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Well-posedness for the Boussinesq system in critical spaces via maximal regularity

We establish the existence and the uniqueness for the Boussinesq system in R 3 in the critical space C ([0, T ], L 3 (R 3 ) 3 ) × L 2 (0, T ; L 3/2 (R 3 )).

Introduction

We consider the Cauchy problem associated with the Boussinesq system in R3 :

∂ t u -∆u + ∇π + ∇ • (u ⊗ u) = θe 3 in (0, T ) × R 3 div u = 0 in (0, T ) × R 3 ∂ t θ -∆θ + u • ∇θ = 0 in (0, T ) × R 3 , (B) 
where u denotes the velocity of the fluid, π the pressure, θ the temperature and e 3 the third vector of the canonical basis in R 3 . The given initial velocity and temperature are denoted respectively u 0 and θ 0 . The initial velocity will be always assumed to satisfy the condition div u 0 = 0. The system (B) appears in the study of the motion of incompressible viscous flows when one takes into account buoyancy effects arising from temperature variations inside the fluid. When the latter are neglected (θ ≡ 0), the system boils down to the classical Navier-Stokes equations.

The natural scaling leaving the Boussinesq system invariant is λ → (u λ , θ λ ) with u λ (t, x) = λu(λ2 t, λx) and θ λ (t, x) = λ 3 θ(λ 2 t, λx).

This motivates the study of (B) in function spaces that are left invariant by the above scaling. Assuming (u 0 , θ 0 ) ∈ L 3 (R 3 ) 3 × L 1 (R 3 ), an adaptation of Kato's L p -theory on strong solutions of Navier-Stokes [START_REF] Kato | Strong L p -solutions of the Navier-Stokes equation in R m , with applications to weak solutions[END_REF], yields the local-in-time existence and the uniqueness in appropriate scaleinvariant function spaces where the fixed point argument applies. But, as discussed in [2], the uniqueness problem in the natural space C ([0, T ], L 3 (R 3 ) 3 ) × C ([0, T ], L 1 (R 3 )) seems to be out of reach, due to the lack of regularity results in this class, and to the difficulty of giving a meaning, in the distributional sense, to the nonlinearity ∇ • (uθ) (and, of course, to u • ∇θ) in the last equation in (B). To circumvent this difficulty, the uniqueness for the Cauchy problem, in [2], was established in a smaller space for the temperature, namely C ([0, T ], L 1 (R 3 ) ∩ L ∞ loc (0, T ; L q,∞ (R 3 )), for some q > 3/2. This restriction on the temperature, however, is a bit artificial: the excluded borderline case, q = 3/2, is precisely the most interesting one, as it corresponds to the minimal regularity to be imposed on the temperature, when the velocity is in the natural space L 3 (R 3 ) 3 , to give a sense to the nonlinearity.

The scaling relations then lead us to consider solutions such that t → θ(t) L 3/2 is in L 2 . Therefore, it seems natural to address the uniqueness problem (and the existence) in

C ([0, T ], L 3 (R 3 ) 3 ) × L 2 (0, T ; L
As the Lorentz-space approach of [START_REF]Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces[END_REF][START_REF] Kozono | Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space L n,∞[END_REF][START_REF] Meyer | Wavelets, paraproducts, and Navier-Stokes equations[END_REF], applied in [2], fails when q = 3/2, we have to adopt a different strategy. Our main tools will be maximal regularity estimates. The idea of using the maximal regularity in uniqueness problems goes back to [START_REF] Monniaux | Uniqueness of mild solutions of the Navier-Stokes equation and maximal L p -regularity[END_REF], where the second author gave a short proof of celebrated Furioli, Lemarié and Terraneo's uniqueness theorem [START_REF] Furioli | Unicité dans L 3 (R 3 ) et d'autres espaces fonctionnels limites pour Navier-Stokes[END_REF] of mild solutions of the Navier-Stokes equations in C ([0, T ], L 3 (R 3 )). In the present paper, we will need to use the maximal regularity in an original way, in order to make it applicable despite the product uθ a priori just belongs to L 1 (R 3 ) 3 .

In fact, our approach allows us to obtain the uniqueness, and then the regularity as a byproduct of the existence theory, in a larger class, namely

C ([0, T ], L 3 (R 3 ) 3 ) + r L ∞ (0, T ; L 3 (R 3 ) 3 ) × L 2 (0, T ; L 3 2 (R 3 )) (1.1)
for some small enough r > 0.

One could speculate that the smallness condition on the parameter r may be unessential and that the uniqueness and the regularity could be true in the larger space L ∞ (0, T ;

L 3 (R 3 ) 3 ) × L 2 (0, T ; L 3 2 (R 3 )
). This would be a nontrivial generalization for the system (B) of the deep result of Escauriaza, Seregin and Šverák [START_REF] Iskauriaza | L3,∞-solutions of Navier-Stokes equations and backward uniqueness[END_REF], about endpoint Serrin regularity criteria for the Navier-Stokes equations. Establishing such a result would probably require various ingredients (backward uniqueness, profile decompositions, [START_REF] Gallagher | A profile decomposition approach to the L ∞ t (L 3 x ) Navier-Stokes regularity criterion[END_REF][START_REF] Iskauriaza | L3,∞-solutions of Navier-Stokes equations and backward uniqueness[END_REF][START_REF] Phuc | The Navier-Stokes equations in nonendpoint borderline Lorentz spaces[END_REF], etc.). Whether or not such a stronger statement is true, we feel that our main theorem would remain of interest because of its attractive proof, entirely based on maximal regularity estimates.

Statement of the main results

Let T > 0 and r > 0. Let S (R 3 ) denote the dual of Schwartz space. In order to state our uniqueness result in the class

X T,r := C ([0, T ], L 3 (R 3 ) 3 ) + r L ∞ (0, T ; L 3 (R 3 ) 3 ) × L 2 (0, T ; L 3 2 (R 3 )),
we first clarify what we mean by solution of (B). By definition, a mild solution of (B) with inital data (u 0 , θ 0 ) ∈ S (R 3 ) 3 × S (R 3 ), and div u 0 = 0, is a couple (u, θ) ∈ X T,r solving the Boussinesq system written in its integral form (2.1) below:

u = a + B(u, u) + L(θ) θ = b + C(u, θ) (2.1) 
with a(t) = e t∆ u 0 , b(t) = e t∆ θ 0 .

The operators B, C and L are defined, for t ∈ [0, T ], and (u, θ) ∈ X T,r , by

B(u, v)(t) = - ˆt 0 e (t-s)∆ P ∇ • u(s) ⊗ v(s) ds, (2.2) 
C(u, θ)(t) = - ˆt 0 e (t-s)∆ div θ(s)u(s) ds, (2.3) 
and L(θ)(t) = ˆt 0 e (t-s)∆ P(θ(s)e 3 ) ds.

(2.4)

Here P denotes Leray's projector onto divergence-free vector fields and e t∆ t≥0 is the heat semigroup.

Our main result then is stated as follows:

Theorem 2.1. There is an absolute constant r 0 > 0 such that, if (u 1 , θ 1 ) and (u 2 , θ 2 ) are two mild solutions to (B) in X T,r , with the same initial data (u 0 , θ 0 ) ∈ S (R 3 ) 3 × S (R 3 ), div u 0 = 0 and 0 ≤ r < r 0 , then (u 1 , θ 1 ) = (u 2 , θ 2 ).

As we will see, any solution (u, θ) as in Theorem 2.1 must belong to C ([0, T ], S (R 3 ) 3 × S (R 3 )), and the initial data must belong more precisely to L 3 (R 3 ) 3 × B -1 3/2,2 (R 3 ). The above theorem is then completed by the corresponding existence result:

Theorem 2.2. i) Let (u 0 , θ 0 ) ∈ L 3 (R 3 ) 3 × B -1
3/2,2 (R 3 ), with div u 0 = 0. Then there exists T > 0 and a solution of

(2.1) (u, θ) ∈ C ([0, T ], L 3 (R 3 ) 3 ) × L 2 (0, T ; L 3 2 (R 3 )).
ii) If θ 0 belongs to the smaller homogeneous Besov space Ḃ-1 3/2,2 (R 3 ) and if

u 0 L 3 + θ 0 Ḃ-1 3/2,2
is small enough, than such solution is global and

(u, θ) ∈ C b (0, ∞; L 3 (R 3 ) 3 )×L 2 (0, ∞; L 3 2 (R 3 )).
For some other existence results for the Boussinesq system in different functional setting we refer, e.g., to [START_REF] Danchin | Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF][START_REF]Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces[END_REF][START_REF] Karch | Self-similarity in viscous Boussinesq equations[END_REF].

Applications of the maximal regularity

The purpose of this section is to study the properties of the operators B, C and L, respectively defined by (2.2), (2.3) and (2.4), by means of the following maximal regularity result. The theorem below is classical. See [START_REF] De Simon | Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine[END_REF] for the case p ∈ (1, ∞) and q = 2. The general case was first proved in [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF], Chapter IV, §3. The proof of the estimates for the mixed fractional space-time derivatives goes back to [START_REF] Sobolevskiȋ | Fractional powers of coercive-positive sums of operators[END_REF]Theorem 6]. See also [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]Theorem 7.3] for a modern proof.

Theorem 3.1 (Maximal regularity). Let 1 < p, q < ∞. Let R be the operator defined for f ∈ L 1 loc (0, ∞; S (R d )), d ≥ 1, by 
Rf (t) = ˆt 0 e (t-s)∆ f (s) ds, t > 0. (3.1)
Such operator R is bounded from L p 0, ∞; L q (R d ) to Ẇ 1,p 0, ∞; L q (R d ) ∩ L p 0, ∞; Ẇ 2,q (R d ) .
In other words, d dt R, ∆R, and

(-∆) α d dt 1-α R, for any 0 < α < 1, are bounded operators in L p 0, ∞; L q (R d ) . Moreover, there exists a constant C p,q such that d dt Rf L p (L q ) + ∆Rf L p (L q ) + (-∆) α d dt 1-α Rf L p (L q ) ≤ C p,q f L p (L q ) ,
for all α ∈ (0, 1).

To establish Theorem 2.1, we assume that we have two mild solutions (u 1 , θ 1 ) ∈ X T,r and (u 2 , θ 2 ) ∈ X T,r of (B), arising from the same initial datum (u

0 , θ 0 ) ∈ S (R 3 ) 3 × S (R 3 ). Letting u = u 1 -u 2 and θ = θ 1 -θ 2 , we then obtain (u, θ) ∈ X T,r and u = B(u, u 1 ) + B(u 2 , u) + L(θ), θ = C(u 1 , θ) + C(u, θ 2 ). (3.2)
The maximal regularity theorem allows us to obtain all the relevant estimates for the operators B and C and L. is bounded, with operator norm less than ε.

Proof. Let r > 0, to be chosen later. For v, w ∈ C ([0, T ], L 3 (R 3 ) 3 ) + r L ∞ (0, T ; L 3 (R 3 ) 3 ), we can find v r , w r ∈ C c ([0, T ] × R 3 ) such that ess sup [0,T ] v -v r L 3 + ess sup [0,T ] w -w r L 3 ≤ 3r. (3.5)
Let us introduce the functions f and g defined by

f (s) = (-∆) -1 P ∇ • u(s) ⊗ (v -v r )(s) + (w -w r )(s) ⊗ u(s) , s ∈ [0, T ] (3.6) and g(s) = -(-∆) -3/4 P ∇ • u(s) ⊗ v r (s) + w r (s) ⊗ u(s) , s ∈ [0, T ].
We have

B(u, v) + B(w, u) = ∆Rf + (-∆) 3/4 Rg, (3.7) 
where R is the vector-valued analogue of the scalar operator defined in Theorem 3.1.

(i) Let us first consider (3.3). We easily see that the norm of

f in L 4 (0, τ ; L 6 (R 3 ) 3 ) is bounded by the norm of u ⊗ (v -v r ) + (w -w r ) ⊗ u in L 4 (0, τ ; L 2 (R 3 ) 3×3 ). Indeed, the operator (-∆) -1 P∇• is bounded from L 2 (R 3 ) 3×3 to L 6 (R 3 ) 3 . Hence, ∆Rf L 4 (0,τ ;L 6 (R 3 ) 3 ) ≤ C 4,6 u ⊗ (v -v r ) + (w -w r ) ⊗ u L 4 (0,τ ;L 2 (R 3 ) 3×3 ) ≤ 3rC 4,6 u L 4 (0,τ ;L 6 (R 3 ) 3 ) .
The norm of g in L 4 (0, τ ; L 6 (R 3 ) 3 ) is bounded by the norm of u⊗v r +w r ⊗u in L 4 (0, τ ; L 3 (R 3 ) 3×3 ).

To see this, first observe that the operator (-∆)

-3/4 P∇• is bounded from L 3 (R 3 ) 3×3 to L 6 (R 3 ) 3 . Moreover, (-∆) 3/4 e t∆ L (L 6 (R 3 ) 3 ) t -3/4 . As (-∆) 3/4 R is a convolution opera- tor, we have (-∆) 3/4 Rg L 4 (0,τ ;L 6 (R 3 ) 3 ) ≤ c t → (-∆) 3/4 e t∆ L 1 (0,τ ;L (L 6 (R 3 ) 3 )) g L 4 (0,τ ;L 6 (R 3 ) 3 ) ≤ c τ 1 4 u ⊗ v r + w r ⊗ u L 4 (0,τ ;L 3 (R 3 ) 3×3 ) ≤ c τ 1 4 v r L ∞ ((0,τ )×R 3 ) 3 ) + w r L ∞ ((0,τ )×R 3 ) 3 ) u L 4 (0,τ ;L 6 (R 3 ) 3 ) . We first choose r > 0, such that 3rC 4,6 ≤ ε 2 , next v r and w r in C c ([0, T ]×R 3 ), satisfying (3.5) and last τ > 0 such that c τ 1 4 v r L ∞ ((0,τ )×R 3 ) 3 ) + w r L ∞ ((0,τ )×R 3 ) 3 ) ≤ ε 2 .
This finally establishes (3.3).

(ii) Let us now consider assertion (3.4). Let 1 < p < ∞. We slightly modify the expression of B(•, v) + B(w, •) given by (3.7):

B(u, v) + B(w, u) = ∆Rf + (-∆) 1/2 Rg, (3.8) 
where we set

g(s) = -(-∆) -1/2 P ∇ • u(s) ⊗ v r (s) + w r (s) ⊗ u(s) , s ∈ [0, T ] (3.9)
The function f defined by (3.6) is bounded in L p (0, τ ; L3 (R 3 ) 3 ) by 3r u L p (0,τ ;L 3 (R 3 ) 3 ) , up to a multiplicative constant involving C p,3 and the norm of bounded operator (-∆)

-1 P∇• from L 3 2 (R 3 ) 3×3 to L 3 (R 3 ) 3 . The norm of g in L p (0, τ ; L 3 (R 3 ) 3 ) is bounded by the norm of u ⊗ v r + w r ⊗ u in L p (0, τ ; L 3 (R 3 ) 3×3 ). Indeed, the operator (-∆) -1 2 P∇• is bounded from L 3 (R 3 ) 3×3 in L 3 (R 3 ) 3 and so (-∆) 1/2 Rg L p (0,τ ;L 3 ) ≤ c t → (-∆) 1/2 e t∆ L 1 (0,τ ;L (L 3 )) g L p (0,τ ;L 3 ) √ τ v r L ∞ ((0,τ )×R 3 ) 3 + w r L ∞ ((0,τ )×R 3 ) 3 u L p (0,τ ;L 3 ) .
Proceeding as in item (i) settles (3.4).

This establishes Proposition 3.2.

Remark 3.3. Notice that if one assumes that v and w belong to the larger space L ∞ (0, T ; L 3 (R 3 ) 3 ), and if r > 0 is fixed, then in general one cannot ensure the existence of v r and w r in L ∞ ((0, T )×R 3 ) such that ess sup t∈(0,T ) v(t) -v r (t) L 3 + ess sup t∈(0,T ) w(t) -w r (t) L 3 < 3r. This is the case if, for example, v or w are of the form t -1 φ(•/t) with φ ∈ L 3 (R 3 ) and r is small with respect to φ L 3 .

Proposition 3.4.

1. For all ε > 0, there exists

r > 0 such that all v ∈ C ([0, T ], L 3 (R 3 ) 3 ) + r L ∞ (0, T ; L 3 (R 3 ) 3 ), there exists τ = τ (ε, v) > 0 such that C(v, •) : L 4 3 (0, τ ; L 2 (R 3 )) -→ L 4 3 (0, τ ; L 2 (R 3 
)) is bounded with norm less than ε.

2. For all ε > 0 there exists r > 0 such that, for all v ∈ C ([0, T ], L 3 (R 3 ) 3 )+r L ∞ (0, T ; L 3 (R 3 ) 3 ), there exists τ = τ (ε, v) > 0 such that

C(v, •) : L 2 (0, τ ; L 3 2 (R 3 )) ∩ L 4 3 (0, τ ; L 2 (R 3 )) -→ L 2 (0, τ ; L 3 2 (R 3 
)) is bounded with norm less than ε.

3. For all ε > 0 all v ∈ L 4 (0, T ; L 6 (R 3 )) 3 , there exists τ = τ (ε, v) > 0 such that

C(v, •) : L 2 (0, τ ; L 3 2 (R 3 )) -→ L 2 (0, τ ; L 3 2 (R 3 
)) is bounded with norm less than ε.

For all

ε > 0, all ϑ ∈ L 2 (0, T ; L 3 2 (R 3 )), there exists τ = τ (ε, ϑ) > 0 such that C(•, ϑ) : L 4 (0, τ ; L 6 (R 3 ) 3 ) -→ L 4 3 (0, τ ; L 2 (R 3 
)) is bounded with norm less than ε.

Proof. We proceed as in the previous proposition. For r > 0, let us choose where, now, we set f (s) = (-∆) -1 div θ(s)(v(s) -v r (s)) and g(s) = -(-∆) -1/2 div θ(s)v r (s) .

v r ∈ C c ([0, T ] × R 3 ) 3 such that ess sup [0,T ] v -v r L 3 ≤ 2r. ( 3 
As in the proof of previous proposition we see that the norm of f in L

4 3 (0, τ ; L 2 (R 3 )) is bounded by the norm of θ(v -v r ) in L 4 3 (0, τ ; L 6 5 (R 3 ) 3 ) (because of the Sobolev embedding Ẇ 1, 6 5 → L 2 in dimension 3). As ∆R is a bounded operator in L 4 3 (0, τ ; L 2 (R 3 )), we have (-∆)Rf L 4 3 (0,τ ;L 2 (R 3 )) ≤ C 4 3 ,2 C θ(v -v r ) L 4 3 (0,τ ;L 6 5 (R 3 ) 3 ) ≤ 2rC 4 3 ,2 C θ L 4 3 (0,τ ;L 2 (R 3 ))
where C is the constant arising from the Sobolev embedding Ẇ 1, 6 5 → L 2 in dimension 3 and r comes from the choice of v r .

The norm of g in L

4 3 (0, τ ; L 2 (R 3 )) is bounded by the norm of θ v r dans L 4 3 (0, τ ; L 2 (R 3 ) 3 ), because (-∆) -1 2 div is a bounded operator in L 2 (R 3 ) 3 . Moreover, (-∆) 1/2 e t∆ L (L 2 (R 3 ))
t -1/2 . Then, viewing as before (-∆) 1/2 R as a convolution operator, we get

(-∆) 1/2 Rg L 4 3 (0,τ ;L 2 (R 3 )) ≤ c t → (-∆) 1/2 e t∆ L 1 (0,τ ;L (L 2 (R 3 ))) g L 4 3 (0,τ ;L 2 (R 3 )) ≤ c τ 1 2 θ v r L 4 3 (0,τ ;L 2 (R 3 ) 3 ) ≤ c τ 1 2 v r L ∞ ((0,τ )×R 3 ) 3 ) θ L 4 3 (0,τ ;L 2 (R 3 ))
.

We then choose r > 0 such that 2rC 4

3 ,2 C ≤ ε 2 , next v r ∈ C c ([0, T ] × R 3 ) 3 satisfying (3.10) and last θ > 0 such that c τ 1 2 v r L ∞ (((0,τ )×R 3 ) 3 ) ≤ ε 2 .
This establishes the first assertion of the proposition. To prove the second assertion we proceed as before: for r > 0, we choose v r ∈ C ([0, T ] × R 3 ) 3 such that (3.10) holds. Then for all θ ∈ L 2 (0, τ ;

L 3 2 (R 3 )), C(v, θ) = C(v -v r , θ) + C(v r , θ) = (-∆) 3 4 Rf + (-∆) 1/2 Rg (3.11)
where f (s) = -(-∆) -3 4 div θ(s)(v(s) -v r (s)) and g(s) = -(-∆) -1/2 div θ(s)v r (s) . We easily see that the norm of f in L 

3 4 R is a bounded operator in L 4 3 (0, τ ; L 3 2 (R 3 )), we have (-∆) 3 4 Rf L 2 (0,τ ;L 3 2 (R 3 )) ≤ C d dt 1 4 (-∆) 3 4 Rf L 4 3 (0,τ ;L 3 2 ) ≤ CC 4 3 , 3 2 C θ(v -v r ) L 4 3 (0,τ ;L 6 5 (R 3 ) 3 ) ≤ CC 4 3 , 3 2 C (r + η) θ L 4 3 (0,τ ;L 2 (R 3 )) . (3.12)
Here C is the constant coming from the Sobolev embedding

Ẇ 1 4 , 4 3 → L 2 in dimension 1, C is the constant of the Sobolev embedding Ẇ 1 2 , 6 5 → L 3 2 in dimension 3 and r comes from the choice of v r . The norm of g in L 2 (0, τ ; L 3 2 (R 3 )) is controlled by the norm of θ v r in L 2 (0, τ ; L 3 2 (R 3 ) 3 ), because (-∆) -1 2 div is a bounded operator from L 3 2 (R 3 ) 3 to L 3 2 (R 3 ). As (-∆) 1 2
R is a convolution operator, we can write (-∆)

1 2 Rg L 2 (0,τ ;L 3 2 (R 3 )) ≤ c t → (-∆) 1 2 e t∆ L 1 (0,τ ;L (L 3 2 (R 3 ))) g L 2 (0,τ ;L 3 2 (R 3 )) ≤ c τ 1 2 θ v r L 2 (0,τ ;L 3 2 (R 3 ) 3 ) ≤ c τ 1 2 v r L ∞ ((0,τ )×R 3 ) 3 ) θ L 2 (0,τ ;L 3 2 (R 3 )) . (3.13) It just remains to choose r, η > 0 such that 2r CC 4 3 , 3 2 C ≤ ε 2 , next v r ∈ L ∞ ((0, T ) × R 3
) 3 such that (3.10) holds and finally θ > 0 such that c τ

1 2 v r L ∞ ((0,τ )×R 3 ) 3 ) ≤ ε
2 . This establishes the second assertion of the proposition.

Let us prove the third assertion. As v ∈ L 4 (0, T ; L 6 (R 3 ) 3 ), for an arbitrary r > 0 we can choose now v r ∈ L ∞ ((0, T ) × R 3 ) 3 such that v -v r L 4 (0,T ;L 6 (R 3 ) 3 ) < r.

(3.14)

If τ > 0 and θ ∈ L 2 (0, τ ; L 3 2 (R 3 )), then (v -v r )θ ∈ L 4 3 (0, τ ; L 6 5 (R 3 ) 3
) by Hölder inequality. Therefore, splitting C(v, θ) as in (3.11), the above computations (3.12)-(3.13) can be reproduced: the only change that needs to be done is the application of (3.14) instead of (3.10). We get in this way (-∆)

3 4 Rf L 2 (0,τ ;L 3 2 (R 3 )) ≤ CC 4 3 , 3 2 C r θ L 2 (0,τ ;L 3 2 (R 3 ))
. This, combined with (3.13) proves our third assertion.

The proof of the fourth assertion follows the same scheme. For r > 0, choose

ϑ r ∈ C c ([0, T ]×R 3 ) such that ϑ -ϑ r L 2 (0,T ;L 3 2 (R 3 )) ≤ r. (3.15) 
Then, for all v ∈ L 4 (0, τ ; L 6 (R 3 ) 3 ), we have

C(v, ϑ) = C(v, ϑ -ϑ r ) + C(v, ϑ r ) = ∆Rf + (-∆) 1/2 Rg with f (s) = (-∆) -1 div (ϑ(s) -ϑ r (s))v(s) and g(s) = -(-∆) -1 2 div ϑ r (s)v(s) .
One easily shows that the norm of f in L 4 3 (0, τ ; L 2 (R 3 )) is bounded by Cr v L 4 (0,τ ;L 6 (R 3 ) 3 ) , where C is the norm of (-∆) -1 div : L 6/5 (R 3 ) 3 → L 2 (R 3 ). Thus, as the operateur ∆R is bounded on

L 4 3 (0, τ ; L 2 (R 3 )) by C 4 3 ,2 = C C 4 3 ,2 , we have ∆Rf L 4 3 (0,τ ;L 2 (R 3 )) ≤ C 4 3 ,2 r v L 4 (0,τ ;L 6 (R 3 ) 3 ) .
The norm of g in L 4 3 (0, τ ; L 2 (R 3 )) is bounded by the norm of ϑ r in L 2 (0, τ ; L 3 (R 3 )) and the norm of v in L 4 (0, τ ; L 6 (R 3 ) 3 ). As (-∆) 1/2 R is a convolution operator, we deduce that (-∆)

1 2 Rg L 4 3 (0,τ ;L 2 (R 3 )) ≤ t → (-∆) 1/2 e t∆ L 1 (0,τ ;L (L 2 (R 3 ))) g L 4 3 (0,τ ;L 2 (R 3 )) ≤ c τ 1 2 ϑ r L 2 (0,τ ;L 3 (R 3 )) v L 4 (0,τ ;L 6 (R 3 ) 3 ) .
We then choose r > 0 such that

C 4 3 ,2 r ≤ ε 2 , next ϑ r ∈ C c ([0, T ] × R 3 ) satisfying (3.15) and last τ > 0 such that c τ 1 2 ϑ r L 2 (0,τ ;L 3 (R 3 )) ≤ ε 2 .
We thus get the last assertion of the proposition.

Proposition 3.5. For all τ > 0, the operator L defined by (2.4) is linear and bounded from

L 2 (0, τ ; L 3 2 (R 3 )) to L 4 (0, τ ; L 6 (R 3 ) 3 and from L 4 3 (0, τ ; L 2 (R 3 )) to L 4 (0, τ ; L 6 (R 3 ) 3 ), with operator norms independent on τ . Moreover, for all p ∈ [1, ∞), L is bounded from L 2 (0, τ ; L 3 2 (R 3 )) to L p (0, τ ; L 3 (R 3 )), with norm of order τ 1/p . Proof. For θ ∈ L 2 (0, τ ; L 3 2 (R 3 )), we write L(θ) = d dt -1 4 d dt 1 4 (-∆) 3 4 Rϕ , 7 where ϕ(s) = (-∆) -3 4 P θ(s)e 3 . Observe that ϕ ∈ L 2 (0, τ ; L 6 (R 3 ) 3 ), because of the Sobolev embedding (-∆) -3 4 (L 3 
2 ) → L 6 (in dimension 3), with norm bounded by the norm of θ in L 2 (0, τ ; L 3 2 (R 3 )). By Theorem 3.1, we deduce that L(θ)

∈ d dt -1 4 L 2 (0, τ ; L 6 (R 3 ) 3 ) → L 4 (0, τ ; L 6 (R 3 ) 3 ),
the last inclusion arising from the Sobolev embedding d dt -1 4 (L 2 ) → L 4 (in dimension 1). This establishes the first assertion of the proposition.

When θ ∈ L 4 3 (0, τ ; L 2 (R 3 )), we write

L(θ) = d dt -1 2 d dt 1 2 (-∆) 1 2 Rψ , (3.16) 
with ψ(s) = (-∆) -1 2 P θ(s)e 3 . Notice that ψ ∈ L 4 3 (0, τ ; L 6 (R 3 ) 3 ), because of the Sobolev embedding (-∆) -1 2 L 2 → L 6 (in dimension 3), with norm bounded by the norm of θ in L

4 3 (0, τ ; L 2 (R 3 )). Applying Theorem 3.1 with α = 1 2 , we get L(θ) ∈ d dt -1 2 L 4 3 (0, τ ; L 6 (R 3 ) 3 ) → L 4 (0, τ ; L 6 (R 3 ) 3 ).
The last inclusion comes from the Sobolev embedding d dt

-1 2 (L 4 
3 ) → L 4 (in dimension 1). The second assertion of the proposition follows.

Next, for θ ∈ L 2 (0, τ ; L 3 2 (R 3 )), let us write L(θ) as before in (3.16). By Sobolev embedding (-∆) -1 2 (L

2 ) → L 3 in dimension 3, we have ψ ∈ L 2 (0, τ ; L 3 ) with norm bounded by θ

L 2 (0,τ ;L 3 2 ) 
.

By Theorem 3.1 with α = 1 2 , we deduce that L(θ) ∈ d dt -1 2 L 2 (0, τ ; L 3 ) → L p (0, τ ; L 3 ) for all 1 ≤ p < ∞. The last inclusion follows, for 2 < p < ∞, from the Hölder injection L 2 ((0, τ )) → L q (0, τ ) for q ∈ [1, 2] (with norm τ 1/q-1/2 ) and Hardy-Littlewood-Sobolev inequality d dt -1 2 (L q ) → L p (in dimension 1), for all p ∈ (2, ∞) and 1 p = 1 q -1 2 . For 1 ≤ p ≤ 2 it is sufficient to apply once more Hölder inequality.

The proof of the uniqueness

We need a few lemmas before proving Theorem 2.1. Lemma 4.1. Let (u 0 , θ 0 ) ∈ S (R 3 ) 3 ×S (R 3 ) with div u 0 = 0, and let (u, θ) ∈ L ∞ (0, T ; L 3 (R 3 ) 3 )× L 2 (0, T ; L 3 2 (R 3 )) be a mild solution of (2.1) with initial data (u 0 , θ 0 ). Then

(u, θ) ∈ C ([0, T ], S (R 3 ) 3 × S (R 3 )).
Moreover, we have u 0 ∈ L 3 (R 3 ) 3 and for every t ∈ [0, T ], u(t) does also belong to L 3 (R 3 ) 3 .

Proof. Let us denote by F (t, x) the kernel of the operator e t∆ P∇•. It is well known, and easy to check, that F satisfies the scaling relations 3×3 . From these properties and the dominated convergence theorem one deduces that, for all

F (t, x) = t -3 2 F (1, x/ √ t), with F (1, •) ∈ (L 1 (R 3 ) ∩ C 0 (R 3 ))
1 ≤ p ≤ ∞, that F ∈ C (0, ∞; L p (R 3 )). Moreover, F (t, •) 1 = t -1 2 F (1, •) 1 . Now, if (u, θ) ∈ X T,r , then u ⊗ u ∈ L ∞ (0, T ; L 3/2 (R 3 ) 3×3 ).
Then, recalling the definition of the bilinear operator B and applying the above properties of F with p = 1, next applying the L 1 -L 3/2 convolution inequality, shows that the map t → B(u, u)(t) is continuous from (0, T ] to L 3/2 (R 3 ) 3 . Moreover, B(u, u)(t) L 3/2 → 0 as t → 0. Hence, the map t → B(u, u)(t) is continuous from [0, T ] to L 3/2 (R 3 ) 3 with value 0 at t = 0.

Let us now consider L(θ). Using the fact that the heat kernel e -|x| 2 /(4t) /(4π t) 3/2 is in C b (0, ∞; L 1 (R 3 )), we readily see that L(θ) ∈ C ((0, T ]; L 3/2 (R 3 )). To study the behavior of L(θ) near t = 0 we consider ϕ ∈ S (R 3 ) and observe, computing the Fourier transform of Pθe 3 with respect to the space variable, that t → h(t, •) = Pθe 3 (t, •) belongs to L 2 (0, T ; L 3 (R 3 )) by the Hausdorff-Young theorem. Then we have

| L(θ)(t), ϕ | ≤ ˆt 0 | h(s), e -(t-s)|•| 2 ϕ | ds ≤ ˆt 0 h(s) L 3 ϕ L 3/2 ds ≤ ϕ L 3/2 ˆt 0 θ(s) L 3/2 ds ≤ C ϕ θ L 2 (0,T ;L 3/2 (R 3 )) √ t.
Therefore, L(θ)(t) → 0 as t → 0 in S (R 3 ) and we deduce that L(θ) ∈ C ([0, T ], S (R 3 ) 3 ), with value 0 at t = 0.

Let us now consider C(u, θ). We have uθ ∈ L 2 (0, T ; L 1 (R 3 ) 3 ). Moreover, the kernel of the operator e t∆ ∇• has the same scaling properties as F . Therefore, proceeding as for B(u, u) we see on the one hand that C(u, θ) ∈ C ((0, T ]; L 1 (R 3 ) 3 ). On the other hand, we can also write

C(u, θ)(t) = div
ˆt 0 e (t-s)∆ (uθ) ds.

But the L 1 (R 3 )-norm of ´t 0 e (t-s)∆ (uθ) ds is bounded by √ t uθ L 2 (0,T ;L 1 (R 3 )) that goes to zero as t → 0. Hence, C(u, θ)(t) ---→ t→0 0 in S (R 3 ) 3 , by the continuity of the divergence operator from L 1 to S .

For the linear terms a and b it is obvious that they are both in C ([0, T ], S (R 3 )), with values at t = 0 given by u 0 and θ 0 , respectively.

Summarising, from the equation (2.1) we see that (u, θ) ∈ C ([0, T ], S (R 3 ) 3 × S (R 3 )), with values at t = 0 given by (u 0 , θ 0 ). But u ∈ L ∞ (0, T ; L 3 (R 3 ) 3 ), hence, for all 0 ≤ t ≤ T , we can find a sequence t n ----→ n→∞ t, contained in [0, T ], such that u(t n ) ∈ L 3 (R 3 ) 3 for all n ∈ N, with L 3 -norm uniformly bounded by u L ∞ (0,T ;L 3 (R 3 ) 3 ) , and u(t n ) ----→ n→∞ u(t) in S (R 3 ) 3 . By duality we deduce that u(t) ∈ L 3 (R 3 ) for every t ∈ [0, T ]. In particular, the initial velocity u 0 must belong to L 3 (R 3 ). Lemma 4.2. There exists an absolute constant r 0 > 0 such that if 0 ≤ r < r 0 and (u, θ) ∈ X T,r is a solution of (2.1), with (u 0 , θ 0 ) ∈ S (R 3 ) 3 × S (R 3 ) and div u 0 = 0, then there exists τ > 0 such that u ∈ L 4 (0, τ ; L 6 (R 3 ) 3 ).

Proof. Let us take p = 2 throughout this proof (any other choice 1 < p < ∞ would do: a different choice of p would just affect the value of r 0 and τ ). We know, by Proposition 3.2, that there exists r 0 and τ > 0 such that if (u, θ) ∈ X T,r with 0 ≤ r < r 0 , then the norm of the linear operator B(•, u) from L 4 (0, τ ; L 6 (R 3 ) 3 ) ∩ L p (0, τ ; L 3 (R 3 ) 3 ) to itself is bounded, with norm smaller than 1 2 . This shows that Id -B(•, u) is invertible in L 4 (0, τ ; L 6 (R 3 ) 3 ) ∩ L p (0, τ ; L 3 (R 3 ) 3 ).

Moreover, as θ ∈ L 2 (0, τ ; L 3 2 (R 3 )) by our assumption, we get from Proposition 3.5 that L(θ) ∈ L 4 (0, τ ; L 6 (R 3 ) 3 ) ∩ L p (0, τ ; L 3 (R 3 ) 3 ).

As observed in the previous Lemma, we have u 0 ∈ L 3 (R 3 ). Moreover, L 3 (R 3 ) ⊂ Ḃ0 3,3 (R 3 ) ⊂ Ḃ-1/2 6,3 (R 3 ) ⊂ Ḃ-1/2 6,4 (R 3 ). See [1, Chapt. 2] for generalities on Besov spaces. The characterisation of Besov spaces through the heat kernel (see [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]Theorem 2.34]) then implies that t → e t∆ u 0 ∈ L 4 (0, τ ; L 6 (R 3 ) 3 ). Since we have also that t → e t∆ u 0 ∈ C ([0, τ ]; L 3 (R 3 ) 3 ), we obtain a ∈ L 4 (0, τ ; L 6 (R 3 ) 3 ) ∩ L p (0, τ ; L 3 (R 3 ) 3 ), for all 1 < p < ∞.

These considerations allow us to define ũ = Id -B(•, u) -1 a + L(θ) .

. 10 )

 10 Then we have, for all θ ∈ L
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 4346 (0, τ ; L (R 3 )) is controlled by the norm of θ(v -v r ) in L (0, τ ; L (R 3 ) 3 ) (owing to the Sobolev embedding Ẇ

(R 

)).

(0, τ ; L 2 (R 3 )), C(v, θ) = C(v -v r , θ) + C(v r , θ) = ∆Rf + (-∆) 1/2 Rg

(R

)), where κ > 0 is some constant independent on T , u and θ.

We would like to show that u = ũ. By the assumption on u and the construction of ũ, these two functions satisfy u = B(u, u) + a + L(θ) and ũ = B(ũ, u) + a + L(θ).

Moreover, ũ ∈ L 4 (0, τ ; L 6 (R 3 ) 3 ) ∩ L p (0, τ ; L 3 (R 3 ) 3 ). Their difference v := u -ũ satisfies v ∈ L p (0, τ ; L 3 (R 3 ) 3 ) and v = B(v, u).

Reducing (if necessary) the value of τ , we deduce from the last point of Proposition 3.2 that v L p (0,τ,L 3 ) ≤ 1 2 v L p (0,τ ;L 3 (R 3 ) 3 ) .

This implies that v = 0 in L p (0, τ ; L 3 (R 3 ) 3 ). In particular, u = ũ ∈ L 4 (0, τ ; L 6 (R 3 ) 3 ).

Remark 4.3. Under the conditions of Lemma 4.1, the initial temperature θ 0 must belong to the inhomogeneous Besov space B -1 3/2,2 (R 3 ). Indeed, θ ∈ L 2 (0, τ ; L 3 2 (R 3 )), and C(u, θ) then belongs to this same space by the third claim of Proposition 3.4 and the previous lemma, for τ > 0 small enough. Then, by the second equation of (2.1), we obtain b ∈ L 2 (0, τ ; L 3 2 (R 3 )). The characterisation of inhomogeneous Besov spaces with negative regularity (see [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]Theorem 5.3]) then immediately gives

. By Lemma 4.2 we know that there exists τ 0 > 0 such that u 1 , u 2 ∈ L 4 (0, τ 0 ; L 6 (R 3 ) 3 ). Applying the last two assertions of Proposition 3.4 we get C(u, θ 2 ) ∈ L 4 3 (0, τ 0 ; L 2 (R 3 )) ∩ L 2 (0, τ 0 ; L 3 2 (R 3 )). The first and the second assertions of Proposition 3.4 ensure the existence of τ > 0 (we can assume τ ≤ τ 0 ) such that

)) to itself, with norm less than 1 2 . Therefore we can define θ = Id -C(u 1 , •) -1 (C(u, θ 2 )).

We see that θ ∈ L

)), and moreover θ = C(u 1 , θ) + C(u, θ 2 ). Let ψ = θ -θ. Then, subtracting the second equation in (3.2), we obtain

But u 1 ∈ L 4 (0, τ ; L 6 (R 3 ) 3 ) by Lemma 4.2. Hence, applying the third assertion of Proposition 3.4 we get ψ = 0 and so θ = θ. The latter equality implies that θ ∈ L

Proof of Theorem 2.1. Let r 0 > 0 be the absolute constant determined in Lemma 4.2. Assume that (u 1 , θ 1 ) and (u 2 , θ 2 ) are two mild solutions in X T,r of (B), with 0 ≤ r < r 0 , starting from (u 0 , θ 0 ) ∈ S (R 3 ) 3 × S (R 3 ). In fact, by Lemma 4.1, there is no restriction in assuming that

)) by our assumption and the first item of Proposition 3.5, we know that L(θ) ∈ L 4 (0, T ; L 6 (R 3 ) 3 ). Applying Proposition 3.2, we know that there exists τ > 0 such that B(u, u

. This allows us to show, applying Lemma 4.2, next using the first equation in (3.2), that
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Applying the first assertion of Proposition 3.4, with v = u 1 and the last assertion of Proposition 3.4 with ϑ = θ 2 , we deduce from the second equality in (3.2) that, for all ε > 0, there exists 0 < τ ≤ τ such that θ

The second item of Proposition 3.5 allows us to take ε > 0 such that

We conclude that u = 0 in L 4 (0, τ ; L 6 (R 3 ) 3 ). This implies that θ = 0 a.e. on (0, τ ). The uniqueness is thus established at least during a short time interval [0, τ ), for a suitable 0 < τ ≤ T .

A standard argument now allows us to deduce that the uniqueness holds, in fact, in the whole interval [0, T ]: let τ * be the supremum of the times t 0 ∈ [0, T ] such that (u 1 , θ 1 ) = (u 2 , θ 2 ) in X t0,r . Let us show that τ * = T . Indeed, otherwise, by the continuity of (u 1 , θ 1 ) and (u

, with initial data given by (4.1). Therefore, applying the uniqueness result in short-time intervals established before, we see that there exists τ , such that 0 < τ < T -τ * , and (u 

Existence

Let us prove Theorem 2.2, that ensures the existence of solution in the space where we obtained the uniqueness. In fact, an existence theorem for solutions to the Boussinesq system was established in [2], under assumptions more general than that of Theorem 2.2. However, the solution constructed in [2] a priori does not satisfy the required condition on the temperature, θ ∈ L 2 (0, T ; L 3 2 (R 3 )). Therefore, what remains to do in order to establish Theorem 2.2, is to show that the solution constructed in [2] does satisfy such condition, as soon as the initial temperature does belong to B -1 3/2,2 (R 3 ). For this, let us introduce some useful function spaces: For 1 ≤ p ≤ ∞ and 0 < T ≤ ∞, we define Z p,T to be the subspace of all vector fields u ∈ L 1 loc (0, T ; L p (R 3 ) 3 ) such that

In the same way, let Y q,T be the subspace of all the functions θ ∈ L 1 loc (0, T ; L q (R 3 )) such that θ Y q,T = ess sup t∈(0,T ) t

We will need the following bilinear estimate:

Proposition 5.1. For all u ∈ Z 6,T and θ ∈ L 2 (0, T ;

Here c is the L 6 5 (R 3 )-norm of the kernel of e ∆ div . But f ∈ L 4 3 ,2 (R) by Hölder inequality in Lorentz spaces, with norm controlled by the norm of θ in L 2 (0, T ;

Let us now recall the local existence theorem in [2, Theorem 2.4].

Theorem 5.2 (See [2]). If 3 < p < ∞, 3 2 < q < 3 and 2 3 < 1 p + 1 q , and if (u 0 , θ 0 ) belongs to the closure of the Schwartz class

with div u 0 = 0, then there exists T > 0 and a solution (u, θ) to (B) such that

Let us observe that the perturbation method used in [2] to establish Theorem 5.2 provides the well-posedness only in the space where the solution is constructed.

Proof of Theorem 2.2. Under the assumptions of the first item of Theorem 2.2, we have u 0 ∈ L 3 (R 3 ) 3 and θ 0 ∈ B -1 3 2 ,2 (R 3 ), which is continuously embedded in B -3(1-1/q) q,∞ , for all q > 3/2. Moreover, the Schwartz class is dense both in L 3 and in Besov spaces with finite third index. Therefore we may apply Theorem 5.2. Choosing, for example, p = 6 and q = 2 we obtain the existence, for some T > 0, of a solution (u, θ) ∈ Z 6,T × Y 2,T , such that u ∈ C ([0, T ], L 3 (R 3 ) 3 ) and 

). Now, reducing if necessary the length of time interval where the solution is considered, we can assume that T is such that κ u Z 6,T < 1. Hence, by Proposition 5.1, we see that the linear operator C(•, u) :

Let us prove the second assertion of Theorem 2.2. If θ 0 belongs to the homogeneous Besov space Ḃ-1 3/2,2 (R 3 ), then b ∈ L 2 (0, ∞; L (and conversely). If u 0 L 3 + θ 0 Ḃ-1 3/2,2 (R 3 ) is smaller than a suitable absolute constant (or, more in general, if u 0 Ḃ-(1-3/p) p,∞ (R 3 ) + θ 0 Ḃ-3(1-1/q) q,∞ (R 3 ) is smaller than a constant depending only on p and q, where p and q are as in Theorem 5.2), then the estimates in [2] provide the global existence of the solution, with u ∈ C b (0, ∞; L 3 (R 3 )). Moreover, u Z6,∞ is controlled by the size of the initial data (u 0 , θ 0 ) in L 3 (R 3 ) 3 × Ḃ-1 3/2,2 (R 3 ). Therefore, κ u Z6,∞ can be assumed to be smaller than 1. Then the above argument applies with T = +∞. This completely establishes Theorem 2.2.