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We present here a theoretical study of ordering processes in metal-hydrogen compounds based on a general-
ized perturbation method and on tight-binding coherent potential approximation. This approach is illustrated for
zirconium hydrides, in which case we demonstrate that a cluster expansion of the ordering energy can be limited
to effective pair interactions, the leading one being between hydrogen atoms in third-neighbor positions. These
results are quantitatively confirmed by comparison to density functional theory calculations and qualitatively
interpreted through orbital symmetry analysis. The method is then applied first to draw a preliminary Zr-H
phase diagram and then to characterize the effect of lattice deformation on the ordering processes in zirconium
hydrides.

DOI: 10.1103/PhysRevB.101.224106

I. INTRODUCTION

The dream of modeling the behavior of simple materials
(such as binary alloys) from their electronic structure took
shape in the 1990s when ab initio calculations began to benefit
from computer power. Since then, databases containing the
energies of numerous ordered phases for specific binary alloys
have been elaborated. One of their applications is to derive
the equilibrium phase diagrams, not always experimentally
known, via the coupling between ab initio energy data and
more or less refined statistical physics approaches. A wide
domain of approaches, ranging from ab initio to phase di-
agram calculations, was developed, aimed at improving the
understanding and control of industrial and technological
processes. This has, in particular, benefited from the devel-
opment of the cluster expansion method (CEM) [1], which
consists of expressing the energy of an ordered structure
as a linear combination of many-body interactions (pairs,
triplets, quadruplets, etc.). These effective cluster interactions
are obtained from first-principles DFT calculations through
the Connolly-Williams structure inverse method based on a
mapping of total energies of a given set of predefined ordered
structures onto a generalized Ising-type model [2]. Such a
methodology opens up a very broad field in materials science,
not only for metal alloys but also for mixed compounds such
as hydrides and carbides.

Interstitial hydrides of d and f block metals constitute
an important topic in material science, related to hydrogen
storage in battery cells [3], and metal embrittlement [4]. To
study these compounds at the atomistic scale, one needs to
describe the numerous structures that can exist at fixed con-
centration and to take into account the effect of temperature
[5,6], which requires using thermostatistical approaches. The

difficulty is then to get an atomistic energetic model that is
accurate enough to treat ordering processes (hundredth of an
eV accuracy) while remaining cheap in CPU time. For several
transition-metal hydrides, the CEM has already furnished
good results (Ti-H [6], Zr-H [7,8], La-H [9]). However, this
approach remains questionable and limited. First, the many-
body character of the energy should forbid using too many
simple cluster expansions so that one needs to justify them
from the electronic structure. Then, it requires postulating a
priori the order of preponderant interactions and the size of
clusters to use. Finally, it implies performing a large number
of density functional theory (DFT) calculations if one aims at
fitting a given strained state.

The aim of the present paper is to calculate directly the
cluster interactions involved in CEM in order to identify
the relevant interactions to derive from DFT total energy
calculations, what their range is, and what the leading terms
are. An important point here is that these cluster interactions
are per se both concentration and volume dependent. These
interatomic interactions are obtained through a generalized
perturbation method (GPM) which treats the ordering process
as a perturbation of the disordered state. This GPM approach
was first developed to study ordering processes in substi-
tutional metallic alloys [10–14] by treating the electronic
structure within the tight-binding (TB) formalism [15] and the
disordered state with the self-consistent coherent potential ap-
proximation (CPA) approach [16,17]. The main result of these
studies was that a truncation of the perturbative development
to second order (i.e., to pairwise interactions) is sufficient to
approximate ordering band energies and to characterize the
relative stabilities of ordered structures at 0 K.

This TB-GPM method was then extended to account for
vacancy-carbon ordering in interstitial carbides of transition
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metals [18], showing that cluster expansion could still be
truncated to pair interactions. The main difference between
the substitutional and interstitial systems concerns the leading
interactions, which are those between first neighbors in the
former case and between second neighbors in the latter one.

The success of the original TB-GPM method then sparked
a lot of studies in the alloy literature, among which are
various attempts to put together a real-space way of solving
the inhomogeneous CPA equations with recursion for both di-
agonal and off-diagonal disorder (Shiba approximation [19])
and extension to multicomponent alloys and transport (Kubo-
Greenwood) [20–22]. Indeed, a main advantage of such a
real-space approach is that it can be easily applied to finite
systems (such as nanoalloys) or amorphous alloys such as
NiZr [23].

Moreover, many authors aimed at implementing the TB-
GPM idea in an ab initio context, first based on the General-
ized Perturbation Method based on Korringa-Kohn-Rostoker
Coherent Potential Approximation and later on Generalized
Perturbation Method based on Tight-Binding Linear Muffin-
Tin Orbitals Coherent Potential Approximation approaches
[24–26]. It is worth noticing that one has to be careful when
applying GPM to the possible charge effects. Indeed, these
effects have often been neglected, leading to a less accurate
description than structure inverse methods when they are
important. To take them into account, Ruban et al. proposed
to account for the screened Coulomb interaction that describes
charge transfers within single-site approximation to DFT and
the force theorem, showing that the resulting screened GPM
interactions reproduce the configurational energy of a wide
range of substitutional metallic alloys [27] and also interstitial
carbides [28] and complex nitrides [29] and oxides [30]. In
particular in the latter reference, the authors were able to
determine the relevant interactions in CEM through a compar-
ison of DFT screened Generalized Perturbation Method and
Connolly-Williams interactions [30].

Despite this body of literature and advanced works, there is
still a need to develop the original TB-CPA-GPM to address
new systems and physical problems since the already quoted
mixed alternative DFT-GPM approaches lead, in general, to
the same results as TB-CPA-GPM without its flexibility. In
this sense, the latter approach is far from being out of date
and is still very efficient at giving access to driving forces
and rationalizing modeling formalism choice. Thus, it remains
useful to still develop and improve this kind of methodology
in the aim to derive a general classification map of behavior
based on systematic studies along lines and columns of the
periodical table.

Here we illustrate this approach in the case of interstitial
metallic hydrides, applied to the Zr-H system, which consti-
tutes a major topic in nuclear safety (zirconium-based nuclear
fuel claddings can be embrittled by hydrides in a pressurized
water reactor [31–33]). This approach can easily be extended
to any nonmagnetic interstitial metallic hydride.

Since the majority of zirconium hydrides which appear
in the binary Zr-H diagram present a fcc or face-centered-
tetragonal (fct) structure [34,35], this system can be modeled
as built on a Zr fcc lattice, with a tetrahedral interstitial
sublattice occupied by hydrogen atoms H and vacancies �
(stoichiometry ZrHc�2−c, where c represents the hydrogen

concentration). In this framework, the order and disorder phe-
nomena exclusively concern this interstitial sublattice. Note
that even though it has been established, both theoretically and
experimentally, that the H atoms should be localized on the
tetrahedral sites whatever the crystalline structure, hcp or fcc,
the octahedral ones are found quite close in energy in the hcp
structure. In this phase, these sites play an important role in
hydrogen diffusion [36,37], hydride precipitation [5,38], and
embrittlement [39,40]. Nevertheless, since we are concerned
here only with equilibrium thermodynamics and not with
kinetics, in the fcc structure, we can assume that all hydrogen
atoms occupy only the tetrahedral sublattice.

This paper is organized as follows. First, a short descrip-
tion of the theoretical background of the TB-GPM is given,
together with its numerical implementation for the ZrHc�2−c

system. Then the multiplet interactions are derived, showing
that they are negligible beyond pair interactions. The latter,
which are both concentration and volume dependent, are
then validated quantitatively from the comparison with DFT
calculations and qualitatively through orbital symmetry con-
siderations. Finally, in order to illustrate the potentiality of this
methodology, it is used, on the one hand, to draw a preliminary
phase diagram of the tetrahedral interstitial sublattice of the
fcc ZrHc�2−c system as a function of the relevant interactions
and, on the other hand, to characterize the effect of lattice
deformation on the ordering processes.

II. THEORETICAL BACKGROUNDS

The electronic structure of the ZrHc�2−c system is de-
scribed within the tight-binding approximation [15], which
writes the Hamiltonian (1) in the atomic orbital basis {i, λ}
(with i being the site index and λ being the orbital one), where
the diagonal term ε

λu
i represents the energy of orbital λu at

atomic site i and the nondiagonal term β
λuμv

i j is the hopping
integral between the λu orbital at atomic site i and μv orbitals
at atomic site j:

H =
∑

i

∑
u

∑
λu

pu
i |i, λu〉ελu

i 〈i, λu|

+
∑
u,v

∑
i, j

i �= j

∑
λu,μv

pu
i pv

j |i, λu〉βλuμv

i j 〈 j, μv|. (1)

In this formulation, the u and v indexes label the chemical
nature of the atom, which can take three values: Zr for a zir-
conium atom, H for a hydrogen atom, and � for an interstitial
tetrahedral atomic vacancy. The Hamiltonian depends on the
configuration through the pu

i factor, which corresponds to an
atomic occupation number equal to 1 if site i is occupied by an
atom of type u and 0 otherwise. The interstitial nature of the
alloy ZrHc�2−c is accounted for by preventing electrons from
hopping on vacancy sites, as suggested by Faulkner to treat
palladium hydrides [17]. This means that the energy levels
ε

λu
i have finite values if u equals Zr or H and tend to infinity if

u = �. The interstitial disordered H/� interstitial sublattice
of the ZrHc�2−c system, which will be the reference for the
perturbation calculation, is described within the CPA [16,17],
which is well suited to account for the strong diagonal disor-
der [41] between vacancies and hydrogen atoms. Indeed, this
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approximation acts on only the first term (diagonal elements)
of the TB Hamiltonian (1) by replacing interstitial energy
levels ε

λH
i and ε

λ�
i = ∞ by an effective average complex

potential �, computed self-consistently through the following
iterative equation:

cτH + (2 − c)τ� = 0, (2)

with

τH = εsH − �(E )

1 − [εsH − �(E )]ḠH(E )
, τ� = − 1

ḠH(E )
,

where ḠH(E ) represents the Green’s function of the average
interstitial medium and depends on �(E ).

Starting from this Hamiltonian representation of interstitial
disorder, one can apply the GPM [10–12], whose fundamental
idea is that the energy of any ordered structure can be obtained
by perturbation expansion from the disordered medium, taken
as a reference. The band energy of a given ordered compound
Xc at concentration c then reads, up to a constant, as follows
in terms of p-multiplet interactions:

Eband(Xc) = E0(c) +
∑

p

∑
i1i2···ip

C p
i1i2···ip

(c), (3)

where C p
i1i2···ip

(c) represents the multiplet interaction between
p hydrogen atoms located on i1i2 · · · ip neighbor tetrahedral
interstitial sites. These multiplet interactions are given by the
following analytic formulas:

CH···H
i1···ip

(c)

= − 2

π
Im

∫ EF

−∞
dE1

{
1

{1−[εsH−�(E1)]ḠH(E1)}ḠH(E1)

}p

× 1

(N�k )p

∑
�k1,...,�kp

Tr
[
GHH

i1i2 (E1, �k1) · ei�k1·�ri1 i2 GHH
i2i3 (E1, �k2)

× ei�k2·�ri2 i3 · · · GHH
ipi1 (E1, �kp) · ei�kp·�ripi1

]
, (4)

where EF is the energy of the Fermi level [given by N (EF ) =
4.0 + 1.0c for the concentration c under consideration], N�k is
the number of mesh points �k of the first Brillouin zone, and
GHH

i j (E1, �k) · ei�k·�ri j is the projection at sites i and j on the �k
point of the interstitially disordered medium Green’s function
ḠH(E ), obtained by solving CPA equation (2).

Thus, if one keeps only the second-order terms of the
cluster expansion (truncation to pairwise interactions), the
band energy (3) can then be written in the form

Eband(Xc) = Ē (c) −
(

c

2

)2 ∑
j

tZrH2
jmoyVj (c)

+
(

c

2

)∑
j

tXc
jmoyVj (c), (5)

where tXc
jmoy (tZrH2

jmoy) is the mean number of H jth neighbors of
an atom H in the ordered structure Xc (ZrH2). Vj (c) = C 2

i1i2 (c)
is the second-order term from the previous expansion, which
represents the pair interactions between two hydrogen atoms
located on the jth neighbor tetrahedral interstitial sites. It

TABLE I. Energy levels (eV) and Slater-Koster parameter
β(r) = β0

i jexp[−qi j (r − ri j )/ri j] (in eV) for hopping integrals. ri j is
the interatomic distance between first neighbors (rZrZr = 3.20 Å, and
rZrH = 2.09 Å), qZrZr = 2.40, and qZrH = 1.8.

orb. i εi coupling β0
ZrZr β0

ZrH

sH 7.35 ddσ −1.036
sZr 13.0 ddπ −0.53 ddσ

pZr 18.0 ddδ 0.10 ddσ

dZr 10.6 pdσ 1.179
pdπ −0.30 pdσ

ppσ 2.195
ppπ −0.10 ppσ
sdσ 0.74 pdσ −1.997
ssσ −0.46 ppσ −1.517
spσ 0.66 ppσ 1.436

reads

Vj (c) = C 2
i1i2 (c) = − 2

π
Im

∫ EF

−∞
dE (τH − τ�)2 1

N�kN�k′

×
∑
�k, �k′

〈i1|ḠH(E , �k)Ḡ†
H(E , �k′) · ei(�k−�k′ )·( �ri1 − �ri2 )|i2〉. (6)

To implement our procedure numerically, one needs a
parametrization of the TB Hamiltonian (1). This is performed
by extracting both energy levels and hopping integrals by
fitting the TB electronic densities of states to DFT ones,
first for bulk Zr, then for ZrH2, assuming that direct H-H
hopping integrals are negligible [42,43]. All these parameters
are presented in Table I.

In regard to the Hamiltonian representation of the flu-
oritelike geometry of the ZrHc�2−c system (space group
Fm3̄m), we have used an 11 × 11 TB Hamiltonian matrix
(nine s, p, d orbitals for Zr and two s orbitals for the interstitial
medium). Previously used by Papaconstantopoulos et al. [44]
to study the electronic structure of TiHc�2−c and VHc�2−c,
this formulation splits the simple cubic (sc) interstitial lattice
of parameter a/2 into two fcc interstitial lattices of parameter
a. We will work with fixed lattice parameter a = 4.82 Å,
corresponding to that of the stoichiometric phase ZrH2.

III. PAIR INTERACTION DERIVATION

A. TB-GPM calculation of multiplet interactions

We illustrate in Fig. 1 the different multiplet interactions
that we consider here, namely, pair interactions Vi between H
atoms at i-neighbor distance (i ∈ {1, . . . , 7}), triplet interac-
tions Ti, and quadruplet interactions Qi. Regarding the quadru-
plets, we have selected two paths related to the same clus-
ter but symmetrically nonequivalent and three self-retracing
paths, Q6, Q7, and Q8, which were shown to be predominant in
substitutional alloys [12]. Note that two types of interactions
exist for third-neighbor pair V3 and triplet T7 interactions,
depending on the presence or not of a Zr atom in the center of
the cluster. In what follows, the calculations will be performed
for a mean V3 value.
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Pairs
V1 V2 V3 V4

V5 V6 V7

Triplets
T1 T2 T3 T4

T5 T6 T7

Quadruplets
Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8

FIG. 1. Multiplet interactions under consideration (only H atoms
on the interstitial SC sublattice are shown).

The corresponding values of these interactions can be seen
in Fig. 2 at the concentration c = 1.0. One can see at first
glance that the different energy scales used put in evidence
the preponderance of pair interactions Vi which are larger

FIG. 2. TB-GPM multiplet interactions (in eV) for structures
described in Fig. 1. Note the different scales used for the different
multiplets. The calculations have been performed for c = 1.0, with
3280 �k points and 200 points in energy.

FIG. 3. Hydrogen-hydrogen pairwise interactions Vi(c) (eV) as a
function of hydrogen concentration c.

by an order of magnitude than triplets and by two orders
of magnitude than quadruplets, which justifies neglecting
them in the following and truncating the cluster development
beyond pair interactions.

B. Concentration dependence of TB-GPM effective pair
interactions

Using these implementations in our TB-GPM procedure,
one can then apply formula (6) for several concentrations
and obtain the curves plotted in Fig. 3, which deserve some
comments.

One can first notice that pair potentials Vi(c) with i > 4
are negligible for c � 0.5. Then, the major feature is that
configurational energy is dominated (in absolute value) by the
third-neighbor interaction V3. If one then considers the signs
of the interactions, one can see that V1 is positive, whereas
V2, V3, and V4 are negative, which means that a hydrogen
atom located on an interstitial tetrahedral site tends to be
surrounded, on the interstitial lattice, by vacancies in the first
neighborhood and hydrogen atoms in the second, third, and
fourth neighborhoods.

C. DFT validation

The next step is to validate these results through a compar-
ison to more exact DFT calculations. To this aim, we compare
energies of ordered structures with the same hydrogen con-
centration c but different H/� occupations for the interstitial
tetrahedral sublattice. The sets of ordered structures under
considerations for the three concentrations c = 0.5, 1.0, 1.5
are presented in Fig. 4. At a given concentration, we per-
form two comparative calculations of total energy for each
structure. First, using Vi(c) numerical values and tXc

jmoy factors
(obtained by hydrogen-hydrogen neighborhood analysis) in
Eq. (5), one gets the band energy, and TB total energy is
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c = 0.5 c = 1.0 c = 1.5

Ac

Bc

Cc

Dc

Ec

Fc

FIG. 4. Elementary cell ZrHc�2−c ordered structures (drawn
with OVITO [45] with the color code being blue for Zr, green for H,
and red for vacancy), used for TBIM validation.

then deduced by the addition of a repulsive Born-Mayer term
Erep(c) [46] assumed to be fixed at a given concentration c:
Etot(Xc) = Eband(Xc) + E rep(c). Then we calculate the same
total energy using DFT with the VASP code [47–50] for a rigid
lattice in the generalized gradient approximation functional.

The corresponding results are compared in Fig. 5, where
the energies are referred to that of the stablest structure for
each concentration. As can be seen, the energy through TB-
GPM leads qualitatively to the stability sequence given by
DFT calculations. Moreover, in spite of the small values of
these stability energy differences, one finds a satisfactory
semiquantitative agreement between the TB-GPM and DFT
sequences for each composition, with the TB-GPM energies
found to be larger by about 15% for c = 0.5, 20% for c = 1.0,
and about 50% for c = 1.5 (note that in the latter case the
absolute values are significantly lower).

This agreement validates our perturbation method and
definitely confirms that pairwise interactions are sufficient
to describe H/� sublattice order in zirconium hydrides, the
leading ones being those between third neighbors. Finally, let

us note that the D1.0 phase, determined as the stablest one at
c = 1.0, is the equivalent of the fct γ phase experimentally
observed at this concentration [34,35].

D. Orbital symmetry analysis

The relative stabilities of ordered systems displayed in
Fig. 5 can be explained qualitatively by symmetry consider-
ations. Let us consider the reduced system composed of one
Zr atom and the eight surrounding interstitial sites, occupied
by either a hydrogen atom or a vacancy. We focus on the most
stable, least stable, and intermediate structures D1.0, A1.0, and
F1.0, respectively. They belong, respectively, to the symmetry
groups C4v , Td , and D2h and can be described in the C2v com-
mon group framework. The corresponding orbital diagrams
obtained by considering a symmetrized linear combination of
s orbitals for H and s, p, d ones for Zr are illustrated in Fig. 6.
We can observe that the threefold-degenerate (t2) F1.0 highest
occupied molecular orbital is partially lifted (e2 + a1) in the
A1.0 structure and is fully lifted in the D1.0 one. According to
Hund’s rule, the A1.0 energy will then be higher than the F1.0

one, with the latter being higher than the D1.0 one.
Note that this effect holds even though we have simplified

the explanation, not considering here the orbital splitting in
the TB Hamiltonian in view of the small difference between
the eg and t2g levels. Indeed, this simplification does not
change our argument since it plays only a minor role in the
relative position of the 1a1 energy level (involving the eg dz2 Zr
orbitals) and the other three lower orbitals, from t2 (involving
t2g dzx, dzy, and dx2−y2 Zr orbitals). The major effect is the
hydrogen-stabilizing interaction. The eg dxy Zr orbital is not
illustrated here since it is not involved in H bonding and then
presents a higher-energy level.

One can also observe that the p orbitals play a major role in
the stabilization of the different structures, which implies that
they cannot be neglected. Furthermore, with the symmetry
playing a central role in the structure stabilization, one can
expect that any deformation, in particular, tetragonalization,
could impact relative stabilities. Last, it can also be observed
in Fig. 6 that only the D1.0 structure exhibits V3 interactions,
which will induce delocalization between surroundings Zr
tetrahedrons. These trends are perfectly consistent with both
the Vi relative importance and structure stabilities derived
from the presented methodology.

E. Application to cluster expansion derivation of multiplet
interactions from DFT calculations

The first conclusion of the TB-GPM is that the cluster
expansion can be truncated to the second-order terms (pair
interactions) and that higher-order terms can be neglected.
The second conclusion is that, among these pair interactions,
only those between first, second, and third (and possibly
fourth) neighbors can be taken into account. This allows
us an alternative way to derive these pair interactions from
DFT calculations by using a reverse method. In practice, we
first calculate through DFT the formation energy of different
ordered phases, defined as the energy balance between the
ordered phase and the two separated ZrH2 and Zr phases.
Then we develop this energy as a function of V1, V2, V3, and
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FIG. 5. Comparison between total energy sequences of structures represented in Fig. 4, in TBIM and DFT (VASP).

V4, which leads to a set of equations to be solved. To do
that, we have added to the previously selected set of ordered
structures (A, B, C, . . . ) new structures in order to have
a larger number of values to fit (about 12 ordered phases
for each concentrations). The resolution of the system then
gives the values of the effective pair interactions. Note that
taking into account or not V4 in the system of equations does
not change the values found for V1, V2, and V3. The curves
corresponding to the latter interactions are plotted as dashed
lines in Fig. 7.

In addition, the DFT Vn curves can be extended to both
dilute limits, respectively c → 0 and c → 2, by calculating

FIG. 6. Walsh diagram of ZrH tetrahedrons for the A1.0, F1.0, and
D1.0 structures. The relevant C2v group of symmetries is illustrated at
the top. Only the lower occupied levels are illustrated.

the same interactions Vn now directly from bringing respec-
tively two H impurities in pure Zr bulk and two vacancies in
the ZrH2 compound. These pairs of impurities are taken first
in nth-neighbor positions, then as isolated impurities, using

FIG. 7. Hydrogen-hydrogen pairwise interactions Vi(c) (eV) is-
sued by structure reverse method from DFT calculations compared
to those calculated directly through TB-GPM.
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FIG. 8. Formation energies of the various structures relative to the stablest one, �Eform, reconstructed with effective pair interactions either
calculated directly within TB-GPM (red dashed line) or derived from DFT total energies (blue dashed line) as a function of the actual DFT
calculations. The small solid red and blue symbols refer to the different ordered structures used in the fitting procedure. The large solid red
(open green) dots recall the TB-GPM calculations (exact DFT values) for the previous limited set of structures A, B, C, . . . represented in
Fig. 4.

a reasonably large supercell (to avoid spurious interactions
due to translational symmetry) and choosing a lattice constant
of 4.82 Å, like in the case of GPM calculations. The energy
balance between both configurations then gives directly the
effective pair interaction Vn [51]. As can be seen in Fig. 7,
the pair interaction values obtained in the dilute limits are
perfectly consistent with those derived from DFT energy
calculations in concentrated compounds through the reverse
method.

One can then compare DFT pair interactions to those
directly issued from TB-GPM calculations. This can be
achieved by comparing dashed lines with open symbols to
solid lines with solid symbols in Fig. 7. The first observation
is that the overall trends followed by the different Vn as a
function of concentration are the same, with the GPM values
being shifted by about 20 meV towards smaller energies with
respect to DFT ones. This means that the sequence (Vn − V1)
is found to be almost identical from both DFT and GPM
calculations.

It is worth noticing that the TB-GPM interactions account
for only the chemical-induced contribution to the interstitial-
interstitial interactions, which amounts to neglecting the
strain-induced one which has been shown to be significant
in the case of oxygen and nitrogen ordering [30]. However,
we have checked that this strain effect is much weaker for
a small hydrogen interstitial by allowing atomic displace-
ments in DFT calculations. Indeed, we found that such a
strain relaxation leads to only very small modifications of
both the atomic environment of the interstitial atoms and
the energy balance involved in the effective pair interactions
calculations.

Let us also mention that concentration-independent cluster
expansion is not well defined if interactions in the system are
concentration dependent [52]. In this case, any composition
variation may easily destroy cluster expansion if it leads to
a considerable change in the electronic structure, which ob-
viously cannot be reproduced whatever the cluster expansion
methodology.

One can then wonder to what extent this rigid shift between
TB-GPM and DFT effective pair interactions could affect the
ability of TB-GPM to account for the respective stabilities of
the different ordered structures. To this aim, we plot in Fig. 8
the formation energies relative to the lowest one, denoted
�Eform, calculated from GPM (red dashed line) as a function
of the actual DFT energy values (green diagonal solid line).
As can be seen, the TB-GPM values follow the same trend as
those issued from DFT total energy calculations (green solid
line), consistent with our previous results on the short limited
sequence of ABC · · · structures (recalled in Fig. 8). More pre-
cisely, one finds that �Eform(GPM) 
 α�Eform(DFT), with
α = 1.15 (c = 0.5), 1.2 (c = 1.0), 2 (c = 1.5). For the sake
of comparison we also plot in Fig. 8 the formation energies
calculated with the DFT pair interactions with respect to the
minimal one for all the structures involved in the fit. As can
be seen, the agreement with exact DFT values is satisfactory,
although not perfect, as it would be for the sequence of
formation energies which have, indeed, been fitted.

IV. APPLICATIONS

A. Phase diagram of the ZrHc�2−c system

One can introduce temperature for a preliminary thermo-
statistical exploration of H-vacancy interstitial ordering on the
tetrahedral interstitial sublattice through a standard canonical
Monte Carlo approach. To this aim, we employ here the
H-H pairwise interaction model, derived by CEM from DFT
calculations in Sec. III E. Our study is obviously restricted
to the tetrahedral interstitial sublattice of the fcc ZrHc�2−c

system at fixed lattice parameter a = 4.82 Å: In other words,
that is equivalent to an investigation of the finite temperature
ordering processes of an H-vacancy binary alloy on an sc
rigid lattice. To perform Monte Carlo simulations, we have
used several simulation boxes containing 8000 tetrahedral
interstitial sites, with respective hydrogen concentrations of
0.250, 0.500, 0.750, 1.000, 1.125, 1.250, 1.375, 1.500, 1.625,
1.750, and 1.875. Energy was computed using Eq. (5), with
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FIG. 9. Phase diagram of the ZrHc�2−c system obtained by
Monte Carlo simulation, compared with experimental data [53]. The
Monte Carlo results are displayed by blue solid lines and black
symbols; the experimental ones are displayed by red and yellow
lines. The red line shows the limit of fcc-fct hydride existence
domains.

pairwise interactions Vi(c) fitted to values derived by CEM at
4.82 Å. For each simulation box, we performed a heating up
to 1400 K in steps of 20 K with 8106 Metropolis iterations
at a given temperature. Ordering phenomena were followed
by studying the evolution of hydrogen-hydrogen neighbors up
to third order. The results thus obtained are summarized in
Fig. 9, where they are compared to experimental data. In order
to make this direct comparison possible, we have replaced
our theoretical notations with their experimental counterparts,
namely, ζ , γ , δ, and ε phases for the C0.5, D1.0, C1.5 and ZrH2

structures, respectively.
As can be seen, in the pertinent range of concentration of

our study (1.0 � c � 2.0, corresponding to the experimental
stability domain of the fcc and fct phases), the calculations re-
produce quite well the stability domains of the γ and δ phases
and coexistence domains (γ + δ) and (δ + ε), consistent with
experimental phase boundaries [53]. In addition, note that
even at lower concentrations, recent DFT calculations [54]
have confirmed the stability of the ζ phase built on the fcc
lattice, as predicted by our calculations, at c = 0.5. To go
further and take into account distortions of the fcc lattice,
one will need to introduce stress dependence for pairwise
interactions.

B. Stress impact

Let us illustrate the potential application of this descrip-
tion when the external variation is due to stress. Indeed, up
to now all the calculations have been performed at fixed
lattice parameter a = 4.82 Å. We then studied the impact
of an isotropic deformation of the lattice on the effective
pair interactions, through the lattice parameter exponential

FIG. 10. Stress effect on ordering for c = 1.0 : variation of Vi as
a function of the lattice parameter from TB-GPM calculations.

dependence of hopping integrals in Hamiltonian (1). This is
illustrated at c = 1 in Fig. 10. As can be seen, globally, all
the interactions present an extremum around the value of the
equilibrium lattice parameter and decrease (in absolute value)
for both dilation and compression. This decrease is more
abrupt on the compressive side. In spite of these variations,
the V3 interaction remains the leading interaction whatever
the deformation. Such behavior does not change the c = 0.5
and c = 1.5 sequences but tends to a stabilization of F1.0 at
c = 1.0. This observation can be followed by the variation of
the formation energies of the different ordered structures as a
function of the lattice parameter, plotted in Fig. 11 (left-hand
side).

In order to confirm the ability of our model to account for
the stress effect on ordering, we have once again performed
DFT calculations to determine the evolution of the total
energy as a function of lattice deformation, in the case c = 1.
This leads to the results plotted in Fig. 11 (right-hand side),
in which we draw the variation of the stability energies of the
different ordered phases either reconstructed from TB-GPM
pair interactions or directly calculated from DFT calculations.
As can be seen in Fig. 11, the DFT calculations confirm
semiquantitatively the main results of TB-GPM calculations:

(i) The overall stability sequences remain unchanged
whatever the deformation.

(ii) The D1.0 structure remains the most stable one what-
ever the deformation except for the very strong compressions
which stabilize the F1.0 one (in particular in the TB-GPM
description).

(iii) The overall behavior as a function of deformation is
the same, passing through a maximum (which is shifted by
1 Å between both approaches) with a low decrease on the
dilation side and a sharp one on the compressive side.
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FIG. 11. Variation of the formation energies of the A1.0, B1.0, C1.0, E1.0, and F1.0 structures referred to the D1.0 one as a function of the
lattice parameter, either reconstructed from the TB-GPM pair interactions of Fig. 10 (left) or directly calculated through DFT (right).

V. CONCLUSION

To summarize, we have presented here a TB-GPM method
which allows us to calculate directly the cluster interactions
involved in the configurational energy of metal hydrides and
to characterize their concentration and stress dependence.
Such a method therefore gives a useful guide to identify the
relevant cluster interactions (leading terms, range) to take
into account in the widely used cluster expansion method
to derive interactions from DFT total energy calculations
in order to study ordering processes in interstitial metallic
hydrides through appropriate thermostatistical simulations.
In the particular case of the Zr-H system, one finds that
(i) multiplet interactions can be neglected beyond pair in-
teractions, (ii) these pair interactions are negligible beyond
fourth H-H neighbors, (iii) the predominant interaction is that
between third neighbors V3, and (iv) a hydrogen atom tends
to be surrounded by vacancies in the first-order neighbor-
hood and hydrogen atoms in the second, third, and fourth

neighborhoods. These results have been quantitatively con-
firmed by comparison to DFT calculations and qualitatively
interpreted through orbital symmetry arguments. This so-
determined hierarchy of multiplet interactions gave us an
alternative way to derive these pair interactions from DFT
calculations by using a cluster expansion method. These
DFT-CEM pair interactions were then used in Monte Carlo
simulations to determine a ZrH phase diagram which is found
to be in quite good agreement with experimental observa-
tions. Finally, we have characterized the effect of isotropic
stress on the TB-GPM pair interactions, which revealed
an impact focused on V3, leading to a possible structural
transition.
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