to the Cldl on FB. It can be relaxed to
some extent to generate only a small index subgroup of ClK like in [CDW17].

The isometry fH0
happens to play an important role in the proof of Aquery.

It forces the introduction of the scaling factor c, whose value is non-negligible
and indirectly implies the use of a larger factor base. Note that this isometry is
not explicitly defined in [PHS19a], whereas the associated code [PHS19b] uses a
pruning strategy which removes the r2 +1 coordinates corresponding to the con-
jugates of complex places plus an arbitrary one. We stress that this implemented
pruning strategy could negatively impact the quality of the Approx-Cvp solver,
as it hides potentially huge size variations of the S-units on the removed coordi-
nate. That’s the reason why we thoroughly study in §3.3 a candidate isometry
for fH0

that also induces lower values for c. Furthermore, note that the projec-
tion on H0 removes out of the picture the logarithm of the algebraic norms of the
(non-regular) S-units; hence, it seems that this partial information prevents Lphs

from optimally achieving its initial goal of minimizing the algebraic norm for the
Cpmp while guaranteeing a Sgp solution of small length. Our new algorithm,
detailed in §4, aims in particular at fixing these flaws.

Finally, we aggregate the material present in [PHS19a, fn. 3, Lem. 3.1] to
propose a simpler and more concise way to define Lphs; using the same notations
as above, let ϕphs be the following map from K to Rν × Zk:

ϕphs(α) =
(
c · fH0 ◦ πH0

(
Log∞ α

)
,
{
−vpi(α)

}
1≤i≤k

)
. (3.2)

Then, Lphs can be seen as the full-rank lattice generated by the images un-
der ϕphs of the fundamental elements generating the S-unit group O×K,FB, as
given by Th. 2.1. It is easy to see that both definitions coincide: for regular
units ε ∈ O×K , all finite valuations are zero, so is the last part of ϕphs(ε),
and πH0

(
Log∞ ε

)
= Log∞ ε. Using the homomorphism properties of ϕphs on K,

namely ϕphs(αα
′) = ϕphs(α)+ϕphs(α

′) and ∀λ ∈ Z, ϕphs(α
λ) = λ·ϕphs(α), proving

that each element of Lphs corresponds to an element of O×K,FB [PHS19a, Lem. 3.1]

becomes tautological. Further, we stress that ϕphs is injective on O×K,FB
/
µ
(
O×K
)

and therefore defines an isomorphism between O×K,FB/µ
(
O×K
)

and Lphs.
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Volume of Lphs and cardinality of FB. It remains to derive an explicit value
for the cardinality k of the factor base FB; in [PHS19a, §4.1], this is done by

considering the smallest k such that the root volume Vol1/(ν+k) Lphs is at most
constant. By Minkowski’s inequality, this quantity bounds the first minimum
in `∞-norm, and under the heuristic that Lphs behaves like a random lattice
[PHS19a, H. 4], it also controls the `∞-norm covering radius µ∞(Lphs).

First, we evaluate the volume of Lphs, which writes as cν ·detBΛ ·det(ker fFB)
by definition of BLphs. The determinant of ker fFB is hK = ]

(
Zk/ ker fFB

)
. On the

other hand, remark that BΛ is the image under fH0
of a basis of Log∞O×K , whose

volume is
√
n ·2−r2/2 ·RK by Pr. 2.3. Finally, the isometry fH0

stabilizes L0∩Rn0 ,
thus preserves the volume of BΛ; hence, we get:

VolLphs = cν ·
√
n

2r2/2
· hKRK . (3.3)

Note that [PHS19a] only gives an asymptotic bound on VolLphs, whereas Eq. (3.3)

is exact. The idea is then to choose k such that Vol1/(ν+k) = O(1), e.g. tak-
ing (ν + k) = ln VolLphs. Using the number-theoretic bound given by Eq. (2.11),
and using the fact that c will be later set to n3/2/k, VolLphs is asymptotically

bounded by exp Õ
(
ln|∆K |+ n ln ln|∆K |

)
; therefore:

ν + k = max
{
ν + log hK , ln|∆K |+ n ln ln|∆K |

}
. (3.4)

The log hK part is there as a sufficient but not necessary condition ensuring
that ClK can be generated by k ≥ log hK ideals [PHS19a, Lem. 2.7]. As hK ≤
Õ(
√
|∆K |), we remark that the second term dominates, so the maximum in

the above formula can be ignored; in the associated code [PHS19b], (k + ν) is
explicitly set to bln|∆K |c. We stress that in practice the dimension of Lphs is
quite sensitive to small changes in the value of c or the targeted root volume.
We refer to §3.3 for more details and examples.

Preprocessing algorithm. Algorithm 3.1 details the complete preprocessing
procedure that, from a number field and some precomputation size parameter,
chooses a factor base FB, builds the associated matrix BLphs, and processes Lphs

in order to facilitate Approx-Cvp queries.
The dimension k of the factor base and the scaling factor c are set in step 1 as

in the published code [PHS19b]. Steps 2 and 3 are a concise version of [PHS19a,
Alg. 3.1, st. 1–5]; it basically enlarges a generating set of ClK of size k′ ≤ log hK
by picking (k−k′) random prime ideals of bounded norms. The crucial point is to
invoke the prime ideal theorem to show that taking a bound which is polynomial
in k and log|∆K | [PHS19a, Cor. 2.10] is actually sufficient.

The last step consists in preprocessing Lphs in order to solve Approx-Cvp
instances efficiently. As noted in [PHS19a, p.6], the problem is easy without any
constraint on the size of the output hint. To guarantee a hint size that is not ex-
ceeding the query phase time, they suggest to use Laarhoven’s algorithm [Laa16],

which outputs a hint V of bit-size bounded by 2Õ((ν+k)1−2ω), i.e. 2Õ(log1−2ω|∆K |)
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Algorithm 3.1 PHS Preprocessing Apre-proc

Input: A number field K of degree n and a parameter ω ∈ [0, 1/2].
Output: The basis BLphs with the preimages O×K,FB of its rows, and Laarhoven’s

hint V(Lphs).

1: Set k =
(⌊

ln|∆K |
⌋
− ν
)

and c =
(
n3/2/k

)
.

2: Compute ClK =
〈[
p1
]
, . . . ,

[
pk′
]〉

, with k′ ≤ log hK .
3: Randomly extend

{
p1, . . . , pk′

}
by prime ideals of bounded norm to get FB ={

p1, . . . , pk
}

.
4: Compute fundamental elements ε1, . . . , εν , η1, . . . , ηk of O×K,FB as in Th. 2.1.
5: Create the matrixBLphs whose rows are ϕphs(ε1), . . . , ϕphs(ηk) as defined in Eq. (3.1).

6: Use Laarhoven’s algorithm to compute a hint V = V(Lphs) of size 2Õ(log1−2ω|∆K |).
7: return

(
O×K,FB, Lphs, V(Lphs)

)
.

using (ν + k) = Õ(log|∆K |), allowing to deliver the answer for approximation
factors (ν + k)ω in time bounded by the bit-size of V [Laa16, Cor. 1–2].

Proof of the first part of Th. 3.1. Costly steps of Alg. 3.1 are steps 2, 4 and 6 that
compute ClK , O×K,FB and the hint V(Lphs). The former two are S-unit group

related computations that cost TSu(K) ≤ 2Õ(log2/3|∆K |) each; the latter runs

independently of ω in time 2O(ν+k) = 2Õ(log|∆K |). Note that in a quantum set-
ting, only Laarhoven’s algorithm is not polynomial in n; in a classical setting, it
remains the dominating exponential part.

3.2 Query phase: solving id-SVP using the preprocessing

This section describes the query phase Aquery of PHS algorithm; for any challenge
ideal b ⊆ K having a polynomial description in log|∆K |, it reduces the resolution
of Approx-id-Svp in b to a single call to an Approx-Cvp oracle in Lphs as output
by the preprocessing phase.

The main idea of this reduction is to multiply the principal ideal output by
the Cldl of b on FB by ideals in FB until a “better” principal ideal is reached,
i.e. having a short generator. In Lphs, it translates into adding vectors of Lphs to
some target vector derived from b until the result is short, hence into solving a
Cvp instance. This is formalized in Alg. 3.2, which rewrites [PHS19a, Alg. 3.2]
to take into account our change of conventions in the definition of Lphs and the
choice of Laarhoven’s algorithm as the Approx-Cvp oracle [Laa16, §4.2].

Note that the output of the Cldl in step 1 is a S-unit if and only if b is only
divisible by prime ideals in the factor base. Each exponent vi can be expressed
as vi = vpi(α) − vpi(b). Then, the target defined in step 2 can be viewed as a
drifted by β image of α in Lphs; using the formalism we introduced in Eq. (3.2), it
writes simply as t = ϕphs(α) + bphs, where bphs = (0, . . . , 0, β, . . . , β) is non zero
only on the k last coordinates. We stress that the role of bphs in the definition
of the target serves a unique purpose: guarantee that α/s ∈ b. In practice, this
is not an anecdotic condition, and choosing carefully β has a significant impact
on the length of the output, as we will see in §3.3.
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Algorithm 3.2 PHS Query Aquery

Input: A challenge b, Apre-proc(K,ω) =
(
O×K,FB, Lphs,V

)
, and β > 0 st. for any t,

the Approx-Cvp oracle using V(Lphs) outputs w ∈ Lphs with ‖t−w‖∞ ≤ β.
Output: A short element x ∈ b \ {0}.
1: Solve the Cldl for b on FB, i.e. find α ∈ K st. 〈α〉 = b ·

∏
pi∈FB pvii .

2: Define the target as t =
(
c · fH0 ◦ πH0

(
Log∞ α

)
,
{
−vi + β

}
1≤i≤k

)
.

3: Use the Approx-CVP solver with V(Lphs) to output w ∈ Lphs st. ‖t−w‖∞ ≤ β.
4: Compute s = ϕ−1

phs(w) ∈ O×K,FB, using the preimages of BLphs rows.
5: return α/s.

The rest of this section is devoted to recall the proof of correctness, quality
and running time of Alg. 3.2. These make an extensive use of the following log-
unit structure lemma, which is classical and freely used e.g. in [CDPR16, §6.1]:

Lemma 3.2 ([PHS19a, Lem. 2.11–12]). Define h(0)
α

def
:= πH0

(
Log∞ α

)
, for α ∈

K. Then Log∞ α = h(0)
α + ln|N (α)|

n · 1n. Further, the length of α is bounded by:

‖α‖2 ≤
√
n · |N (α)|1/n · exp‖h(0)

α ‖∞ ≤
√
n · |N (α)|1/n · exp‖h(0)

α ‖2.

Proof. Recall that Rn0 = 1⊥n and Log∞ α ∈ L0, hence Log∞ α decomposes
as πH0

(
Log∞ α

)
+a ·1n, with a =

〈
Log∞ α,1n

〉
/‖1n‖22 = ln|N (α)|/n, by defini-

tion of the projection on Rn0 . Moreover, generically we have ‖α‖2 ≤
√
n · ‖α‖∞;

using the above decomposition coordinate-wise, the j-th coordinate of Log∞ α

writes
(
Log∞ α

)
j

= (h(0)
α )j + ln|N (α)|

n and therefore:

‖α‖∞ = max
σ∈S∞

|σ(α)| = exp max
σ∈S∞

ln|σ(α)| ≤ exp
[
ln|N (α)|

n + max
1≤j≤n

(h(0)

α )j

]
.

Using maxj (h(0)
α )j ≤ ‖h(0)

α ‖∞ and ‖h(0)
α ‖∞ ≤ ‖h(0)

α ‖2 concludes.

Notice how well the `∞-norm apparently behaves with respect to the loga-
rithm embedding. We stress however that logarithms of small infinite valuations
can become large negatives, so ‖h(0)

α ‖∞ could be really far from max1≤j≤n (h(0)
α )j .

This bounding method also somehow hides the fact that complex valuations
count twice in the final euclidean norm.

Theorem 3.3 ([PHS19a, Th. 3.3]). Given access to an Approx-Cvp ora-
cle that, on any input, outputs w ∈ Lphs at infinity distance at most β, algo-
rithm Aquery computes x ∈ b \ {0} such that:

‖x‖2 ≤
√
n · N (b)1/n · exp

[
O

(
β · k · ln ln|∆K |

n

)]
.

Proof. Let wi = vpi(s), so that w = ϕphs(s) =
(
c · fH0(h(0)

s ), {−wi}1≤i≤k
)
.

The first step is to prove the correctness, i.e. that x = (α/s) is indeed in b \
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{0}. By definition, we have 〈s〉 =
∏

pi∈FB pwii , thus: 〈α/s〉 = b ·
∏

pi∈FB pvi−wii .
As ‖t−w‖∞ ≤ β, for each i we have |wi − vi + β| ≤ β, hence 0 ≤ vi−wi ≤ 2β.

The second step is to bound the `2-norm of the output using Lem. 3.2. Hence,
it is necessary to bound |N (α/s)| and ‖h(0)

α/s‖∞. Bounding the former uses again

that 0 ≤ vi−wi ≤ 2β, as well as the fact that the maximal norm N (pmax) of FB
is bounded by Bach’s bound O(ln2|∆K |):

|N (α/s)|1/n ≤ N (b)1/n·N (pmax)
∑
i(vi−wi)/n ≤ N (b)1/n·exp

[
O

(
β · k · ln ln|∆K |

n

)]
.

For the latter, ‖h(0)

α/s‖∞ ≤ ‖h
(0)

α/s‖2 = ‖fH0(h(0)
α − h(0)

s )‖2 ≤
√
n/c · ‖t−w‖∞ ≤

√
nβ/c.

The value of c should then be set so that this bound is not greater than the

previous β·k·ln ln|∆K |
n . Taking c = n3/2

k as in [PHS19a] is sufficient.

Before proving the second part of Th. 3.1, we remark that, taking the least
possible values derived in §3.1 for k = ln|∆K | & n lnn and µ∞(Lphs) ≈ 1, and
also assuming a perfect CVP solver in infinity norm for β = µ∞(Lphs), Th. 3.3 can
at best only assess for a subexponential nlnn approximation factor; polynomial
approximation factors are not provably reached.

Proof of the second part of Th. 3.1. It breaks down to plugging k = Õ(ln|∆K |)
and a value for β into Th. 3.3. In [PHS19a, §4.2], deriving this β relies on several
heuristics [PHS19a, H. 4–6] implying that µ2(Lphs) = O(

√
ν + k), and that on

average ‖v‖∞ ≤ ln ν+k√
ν+k
· ‖v‖2. The Approx-Cvp solver from Laarhoven’s algo-

rithm using V(Lphs) outputs a lattice vector at euclidean distance which is at
most O

(
(ν + k)ω · µ2(Lphs)

)
. Using the above heuristics, the infinity distance of

the output is therefore Õ
(
(ν + k)ω

)
= Õ(lnω|∆K |), giving the claimed bound.

As for the running time of Alg. 3.2, it is essentially determined by those
of steps 1 and 3. Solving the Cldl problem requires to compute S-units for an
extended factor basis containing FB and prime factors of b, hence costs TSu(K).
Note that in a quantum setting, TSu(K) is polynomial, but in a classical world
it remains subexponential in the discriminant; furthermore, since it depends on
the challenge, this cost cannot be mitigated by some preprocessing effort. On
the other hand, solving Approx-Cvp with Laarhoven’s algorithm runs in time

bounded by 2Õ(log1−2ω|∆K |), the size of V . Finally, the total run time of Aquery is

bounded by 2Õ(log1−2ω|∆K |) + TSu(K).

3.3 Optimizing PHS parameters

In this section, we propose three improvements of the PHS algorithm. The first
one consists in expliciting a candidate for fH0

and using its geometric properties
to derive a smaller lattice dimension, while still guaranteeing the same proven
approximation factor. The last two respectively modify the composition of the
factor base and the definition of the target vector in a way that drastically
improves the approximation factor experimentally achieved by Aquery.
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Although these improvements do not modify the core of PHS algorithm and
have no impact on the asymptotics, they nevertheless are of importance in prac-
tice, as we will see in Section 5.

Expliciting the isometry: towards smaller factor bases. We exhibit ex-
plicitly a candidate for the isometry fH0 going from H0 = Rn0 ∩ L0 ⊆ Rn to Rν
and evaluate its effect on the infinity norm; it allows to lower the value of c in
the proof of Th. 3.3 from n

√
n/k to n(1 + lnn)/k, which in turn implies using

a smaller factor base for the same proven approximation factor. We define the

isometry fH0
as the linear map represented by GSO

T
(MH0

), with:

MH0

def
:=

−1 1

−1 1

. . .
. . .

−1 1





ν + 1

ν ·

Ir1

1
2

1
2

1
2

1
2

. . .
. . .

1
2

1
2





r1 2r2

r 1
r 2

. (3.5)

Actually, MH0 is simply a basis of Rn0 ∩L0 in Rn, constituted of vectors that
are orthogonal to 1n and to each of the r2 independent vectors vj , j ∈ J1, r2K,
that sends any y ∈ L0 to 0 by substracting yr1+2j from its copy yr1+2j−1 and
forgetting every other coordinate.

Proposition 3.4. Let fH0
be the isometry represented by GSO

T
(MH0

). Then:

∀h ∈ H0, ‖h‖∞ ≤ (1 + lnn) · ‖fH0
(h)‖∞,

‖fH0
(h)‖∞ ≤ 2

√
2 · ‖h‖∞.

Proof. Let h ∈ Rn0 ∩L0, and v = fH0
(h) ∈ Rν . We prove the trivially equivalent

result ‖f−1H0
(v)‖∞ ≤ (1 + lnn) · ‖v‖∞. By definition, f−1H0

(v) = v · GSO(MH0),

hence bounding the `1-norm of each column of GSO(MH0
) by (1 + lnn) yields

the first inequality. Similarly, bounding the `1-norm of each row of GSO(MH0
)

by 2
√

2 proves the second.
Let b1, . . . ,bν be the row vectors of MH0 ; the Gram-Schmidt orthogonal-

ization (resp. orthonormalization) vectors of MH0
are denoted by b?i (resp. b

?

i ).

Because of the particular structure of MH0
, b

?

i+1 only depends on bi+1 and b?i .
Then, a simple induction shows that:
∀i ∈ J1, r1 − 1K: b

?

i =
(
− 1√

i(i+1)
, . . . ,

√
i
i+1 , 0, . . .

)
,

∀j ∈ J0, r2 − 1K, i = r1 + 2j: b
?

r1+j =
(
−

√
2√

i(i+2)
, . . . ,

√
i√

2(i+2)
,

√
i√

2(i+2)
, 0, . . .

)
,

where in each configuration the first i coordinates are equal, and zeroes pad
to dimension n. Bounding each ‖b?i ‖1 by 2

√
2 is trivial from these formulas,
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proving the second inequality. Let c1, . . . , cn be the columns of GSO(MH0).
We claim that ‖cn‖1 ≤ ‖cn−1‖1 ≤ · · · ≤ ‖c1‖1. Indeed, ‖c1‖1 = ‖c2‖1, and for

all i ≥ 2, ‖ci‖1−‖ci+1‖1 = |(b?i−1)
i
|+ |(b?i )i|−|(b

?

i )i+1| ≥ 0. Using
√

1
i(i+1) <

1
i

and
√

2
i(i+2) ≤

1√
2

(
1
i + 1

i+1

)
yields ‖c1‖1 ≤

∑n−1
i=1

1
i ≤ 1 + ln(n− 1).

As a consequence, we can directly inject the result into the proof of Th. 3.3
to bound ‖h(0)

α/s‖∞ by (1 + lnn)/c · ‖t−w‖∞ ≤ (1 + lnn)β/c instead of
√
nβ/c.

We also use the following refined practical bound on the algebraic norm of α/s.
Indeed, when conducting experiments, FB is known and there is no need to suffer
from Bach’s generic bound for N (pmax):

|N (α/s)|1/n ≤ N (b)1/n ·
∏

pi∈FB
N (pi)

(vi−wi)/n ≤ N (b)1/n ·exp

[
2β ·

∑
p∈FB lnN (p)

n

]
.

(3.6)
Then, as a smaller value of c implies a smaller volume of Lphs hence a smaller
factor base, it should be chosen as the smallest st. the former bound (1+lnn)β/c

on ‖h(0)

α/s‖∞ is below the above
2β·

∑
p∈FB lnN (p)

n , which implies c ≥ (1+lnn)n∑
p∈FB lnN (p) .

Nevertheless, as there is no reason to artificially increase the bound on ‖h(0)

α/s‖∞
using c < 1 when the other already dominates, we should also ensure c ≥ 1. This
finally leads us to choose:

c = max

(
1,

(1 + lnn)n∑
p∈FB lnN (p)

)
. (3.7)

To quantify the gain obtained by this new value of c, we computed factor base
dimensions in different settings for two families of number fields: Tab. 3.1 deals
with non-principal cyclotomic fields Q(ζm) of prime conductors m ∈ J23, 71K;
Tab. 3.2 handles NTRU Prime fields Q(zq), where zq is a root of xq−x−1, for q
prime in J23, 61K. These correspond to the range of explicit computations feasible
within a limited amount of time. By contrast, experiments reported in [PHS19a,
Fig. 4.1] were limited to cyclotomic fields of degree at most 24, most of them
being principal. For each field, we compare the expected factor base dimensions
in four situations: first, for completeness we use Eq. (3.4), taken from [PHS19a,
§4.1]; then we report the value used by [PHS19b], i.e. k = bln|∆K |c − ν, and

provide the resulting root volume Vol1/(ν+k) Lphs corresponding to c = n3/2

k for

reference. Finally, we target this reference root volume using c = (1+lnn)n
k on

one hand, hence mimicking the proof of Th. 3.3, and using our recommended
value given by Eq. (3.7) on the other hand.

The last experiment, dealing with Eq. (3.7), simulates all factor bases of car-
dinality k by taking the k prime ideals of smallest norms. This choice might not
be directly suitable for a factor base, as it gives no theoretical insurance to gen-
erate ClK . Nevertheless, in all experiments the obtained k is well above log hK ,
the maximum number of generators of ClK [PHS19a, Lem. 2.7], so that replacing
some of these ideals by bigger norm representatives of missing classes until the
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set generates ClK would only reduce the value of c by increasing
∑

p∈FB lnN (p).
Thus, the given factor base dimensions remain in any case an upper bound of
the correct dimension.

m
lnV 1/(ν+k) Eq. (3.4) c = n3/2/k

c = (1+lnn)n
k

c = max
(

1, (1+lnn)n∑
lnN (p)

)
[PHS19b] [PHS19a] [PHS19b]

23 0.292 147 55 53 34
29 0.305 204 77 72 50
31 0.304 223 85 79 55
37 0.314 283 109 100 72
41 0.323 324 125 114 84
43 0.323 345 134 121 91
47 0.327 388 151 136 103
53 0.336 453 177 158 122
59 0.341 520 204 181 141
61 0.343 543 213 189 148
67 0.348 611 241 212 168
71 0.350 658 260 228 182

Table 3.1 – Values of k for K = Q(ζm): using Eq. (3.4); using Eq. (3.3) with
same root volume target V 1/(ν+k) as in [PHS19b] and given values of c.

q
lnV 1/(ν+k) Eq. (3.4) c = n3/2/k

c = (1+lnn)n
k

c = max
(

1, (1+lnn)n∑
lnN (p)

)
[PHS19b] [PHS19a] [PHS19b]

23 0.264 159 61 58 37
29 0.285 216 83 77 52
31 0.289 236 91 84 58
37 0.299 296 115 105 75
41 0.306 338 132 119 88
43 0.313 359 140 126 93
47 0.320 402 157 141 106
53 0.325 467 184 164 125
59 0.335 535 211 187 145
61 0.334 557 220 194 151

Table 3.2 – Values of k for K = Q(zq): using Eq. (3.4); using Eq. (3.3) with
same root volume target V 1/(ν+k) as in [PHS19b] and given values of c.

To end this section, we remark that there might exist better `∞-norm pre-
serving isometries than GSO(MH0)T; nevertheless, as the value of c derived from
Eq. (3.7) is already equal to 1 most of the time, we cannot expect a substan-
tial gain from this. Furthermore, it should be stressed that the complexity of
known lattice reduction algorithms only depends on the rank of the lattice, and
not on the ambient space dimension, so that this isometry can be removed in
practice. It however serves the theoretical purpose of being able to transpose
Minkowski’s inequalities and heuristics on covering radii that are valid only for
full-rank lattices.
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Lowering the factor base weight. Second, we suggest choosing the k ele-
ments of the factor base as the k prime ideals of least possible norm, instead of
randomly picking them up to some polynomial bound. As shown by Eq. (3.6), this
incidentally lowers the approximation factor, which depends on

∏
p∈FBN (p).

Formally, this only modifies step 3 of Alg. 3.1 as follows. Let
{
p1, . . . , pk′

}
be

a generating set of ClK , with k′ ≤ log hK , as obtained by the previous step 2.
As in Alg. 3.1, using the prime ideal theorem yields that we can choose some
bound B polynomial in k and log|∆K | such that the set of prime ideals of norm
bounded by B contains at least k elements. Then, we order this set by increasing
norms, choosing an arbitrary permutation for isonorm ideals, and remove ideals
that were already present in

{
p1, . . . , pk′

}
. It remains to extract the first (k−k′)

elements to obtain our factor base.
There is one issue to consider, namely adapting the justification of [PHS19a,

H. 4], relying on Lphs being a “somehow random” lattice to derive that µ∞(Lphs)

is close to λ
(∞)
1 (Lphs). We argue that in practice (as discussed with more details

for H. 4.8 in §4.2), it is always possible to empirically upper bound the infinity
covering radius of Lphs to verify that this heuristic holds. For example, as de-
scribed in [PHS19a, §4.1]: take sufficiently many random samples ti in the span
of Lphs from a continuous Gaussian distribution of sufficiently large deviation;
solve Approx-Cvp for the `2-norm for each of them to obtain vectors wi ∈ Lphs

close to ti; finally, majorate µ∞(Lphs) by maxi‖ti −wi‖∞. Then, if the expected
heuristic behaviour is too far from this estimate, we could still replace one ideal
of FB by an ideal of bigger norm and iterate the process.

Minimizing the target drift. Our last suggested improvement modifies the
definition of the target vector to take into account the fact that valuations at
prime ideals are integers. Hence, the condition enforcing α/s ∈ b, which was
written as ∀p ∈ FB, vp(α) − vp(s) ≥ 0, can be replaced by the equivalent
requirement that ∀p ∈ FB, vp(α)− vp(s) > −1. Intuitively, this reduces the val-
uations at prime ideals of the output element by one on average, hence lowering
the approximation factor bound in Eq. (3.6). Formally, using the notations of
Alg. 3.2, we only modify the definition of the target t in step 2 of Alg. 3.2. For
any 0 < ε < 1, let β̃ = (β − 1 + ε) and let b̃phs = (0, . . . , 0, β̃, . . . , β̃) with non
zero values only on the k last coordinates. The modified target is defined as:

t̃ = ϕphs(α) + b̃phs =
(
c · fH0

◦ πH0

(
Log∞ α

)
,
{
−vi + β̃

}
1≤i≤k

)
. (3.8)

The remaining steps of Alg. 3.2 stay unchanged. We have to prove that the output
is still correct, i.e. that α/s ∈ b, where w = ϕphs(s) ∈ Lphs verifies ‖t̃−w‖∞ ≤ β.
This is done in the following Pr. 3.5, which adapts Th. 3.3 to benefit from all the
improvements of this section.

Though this adjustment might seem insignificant at first sight, we stress that
the induced gain is of order

∏
p∈FBN (p)1/n, which is roughly subexponential

in n, and that its impact is very noticeable experimentally. In fact, the quality
of the output is so sensitive to this β̃ that we implemented a dichotomic strategy
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to find, for each challenge b, the smallest possible translation β̃ that must be
applied to ϕphs(α) to ensure (α/s) ∈ b.

Proposition 3.5. Given access to an Approx-Cvp oracle that, on any input,
output w ∈ Lphs at infinity distance at most β, the modified algorithm Aquery

using the isometry fH0
defined in Eq. (3.5), the value c defined in Eq. (3.7), and

for any 0 < ε < 1, the modified target t̃ defined in Eq. (3.8), computes x ∈ b\{0}
such that:

‖x‖2 ≤
√
n · N (b)1/n · exp

[
(β + b2β − 1c) ·

∑
p∈FB lnN (p)

n

]
.

Proof. As in the proof of Th. 3.3, let w = ϕphs(s) =
(
c · fH0

(h(0)
s ), {−wi}1≤i≤k

)
,

with wi = vpi(s), be such that ‖t̃−w‖∞ ≤ β. The main point is proving

that x = (α/s) ∈ b. Recall that 〈α/s〉 = b ·
∏

pi∈FB pvi−wii . As ‖t̃−w‖∞ ≤ β,
for each i we have −1 + ε ≤ vi − wi ≤ 2β − 1 + ε. Using that vi, wi are in Z
and ε > 0 implies 0 ≤ vi − wi ≤ b2β − 1c, hence x ∈ b \ {0}.

The `2-norm of x is upper bounded using again Lem. 3.2. The previous dis-

cussion also shows |N (α/s)|1/n ≤ N (b)1/n · exp
( b2β−1c·∑p∈FB lnN (p)

n

)
. Using the

isometry properties given by Pr. 3.4, we obtain ‖h(0)

α/s‖∞ ≤ (1 + lnn)β/c, and

using c ≥ (1+lnn)n∑
p∈FB lnN (p) as implied by Eq. (3.7) finally yields the result.

4 Twisted-PHS algorithm

Our main contribution is to propose a twisted version of the PHS algorithm. The
main idea consists in using the natural description of the log-S-unit lattice given
in Eq. (2.7) and deduced from the product formula in Eq. (2.3). This basically
adds weights to each p-adic valuation, which has several valuable consequences.

On the theoretical side, we prove that our twisted-PHS algorithm performs
at least as well as the original PHS algorithm with the same Cvp solver using a
preprocessing hint by Laarhoven. Formally, under the GRH and heuristics:

Theorem 4.1. Let ω ∈ [0, 1/2] and K be a number field of degree n and dis-
criminant ∆K . Assume that a basis of OK is known. Under GRH and heuristics

H. 4.8 and 4.9, there exist two algorithms A(Laa)
tw-pcmp and A(Laa)

tw-query such that:

– Algorithm A(Laa)
tw-pcmp takes as input OK , runs in time 2Õ(log|∆K |) and outputs

a hint V of bit-size 2Õ(log1−2ω|∆K |);

– Algorithm A(Laa)
tw-query takes as inputs any ideal b of OK , whose algebraic norm

has bit-size bounded by 2poly(log|∆K |), and the hint V output by A(Laa)
tw-pcmp, runs

in time 2Õ(log1−2ω|∆K |)+TSu(K), and outputs a non-zero element x ∈ b such

that ‖x‖2 ≤ 2Õ(logω+1|∆K |/n) · λ1(b).

On the practical side though, experimental evidence given in §5 suggest that
we achieve much better approximation factors than expected, and that the given
lattice bases are a lot more orthogonal than the ones used in [PHS19a].

25



4.1 Preprocessing of the number field

As for the PHS algorithm, the preprocessing phase consists, from a number
field K and a size parameter ω ∈ [0, 1/2], in building and preparing a lattice Ltw

that depends only on the number field and allows to express any Approx-id-Svp
instance in K as an Approx-Cvp instance in Ltw.

Theoretically, the only difference between the original PHS preprocessing
and ours resides in the lattice definition and in the factor base elaboration. Its
most significant part still consists in computing a hint of constrained size to
facilitate forthcoming Approx-Cvp queries. In practice though, we replace this
hint computation by merely a few rounds of BKZ with small block size (see
§5). In a quantum setting this removes the only part that is not polynomial
in ln|∆K |, and in a classical setting avoids the dominating exponential part.

Defining the lattice Ltw: a full-rank version of the log-S-unit lattice.
Let FB =

{
p1, . . . , pk

}
be a set of prime ideals generating the class group ClK .

The lattice Ltw used by our twisted-PHS algorithm is basically the log-S-unit
lattice Log∞,FBO×K,FB wrpt. FB under the flat logarithmic embedding, to which

we apply an isometric transformation to obtain a full-rank lattice in Rν+k.
Formally, Ltw is defined as the lattice generated by the images of the funda-

mental elements generating the S-unit group O×K,FB, as given by Th. 2.1, under

the following map ϕtw from K to Rν+k:

ϕtw(α) = fH ◦ πH
(
Log∞,FB α

)
, (4.1)

– where fH is an isometry from H ⊂ Rn+k to Rν+k, with H the intersection of
the trace zero hyperplane Rn+k0 = 1⊥n+k, and of the span of Log∞,FBO×K,FB,

i.e. L =
{
y ∈ Rn+k : yr1+2i−1 = yr1+2i, i ∈ J1, r2K

}
;

– πH is the projection on H, in particular it is the identity on the S-unit group.

This map naturally inherits from the homomorphism properties of Log∞,FB,

i.e. ϕtw(αα′) = ϕtw(α) + ϕtw(α′) and ∀λ ∈ Z, ϕtw(αλ) = λ · ϕtw(α), and also
defines an isomorphism between O×K,FB

/
µ
(
O×K
)

and Ltw.
The isometry fH must be carefully chosen in order to control its effect on

the `∞-norm. Nevertheless, it should be seen as a technicality allowing to work
with tools designed for full-rank lattices. Formally, let fH be the linear map

represented by GSO
T

(MH), which denotes the transpose of the Gram-Schmidt
orthonormalization of the following matrix:

MH
def
:=

−1 1

−1 1

. . .
. . .

−1 1




ν + 1 + k

ν
+
k ·

Ir1

1
2

1
2

1
2

1
2

. . .
. . .

1
2

1
2

Ik





r1 2r2 k

r 1
r 2

k

. (4.2)
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Actually, MH is a basis of H = Rn+k0 ∩ L in Rn+k, constituted of vectors that
are orthogonal to 1n+k and to each of the r2 independent vectors vj , j ∈ J1, r2K
that sends any y ∈ L to 0 by substracting yr1+2j from its copy yr1+2j−1 and
forgetting every other coordinate. Hence, graphically, a row basis of Ltw is:

BLtw
def
:=



Λ̃K 0

Log∞ η1
...

(
−vpj (ηi) lnN (pj)

)
1≤i,j≤k

Log∞ ηk


·GSO

T
(MH), (4.3)

where the first part is the basis Λ̃K,FB of Log∞,FBO×K,FB defined in §2.3.

Volume of Ltw and optimal factor base choice. First, we evaluate the
volume of Ltw = fH

(
Log∞,FBO×K,FB

)
. As the isometry fH stabilizes the span

of the log-S-unit lattice, it preserves its volume, which is given by Pr. 2.3. Using

that ideal classes of FB generate the class group, hence h
(FB)
K = hK , yields:

VolLtw =
√
n+ k · 2−r2/2 · hKRK

∏
1≤i≤k

lnN (pi). (4.4)

Certainly, the volume of Ltw is growing with the log norms of the factor base
prime ideals, but a remarkable property is that this growth is at first slower
than the lattice density increase induced by the bigger dimension. The meaning
of this is that we can enlarge the factor base to densify our lattice up to an
optimal point, after which including new ideals becomes counter-productive.

Formally, let Vk′ denote the reduced volume Vol1/(ν+k
′) Ltw for a factor base

of size k′ ≥ k0, where k0 is the number of generators of ClK . We have:

Vk′+1 = Vk′ ·
(√

1 + 1
n+k′ ·

lnN (pk′+1)

Vk′

)1/(ν+k′+1)

. (4.5)

This shows that Vk′+1 < Vk′ is equivalent to lnN (pk′+1) < Vk′
/√

1 + 1
n+k′ .

Using this property, Alg. 4.1 outputs a factor base maximizing the density of Ltw.
First, for a fixed factor base of size k, we compare the reduced volume Vk

of Ltw with the reduced volume of Lphs, denoted Vphs
not
:=
(√

n
2r2 · hKRK

)1/(ν+k)
.

Lemma 4.2.
Vk
Vphs

≤ e1/ne

k
·
∑
p∈FB

lnN (p).

This means that the gap between the reduced volume of the twisted lattice
and the reduced volume of the untwisted lattice evolves roughly as the arithmetic
mean of the lnN (p). We stress that this bound is valid for any k.
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Algorithm 4.1 Tw-PHS Factor Base Choice Atw-FB

Input: A number field K of degree n.
Output: An optimal factor base FB generating ClK that minimizes Vol1/(ν+k) Ltw.
1: Compute ClK =

〈[
q1
]
, . . . ,

[
qk0
]〉

, with k0 ≤ log hK .
2: Compute P(B) =

{
pi : N (pi) ≤ B

}
\
{
q1, . . . , qk0

}
ordered by increasing norms,

where B is chosen st. πK(B) = poly(ln|∆K |) ≥ k0.
3: FB←

{
q1, . . . , qk0

}
.

4: i← 0.
5: while lnN (pi+1) < Vk0+i

/√
1 + 1

n+k0+i
do

6: Add pi+1 to FB.
7: i← i+ 1.
8: end while
9: return FB.

Proof. The quotient Vk/Vphs is
(√

n+k
n

∏
lnN (p)

)1/(ν+k)
. The square root power

is bounded by
(
n+k
n

)1/(n+k)
, as 1

ν+k <
2

n+k , which reaches when k + n = ne its

maximum value e1/ne. On the other hand, 1
ν+k <

1
k , thus by Jensen’s inequality:( ∏

p∈FB
lnN (p)

)1/(ν+k)
≤
( ∏
p∈FB

lnN (p)
)1/k

≤ 1

k
·
∑
p∈FB

lnN (p).

Although the reduced volume significantly decreases in the first loop iter-
ations, reaching precisely the minimum value can be very gradual, so that it
might be clever to early abort the loop in Alg. 4.1 when the gradient is too low,
or truncate the output to at most k′ = Õ(ln|∆K |). We quantify the fact that
the density loss is at most constant in the worst case in the following result.

Lemma 4.3. Let k′ = C
(
ln|∆K | + n ln ln|∆K |

)
. Let Vmin be the minimum re-

duced volume output by Atw-FB, and suppose Vmin is attained for k > k′, then

Vk′ ≤ e1/C+1/ne · Vmin.

Proof. By Eq. (2.11), this choice of k′ implies
(√

n
2r2 · hKRK

)1/(ν+k′) ≤ e1/C .

Lemma 4.2 thus gives Vk′ ≤ e1/C+1/ne lnN (pk′). The result follows from the fact
that by design, lnN (pk′) ≤ Vmin ≤ Vk′ .

In practice, experiments of §5 report that the factor bases output by Atw-FB

have significantly smaller dimensions than the dimensions showed in Tab. 3.1
and 3.2 for the (optimized) PHS algorithm, so that Lem. 4.3 is never triggered.

Proposition 4.4. Algorithm Atw-FB terminates in time TSu(K) + poly(ln|∆K |)
and outputs a factor base of size k = poly(ln|∆K |) using B = poly(ln|∆K |).

Proof. We first show termination. If lnN (p1) ≥ Vk0
/√

1 + 1
n+k0

, the algorithm

stops. Otherwise, by Eq. (4.5), Vk0+i+1 < Vk0+i at best until lnN (pi+1) ≥ Vk0+i.
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Since there are at most n prime ideals of a given norm, lnN (pi) must increase,
so that at some point Vk0+i+1 > Vk0+i, where the density of Ltw decreases.

We now bound B and k. For C > 0, let k′ = C
(
ln|∆K | + n ln ln|∆K |

)
, and

let B′ = N (pk′). By the Prime Ideal Theorem (Th. 2.4), B′ ≤ poly(ln|∆K |).
Using the same arguments as in the proof of Lem. 4.3, we obtain:

Vk′ ≤ e1/C ·
(√

n+k′

n

)1/(ν+k′)
· lnk

′/(ν+k′)N (pk′) ≤ e1/C+1/ne · lnB′.

If lnN (pk′+1) ≥ Vk′ , we take B = B′ and k = k′. Note that this is generi-
cally the case in practice. Otherwise, it is necessary to increase B′ to at most
B = `B′, with ` = exp

(
e1/C+1/ne

)
. This value of ` verifies that if k > k′ is

such that N (pk+1) ≥ B ≥ N (pk), then lnN (pk+1) ≥ Vk′ > Vk, and by defini-
tion ]FB ≤ k. Note that this scaling value ` is small, e.g. for C ≥ 4 and n ≥ 3
we have ` ≤ 4. The key is now to show that this new k = πK(`B′) is not much
larger than k′ = πK(B′). Actually, provided B′ is (polynomially in ln|∆K |) large

enough, invoking again the Prime Ideal Theorem yields k′ = πK(B′) ≥ B′

2 lnB′

[BDPW20, Lem. A.3] and:

k ≤ πK(`B′) ≤ 2n(`B′)
ln `B′ = (4`n) · B′

2 lnB′ ≤ (4`n) · πK(B′) = poly(ln|∆K |).

Note that Bach’s bound (Eq. (2.12)) is poly(ln|∆K |), as B and k. Therefore,
steps 2–8 run in time poly(ln|∆K |), and step 1 computes ClK in time TSu(K).

Preprocessing algorithm. Algorithm 4.2 details the complete preprocessing
procedure that, from a number field and some precomputation size parameter,
chooses a factor base FB, builds the associated matrix BLtw, and processes Ltw

in order to facilitate Approx-Cvp queries.

Algorithm 4.2 Tw-PHS Preprocessing Atw-pcmp

Input: A number field K of degree n and a parameter ω ∈ [0, 1/2] or b.
Output: The basis BLtw with the preimages O×K,FB of its rows, and Laarhoven’s

hint V(Ltw).
1: Get an optimal factor base FB = Atw-FB(K) of size k = ]FB. If needed, truncate

the output to k = Õ(ln|∆K |) as in Lem. 4.3.
2: Compute fundamental elements ε1, . . . , εν , η1, . . . , ηk of O×K,FB as in Th. 2.1.
3: Create BLtw, whose rows are ϕtw(ε1), . . . , ϕtw(ηk) as defined in Eq. (4.3).

4: Use Laarhoven’s algorithm to compute a hint V = V(Ltw) of size 2Õ(log1−2ω|∆K |).
5: (or) Use a BKZ of small block size to reduce the basis of Ltw.
6: return

(
O×K,FB, BLtw, V(Ltw)

)
.

Nevertheless, in practice the twisted lattice output by Alg. 4.2 incidentally
appears to be a lot more orthogonal than expected. That’s the reason why we
suggest to replace the exponential step 4 of Alg. 4.2 by step 5, which performs
some polynomial lattice reduction using a small block size BKZ. In a quantum
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setting this removes the only part that is not polynomial in ln|∆K |, and in a
classical setting avoids the dominating exponential part. This practical version

will be denoted by A(bkz)
tw-pcmp.

Proof of the first part of Th. 4.1. The complexity of step 1 is given by Pr. 4.4.
Neglecting poly(ln|∆K |) terms, the other costly steps are steps 2 and 4. The

former costs TSu(K) ≤ 2Õ(log2/3|∆K |) by §2.5; the latter, independently of ω,

runs in 2O(ν+k) = 2Õ(log|∆K |) by the bound on k. Hence, Alg. 4.2 has the same

complexity as the original PHS preprocessing, i.e. at most 2Õ(log|∆K |). Note that
in practice, the dimension of Ltw is much smaller than the one of Lphs, which

directly lowers the practical complexity of A(Laa)
tw-pcmp and A(bkz)

tw-pcmp.

4.2 Query phase

This section describes the query phase Atw-query of the Tw-PHS algorithm. As
for the query phase of the original PHS algorithm, it reduces the resolution
of Approx-id-Svp in b, for any challenge ideal b ⊆ K having a polynomial
description in log|∆K |, to a single call to an Approx-Cvp oracle in Ltw as output
by the preprocessing phase. The main idea of this reduction remains to multiply
the principal ideal generator output by the Cldl of b on FB by elements of O×K,FB
until we reach a principal ideal having a short generator. This translates into
adding vectors of Ltw to some target vector derived from b until the result is
short, hence into solving a Cvp instance in the log-S-unit lattice Ltw.

The essential difference of the Tw-PHS version lies in the definition of this
target, which is adapted in order to benefit from the twisted description of the
log-S-unit lattice. This is formalized in Alg. 4.3.

Algorithm 4.3 Tw-PHS Query Atw-query

Input: A challenge b, Atw-pcmp(K,ω) =
(
O×K,FB, Ltw,V

)
, and β̃ > 0 st. for any t, the

Approx-Cvp oracle using V(Ltw) outputs w ∈ Ltw with ‖f−1
H (t−w)‖∞ ≤ β̃.

Output: A short element x ∈ b \ {0}.
1: Solve the Cldl for b on FB, i.e. find α ∈ K st. 〈α〉 = b ·

∏
pi∈FB pvii , for vi ∈ Z.

2: Define the target t as f−1
H (t) = πH

(
Log∞ α,

{
−vi lnN (pi)

}
1≤i≤k

)
+ btw, where

the drift btw ∈ H will be defined in Eq. (4.6).

3: Solve Approx-Cvp with V(Ltw) to get w ∈ Ltw st. ‖f−1
H (t−w)‖∞ ≤ β̃.

4: (or) Use Babai’s Nearest Plane to get w ∈ Ltw st. ‖f−1
H (t−w)‖∞ is small.

5: Compute s = ϕ−1
tw (w) ∈ O×K,FB, using the preimages of the rows of BLtw.

6: return α/s.

Note that the output of the Cldl in step 1 is not a S-unit unless b is divisible
only by prime ideals of FB; for each i, vi = vpi(α) − vpi(b). For convenience
and without any loss of generality we shall assume that b is coprime with all
elements of the factor base, i.e. ∀p ∈ FB, vp(b) = 0. In that case, the target
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in step 2 writes naturally as t = ϕtw(α) + fH
(
btw

)
. This target definition calls

a few comments. First, the output of the Cldl is projected on the whole log-
S-unit lattice instead of only on the log-unit sublattice, hence maintaining its
length and algebraic norm logarithms in the instance scope. Thus, the way our
algorithm uses S-units to reduce the solution of the Cldl problem can be seen
as a smooth generalization of the way traditional Sgp solvers use regular units
to reduce the solution of the Pip as in [CDPR16]. Second, the sole purpose of
the drift by btw is to ensure that α/s ∈ b. Adapting its definition to the twisted
setting is slightly tedious and deferred to the next paragraph. The most notable
novelty is that we force the use of a drift that is inside the log-S-unit lattice
span. This somehow captures and compensates for the perturbation induced on
infinite places for correcting negative valuations on finite places using S-units.

Finally, as already mentioned, Ltw seems much more orthogonal in practice
than expected, so that we advise to resort to Babai’s Nearest Plane algorithm for
solving Approx-Cvp in Ltw, instead of using Laarhoven’s query phase with the
precomputed hint. We only keep Laarhoven’s algorithm to theoretically prove the
correctness and complexity of our new algorithm. The theoretical and practical

versions of Atw-query are respectively denoted by A(Laa)
tw-query and A(np)

tw-query.
We now detail explicitly our target choice and prove the correctness and

complexity of Alg. 4.3.

Definition of the target vector. Recall that we assumed that b is coprime
with FB, hence f−1H (t) = πH

(
Log∞,FB α

)
+ btw, for some btw ∈ H that en-

sures α/s ∈ b, for s = ϕ−1tw (w) and ‖f−1H (t−w)‖∞ ≤ β̃. Indexing coordinates
by places, we exhibit btw =

(
{bσ}σ∈S∞∪S∞ , {bp}p∈FB

)
, where:{

bσ = − k
n

(
lnN (b)
n+k + β̃

)
+ 1

n

∑
p∈FB lnN (p) for σ ∈ S∞ ∪ S∞,

bp = β̃ − lnN (p) + lnN (b)
n+k for p ∈ FB.

(4.6)

It is easy to verify that all coordinates sum to 0, i.e. btw ∈ H. We now explain
this choice, first showing that under the above hypotheses, Alg. 4.3 is correct.

Proposition 4.5. Given access to an Approx-Cvp oracle that on any input t,
outputs w ∈ Ltw st. ‖f−1H (t−w)‖∞ ≤ β̃, Atw-query outputs x ∈ b \ {0}.
Proof. Recall that x = α/s, where s = ϕ−1tw (w) ∈ O×K,FB and that for the sake
of clarity, b is taken coprime to FB. Therefore, it is sufficient to show that for
any fixed p ∈ FB, vp(α/s) ≥ vp(b) = 0. Indexing coordinates of Log∞,FB α

by places and using the simplified notation αv
not
:= (Log∞,FB α)

v
, we have that

for hα = πH
(
Log∞,FB α

)
, (hα)p = αp − lnN (b)

n+k . By hypothesis:∣∣∣αp − lnN (b)
n+k − sp + bp

∣∣∣ =
∣∣∣−(vp(α)− vp(s) + 1

)
lnN (p) + β̃

∣∣∣ ≤ β̃.
Rearranging terms, and using that vp(·) ∈ Z to round integers towards 0:

0 ≤ vp(α/s) ≤
⌊

2β̃

lnN (p)
− 1

⌋
.

31



This concludes the correctness proof.

The proof also quantifies the intuition that the output element has smaller
valuations at big norm prime ideals. Furthermore, strictly positive valuations oc-
cur only for ideals st. lnN (p) ≤ β̃. This has a very valuable consequence: estimat-
ing the `∞-norm covering radius of Ltw allows to control the prime ideal support
of any optimal solution. Hence, even if the Approx-Cvp cannot reach µ∞(Ltw),
it is possible to confine the algebraic norm of each query output by not including
in FB the prime ideals whose log-norm would in fine exceed µ∞(Ltw), and at
which the optimal solution provably has a null valuation. Roughly speaking, this
is what Atw-FB tends to achieve in Alg. 4.1.

Translating infinite coordinates. As already mentionned, one important nov-
elty consists in forcing the drift used to ensure α/s ∈ b to be inside the log-
S-unit span. The underlying intuition is that “correcting” negative valuations
at finite primes should only involve S-units. We modelize this by splitting the
weight of the bp’s evenly across the infinite places coordinates, hence obtaining
Eq. (4.6). This heuristically presumes that S-units absolute value logarithms are
generically balanced on infinite places. Let us summarize our target definition:

t = fH

({
ασ − 1

n

[
kβ̃ + lnN (b)−

∑
p∈FB lnN (p)

]}
σ
,
{
αp + β̃ − lnN (p)

}
p∈FB

)
. (4.7)

Quality of the output of A(Laa)
tw-query. To bound the quality of the output of

Alg. 4.3, the general idea is that minimizing the distance of our target to the
twisted lattice directly minimizes the p-adic absolute values −vp(α) lnN (p) in-
stead of minimizing the valuations vp(α) independently of lnN (p).

This makes use of the following log-S-unit lattice structure lemma, adapting
its log-unit lattice classical equivalent [PHS19a, Lem. 2.11–12], [CDPR16, §6.1]:

Lemma 4.6. For α ∈ K, let hα
def
:= πH

(
Log∞,FB α

)
. Decompose 〈α〉 on FB

as b ·
∏

p∈FB pvp(α), with b coprime to FB. Then Log∞,FB α = hα+ lnN (b)
n+k ·1n+k.

Furthermore, the length of α is bounded by

‖α‖2 ≤
√
n · N (b)1/(n+k) · exp

[
max
1≤j≤n

(hα)j

]
.

Note that using the max of the coordinates of hα instead of its `∞-norm
norm acknowledges for the fact that logarithms of small infinite valuations can
become large negatives that should be ignored when evaluating the length of α.

Proof. By definition of the orthogonal projection on H, Log∞,FB α decomposes

as hα + a · 1n+k, with a =
〈
Log∞,FB α,1n+k

〉
/‖1n+k‖22. The scalar product is:∑

σ∈S∞∪S∞

ln|σ(α)| −
∑
p∈FB

vp(α) · lnN (p) = lnN
(
〈α〉
/∏

p∈FBp
vp(α)

)
= lnN (b).
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Therefore, a = lnN (b)
n+k . Moreover, generically we have ‖α‖2 ≤

√
n · ‖α‖∞; us-

ing the above decomposition coordinate-wise, the j-th-coordinate of Log∞,FB α

writes (Log∞,FB α)
j

= (hα)j + lnN (b)
n+k and thus:

‖α‖∞ = exp max
σ∈S∞

ln|σ(α)| ≤ exp
[
lnN (b)
n+k + max

1≤j≤n
(hα)j

]
.

Theorem 4.7. Given access to an Approx-Cvp oracle that on any input t, out-
puts w ∈ Ltw st. ‖f−1H (t−w)‖∞ ≤ β̃, Atw-query computes x ∈ b \ {0} such that

‖x‖2 ≤
√
n · N (b)1/n · exp

[
(n+ k)β̃ −

∑
p∈FB lnN (p)

n

]

This outperforms the bound of Pr. 3.5 if (n + k) · β̃ ≤ 2β ·
∑

p∈FB lnN (p).

In particular, this is implied by Lem. 4.2 if β̃
β ≈

Vk
Vphs

for k ≥ n. We will see that

under some reasonable heuristics, this is indeed the case when using the same
factor base, and that experiments suggest a much broader gap. One intuitive
reason for this behaviour is that the covering radius of our twisted lattice grows
at a slower pace than the log-norm of the prime ideals of FB.

Proof. The correctness comes from Pr. 4.5. As before, let s = ϕ−1tw (w), where w

verifies ‖f−1H (t−w)‖∞ ≤ β̃. It is necessary to bound maxσ∈S∞ (hα/s)σ in order
to invoke Lem. 4.6. Note that hα/s = hα − hs, hence:

(hα/s)σ = ασ − lnN (b)
n+k − sσ.

Recalling the target definition given in Eq. (4.6), the σ-coordinate of f−1H (t−w)

writes
(
ασ − lnN (b)

n+k + bσ
)
− sσ = (hα/s)σ + bσ, and the promise on w yields:

(hα/s)σ ≤ β̃ − bσ =
(n+ k)β̃ −

∑
p∈FB lnN (p)

n
+

k

n(n+ k)
· lnN (b).

Injecting this bound in Lem. 4.6 using 1
n+k + k

n(n+k) = 1
n ends the proof.

Heuristic evaluation of β̃. Proving the second part of Th. 4.1 necessitates
to evaluate β̃. This evaluation rely on several heuristics that adapt heuristics
[PHS19a, H. 4–6]. We argue that the arguments developped in [PHS19a, §4] to
support these heuristics can be transposed to our setting, and both heuristics
are validated by experiments in §5.

Heuristic 4.8 (Adapted from [PHS19a, H. 4]). The `∞-norm covering ra-

dius of Ltw is O
(
Vol1/(ν+k) Ltw

)
. Likewise, µ2(Ltw) = O

(√
ν + k ·Vol1/(ν+k) Ltw

)
.
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This assumption relies on Ltw to behave like a random lattice, implying its
successive minima and covering radius to be even. In [PHS19a], the randomness
essentially comes from the choice of the factor base, while for Ltw, this choice is
deterministic. We argue that heuristically, prime ideals of FB represent uniformly
random classes in ClK ,3 and S-units archimedean absolute value logarithms are
likely to be uniform in Rn

/
Log∞O×K . The volumetric arguments of [PHS19a,

§4.1] can also be readily adapted, using lnN (p) ≤ Vol1/(ν+k) Ltw by construction.

Heuristic 4.9 (Adapted from [PHS19a, H. 5–6]). With non-negligible
probability over the input target vector t, the vector w output by Laarhoven’s
algorithm satisfies ‖f−1H (t−w)‖∞ ≤ O

(
ln(n+ k)/

√
n+ k

)
· ‖t−w‖2.

This heuristic conveys the idea that coefficients of the output of Laarhoven’s
algorithm are somehow balanced, so that ‖w‖2 ≈

√
n+ k·‖f−1H (w)‖∞. Typically,

continuous Gaussian vectors y of dimension d verify ‖y‖∞/‖y‖2 = O(ln d/
√
d)

with good probability, as shown by [PHS19a, Lem. 4.1]. In our setting, this is
justified by assuming t is uniformly distributed in

(
R ⊗ Ltw

)
/Ltw, and can be

randomized by multiplying b by small ideals coprime to FB.

Proof of the second part of Th. 4.1. It breaks down to plugging a value for k
and β̃ into Th. 4.7. Using Lem. 4.3, we take k = Õ(ln|∆K |), so that by Lem. 4.2
and Pr. 4.4, Vk = O(lnN (pmax)) = O(ln ln|∆K |). We stress that if Atw-FB ter-
minates with a smaller k, this can by definition only yield a smaller Vk. By
H. 4.8, it implies µ2(Ltw) = O(

√
ν + k · ln ln|∆K |), and H. 4.9 yield on aver-

age ‖f−1H (v)‖∞ ≤ lnn+k√
n+k

· ‖v‖2. The Approx-Cvp solver from Laarhoven’s al-

gorithm using V(Ltw) outputs a lattice vector at euclidean distance which is at
most O

(
(ν+k)ω ·µ2(Ltw)

)
. Hence, its infinity distance is Õ

(
(ν+k)ω · ln ln|∆K |

)
,

and (k + n)β̃ = Õ
(
(ν + k)ω+1 · ln ln|∆K |

)
= Õ

(
lnω+1|∆K |

)
, as claimed.

As for the running time of Alg. 4.3, it is essentially determined by those of
steps 1 and 3. Solving the Cldl problem requires to compute S-units for an ex-
tended factor basis containing FB and prime factors of b, hence costs TSu(K).
Note that since it depends on the challenge, this cost cannot be mitigated
by some preprocessing effort. On the other hand, solving Approx-Cvp with

Laarhoven’s algorithm runs in time bounded by 2Õ(log1−2ω|∆K |), the size of V . Fi-

nally, the total run time of A(Laa)
tw-query is bounded by 2Õ(log1−2ω|∆K |) +TSu(K).

In practice, as shown in §5, the special properties of our twisted lattice Ltw

suggest replacing Laarhoven’s Cvp solving by Babai’s Nearest Plane algorithm

for solving Approx-Cvp in Ltw. In this eventuality, A(np)
tw-query would become quan-

tumly polynomial, and classically only subexponential in ln|∆K |.

5 Experimental data

This is the first time to our knowledge that this type of algorithm is completely
implemented and tested for fields of degrees up to 60. As a point of compar-

3 This is at the heart of the analytic class number formula.
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ison, the experiments of [PHS19a] constructed the log-S-unit lattice Lphs for
cyclotomic fields of degrees at most 24 and hK ≤ 3, all but the last two being
principal [PHS19a, Fig. 4.1].

Hardware and library description. All S-units and class group computations, for
the log-S-unit lattice description and the Cldl resolution, were performed using
Magma v2.24-10 [BCP97].4 The BKZ reductions and Cvp/Svp computations
used fplll v5.3.2 [The16]. All other parts of the experiments rely on SageMath
v9.0 [The20]. All the sources and scripts are available as supplementary material
on https://github.com/ob3rnard/Twisted-PHS. The experiments took less
than a week on a server with 36 cores and 768 GB RAM.

Targeted algorithms. We evaluate three algorithms: the original PHS algorithm,
as implemented in [PHS19b]; our optimized version Opt-PHS described in §3.3,
and our new twisted variant Tw-PHS, which is described in §4. This yields three
different lattices, respectively denoted by Lphs, Lopt and Ltw. Note that there are
a few differences between [PHS19a] and its implementation in [PHS19b], but we
chose to stick to the provided implementation as much as possible.

In order to separate the improvements due toAtw-FB outputting smaller factor
bases from those purely induced by our specific use of the product formula to
describe the log-S-unit lattice, we also built lattices L(0)

phs and L(0)

opt corresponding
to PHS and Opt-PHS algorithms, but using the same factor base as Ltw.

Number fields. As announced in §2.1, we consider two families of number fields,
namely non-principal cyclotomic fields Q(ζm) of prime conductors m ∈ J23, 71K,
and NTRU Prime fields Q(zq) where zq is a root of xq − x− 1, for q ∈ J23, 47K
prime. These correspond to the range of what is feasible in a reasonable amount
of time, as the asymptotics of TSu(K) rapidly speak in a classical setting.

For cyclotomic fields, we managed to compute S-units up to Q(ζ71) for all
factor bases in less than a day, and all log-S-unit lattice variants up to Q(ζ61).
For NTRU Prime fields, we managed all computations up to Q(z47).

BKZ reductions and Cvp solving. We applied the same reduction strategy to
all of our lattices. Namely, lattices of dimension less than 60 were HKZ reduced,
while lattices of greater dimension were reduced using at most 300 loops of BKZ
with block size 40. This yields reasonably good bases for a small computational
cost [CN11, p.2]. Note the loop limit was in practice never hit.

For Cvp computations, we applied with these reduced bases Babai’s Nearest
Plane algorithm, as described in [Gal12, §18.1, Alg. 26].

Precision issues. Choosing the right bit precision for floating point arithmetic
in the experiments is particularly tricky. We generically used at most 500 bits
of precision in our experiments (corresponding to the lattice volume logarithm
in base 2 plus some extra margin). There are two notable exceptions:

4 Note that SageMath is significantly faster than Magma for computing class groups,
but behaves surprisingly poorly when it comes to computing S-units.
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1. The S-units wrpt. FB can have huge coefficients. Computing the absolute
values of their embeddings must then be performed at very high precision.
All our lattice constructions were conducted using 10000 bits of precision.

2. Computing the target involves the challenge and the Cldl solution, whose
coefficients are potentially huge rational numbers, up to 225000 for e.g. Q(ζ53).
As above, we adjust the precision in order to obtain sensible values.

In all cases, once in the log space the resulting high precision data can be rounded
back to the generic precision before lattice reduction or Cvp computations.

5.1 Geometric characteristics

First, we evaluated the geometric characteristics of each produced lattice, using
indicators recalled in Section 2.6, namely: the root Hermite factor δ0, the orthog-
onality defect δ, and the minimum θmin (resp. average θavg) vector basis angle.
Each of these indicators is declined before and after BKZ reduction to com-
pare their evolution. We also evaluated experimentally the relevance of H. 4.8
and 4.9. Example results are given in Tab. 5.1 and 5.2 for cyclotomic and NTRU
Prime fields, aside the lattices dimensions d = ν + k and reduced volumes V 1/d.
Extensive data can be found in Tab. B.1 and B.2 for both field families.

δ0 δ θmin θavg ‖·‖∞/‖·‖2d V 1/d

– bkz – bkz – bkz – bkz
µ2 µ∞ real H. 4.9

Q(ζ41)

Ltw 59 4.825 1.001 1.001 3.596 1.802 11 47 69 81 12.91 5.186 0.615 0.489

L(0)
opt 59 1.786 1.020 1.005 4.525 1.986 34 55 76 83 5.112 2.245 0.629 0.530

L(0)

phs 59 2.767 1.037 0.997 8.986 1.809 45 55 79 84 8.535 4.039 0.639 0.530

Lopt 103 1.379 1.013 1.006 6.514 2.592 25 48 66 84 5.301 2.052 0.596 0.456
Lphs 144 1.306 1.012 1.004 7.982 3.651 29 49 71 83 6.536 2.772 0.687 0.414

Table 5.1 – Geometric characteristics of log-S-unit lattices for some prime con-
ductor cyclotomic fields.

δ0 δ θmin θavg ‖·‖∞/‖·‖2d V 1/d

– bkz – bkz – bkz – bkz
µ2 µ∞

real H. 4.9

Q(z43)

Ltw 38 4.441 0.911 0.911 1.498 1.357 53 59 82 83 10.64 5.177 0.645 0.528

L(0)
opt 38 5.051 0.937 0.937 4.187 1.865 44 50 81 81 12.50 6.573 0.663 0.590

L(0)

phs 38 9.657 0.952 0.952 7.496 1.877 45 56 81 81 23.73 12.18 0.671 0.590

Lopt 114 1.367 0.979 0.979 5.482 3.256 36 57 79 83 6.119 2.803 0.687 0.443
Lphs 161 1.297 0.987 0.987 9.002 4.135 25 55 79 83 7.484 2.837 0.712 0.400

Q(z47)

Ltw 40 4.576 0.913 0.913 1.650 1.358 49 60 82 84 11.04 5.607 0.632 0.519

L(0)
opt 40 6.231 0.938 0.938 4.628 1.915 37 57 81 81 16.59 8.398 0.658 0.583

L(0)

phs 40 12.06 0.951 0.951 7.908 1.946 38 55 81 81 30.85 15.50 0.662 0.583

Lopt 129 1.376 0.981 0.981 6.189 3.632 21 56 80 83 6.575 2.925 0.696 0.427
Lphs 180 1.309 0.989 0.989 10.15 4.527 31 53 80 83 8.022 2.882 0.704 0.387

Table 5.2 – Geometric characteristics of log-S-unit lattices for some NTRU
Prime fields.
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Orthogonality indicators. We first remark that the minimum and average vector
basis angles seem difficult to interpret. It is slightly better for Tw-PHS on NTRU
Prime fields but it is harder to extract a general tendency for cyclotomic fields.

After a light BKZ reduction, twisted lattices show significantly better root
Hermite factor and orthogonality defect than any other log-S-unit lattice repre-
sentations, even when the lattices have the same dimension, i.e. when the same
factor base is used. Second, the evolution of the orthogonality defect before and
after the reduction is more restricted in the twisted case than in the others. In
particular, we observe that the BKZ-reduced versions of L(0)

opt and L(0)

phs can have
bigger orthogonality defects than the unreduced Ltw. This last observation is
true for all NTRU Prime fields we tested except Q(z23).

These two phenomenons (better values and small variations) are particularly
clear for NTRU Prime fields. We remark that in this case, the twisted version
of the log-S-unit lattice fully expresses, since for NTRU Prime fields most factor
base elements have distinct norms. On the contrary, factor bases for our targeted
cyclotomic fields are composed of one (or two, as for Q(ζ59)) Galois orbits whose
elements all have the same norm. Finally, we stress that reducing Ltw lattices is
much faster in practice than reducing L(0)

opt and L(0)

phs. This is corroborated by the
graphs of the Gram-Schmidt log norms in Section 5.2.

Evaluating heuristic on covering radius (H. 4.8). Computing the covering radius
of a given lattice is a very difficult problem in general. To evaluate in practice µ2

and µ∞ for our computed lattices, we used a slightly modified version of the
strategy of [PHS19a, §4.1]. More precisely, for each lattice L, we picked 500 ran-
dom target vectors ti in the span of L from a continuous Gaussian distribution
of deviation σ = 100 · dimL, then used Babai’s Nearest Plane algorithm with
the reduced basis of L to obtain vectors wi ∈ L close to ti. Finally, we majo-
rate µ∞(L) and µ2(L) by respectively maxi‖ti −wi‖∞ and maxi‖ti −wi‖2.

Results show that all lattices equally match H. 4.8. We noticed, for Lphs and
for the number fields tested in [PHS19a, Fig. 4.1], a significant gap between our
estimations and the published numerical values. We stress that using in our code
a standard deviation of only σ = 100 as in [PHS19b] reproduces their results.

Evaluating heuristic on infinity norm (H. 4.9). To support H. 4.9, we compared
the average ‖f−1H (ti −wi)‖∞

/
‖ti −wi‖2 with the expected

(
ln(n+k)/

√
n+ k

)
for Ltw. The evolution of H. 4.9 from [PHS19a, H. 5–6] is quantified by relating,
for all four PHS log-S-unit variants, the ratio ‖ti −wi‖∞

/
‖ti −wi‖2 to their

expected ratio
(
ln(ν + k)/

√
ν + k

)
.

The data show that all lattices follow exactly the same behaviour relatively
to H. 4.9 and to [PHS19a, H. 5–6]. In the tables, all these values are tagged
with a unique label “‖·‖∞/‖·‖2 (real/H. 4.9)”, but really correspond to H. 4.9
for twisted-PHS and to [PHS19a, H. 5–6] for PHS.
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5.2 Plotting Gram-Schmidt log norms

For our second experiment, we evaluate the Gram-Schmidt norms of each pro-
duced lattice. We propose two comparisons, the first one is before and after
BKZ reduction to see the evolution of the norms for each case at iso factor base
in Fig. 5.1; the second one is between the different lattices (after BKZ reduction)
in Fig. 5.2. Again, extensive data for other examples can be found in Section B.2
for both cyclotomic fields and NTRU Prime fields.

Fig. 5.1 – Log-S-unit lattices for Q(ζ59): Gram-Schmidt log norms before and
after BKZ reduction at iso factor base Atw-FB(K) for: (a) Ltw; (b) L(0)

opt; (c) L(0)

phs.

Fig. 5.2 – Log-S-unit lattices for Q(ζ59): Gram-Schmidt log norms after BKZ
reduction: (a) at iso factor base Atw-FB(K); (b) at designed factor bases.

We first remark in Fig. 5.1 that the two curves, before and after BKZ reduc-
tion, are almost superposed for the Twisted-PHS lattice. This does not seem to
be the case for the two other PHS variants we consider here.

Since the volume of Ltw is bigger, by roughly the average log norm of factor
base elements by Lem. 4.2, the Gram-Schmidt norms of our bases have bigger
values. The important phenomenon to consider is how these norms decrease.
Fig. 5.2 emphasises that the decrease of the Gram-Schmidt norms is very limited
in the twisted case, compared to other cases (with iso factor bases on the left,
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and the original algorithms on the right), where the decrease of the norms seems
significant. This observation seems to corroborate the fact that the twisted-PHS
lattice is already quite orthogonal. Finally, we note that both phenomenons do
not depend on the lattices having the same dimension.

5.3 Approximation factors

We implemented all three algorithms from end to end and used them on numer-
ous challenges to estimate their practically achieved approximation factors. This
is to our knowledge the first time that these types of algorithms are completely
run on concrete examples.

Ideal Svp challenges and Cldl computations. For each targeted field, we chose 50
prime ideals b of prime norm q. Indeed, these are the most interesting ideals: in
the extreme opposite case, taking b inert of norm qn implies that q reaches the
lower bound of Eq. (2.15), as ‖q‖2 =

√
n · q, hence the id-Svp solution is trivial.

We then tried to solve the Cldl for these challenges wrpt. all targeted factor
bases. We stress that, using Magma, S-units computations for the Cldl become
harder as the norm of the challenge grows. This is especially true when the factor
base inflates, hence providing an additional motivation for taking as small as
possible factor bases. Therefore, we restricted ourselves to challenges of norms
around 100 bits. Computing the Cldl solutions for these challenges revealed
much harder than computing S-units on all factor bases, which contain only
relatively small prime ideals. As a consequence, we were able to compute the
Cldl step only up to Q(ζ53) (partially) and Q(z47).

Query algorithm. We exclusively used Babai’s Nearest Plane algorithm on the
BKZ reduced bases of all log-S-unit lattices to solve the Approx-Cvp instances.
Actually, the hardest computational task was to compute the output α/s, which
necessitates a multi-exponentiation over huge S-units. As a particular point of
interest, we stress that using directly the drift proposed in [PHS19a] would be

especially unfair. Hence, for a challenge b, the target drifts bphs, b̃phs and btw

were all minimized using an iterative dichotomic approach on β and β̃, taking a
bigger value if the output x /∈ b, and a smaller value if x ∈ b. After 5 iterations,
the shortest x that verified x ∈ b is returned.

Results. Fig. 5.3 and 5.4 report the obtained approximation factors. Note that
for these dimensions, it is still possible to exactly solve id-Svp in the Minkowski
space, so that these graphs show real approximation factors. We stress that
we used a logarithmic scale to represent on the same graphs the performances
of the Twisted-, Opt-PHS and PHS algorithms. The figures suggest that the
approximation factor reached by our algorithm increases very slowly with the
dimension, in a way that could reveal subexponential or even better. This feature
would be particularly interesting to prove.

As a final remark, we point out that increasing the factor base for our
Twisted-PHS algorithm has very little impact on the quality of the output.
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Fig. 5.3 – Approximation factors reached by Tw-PHS, Opt-PHS and PHS for
cyclotomic fields of conductors 23, 29, 31, 37, 41, 43, 47 and 53 (in log scale).

Fig. 5.4 – Approximation factors reached by Tw-PHS, Opt-PHS and PHS for
NTRU Prime fields of degrees 23, 29, 31 and 37 (in log scale).

This is expected, since the log norm of the prime ideals constrain the valuation
of the output, as in the proof of Pr. 4.5. On the contrary, increasing the factor
base for the PHS and Opt-PHS variants clearly sabotages the quality of their
output, as their lattice description is blind to these prime norms.
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A Transition matrix

We provide the following linear algebra lemma, whose result reveals particu-
larly useful for the volume computations of non-square matrices of this paper,
e.g. of ΛK or Λ̃K,FB.

Lemma A.1. Let n ≥ 1 and a1, . . . , an ∈ R∗. Then, with 1n×n being the square
matrix of dimension n filled with 1’s, and Da1,...,an the diagonal matrix with
coefficients ai:

det
(
1n×n +Da1,...,an

)
=
(

1 +

n∑
i=1

1

ai

)
·
n∏
k=1

ak.

Note that the result is also valid if any of the ai’s is zero by expanding the
formula and using the formal simplification ai/ai = 1. Writing it down in this
form would only be much more noisy.

Proof. We prove the result for any a1, . . . , an ∈ R by induction using the minor

expansion formula on the last column for the determinant. Let M [a1, . . . , an]
def
:=

1n×n + Da1,...,an , and let δj,n be its (j, n)-minor. The result is obviously true
for n = 1 using detM [a1] = 1 + a1 = a1(1 + 1/a1), the last equality being valid
for a1 6= 0.

Suppose the result true for matrices of dimension (n − 1). The minors δj,n,
for j ∈ J1, n− 1K are determinants of matrices M [a1, . . . , aj−1, aj+1, . . . , an−1, 0]
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whose columns are permuted by a permutation of sign (−1)n−j+1. Using the
induction hypothesis (with

∏
∅ = 1 for n = 2):

∀j ∈ J1, n− 1K, δj,n = (−1)n−j+1
∏

1≤k≤n−1
k 6=j

ak.

Meanwhile, the last minor δn,n is detM [a1, . . . , an−1], which we expand to avoid
divisions by 0:

δn,n =
∏

1≤k≤n−1

ak +

n−1∑
j=1

∏
1≤k≤n−1

k 6=j

ak.

Finally, the determinant of M [a1, . . . , an] is
(
(1 + an)δn,n +

∑n−1
j=1 (−1)n−jδj,n

)
.

A bit of calculation yields the following equation, which is the developped form
of the lemma’s formula:

detM [a1, . . . , an] =
∏

1≤k≤n

ak +
∑

1≤i≤n

∏
1≤k≤n
k 6=i

ak.

B Extensive experimental data

This section provides extensive additional data for all targeted fields.

B.1 Geometric characteristics

First, Tab. B.1 and B.2 extend the example given in Tab. 5.2 to respectively all
targeted cyclotomic and NTRU Prime fields.

δ0 δ θmin θavg ‖·‖∞/‖·‖2
d V 1/d

– bkz – bkz – bkz – bkz
µ2 µ∞

real H. 4.9

Q(ζ23)

Ltw 32 3.796 0.999 0.999 1.667 1.437 31 50 69 77 7.637 4.349 0.636 0.570

L(0)
opt 32 1.515 1.030 1.009 2.477 1.615 40 60 76 81 3.120 1.706 0.676 0.612

L(0)

phs 32 2.083 1.056 0.998 4.689 1.490 34 60 75 81 4.287 2.621 0.690 0.612

Lopt 44 1.334 1.023 1.009 2.711 1.843 37 58 76 82 3.244 1.451 0.640 0.570

Lphs 65 1.246 1.021 1.002 3.141 2.067 21 58 76 82 3.703 1.588 0.640 0.517

Q(ζ29)

Ltw 41 4.175 1.001 1.001 1.622 1.579 47 50 77 81 9.594 4.214 0.633 0.537

L(0)
opt 41 1.616 1.025 1.005 2.742 1.870 40 41 78 82 3.772 1.925 0.660 0.580

L(0)

phs 41 2.333 1.047 0.996 5.885 1.664 34 48 77 83 5.850 3.175 0.675 0.580

Lopt 63 1.350 1.018 1.006 3.116 2.143 43 48 78 83 3.910 1.546 0.617 0.522

Lphs 90 1.271 1.017 1.005 4.211 2.560 36 30 77 82 4.547 2.123 0.664 0.474
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δ0 δ θmin θavg ‖·‖∞/‖·‖2
d V 1/d

– bkz – bkz – bkz – bkz
µ2 µ∞

real H. 4.9

Q(ζ31)

Ltw 20 4.144 1.004 1.004 1.682 1.330 16 48 77 79 6.877 4.026 0.753 0.597

L(0)
opt 20 10.36 1.051 0.930 3.029 1.269 41 58 76 82 26.93 18.10 0.808 0.669

L(0)

phs 20 21.14 1.071 0.897 4.168 1.186 30 62 76 84 70.21 49.41 0.825 0.669

Lopt 69 1.353 1.017 1.006 4.438 2.120 26 48 69 82 4.049 1.911 0.610 0.509

Lphs 99 1.273 1.016 1.005 5.606 2.650 23 30 70 83 4.699 2.341 0.660 0.461

Q(ζ37)

Ltw 53 5.092 0.999 0.999 6.393 1.688 3 48 53 82 13.16 5.894 0.651 0.504

L(0)
opt 53 1.694 1.020 1.007 6.969 1.977 8 55 61 82 4.481 2.079 0.635 0.545

L(0)

phs 53 2.621 1.040 0.998 9.801 1.767 28 55 74 83 7.578 3.901 0.641 0.545

Lopt 89 1.369 1.015 1.004 9.976 2.371 8 41 52 83 4.735 1.870 0.592 0.475

Lphs 126 1.292 1.013 1.005 11.80 3.082 10 37 53 83 5.938 2.567 0.682 0.430

Q(ζ41)

Ltw 59 4.825 1.001 1.001 3.596 1.802 11 47 69 81 12.91 5.186 0.615 0.489

L(0)
opt 59 1.786 1.020 1.005 4.525 1.986 34 55 76 83 5.112 2.245 0.629 0.530

L(0)

phs 59 2.767 1.037 0.997 8.986 1.809 45 55 79 84 8.535 4.039 0.639 0.530

Lopt 103 1.379 1.013 1.006 6.514 2.592 25 48 66 84 5.301 2.052 0.596 0.456

Lphs 144 1.306 1.012 1.004 7.982 3.651 29 49 71 83 6.536 2.772 0.687 0.414

Q(ζ43)

Ltw 62 5.413 1.000 1.000 19.05 1.800 0 48 50 82 15.12 6.541 0.647 0.483

L(0)
opt 62 1.773 1.018 1.005 19.51 2.019 2 60 53 83 5.165 2.246 0.622 0.524

L(0)

phs 62 2.826 1.035 0.997 21.51 1.806 7 55 62 84 9.056 4.253 0.641 0.524

Lopt 111 1.377 1.012 1.005 38.17 2.678 2 48 36 84 5.320 2.358 0.594 0.447

Lphs 154 1.307 1.012 1.007 48.72 3.997 2 56 32 82 6.968 2.796 0.709 0.405

Q(ζ47)

Ltw 68 5.896 0.999 0.999 38.31 1.736 0 47 50 83 17.09 7.888 0.664 0.471

L(0)
opt 68 1.819 1.017 1.007 39.31 2.171 1 60 52 83 5.525 2.597 0.618 0.511

L(0)

phs 68 2.952 1.033 0.999 41.95 1.940 3 60 57 84 10.09 4.343 0.645 0.511

Lopt 125 1.385 1.011 1.005 89.69 2.961 0 32 34 84 5.817 2.006 0.614 0.431

Lphs 173 1.316 1.011 1.004 137.8 4.360 1 55 26 83 7.570 2.862 0.713 0.391

Q(ζ53)

Ltw 77 5.385 1.002 1.002 149.6 1.891 0 47 49 83 15.71 6.309 0.617 0.455

L(0)
opt 77 1.928 1.016 1.005 152.0 2.315 0 60 49 83 6.381 2.382 0.611 0.495

L(0)

phs 77 3.145 1.030 0.998 154.6 2.053 0 47 51 84 11.88 5.677 0.635 0.495

Lopt 147 1.397 1.010 1.005 526.7 3.265 0 43 28 84 6.613 2.024 0.609 0.411

Lphs 202 1.330 1.010 1.006 763.2 5.214 0 56 22 83 8.930 3.166 0.708 0.373

Q(ζ59)

Ltw 144 6.871 0.999 0.999 813.3 2.045 0 46 33 85 28.12 7.960 0.570 0.391

L(0)
opt 144 1.490 1.010 1.004 821.0 3.301 0 37 34 84 7.091 2.378 0.602 0.414

L(0)

phs 144 1.785 1.016 1.003 831.9 3.064 0 48 34 85 9.122 2.849 0.575 0.414

Lopt 169 1.404 1.009 1.004 1181. 3.637 0 41 28 84 7.213 2.427 0.620 0.394

Lphs 232 1.338 1.009 1.006 1753. 6.011 0 55 21 83 10.30 3.598 0.723 0.357

Q(ζ61)

Ltw 89 6.550 1.000 1.000 868.4 1.763 0 46 49 84 21.69 7.293 0.614 0.437

L(0)
opt 89 1.971 1.014 1.005 881.5 2.425 0 57 49 84 7.081 2.807 0.610 0.475

L(0)

phs 89 3.365 1.027 0.999 895.4 2.192 0 57 50 84 14.36 6.576 0.637 0.475

Lopt 177 1.407 1.009 1.004 4765. 3.766 0 36 28 84 7.639 2.451 0.632 0.389

Lphs 242 1.342 1.008 1.006 7948. 6.408 0 49 21 83 10.74 4.002 0.732 0.352

Table B.1 – Geometric characteristics of log-S-unit lattices for all non-principal
cyclotomic fields Q(ζm) of prime conductor m ≤ 61.
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δ0 δ θmin θavg ‖·‖∞/‖·‖2
d V 1/d

– bkz – bkz – bkz – bkz
µ2 µ∞

real H. 4.9

Q(z23)

Ltw 15 2.728 0.831 0.831 1.314 1.161 51 58 81 82 4.686 3.245 0.701 0.634

L(0)
opt 15 14.70 0.879 0.879 2.923 1.241 45 49 80 80 25.14 18.09 0.766 0.699

L(0)

phs 15 19.18 0.888 0.888 3.470 1.252 47 66 78 81 32.44 22.05 0.773 0.699

Lopt 48 1.298 0.958 0.958 2.949 1.966 32 57 76 81 3.480 1.702 0.657 0.558

Lphs 72 1.220 0.976 0.976 3.780 2.229 28 54 75 82 3.991 1.709 0.656 0.504

Q(z29)

Ltw 21 3.333 0.863 0.863 1.357 1.219 55 60 81 83 6.592 3.923 0.679 0.597

L(0)
opt 21 9.010 0.904 0.904 3.315 1.377 47 58 79 80 16.87 9.879 0.730 0.664

L(0)

phs 21 14.68 0.917 0.917 4.538 1.428 47 55 79 80 27.83 18.60 0.735 0.664

Lopt 66 1.329 0.967 0.967 3.733 2.336 38 56 77 82 4.184 1.972 0.665 0.515

Lphs 97 1.252 0.981 0.981 5.385 2.745 27 55 76 82 4.794 2.098 0.678 0.464

Q(z31)

Ltw 21 3.487 0.860 0.860 1.339 1.193 55 59 82 82 6.811 4.599 0.675 0.593

L(0)
opt 21 13.52 0.898 0.898 3.113 1.456 43 57 81 79 26.65 16.66 0.728 0.664

L(0)

phs 21 22.25 0.909 0.909 4.039 1.463 43 57 80 80 42.47 25.75 0.738 0.664

Lopt 73 1.333 0.970 0.970 3.906 2.423 34 57 78 82 4.526 2.064 0.656 0.502

Lphs 106 1.258 0.982 0.982 5.677 2.920 30 53 77 82 5.179 2.195 0.681 0.452

Q(z37)

Ltw 30 4.069 0.893 0.893 1.405 1.313 58 60 82 83 9.299 5.202 0.653 0.556

L(0)
opt 30 6.056 0.925 0.925 3.773 1.703 42 56 81 80 14.23 7.068 0.687 0.621

L(0)

phs 30 11.46 0.940 0.940 6.147 1.692 41 53 80 80 24.99 15.60 0.688 0.621

Lopt 93 1.348 0.975 0.975 4.627 2.897 38 55 78 82 5.337 2.247 0.662 0.470

Lphs 133 1.277 0.985 0.985 7.306 3.506 25 52 78 82 6.147 2.677 0.695 0.424

Q(z41)

Ltw 32 4.406 0.896 0.896 1.474 1.268 53 62 82 84 9.595 5.355 0.645 0.545

L(0)
opt 32 7.279 0.925 0.925 3.895 1.740 41 58 81 81 17.06 8.830 0.690 0.612

L(0)

phs 32 14.89 0.939 0.939 6.352 1.709 41 54 81 80 33.76 19.22 0.684 0.612

Lopt 108 1.355 0.978 0.978 5.385 3.073 35 58 79 83 5.740 2.448 0.686 0.450

Lphs 152 1.288 0.987 0.987 8.442 3.834 29 55 79 83 6.751 2.768 0.712 0.407

Q(z43)

Ltw 38 4.441 0.911 0.911 1.498 1.357 53 59 82 83 10.64 5.177 0.645 0.528

L(0)
opt 38 5.051 0.937 0.937 4.187 1.865 44 50 81 81 12.50 6.573 0.663 0.590

L(0)

phs 38 9.657 0.952 0.952 7.496 1.877 45 56 81 81 23.73 12.18 0.671 0.590

Lopt 114 1.367 0.979 0.979 5.482 3.256 36 57 79 83 6.119 2.803 0.687 0.443

Lphs 161 1.297 0.987 0.987 9.002 4.135 25 55 79 83 7.484 2.837 0.712 0.400

Q(z47)

Ltw 40 4.576 0.913 0.913 1.650 1.358 49 60 82 84 11.04 5.607 0.632 0.519

L(0)
opt 40 6.231 0.938 0.938 4.628 1.915 37 57 81 81 16.59 8.398 0.658 0.583

L(0)

phs 40 12.06 0.951 0.951 7.908 1.946 38 55 81 81 30.85 15.50 0.662 0.583

Lopt 129 1.376 0.981 0.981 6.189 3.632 21 56 80 83 6.575 2.925 0.696 0.427

Lphs 180 1.309 0.989 0.989 10.15 4.527 31 53 80 83 8.022 2.882 0.704 0.387

Table B.2 – Geometric characteristics of log-S-unit lattices for all targeted
NTRU Prime fields Q(zq), q ∈ J23, 47K prime.

These extensive data confirm the discussion made in §5.1. Note that these
observations are especially valid for NTRU Prime fields. An explanation of this
phenomenon might lie in the fact that for NTRU Prime fields, the norms of the
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factor base prime ideals are almost all distinct, so that the twisted characteristic
of our lattices fully speak.

B.2 Gram-Schmidt norms of the lattice bases.

We also provide the graphs showing the log norms of the Gram-Schmidt vectors
for each field and each log-S-unit lattice variant. These graphs confirm the dis-
cussion in §5.1, namely that in the twisted case, the BKZ reduction has very little
impact and that the sequence of norms does not vary much. This corroborates
the claim that our twisted lattices are much more orthogonal than expected.

In the case of PHS and its variants, there is always a significant gap between
the Gram-Schmidt norms before and after the small block BKZ reduction, and
the decrease of the log norms is very pronounced and going down to 0.

Prime conductor cyclotomic fields.

Fig. B.1 – Log-S-unit lattices for Q(ζ23), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Fig. B.2 – Log-S-unit lattices for Q(ζ29), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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Fig. B.3 – Log-S-unit lattices for Q(ζ31), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Fig. B.4 – Log-S-unit lattices for Q(ζ37), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Fig. B.5 – Log-S-unit lattices for Q(ζ41), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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Fig. B.6 – Log-S-unit lattices for Q(ζ43), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Fig. B.7 – Log-S-unit lattices for Q(ζ47), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Fig. B.8 – Log-S-unit lattices for Q(ζ53), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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Fig. B.9 – Log-S-unit lattices for Q(ζ59), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Fig. B.10 – Log-S-unit lattices for Q(ζ61), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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NTRU Prime fields.

Fig. B.11 – Log-S-unit lattices for Q(z23), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Fig. B.12 – Log-S-unit lattices for Q(z29), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Fig. B.13 – Log-S-unit lattices for Q(z31), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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Fig. B.14 – Log-S-unit lattices for Q(z37), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Fig. B.15 – Log-S-unit lattices for Q(z41), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.

Fig. B.16 – Log-S-unit lattices for Q(z43), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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Fig. B.17 – Log-S-unit lattices for Q(z47), Gram-Schmidt log norms (a) before
and after BKZ reduction at iso factor base Atw-FB(K) for Ltw and L(0)

phs; (b) after

BKZ reduction for all variants Ltw, L(0)

opt, L
(0)

phs, Lopt and Lphs.
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