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Abstract—An effective way of jointly analyzing data from
multiple sources, in other words, data fusion, is to formulate the
problem as a coupled matrix and tensor factorization (CMTF)
problem. However, one major challenge in data fusion is that
due to eclectic characteristics of data stemming from different
sources, various constraints and different types of coupling
between data sets should be incorporated. In this paper, we
propose a flexible and efficient algorithmic framework building
onto Alternating Optimization (AO) and Alternating Direction
Method of Multipliers (ADMM) for coupled matrix and tensor
factorizations incorporating a variety of constraints and coupling
with linear transformations. Numerical experiments demonstrate
that the proposed approach is accurate, computationally efficient
with comparable or better performance than available CMTF
methods while being also more flexible.

Index Terms—tensor factorizations, coupled tensor factoriza-
tions, linear couplings, AO-ADMM

I. INTRODUCTION

In many areas of science, patterns of interest can be
captured by multiple types of measurements from comple-
mentary modalities. For instance, brain activity patterns, e.g.,
temporal and spatial patterns, can be captured using both
electroencephalography (EEG) and functional magnetic res-
onance imaging (fMRI) signals, but with different resolutions.
Similarly, in metabolomics, multiple analytical techniques are
used to measure chemical compounds in biological samples
providing complementary views of underlying biological pro-
cesses. Joint analysis of data from multiple sources, also called
data fusion, exploits these complementary measurements and
allows for better interpretability and, potentially, more accurate
recovery of patterns of interest.

While some datasets are represented as matrices, many take
the form of higher-order tensors. Coupled matrix and tensor
factorizations (CMTF) have been used for joint analysis of
such datasets in many domains including neuroscience [1]–
[4], and omics [5]. In such coupled factorizations, each tensor
T i is modeled by a low-rank approximation. One of the most
popular tensor factorization methods, Canonical Polyadic De-
composition (CPD) (also known as CANDECOMP/PARAFAC
(CP)) [6]–[8] models a tensor T i of order Di ≥ 2 as the sum
of Ri rank-one components,

T i ≈
Ri∑
r=1

Ci,1(:, r) ◦Ci,2(:, r) ◦ ... ◦Ci,Di(:, r) =: JCi,dK
Di
d=1,

where Ci,d(:, r) is the r-th column of factor matrix Ci,d and
◦ denotes the vector outer product [9]. Columns of factor
matrices may reveal patterns of interest. For Di = 2, this
formulation is a generic matrix decomposition. Joint factor-
ization problems are often formulated by extracting the same
factor matrix from the coupled mode [1], [10], [11], e.g., if a
third-order tensor T 1 is coupled with a matrix T2 in the first
mode, the optimization problem is given as:

min
{Ci,d}i=1,2

d≤Di

‖T 1 − JC1,1,C1,2,C1,3K ‖2F + ‖T2 −C2,1C
T
2,2 ‖2F

s.t. C1,1 = C2,1

However, factors corresponding to the coupled mode are
not necessarily equal in different datasets. Therefore, in this
paper, we focus on more general linear coupling relationships.
In particular, we cover the cases, where not all factors are
shared between tensors [5], or factors are sampled from a
continuous phenomenon with different sampling rates [12].
Using such linear couplings, different resolutions of EEG and
fMRI signals have been previously incorporated while jointly
analyzing data from these two modalities [2], [3].

Furthermore, in many applications, constraints or regular-
izations on factor matrices are essential to obtain physically
meaningful patterns. Existing algorithms for CMTF are usually
only able to handle exact couplings and a few special con-
straints. Gradient-based all-at-once optimization methods pro-
posed for CMTF [10] can only handle box constraints. Other
regularization and linear couplings are possible, but require
the algorithm to be redesigned. The same holds for Gauss-
Newton type methods as implemented in Tensorlab [13],
where constraints are often realized via a transformation of
variables. On the other hand, Huang et al. [14] proposed a
flexible and efficient framework for constrained matrix and
tensor factorizations that builds on Alternating Optimization
(AO), where each subproblem is solved inexactly using the
Alternating Direction Method of Multipliers (ADMM). It
incorporates a wide variety of constraints and regularizations.
However, coupled factorizations are not considered.

In this paper, we propose an optimization framework for
constrained linearly coupled matrix-tensor factorizations that
builds onto the AO-ADMM framework [14]. Experiments on
synthetic data show that our flexible algorithmic approach



is accurate and achieves competitive performance compared
to existing methods. We formulate the general optimization
problem in Section II, and derive our algorithmic framework
in Section III. Finally, we present the experiments in Section
IV and conclude in Section V.

II. REGULARIZED LINEARLY COUPLED MATRIX AND
TENSOR FACTORIZATION

We start by formulating the factorization problems consid-
ered in this paper in a general way. We consider N tensors or
matrices {T i}i=1,...,N , of not necessarily equal order Di ≥ 2
and size ni,1 × ni,2 × ... × ni,Di . We also suppose that each
tensor T i follows approximately a CPD model with rank Ri,

T i ≈ JCi,dK
Di
d=1,

where Ci,d ∈ Rni,d,Ri denotes the factor matrix of mode d
in tensor T i. Moreover, we suppose that some factors Ci,d

are regularized using proper convex lower semi-continuous
functions gi,d(Ci,d). This covers the important case of con-
strained factors: suppose factor Ci,d should belong to a convex
set Ci,d, then we may set gi,d = ιCi,d , where ιCi,d is the
indicator function that is null on Ci,d and infinity elsewhere.
Also, gi,d can be a sparsity inducing norm such as the `1
norm. Finally, we suppose that some factors are shared across
tensors. We consider the case of exact linearly coupled factors,
where tensors T i may be coupled in any mode d via some
underlying matrix ∆d ∈ Rm1,d×m2,d , as follows:

Hi,d vec(Ci,d) = H∆
i,d vec(∆d), i = 1, ..., N,

for given transformation matrices Hi,d ∈ Rhi,d×Rini,d and
H∆
i,d ∈ Rhi,d×m1,dm2,d . vec(·) refers to columnwise vectoriza-

tion. We illustrate some instances of such couplings in Section
III-D. Using the squared Frobenius norm as a loss function,
we aim at solving optimization problems of the form

argmin
{Ci,d,∆d}d≤Di,i≤N

N∑
i=1

wi

∥∥∥T i − JCi,dK
Di
d=1

∥∥∥2

F
+

Di∑
d=1

gi,d (Ci,d)

s.t. Hi,d vec(Ci,d) = H∆
i,d vec(∆d)

(1)
where wi are weighting parameters.

III. ALGORITHMIC FRAMEWORK

A. Alternating Optimization

Problem (1) is non-convex and difficult to solve for all i
and d simultaneously, in particular, when various constraints
or regularizations are imposed on the factors. However, the
problem w.r.t. the subset {{Ci,d}Ni=1 ,∆d} with fixed mode
d, e.g., for mode 1,

argmin
{Ci,1}i≤N ,∆1

N∑
i=1

wi

∥∥∥T i − JCi,dK
Di
d=1

∥∥∥2

F
+ gi,1 (Ci,1)

s.t. Hi,1 vec(Ci,1) = H∆
i,1 vec(∆1)

(2)

is convex. A simple yet powerful idea is to partially solve
(1) w.r.t. {{Ci,1}Ni=1 ,∆1} while keeping the factor matrices
of modes d = 2, ..., N fixed, then w.r.t. {{Ci,2}Ni=1 ,∆2}

and so on, and to iterate this process until convergence.
This approach is called Alternating Optimization, or Block-
coordinate descent, and is usually applied, when each sub-
problem can be solved efficiently. As shown by Huang et al.
[14] for the uncoupled problem, this can be achieved by using
ADMM to (approximately) solve the convex sub-problems.
The resulting optimization algorithm has been coined as AO-
ADMM [14]. To the best of our knowledge, the AO-ADMM
algorithm has no convergence guarantees, see also [14]. We
derive the ADMM algorithm for the coupled sub-problem in
the next subsection.

B. ADMM
ADMM is a primal-dual algorithm that aims at solving con-

vex constrained optimization problems which can be written
in the following form [15]:

argmin
x,z

Ax+Bz=c

f(x) + g(z). (3)

The scaled-form ADMM algorithm is given in Algorithm
1, where ρ is a parameter and µ is a dual variable that
corresponds to the constraint Ax + Bz = c.

Algorithm 1 Skeleton of scaled-form ADMM [15]
while convergence criterion is not met do

x(k+1) = argmin
x

f(x) + ρ
2

∥∥∥Ax + Bz(k) − c + µ(k)
∥∥∥2

2

z(k+1) = argmin
z

g(z) + ρ
2

∥∥∥Ax(k+1) + Bz− c + µ(k)
∥∥∥2

2

µ(k+1) = µ(k) + Ax(k+1) + Bz(k+1) − c

k = k + 1
end while

C. ADMM for regularized CMTF with linear couplings
Without loss of generality, let us consider sub-problem (2)

for mode 1. For each factor Ci,1 we define “split” matrix
variables Zi,1, similar to z in (3), which separates the regu-
larization from the factorization, but introduces the additional
equality constraints Ci,1 = Zi,1. Variable ∆1 can also be
seen as a split variable since it decouples the coupled factor
matrices of different tensors. This leads to an optimization
problem directly expressed in the form of (3),

argmin
{Ci,1,Zi,1}i≤N ,∆1

N∑
i=1

wi

∥∥∥T i − JCi,dK
Di
d=1

∥∥∥2

F
+ gi,1 (Zi,1)

s.t. Hi,1 vec(Ci,1) = H∆
i,1 vec(∆1)

Ci,1 = Zi,1
(4)

which can thus be solved with ADMM. In contrast to (3)
and [14], we use ADMM with three blocks instead of two.
Therefore, we introduce two sets of dual variables, µi,1(z)
for the regularization constraint and µi,1(δ)

for the coupling
constraint. The ADMM algorithm for mode 1 is given in
Algorithm 2, where δ denotes vec(∆). T [1] denotes the mode-
1 unfolding of tensor T and we use the following short
notation for Khatri-Rao products [9],

Mi,j := Ci,Di � . . .�Ci,j+1 �Ci,j−1 � . . .�Ci,1. (5)



Algorithm 2 ADMM for regularized linearly coupled CPD
while convergence criterion is not met do

for i = 1, ..., N do
C

(k+1)
i,1 = argmin

X

wi

∥∥∥T i[1] −XMT
i,1

∥∥∥2

F

+
ρ

2

∥∥∥X− Z
(k)
i,1 + µi,1

(k)

(z)

∥∥∥2

F

+
ρ

2

∥∥∥Hi,1 vec(X)−H∆
i,1δ

(k)
1 + µi,1

(k)

(δ)

∥∥∥2

2
end for
δ

(k+1)
1 = argmin

z

N∑
i=1

∥∥∥Hi,1 vec(C
(k+1)
i,1 )−H∆

i,1z + µi,1
(k)

(δ)

∥∥∥2

2

for i = 1, ..., N do
Z

(k+1)
i,1 = prox 1

ρ
,gi,1

(
C

(k+1)
i,1 + µi,1

(k)

(z)

)
µi,1

(k+1)

(z)
= µi,1

(k)

(z)
+ C

(k+1)
i,1 − Z

(k+1)
i,1

µi,1
(k+1)

(δ)
= µi,1

(k)

(δ)
+ Hi,1 vec(C

(k+1)
i,1 )−H∆

i,1δ
(k+1)
1

end for
k = k + 1

end while

Note that both for loops can be computed using parallel
programming. Furthermore, for uncoupled and unconstrained
factor matrices, ADMM iterations are not necessary, since the
exact solution can be obtained by a least squares update. The
main advantage of ADMM is that it splits the problem (4) into
easier individual problems for Ci,1, Zi,1 and δ1, respectively.
As such, handling the regularization reduces to the computa-
tion of a proximal operator to update Z

(k+1)
i,1 . For any λ > 0,

the proximal operator of g is the following function [16]

proxλ,g(x) = argmin
u

g(u) +
1

2λ
‖x− u ‖22 ,

which is single-valued. For many functions g such as indicator
functions of convex sets, a closed-form expression and/or an
efficient implementation for the proximal operator is available,
see lists here [16], [17].

D. Special cases of linear couplings

The first instruction in Algorithm 2 is a least squares prob-
lem, which has a closed form solution. However, it involves
the implicit inversion of a large matrix, which can hardly
be computed efficiently. Yet, provided that Hi,1 vec(Ci,1) =
H∆
i,1 vec(∆1) has a simpler form, it can be solved more

efficiently. We differentiate between five possible forms of
such easier linear couplings.

a) Case 1: Hard coupling (no transformation): One way
of coupling tensors i and j is to require equality of factor
matrices Ci,1 = Cj,1. This case has been used in many CMTF
formulations [1], [10], [11], [18]. The coupling constraint can
then be written in matrix form as Ci,1 = ∆1.

b) Case 2: Transformations in mode dimension: Often,
measurements obtained from different instruments will cor-
respond to different temporal or spatial sampling grids. For
instance, suppose tensors i and j have different dimensions
ni,1, nj,1 in mode 1, due to different sampling rates. It
may still be possible to approximate the common underlying

function via interpolations on a common sampling grid of
size n∆1 [12], where the variable ∆1 ∈ Rn∆1

×R represents
the function on the common grid. Two possibilities for such
couplings are:

a) H̃i,1Ci,1 = ∆1, H̃i,1 ∈ Rn∆1
×ni,1

b) Ci,1 = H̃∆
i,1∆1, H̃∆

i,1 ∈ Rni,1×n∆1

To obtain a), set H∆
i,1 = IRn∆1

and Hi,1 = IR ⊗ H̃i,1. For
b), set Hi,1 = IRni,1 , H∆

i,1 = IR ⊗ H̃∆
i,1.

c) Case 3: Transformation in factor dimension: The
following couplings allow tensors with the same size ni,1 =
nj,1 = n1 in mode 1, but different number of factors Ri, Rj ,
to be coupled,

a) Ci,1Ĥi,1 = ∆, Ĥi,1 ∈ RRi×R∆

b) Ci,1 = ∆1Ĥ
∆
i,1, Ĥ∆

i,1 ∈ RR∆×Ri

To obtain a), set H∆
i,1 = IR∆n1

and Hi,1 = ĤT
i,1 ⊗ In1

. For
b), set Hi,1 = IRin1

and H∆
i,1 = Ĥ∆T

i,1 ⊗ In1
. In particular,

information about shared and unshared factors can be encoded
in rectangular “identity” matrices Ĥi. In Case 3a, the variable
∆1 ∈ Rni,1×R∆ contains R∆ shared vectors of the possible
larger factor matrices {Ci,1}i, while in Case 3b, ∆1 is a
wide matrix which contains all columns of all coupled factor
matrices Ci,1, no matter if they are shared or unshared. This
is useful when some factors are only shared between some but
not all coupled tensors. In Case 2a, a Sylvester equation has
to be solved to update Ci,1. In all other cases, the update of
Ci,1 in Algorithm 2 reduces to a linear least squares problem
where the matrix inverse is only of size Ri × Ri. Note that
T i[1]Mi,1 as well as MT

i,1Mi,1 can be computed efficiently
[9]. Furthermore, T i[1]Mi,1 and the Cholesky decomposition
of
(
wiM

T
i,1Mi,1 + ρIRi

)
can be precomputed outside the

ADMM loop. The update of ∆ in Cases 1, 2a, 3a is simply
given by an average, while in Cases 2b and 3b, a linear least
squares problem has to be solved.

E. Algorithm details

We adapt the stopping criterion given in [15] for inner
ADMM iterations. Algorithm 2 terminates when relative pri-
mal and dual residuals are below a threshold or when a
predefined maximum number of inner iterations is reached.
We empirically found that a threshold of 10−3 and 5 inner
iterations work well for most problems. The whole algorithm
terminates, when each of the following residuals,

f
(k)
tensors =

N∑
i=1

wi

∥∥∥T i − JCi,dK
Di
d=1

∥∥∥2

F

f
(k)
couplings =

∑
i,d

∥∥∥Hi,d vec(C
(k)
i,d )−H∆

i,dδ
(k)
d

∥∥∥
2
/
∥∥∥Hi,d vec(C

(k)
i,d )

∥∥∥
f

(k)
constraints =

∑
i,d

∥∥∥C
(k)
i,d − Z

(k)
i,d

∥∥∥
F
/
∥∥∥C

(k)
i,d

∥∥∥ ,
(6)

has reached an absolute tolerance, has not changed more
than some small relative tolerance, or a predefined number of
maximal outer iterations is reached. For ρ, we use an adaptive



step-length ρ(k)
i,d [14] for the update of each factor matrix C

(k)
i,d ,

where ρ(k)
i,d = ‖M(k)

i,d ‖2F /Ri.

IV. EXPERIMENTS

In this section, we assess the performance of the proposed
AO-ADMM in terms of accuracy and computational efficiency
on synthetic datasets, in comparison with state-of-the-art meth-
ods, namely Alternating Least Squares (ALS) and all-at-once
optimization using quasi-Newton and Gauss-Newton.

A. Experimental Set-up

For ALS (referred to as CMTF-ALS), we use our own
implementation for CMTF based on cp als from the Tensor
Toolbox [19]. For nonnegativity constraints, we solve the al-
ternating nonnegative least squares problem using Hierarchical
ALS (HALS) [20]. For all-at-once optimization (referred to as
CMTF opt), we use cmtf opt from the CMTF Toolbox [10]
using Nonlinear Conjugate Gradient (NCG) for unconstrained
cases and Limited Memory BFGS with bounds (LBFGS-B) for
nonnegativity constraints. Finally, for Gauss-Newton (referred
to as Tensorlab GN), we use the Tensorlab implementation
sdf nls [21], which can handle a variety of constraints and
coupling structures. We monitor the convergence of different
algorithms through the function value ftensors and factor match
score (FMS). Given the true factor matrices Ctrue

i,d , the FMS
for Ci,d is computed as

FMS =

N∏
i=1

1

Ri

Ri∑
r=1

 Di∏
d=1

〈
Ci,d(:, r),C

true
i,d (:, r)

〉
‖Ci,d(:, r) ‖2 ‖C

true
i,d (:, r)‖2

 ,

after finding the best permutation of factors. We run each
algorithm until the relative change in function value is less than
10−12 or a maximum number of 10.000 outer iterations has
been reached1. For AO-ADMM, we set the absolute tolerance
for the residuals in Eq. (6) to 10−4.

For each experiment, we generated 50 random datasets.
Following the CP model, tensors X i are constructed from
known factor matrices. Tensors T i are then generated by
adding noise tensors N i with entries drawn from a standard
normal distribution as follows:

T i = X i + 0.2(‖X i ‖F
/
‖N i ‖F )N i.

This corresponds to a signal-to-noise ratio of around 14dB.
We normalize each tensor and set the weights to wi = 1/2.

For each dataset, multiple initializations (five for first three
experiments and ten for the last - more difficult experiment)
are used, and the best run with the lowest final function
value is reported. We also report the number of failed runs
in Table I, where a run is considered a failed run if it reaches
the maximum number of iterations or gives an FMS below
the threshold 0.99

∑N
i=1 Di . When no nonnegativity constraints

are imposed, factor matrices Ci,d are initialized using the first

1Other parameters are set as follows: In cmtf opt (NCG/LBFSG-
B): MaxFuncEvals/maxTotalIts=105, StopTol/pgtol=10−32,
in Tensorlab: CGMaxIter=15, TolX=10−32, TolAbs=0, in HALS:
maxiter=500.

Fig. 1: Experiment1: Median and quartiles of function values and FMS for
different algorithms.

R left singular vectors of the corresponding concatenated (if
coupled) and unfolded tensors in mode d in the first run. Oth-
erwise, factor matrices are initialized at random, drawing from
the standard normal or, in the case of nonnegativity, uniform
distribution. All dual variables, as well as coupling variables
∆d, are initialized using the standard normal distribution. The
split variables Zi,d are initialized by prox1,gi,d

(Ci,d).

B. Experiment 1: Case 1 and unconstrained

Here, we have an unconstrained coupled problem, where a
third-order tensor of size 40× 50× 60 is coupled using hard
coupling in the first mode with a matrix of size 40× 100. We
generate ground-truth factor matrices with R = 3 with entries
randomly drawn from a normal distribution and transform
them as described in [22], such that factors have a congruence
of 0.5. Fig. 1 shows a summary of the convergence behaviour
of different algorithms for 50 random datasets. Alternating
methods CMTF-ALS and AO-ADMM behave similarly as
we expect. All methods can also accurately recover the true
factor matrices by achieving a FMS of close to 1. Tensorlab
GN is able to achieve a better FMS near convergence. The
initialization based on singular vectors seems to be a bad
choice for AO-ADMM in the presence of collinearity. Table I
shows a high number of failed runs for AO-ADMM which are
all due to this type of initialization.

C. Experiment 2: Case 1 with nonnegativity constraints

The setting of the second experiment is similar to the first
one. In addition, nonnegativity constraints are imposed on
factor matrices in all modes. The ground-truth factor matrices
are drawn from a uniform distribution and thus the collinear-
ity of the components is not controlled. The convergence
behaviour of different methods in Fig. 2 demonstrates that
AO-ADMM is still computationally efficient, with an average
performance similar to CMTF-ALS. All methods can also
accurately recover the true factors used to generate the data.

D. Experiment 3: Case 2a and unconstrained

In this experiment, a tensor T 1 of size 80 × 50 × 60 is
coupled in the first mode with a matrix T2 of size 40×100 via
a transformation H̃1,1C1,1 = ∆1, that discards every second
entry in C1,1. True factor matrices with R = 3 have entries
drawn from the standard normal distribution. We compare the
AO-ADMM-based approach only with Tensorlab GN since no
other implementation can currently handle linear couplings.



Fig. 2: Experiment2: Median and minimum/maximum function values and
FMS for different algorithms.

Fig. 3: Experiment3: Median and quartiles of function values and FMS for
AO-ADMM and Tensorlab GN.

Fig. 4: Experiment4: Median and quartiles of function values and factor match
scores for AO-ADMM and Tensorlab GN.

Fig. 3 shows that AO-ADMM finds the true factors faster than
Tensorlab GN. Both are accurate while AO-ADMM seems less
sensitive to initialization, see Table I.

E. Experiment 4: Case 3b and unconstrained

Here, three tensors of size 40×50×60, 40×70×60, 40×
30× 50 and number of components R = 2, 3, 4, respectively,
are coupled in the first mode. Two components are shared
by all tensors while the additional component in the second
tensor is also present in the third tensor. This is a more difficult
problem with high number of failing runs as shown in Table I.
However, when the best runs out of multiple initializations are
considered, both AO-ADMM and Tensorlab GN are accurate
while AO-ADMM finds the true factors faster, see Fig. 4.

V. CONCLUSIONS

We proposed a flexible algorithmic framework for regular-
ized linearly coupled tensor factorizations using AO-ADMM,
which can easily incorporate many constraints. The only
requirement is that the proximal operator of the regularization
function is tractable. Our experiments indicate that, while
for hard coupled cases, AO-ADMM achieves comparable
performance to other methods, it shows superior performance
for linearly coupled problems. Nevertheless, more experiments
with other constraints as well as more difficult datasets and

TABLE I. Failed runs

Exp. out of AO-ADMM CMTF opt CMTF ALS TL GN
1 all/ best 45/0 0/0 6/0 12/0
2 all/ best 0/0 0/0 0/0 0/0
3 all/ best 4/0 - - 56/0
4 all/ best 330/1 - - 351/0

couplings are necessary. An extension of this framework to
other loss functions is under study.
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