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Abstract

A series of D--A chromophores based on allylidenemalononitrile electron-withdrawing 

group was designed. The influence of the amino-electron-donating group on the 

photophysical properties was studied. These compounds, highly thermally stable, exhibit 

orange-red emission in solution and in solid state. The experimental results have been 

rationalized by theoretical DFT calculations. The second order nonlinear optical properties 

were also studied using the electric field induced second harmonic generation (EFISH) 

method. 

Keywords: allylidenemalononitrile; NIR emission; push-pull; triphenylamine; Intramolecular 

charge transfer (ICT), DFT calculations. 

1. Introduction

During the last three decades there has been a great interest for the development of organic 

structures presenting intramolecular charge transfer (ICT). These compounds are based on an 

electron-donating group D linked to an electron accepting part A via a -conjugated bridge 

(D--A structure, also called push-pull compounds). Push-pull structures have been 

extensively used for their optoelectronic properties [1].

Many push-pull derivatives exhibit fluorescence properties in solution. The emission 

properties can be easily tuned by modification of one of the three parts of the D--A structure 

[2]. An increase of the ICT will lead to red-shift of absorption and emission spectra [3]. 

However aggregation caused quenching (ACQ) often occurs mainly due to non-radiative 

processes and face to face - intermolecular interactions in solid state [4]. Triphenylamine 
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and nitrile–rich push-pull chromophores are however known to be good solid-state 

fluorophores [5,6], with applications ranging from OLEDs [7], solid state lasers [8], and 

luminescent sensors [9].  

The D--A structure is also typical of second order nonlinear optical (NLO) chromophores 

[10]. Second order NLOphores were extensively used for second harmonic generation, this 

permits for example to obtain blue/green laser from red sources [11]. Optical signal process 

and optical data storage application can be based on second order NLO phenomenon [12]. For 

push-pull derivatives, the NLO response is closely related to ICT.

Compounds with 1,1-dicyano-2,4-diaryl-1,3-butadiene scaffold are known for their bright 

strong color useful for textile dying [13]. When substituted by electron-donating groups these 

compounds exhibit interesting NLO properties [14]. Recently, such structures have been used 

for recognition of serum albumin in urine and imaging in living cells [15]. Sekar and 

coworkers have recently demonstrated that in case of substitution by two amino groups in 

para position of both phenyls in 1,1-dicyano-2,4-diphenyl-1,3-butadiene, the ICT occurs from 

the amino group of phenyl in C4 position to both cyano groups [16].

In this contribution we will describe the photophysical properties, including solid state 

emission, of a series of 1,1-dicyano-2,4-diaryl-1,3-butadiene derivatives 3a-d that are 

substituted by various amino groups on both side (Scheme 1). Rationalization of experimental 

results will be performed with the help of (TD-)DFT calculations. 
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Chart 1.   

2. Experimental 

2.1.  Materials and instrumentation

The chemicals used in the synthesis of all compounds were obtained from Aldrich Chemical 

Company (USA) and were used without further purification. Compound 1 was obtained 

according to reported procedure [17]. All solvents used were of analytical grade. Solvents were 

dried according to standard procedures. All reactions were magnetically stirred and monitored by 

thin-layer chromatography (TLC) using Merck silica gel (60 F254) plates (0.25 mm) and 

visualized with Ultraviolet light. FT-IR (ATR) spectra were recorded on Thermo Scientific 

Nicolet iS5 FTIR Spectrometer (Gazi University Department of Chemistry, Turkey) in KBr (ν, 

in cm-1). 1H NMR and 13C spectra were recorded on a Bruker Ultrashield (1H:400 MHz, 13C 100 

MHz) spectrometer (Hacettepe University, Department of Chemistry, Turkey) in DMSO-d6. 

Chemical shifts are expressed in δ units (ppm) with tetramethylsilane (TMS) as the internal 

reference. Coupling constants (J) are given in hertz (Hz). Signals are abbreviated as follows: 

singlet, s; doublet, d; doublet-doublet, dd; triplet, t; multiplet, m. All melting points are 

uncorrected and in degrees Celsius (ºC) (Electrothermal 9200 melting point apparatus). High-
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resolution mass spectra (HRMS) were recorded at Gazi University, Faculty of Pharmacy, Turkey 

using electron ionization (EI) mass spectrometry Waters-LCT-Premier-XE-LTOF (TOF-MS) 

instruments in m/z (rel. %).  Absorption and photoluminescence spectra were recorded on a Spex 

Fluoromax-3 Jobin-Yvon Horiba spectrophotometer (at IUT Lannion, University of Rennes 1, 

France). Compounds were excited at their absorption maxima (band of lowest energy) to record 

the emission spectra. Fluorescence quatum yield ( 10%) were determined relative to 9-10-

bis(phenylethynyl)anthracene in cyclohexane (F = 1.00) according to known procedure [18]. 

Experimental details on EFISH measurements are described elsewhere [19].

  

2.2. Computational details

The ground state geometries of compounds 3a-d were carried out at B3LYP/6311g(d) level by 

using Density Functional Theory (DFT) [20]. The absorption spectra were calculated by using 

time-dependent DFT (TD-DFT) method. The first excited state geometries of the compounds 

were also calculated within TD-DFT methods. In all calculations, CHCl3 was used polarizable 

continuum model (PCM) [21]. The calculations were performed using the Gaussian 09 

package program [22].

2.3.  Synthesis and characterization

 

2-(1-(4-(diphenylamino)phenyl)ethylidene)malononitrile (2) [16]. A mixture of 1 (1 mmol)  

and malononitrile (1 mmol) in a NH4AcO/AcOH buffer 10 ml were irradiated in a microwave 

at 120°C, 300 W for 4 min. Then the crude was cooled in an ice bath. The residue was washed 

several times with ethanol in order to get rid of acetic acid. The crude compound was purified 

by recrystallization form ethanol to provide compound 2 as orange crystal, Yield: (1.1 g,  
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94%). m.p: 163-165°C. FTIR (KBr, υ cm-1): 3047, 2216, 1585, 1557, 1489, 1318. 1H NMR 

(400 MHz, DMSO-d6) δ 7.66 (d, J = 8.7 Hz, 2H), 7.44-7.40 (m, 4H), 7.25-7.18 (m, 6H), 6.86 

(d, J = 8.7 Hz, 2H), 2.57 (s, 3H). 13C NMR (100 MHz, DMSO-d6): 174.9, 151.8, 145.9, 

130.5, 127.0, 126.8, 125.9, 118.4, 115.0, 114.7, 79.0, 23.9. 

General procedure for the preparation of dyes 3a-d: A mixture consisting of 2 (0.6 mmol) 

and different aldehydes (0.6 mmol) was dissolved in ethanol (10 ml), piperidine (0.1 mL) was 

then added, and this reaction mass was allowed to stir at room temperature for 12 hours under 

nitrogen. On completion of the reaction(TLC control), the mass was poured over water to give 

a crude product. The crude mass was filtered, washed with a small volume of ethanol, and 

dried.  This crude product was further purified by column chromatography using silica gel 

(120-200 mesh) with toluene as eluent. 

(E)-2-(1,3-bis(4-(diphenylamino)phenyl)allylidene)malononitrile  (3a) [16] : Dark Red solid, 

Yield: (418 mg, 71%). m.p: 176-178 °C. FTIR (KBr, υ cm-1): 3033, 2210, 1573, 1480, 1330. 

1H NMR (400 MHz, DMSO-d6) δ 7.59 (d, J = 7.9 Hz, 2H), 7.45 – 7.35 (m, 10H), 7.31 (d, J = 

16.0 Hz, 1H), 7.25-7.15 (m, 8H), 7.15-7.10 (m, 4H), 7.01 (d, J = 16.0 Hz, 1H), 6.93 (d, J = 

7.6 Hz, 2H), 6.86 (d, J = 7.4 Hz, 2H) . HRMS (m/z), (M+H)+: C42H31N4, calculated: 591.2543 

; found: 591.2547

(E)-2-(4-(diphenylamino)phenyl)-(9-ethyl-9H-carbazol-3-yl)allylidene)malononitrile (3b): 

Red orange solid , Yield: (313 mg, 69%). m.p = 180-182 °C. FTIR (KBr, υ cm-1): 3041, 2969, 

2216, 1580, 1484. 1H NMR (400 MHz, DMSO-d6) δ 8.58 (s, 1H), 8.24 (d, J = 7.7 Hz, 1H), 

7.89 (d, J = 8.6 Hz, 1H), 7.72 – 7.66 (m, 2H), 7.56 (d, J = 15.2 Hz, 1H), 7.54-7.49 (m, 1H) 

7.45 – 7.42 (m, 6H), 7.31 (d, J = 15.2 Hz, 1H), 7.33 – 7.15 (m, 6H), 7.15 – 7.11 (m 1H), 6.98 
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(d, J = 8.1 Hz, 2H), 4.48 (q, J = 6.9 Hz, 2H), 1.32 (t, J = 6.8 Hz, 3H).13C NMR (100 MHz, 

DMSO-d6) δ 171.6, 151.2, 150.8, 146.4, 142.1, 140.6, 131.7, 130.5, 127.1, 127.0 (2C), 126.5, 

126.0, 125.5, 125.3, 123.9, 123.4, 122.7, 121.6, 121.4, 120.4, 119.3, 115.7, 114.9, 110.6, 

110.3, 76.1, 37.9, 14.2. HRMS (m/z), (M+H)+: C38H29N4, calculated: 541.2387; found: 

541.2375.

(E)-2-(4-(diphenylamino)phenyl)-3-(4-morpholinophenyl)allylidene)malononitrile (3c): 

brown solid, Yield: (300 mg, 59%). m.p = 165-167 °C. FTIR (KBr, υ cm-1): 3031, 2841, 

2215, 1577, 1472. 1H NMR (300 MHz, CDCl3) d 7.48 (d, J = 8.8 Hz, 2H), 7.41-7.31 (m, 6H), 

7.26-7.12 (m, 7H), 7.06 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 15.4 Hz, 1H), 6.86 (d, J = 8.8 Hz, 

2H), 3.86 (t, J = 4.5 Hz, 4H), 3.31(t, J = 4.5 Hz, 4H). , 13C NMR (100 MHz, DMSO-d6) δ 

170.7, 153.2, 150.1, 149.2, 145.8, 131.1, 131.0, 129.9, 125.9, 124.9, 124.8, 124.0 119.5, 

118.9, 115.3, 114.5, 113.8, 74.7, 65.8, 46.6. HRMS (m/z), (M+H)+: C34H29N4O, calculated: 

509.2336; found: 509.2324.

 

(E)-2-(4-(diphenylamino)phenyl)-3-(4-(pyrrolidin)phenyl)allylidene)malononitrile (3d): 

Bronze solid, Yield: (450 mg, 92%). m.p =150-152 °C. FTIR (KBr, υ cm-1): 3000, 2868, 

2204, 1569, 1474. 1H NMR (400 MHz, DMSO-d6) δ 7.55 (d, J = 8.8 Hz, 2H), 7.41 (t, J = 7.8 

Hz, 4H), 7.34 (d, J = 8.6 Hz, 2H), 7.24 – 7.16 (m, 7H), 6.99 (d, J = 15.9, Hz, 1H),  6.96 (d, J 

= 8.8 Hz, 2H),6.61 (d, J = 8.8 Hz, 2H), 3.31 (s, 4H), 1.97 (s, 4H). HRMS (m/z), (M+H)+: 

C34H29N4, calculated: 493.2387; found: 493.2369.
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3. Results and discussion

3.1.  Synthesis

The synthesis of compounds 3a-d is presented in Scheme 1. At the first step 1-(4-

(diphenylamino)phenyl)ethan-1-one (1) was converted to 2-(1-(4-(diphenylamino)phenyl) 

ethylidene)malononitrile (2) in the presence of NH4OAc/AcOH using microwave irradiation 

(MWI) by improved synthetic methods with higher yield [16]. Final products (3a-d) were 

synthesized by the piperidine-catalyzed condensation reaction of 2 and corresponding 

aldehydes in boiling ethanol. The structures of the synthesized dyes were confirmed by FTIR, 

NMR, and mass spectroscopic techniques. The 1H NMR spectra demonstrated that all 

compounds have a vinylic coupling constant (JHH =15-16 Hz) of the olefinic protons, 

confirming that only the formation of E stereoisomer could be detected.

Scheme 1. Synthesis of 1,1-dicyano-2,4-diaryl-1,3-butadiene derivatives (3a-d). (i) 

malononitrile, NH4OAc/AcOH, MWI (ii) Q-CHO, ethanol, piperidine. 
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3.2.  Linear optical properties

The UV/Vis and photoluminescence (PL) spectroscopic data of compounds 3a-d measured in 

CHCl3 at room temperature are presented in Table 1. The normalized UV/Vis and PL spectra 

are shown in Figure 1. All compounds exhibit two absorption bands: one located around 300 

nm and a second one, attributed to charge transfer -* transition, in the 450-510 nm range. 

Diphenylamino and pyrrolidinyl derivatives 3a and 3d exhibit significantly red-shifted 

absorption with regard to carbazole and morpholine substituted compounds 3b and 3c. A 

significant hyperchromism can be observed for the charge transfer absorption band of 3d with 

molar extinction coefficient that is 2-1.5 times higher than those of chromophores 3a-c. In 

chloroform solution, compounds 3a-d exhibit orange-red emission with moderate quantum 

yield (ΦF) (below 0.10). The emission maximum of compound 3d is significantly blue-shifted 

with regards to compounds 3a-c. The pyrrolidinyl derivatives 3d exhibit therefore a 

significantly lower stokes shift which may be explained by a lower steric hindrance with the 

pyrrolidine fragment, decreasing the torsional twist of the amino group in ground state. The 

diphenylamino derivative 3a (F = 0.10) exhibits the highest quantum yield. According to the 

literature data for the analogue of compound 3a without NPh2 substituent on phenyl ring in 

the C2 position [23]. it appears that this diphenylamino group induces a blue shift in 

absorption (9 nm) but a red-shift (25 nm) in emission. 
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Table 1. UV-Vis absorption and photoluminescence (PL) data of compounds 3a-d in 
CHCl3 solution 
Compound abs (nm)  (mM-1 

cm-1)
em 

(nm)
F Stokes Shift 

(cm-1)
Brightness 
(mM-1 cm-1)

3a 304, 493 40.5, 49.0 644 0.10 4760 4.9

3b 297, 456 31.7, 36.1 654 0.046 6640 1.7

3c 299, 461 24.4, 36.2 659 0.044 6520 1.6

3d 303, 507 40.4, 72.2 594 0.023 2890 1.7

Fig. 1. Normalized absorption (solid lines) and emission (dashed lines) spectra of compounds 

3a-d in chloroform solution.

It is well known that fluorophores presenting ICT exhibit intense positive solvatochromism 

whereas their absorption spectra are less affected by the solvent [24]. Indeed highly polar 

excited states of push-pull chromophores are stabilized by polar solvents. The emission 

spectra of compounds 3a-d were therefore registered is a series of aprotic solvents of 
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increasing polarity. The results are presented in Table 2. As an example the normalized 

spectra of compound 3a are shown in Figure 2. For all compounds, as expected a large 

positive emission solvatochromism is observed. It should be noted that in the case of 

compounds 3a-c the emission is fully quenched in solvent of higher polarity than DCM. 

Emission in acetone and MeCN can be however detected in the case of compound 3d.  For all 

compounds, this is in chlorinated solvents (CHCl3 or DCM) that the emission intensity is the 

highest (Figures S19-21). For all compounds, the emission maxima were plotted versus the 

Reichardt polarity parameter [25]. (Figure S22), and in all cases, a good linearity is observed. 

Once again the peculiar behavior of pyrrolidinyl derivative 3d can be observed with a 

significantly lower value of the slope of the corresponding regression line. This may indicate 

a lower contribution from twisted intramolecular charge transfer (TICT) than for 3a-c.      

Table 2.  Emission solvatochromism of compounds 3a-d in various aprotic solvents. 

Compound
ET30 

(kcal/mol)

n-
heptane

30.9

Toluene

33.9

1,4-
dioxane

36.0

THF

37.4

CHCl3

39.1

DCM

40.7

Acetone

42.2

MeCN

45.6

Solid 
State 

(powder)
3a 555 589 606 650 644 673 -a -a 657

3b 550 587 620 667 654 694 -a -a 663

3c 538 580 602 607 659 697 -a -a 688

3d 539 567 577 605 594 607 623 628 706

ano emission detected
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Fig. 2.  Normalized emission spectra of 3a in different aprotic solvents

All compounds also exhibit strong red-near infrared emission in solid state (powder) (Figures 

3 and 4). Compound 3d is the most red-shifted with em = 706 nm. The emission spectra of 

compounds 3b and 3c are significantly broader with full half width maximum (FHWM) 

around 3500 cm-1 in both cases.
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Fig. 3.   Normalized solid state (powder) spectra of compounds 3a-d.

Fig. 4.  Emission of compound 3a and 3c in solid state (powder). Photograph was taken in the 

dark upon irradiation with a hand-held UV lamp (em = 366 nm) 

3.3. Theoretical calculation

In order to rationalize experimental results, (TD)-DFT calculation has been performed. The 

optimized ground and excited state geometries of compounds 3a-d are presented in Figure 5. 

In ground state geometries, a small twist angle between the dicyanomethylene and the aryl 
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groups in C4 position of the 1,1-dicyano-1,3-butadiene fragment was observed as 16.41o for 

compound 3a, 17.18o for compound 3b, 14.89o for compound 3, 15.65o for compound 3d.  In 

excited state, the dicyanomethylene and the aryl  groups in C4 position became more planar 

with a smaller twist angle in the range of 0.19-1.1o and the phenyl ring of triphenylamine 

became nearly perpendicular to the plane the dicyanomethylene with the dihedral around 88o 

for all compounds. For compound 3d the dihedral angle between the pyrrolidine fragment and 

the adjacent phenyl ring is of 3.96° and 6.07° in ground and excited states, respectively. On 

the other hand for compound 3c, the morpholine moiety is twisted of 12.38°, and 45.46° in 

ground and excited state. This is in accordance with the lower Stokes shift and less extended 

emission solvatochromism observed experimentally for compound 3d
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Fig. 5.  The optimized geometries of compounds 3a-d in ground and excited state at 

B3LYP/6311g(d) in CHCl3. 

 

The absorption and emission maxima obtained from TD-DFT calculations in CHCl3 on the 

ground and first excited states, respectively, are given in Table 3. The absorption maxima of 

compounds 3a and 3d appear to be higher than compounds 3b and 3c in accordance with 

experimental results. TD-DFT calculations on the first excited state reproduce well the 

emission band observed for compound 3a. However, for compounds 3b-d the calculated 
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emission maxima are significantly blue-shifted with regards to experimental data. The 

molecular orbitals (HOMO-1 and LUMO) related to the main peak in absorption and emission 

spectra were illustrated in Figure 6. It can be clearly observed that the electron densities shift 

from the amino groups in C4 position of the 1,1-dicyano-1,3-butadiene fragment to the 

dicyanomethylene through vinyl bridge, and there is no contribution from the triphenylamine 

in C2 position.

Table 3. The absorption and emission spectra data obtained from TD-DFT calculations in 

CHCl3 for compounds 3a-d.

Absorbance Emission

λmax
abs

.
f Transitions Contribution   

(%)

λmax
em

.
f Transitions Contribution 

(%)

524 0.8014 HOMO-1→LUMO
   HOMO→LUMO

92.2
7.2

637 0.9004 HOMO-1→LUMO 99.4
3a

353 0.3899   HOMO-2→ HOMO
 HOMO-1→LUMO+1

90.7
5.1

473 0.758 HOMO-1→LUMO 96.5 516 1.021 HOMO-1→LUMO 97.3

3b 338 0.2722 HOMO-3→LUMO
 HOMO→ HOMO+1
HOMO→LUMO+2
HOMO→LUMO+3

20.9
52.9
20.5
2.2

464 1.0793 HOMO-1→LUMO 98.4 495 1.4144 HOMO-1→LUMO 99.6

3c 332 0.3908 HOMO-3→LUMO
HOMO-2→LUMO
HOMO→LUMO+1
HOMO→LUMO+2

4.3
22.9
53.3
10.9

482 1.0694 HOMO-1→LUMO
   HOMO→LUMO

94.1
5.7

512 1.5699 HOMO-1→LUMO 99.9

3d 332 0.4113  HOMO-2→LUMO
HOMO-1→LUMO+1

  HOMO-1→LUMO+2
 HOMO→LUMO+1
 HOMO→LUMO+2

15.4
9.6
3.1
52.5
13.1
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Fig. 6.  The molecular orbitals of compounds 3a-d in ground and excited state.

3.4. Second order NLO properties

The second order NLO properties have been studied in chloroform solution by the electric-

field induced second harmonic generation (EFISH) method at a non-resonant incident 

wavelength of 1907 nm. The second harmonic at  = 953 nm is therefore well clear of the 

absorption bands of the chromophores. This method provides the NLO response as the scalar 

product between the permanent dipole moment of the molecule  in fundamental state and the 𝜇

vector component of  described as // [26]. The two levels corrected µ values (µ0) have 

been also calculated [27]. The results are presented in Table 4. It should be noted that positive 

µ values are obtained indicating that both ground and excited states are polarized in the same 

direction and that the excited state is more polarized than ground state, in accordance with the 

observed positive emission solvatochromism. Relatively high µ0 values, higher to diperse 
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Red 1 (DR1), generally unsed as reference, are observed in all cases. In accordance with the 

red-shifted absorption maxima observed for 3d, indicating a stronger ICT, this compound 

exhibits the highest NLO response. The results show that the compounds have comparable 

NLO response while comparing with counterparts [14]. 

Table 4. Results for EFISH measurements for compounds 3a-d.

3a 3b 3c 3d DR1[28]

µ (10-48 

esu)a

950 900 800 1300 740

µ0 (10-48 

esu)b

650 650 580 870 490

aµ(2) at 1907 nm in CHCl3. Molecular concentrations used for the measurements were in 
the range of 10-3 to 10-2 M, µ  10% bTwo level corrected µ values (µ0) [26]. 

3.5. Thermal stability

In order to study the thermal stability of these chromophores, thermogravimetric analyses 

(TGA) were performed. As depicted from Fig 7, all compounds do not exhibit any significant 

weight loss weight up to 300 oC. More precisely, the onset decomposition temperature (Td) of 

compounds 3a-d are 347 °C (96%), 340 °C (97%), 352 °C (95%) and 339 °C (94%), 

respectively. These series of chromophores exhibit  high thermal stability, which is 

compatible with the applied material fabrication process. 
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Fig. 7. TGA curves of chromophores 3a-d under nitrogen gas in the temperature range of 25-

600 °C at a heating rate of 10 °C min-1.

4. Conclusion

In summary, a series of four 1,1-dicyano-2,4-diaryl-1,3-butadiene bearing various amino 

electron-donating moieties in C4 position was designed. These compounds, highly thermally 

stable, exhibit orange-red emission in chloroform solution in solid state. These compounds 

exhibit intense positive emission solvatochromism in aprotic solvents, which is characteristic 

of ICT. The pyrrolidine derivative, that displays the most red-shifted absorption band, exhibits 

the strongest ICT which is attributed a more planar structure either in ground and excited 

state, due to reduced steric hindrance. This compound exhibits the highest NLO response of 

this series.  This series of chromophores that can be easily synthesized in gram scale and 
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exhibit interesting NLO response have potential interest in the conception of materials for 

optical data processing. 
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CAPTIONS

Scheme Captions

Scheme 1. Synthesis of 1,1-dicyano-2,4-diaryl-1,3-butadiene derivatives (3a-d). (i) 

malononitrile, NH4OAc/AcOH, MWI (ii) Q-CHO, ethanol, piperidine. 

Figure Captions

Fig. 1. Normalized absorption (solid lines) and emission (dashed lines) spectra of compounds 

3a-d in chloroform solution

Fig. 2.  Normalized emission spectra of 3a in different aprotic solvents

Fig. 3.   Normalized solid state (powder) spectra of compounds 3a-d.

Fig. 4.  Emission of compound 3a and 3c in solid state (powder). Photograph was taken in the 

dark upon irradiation with a hand-held UV lamp (em = 366 nm) 

Fig. 5.  The optimized geometries of compounds 3a-d in ground and excited state at 

B3LYP/6311g(d) in CHCl3. 

Fig. 6.  The molecular orbitals of compounds 3a-d in ground and excited state.

Fig. 7. TGA curves of chromophores 3a-d under nitrogen gas in the temperature range of 25-

600 °C at a heating rate of 10 °C min-1.

Table Captions

Table 1. UV-Vis and photoluminescence (PL) data of compounds 3a-d in 

CHCl3 solution 

Table  2.  Emission solvatochromism of compounds 3a-d in various aprotic solvents. 

Table 3. The absorption and emission spectra data obtained from TD-DFT calculations in 

CHCl3 for compounds 3a-d.

Table 4. Results for EFISH measurements for compounds 3a-d.
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 A series of allylidenemalononitrile push-pull chromophores were designed and 

synthesized.

 These compounds display orange-red emission both in chloroform solution and in 

solid-state.

 µ0 second-order NLO response up to 870  10-48 esu were obtained.×

 These series of chromophores exhibit high thermal stability


