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Abstract. We introduce a new signature scheme, SQISign, (for Short
Quaternion and Isogeny Signature) from isogeny graphs of supersingular
elliptic curves. The signature scheme is derived from a new one-round, high
soundness, interactive identification protocol. Targeting the post-quantum
NIST-1 level of security, our implementation results in signatures of 204
bytes, secret keys of 16 bytes and public keys of 64 bytes. In particular,
the signature and public key sizes combined are an order of magnitude
smaller than all other post-quantum signature schemes. On a modern
workstation, our implementation in C takes 0.6s for key generation, 2.5s
for signing, and 50ms for verification.
While the soundness of the identification protocol follows from classical
assumptions, the zero-knowledge property relies on the second main
contribution of this paper. We introduce a new algorithm to find an
isogeny path connecting two given supersingular elliptic curves of known
endomorphism rings. A previous algorithm to solve this problem, due
to Kohel, Lauter, Petit and Tignol, systematically reveals paths from
the input curves to a ‘special’ curve. This leakage would break the zero-
knowledge property of the protocol. Our algorithm does not directly
reveal such a path, and subject to a new computational assumption, we
prove that the resulting identification protocol is zero-knowledge.

Keywords: Post-quantum · Signatures · Isogenies.

1 Introduction

Isogeny-based cryptography has existed since at least the work of Couveignes
in 1997 [15] and has developed significantly in the last decade due to increasing
interest in post-quantum cryptography. The CGL hash function of [11] and the
SIDH key exchange proposed in [30] have put isogenies between supersingular
elliptic curves at the center of attention. The security of these schemes relies on
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the hardness of finding a path in the `-isogeny supersingular graph between two
given vertices. This problem is believed to be hard for both classical and quantum
computers. This assumption was studied by Kohel, Lauter, Petit and Tignol, who
in [33] introduced a new algorithm (often called KLPT in the litterature) that
solves the quaternion analog of the `-isogeny path problem under the Deuring
correspondence. This algorithm revealed its full potential in [25], leading to
several reductions between computational problems related to isogenies between
supersingular curves, most notably a heuristic security reduction between the
`-isogeny path problem and the endomorphism ring computation.

In parallel to these cryptanalytic efforts, isogeny-based cryptography has
continued to develop with several new proposals. We can mention CSIDH [10], an
efficient reinterpretation of Couveignes’ idea using supersingular elliptic curves
defined over Fp. Another active area of research has been isogeny-based signature
schemes, see for instance [52,28,18,19,6].

Galbraith, Petit and Silva’s signature scheme [28] (also known as GPS) was
the first constructive cryptographic application of the KLPT algorithm. However,
their work remains mainly theoretical and, to this day, we are not aware of any
implementation of their scheme. We follow in the footsteps of GPS by introducing
a new signature scheme based on the quaternion `-isogeny path problem. Indeed,
GPS relies on the KLPT algorithm for so-called “special” maximal orders (the
main focus of [33]), whereas our protocol requires a new variant of KLPT working
for arbitrary maximal orders, which we introduce here.

The contributions of this paper can be summarized as follows:

– A new interactive identification protocol and the resulting signature scheme
based on a generic algorithm for the quaternion `-isogeny path problem.

– A new generic KLPT algorithm, suited for our signature scheme, which
produces a smaller output than the existing algorithm of [33].

– A proof of the interpretation of Eichler orders and their class sets under the
Deuring correspondence, and its application to the analysis of the output of
our algorithm. This leads us to a natural security assumption from which
we prove zero-knowledge of the identification scheme, and consequently
unforgeability of the signature scheme.

– New algorithms for the efficient instantiation of the protocol, along with pa-
rameters targeting the NIST-1 level of post-quantum security, and a complete
implementation of our signature scheme in both C and Magma.

The remainder of this paper is organized as follows. Section 2 contains
preliminaries on elliptic curves and quaternion algebras. Section 3 sketches our
new protocols along with some proofs. Section 4 lays out the mathematical
background on Eichler orders necessary for the rest of the paper. Section 5 gives
a generic description of our new Generalized KLPT algorithm. Section 6 provides
the generic variant used in our protocols. Section 7 studies the zero knowledge
property of the identification scheme. Finally, Section 8 provides algorithms for
efficient implementation of the schemes.
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2 Preliminaries

Throughout this work, p is a prime number and Fq is a finite field of size q, where
q is a power of p. We are interested in supersingular elliptic curves over Fq = Fp2 ,
in an isogeny class such that the full endomorphism ring is defined over Fq.

A negligible function f : Z>0 → R>0 is a function whose growth is bounded
by O(x−n) for all n > 0. In the analysis of a probabilistic algorithm, we say that
an event happens with overwhelming probability if its probability of failure is
a negligible function of the length of the input. We say that a distinguishing
problem is hard when any probabilistic polynomial-time distinguisher has a
negligible advantage with respect to the length of the instance. Two distributions
are computationally indistinguishable if their associated distinguishing problem
is hard.

2.1 Supersingular elliptic curves and isogenies

Isogenies An isogeny ϕ : E1 → E2 is a non-constant morphism sending the
identity of E1 to that of E2. The degree of an isogeny is its degree as a rational
map (see [43] for more details). When the degree deg(ϕ) = d is coprime to p, the
isogeny is necessarily separable. An isogeny induces a homomorphism of groups
E1(K) → E2(K) and, if separable, the kernel of ϕ is a group of order d. Such
an isogeny is entirely described by its kernel, meaning that there is a one-to-one
correspondence between separable isogenies (up to an isomorphism of the target
curve) and finite subgroups of E(K). The isogeny can be computed from its kernel
G using Vélu’s formula [47], in this case we write ϕ : E → E/G. The degree of
ϕ ◦ ψ is equal to deg(ϕ) deg(ψ). For any isogeny ϕ of degree d =

∏n
i=1 p

ei
i , ϕ can

be factored as the composition of ei isogenies of degree pi for i = 1 to n. For any
isogeny ϕ : E1 → E2, there exists a unique dual isogeny ϕ̂ : E2 → E1, satisfying
ϕ ◦ ϕ̂ = [deg(ϕ)], the multiplication by deg(ϕ) map on E2. Similarly ϕ̂ ◦ ϕ is the
multiplication-by-deg(ϕ) map on E1.

Endomorphism ring An isogeny from a curve E to itself is called an endo-
morphism. For each k in Z, the multiplication-by-k map [k] is an endomorphism.
The set End(E) of all endomorphisms of E forms a ring under addition and com-
position, whose unit group Aut(E) consists of the endomorphims of degree 1. For
elliptic curves defined over a finite field Fq, the Frobenius map π : (x, y) 7→ (xq, yq)
is an endomorphism, which generates a subring Z[π], and End(E) is isomorphic
either to an order of a quadratic imaginary field or a maximal order in a quater-
nion algebra. In the first case, the curve is said to be ordinary and otherwise
supersingular [43]. We focus on the supersingular case in this article.

Supersingular elliptic curves and `-isogeny graphs Every supersingular
elliptic curve defined over a field of characteristic p admits an isomorphic rep-
resentative defined over Fp2 . The supersingular `-isogeny graph is the graph
whose vertices are the supersingular j-invariants in Fp2 , and whose edges are the
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`-isogenies between them. These graphs are connected (see [32,40]), essentially
undirected (away from j = 0, 123) since each `-isogeny has a dual, (`+ 1)-regular
(there are exactly ` + 1 outgoing edges from each j-invariant), and Ramanu-
jan [41] (see [29] for applications of expander and Ramanujan graphs, and [11] for
their cryptographic applications). An important consequence of the Ramanujan
property is that random walks in the graph quickly converge to the uniform
distribution.

2.2 Quaternion algebras

For a, b ∈ Q? we denote by H(a, b) = Q+ iQ+ jQ+ kQ the quaternion algebra
over Q with basis 1, i, j, k such that i2 = a, j2 = b and k = ij = −ji. We are
interested in Bp,∞, the unique quaternion algebra (up to isomorphism) ramified
exactly at p and∞, since the endomorphism ring of a supersingular elliptic curve
over Fp2 is isomorphic to a maximal order of Bp,∞. When p ≡ 3 mod 4 we have
Bp,∞ = H(−1,−p). Every quaternion algebra has a canonical involution that
sends an element α = a1+a2i+a3j+a4k to its conjugate α = a1−a2i−a3j−a4k.
We define the reduced trace and the reduced norm by tr(α) = α + α and
n(α) = αα. This norm is multiplicative and the induced inner product

(α, β) 7→ 1

2
(n(α+ β)− n(α)− n(β))

is positive definite with orthogonal basis {1, i, j, k}.

Orders and Ideals A fractional ideal I is a Z-lattice of rank four, meaning
that I = α1Z+α2Z+α3Z+α4Z with 〈α1, α2, α3, α4〉 a basis of Bp,∞. We denote
by n(I) the norm of I, defined as the Z-module generated by the reduced norms
of the elements of I. Given fractional ideals I and J , if J ⊆ I then the index
[I : J ] is defined to be the order of the finite quotient group I/J .

An order O is a subring of Bp,∞ that is also a fractional ideal. Elements of
an order O are said to be integral, since they have reduced norm and trace in Z.
The discriminant of O is defined as disc(O) =

√
det((αi, αj))i,j∈{1,2,3,4} given a

basis 〈α1, α2, α3, α4〉 of O; disc(O) ∈ Z and is independant of a choice of basis.
An order is called maximal when it is not contained in any other larger order. A
suborder O of O is an order of rank 4 contained in O. If N = [O : O] then the
discriminant of O satisfies disc(O) = N2 disc(O).

The left order of a fractional ideal is defined as OL(I) = {α ∈ Bp,∞ | αI ⊂ I}
and similarly for the right order OR(I). Then I is said to be a left fractional
ideal of OL(I). A fractional ideal is integral if it is contained in its left order, or
equivalently in its right order; we refer to integral ideals hereafter as ideals. An
integral ideal of integer norm and can be written as I = OL(I)α+OL(I)n(I) for
some α ∈ OL(I), and similarly for OR(I). We simplify this notation by writing
Oα+ON = O〈α,N〉 for any order O.

The product IJ of ideals I and J satisfying OR(I) = OL(J) is the ideal
generated by the products of pairs in I × J . It follows that IJ is also an
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(integral) ideal and OL(IJ) = OL(I) and OR(IJ) = OR(J). The ideal norm is
multiplicative with respect to ideal products. An ideal I is invertible if there
exists another ideal I−1 verifying II−1 = OL(I) = OR(I−1) and I−1I = OR(I) =
OL(I−1). The conjugate of an ideal I is the set of conjugates of elements of
I, which is an ideal satisfying II = n(I)OL(I) and II = n(I)OR(I) when I is
invertible. This allows one to define the multiplicative inverse of I as

I−1 =
1

n(I)
I

Note that invertibility is not a feature of every left O-ideal when O is generic.
However, this is the case for the orders we study in this work.

We define an equivalence on orders by conjugacy and on left O-ideals by right
scalar multiplication. Two orders O1 and O2 are equivalent if there is an element
β ∈ B?p,∞ such that βO1 = O2β. Two left O-ideals I and J are equivalent if
there exists β ∈ B?p,∞, such that I = Jβ. If the latter holds, then it follows that
OR(I) and OR(J) are equivalent since βOR(I) = OR(J)β. For a given O, this
defines equivalences classes of left O-ideals, and we denote the set of such classes
by Cl(O).

2.3 The Deuring Correspondence

In [21], Deuring made the link between the geometric world of elliptic curves and
the arithmetic world of quaternion algebras over Q by showing that the endo-
morphism ring of a supersingular elliptic curve E defined over Fp2 is isomorphic
to a maximal order in Bp,∞. This correspondence is in fact an equivalence of
categories [32] between supersingular elliptic curves and left ideals for a maximal
order O of Bp,∞, inducing a bijection between conjugacy classes of supersingular
j-invariants and maximal orders (up to equivalence). Given a supersingular curve
E0, this allows us to associate each pair (E1, ϕ), where E1 is another supersingular
elliptic curve and ϕ : E0 → E1 is an isogeny, to a left integral O0-ideal (with
End(E0) ' O0) and every such ideal arises in this way. In this case End(E1) is
isomorphic to the right order of this ideal. The explicit correspondence between
isogenies and ideals is given through kernel ideals as defined in [51]. Given I an
integral left-O0-ideal we define the set

E0[I] = {P ∈ E0(Fp2) : α(P ) = 0 for all α ∈ I}

as the kernel of I. To I, we associate the isogeny ϕI of kernel E0[I] defined by

ϕI : E0 → E0�E0[I]

Conversely given an isogeny ϕ, the corresponding kernel ideal is defined as

Iϕ = {α ∈ O0 : α(P ) = 0 for all P ∈ ker(ϕ)}

Remark 1. In the definitions above we identify α ∈ O0 with the related endo-
morphism in End(E0), implicitly assuming a fixed isomorphism between O0 and
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End(E0). This is a simplification that we will reiterate throughout this paper to
lighten notations. In fact, we will sometimes go further and also write α for the
principal ideal O0α. It is easily verified that this ideal corresponds to the kernel
ideal Iα, and conversely any principal ideal corresponds to an endomorphism
ϕO0α.

We summarize the main properties of this correspondence in Table 1.

Remark 2. The above correspondence can be extended to a larger setting. This
fact is mentioned in [50, Remark 42.3.10] but neither proof nor reference is
provided. This brief remark states that Eichler orders (intersections of maximal
orders) can be seen as endomorphism rings of elliptic curves together with a
given subgroup (stable under the action of this endomorphism ring). In Section 4,
we propose an equivalent statement to this fact, together with a proof. Many
intermediate properties encountered on the way to this result will play an
important role in both the design of Algorithms 4 and 5 and the analysis of our
signature scheme.

A Concrete example : j-invariant 1728 Let p = 3 mod 4, and let E0 be the
curve of j-invariant 1728, defined over Fp2 by y2 = x3 + x. The endomorphism

ring of this curve is isomorphic to the maximal order O0 = 〈1, i, i+j2 , 1+k2 〉 with
i2 = −1, j2 = −p and k = ij. Moreover, we have explicit endomorphisms π
and ι such that End(E0) = 〈1, ι, ι+π2 , 1+ιπ2 〉, where π is the Frobenius morphism

(x, y) 7→ (xp, yp) and ι is the map (x, y) 7→ (−x,
√
−1y).

On representing and computing endomorphism rings Apart from special
curves such as E0, we have no efficient explicit way to compute the endomorphism
ring of a supersingular curve E1. By explicit we mean a concrete basis such that
O0 = 〈ω1, ω2, ω3, ω4〉, where each ωi corresponds to an endomorphism ρi that can
be efficiently evaluated on any point through an explicit isomorphism between
End(E0) and O0. In [25] a formula is given, based on End(E0) and an isogeny
ϕ : E0 → E1 of degree Nϕ. The ideal Iϕ is a left O0-ideal and right O1-ideal with
O1 ' End(E1). Since Iϕ is integral, it is contained in both O0 and O1. From
that, it is easy to see that NϕO1 ⊂ O0. We will use that fact to represent and
compute elements of O1. An element α ∈ O1 can be written as an element of O0

Nϕ

with α = 1
Nϕ

∑4
i=1 aiωi with ai ∈ Z for i ∈ {1, 2, 3, 4}. Using that, it is possible

to evaluate an endomorphism α at a point P as α(P ) = 1
N2
ϕ

∑4
i=1[ai]ϕ◦ρi ◦ ϕ̂(P ).

2.4 Algorithmic building blocks

In this section we introduce some sub-algorithms that will be used in the remaining
of the paper. These algorithms are either classical or inherited from recent works
[33,28] in the literature.

We will write CRTM,N (x, y) for the Chinese Remainder algorithm, that takes
x ∈ Z/MZ, y ∈ Z/NZ and returns z ∈ Z/MNZ with z = x mod M and
z = y mod N .
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Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, ϕ) with ϕ : E → E1 Iϕ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ
deg(ϕ) n(Iϕ)

ϕ̂ Iϕ
ϕ : E → E1, ψ : E → E1 Equivalent Ideals Iϕ ∼ Iψ
Supersingular j-invariants over Fp2 Cl(O)

τ ◦ ρ : E → E1 → E2 Iτ◦ρ = Iρ · Iτ
[this work, Proposition 3 ] Eichler orders O = O ∩O1 of level N

N -isogenies (up to isomorphism) Cl(O)
[this work, Proposition 6 ]

Table 1. The Deuring correspondence, a summary. The results labelled with [this work,
·] are proved in the article. All other results are classical and well-established in the
literature.

The KLPT Algorithm A significant part of the present work is spent on
providing a new generalization of the KLPT algorithm [33] (see Algorithm 5).
This algorithm takes an integral ideal I as input and finds an equivalent ideal
J ∼ I of given norm. For instance, the norm can be required to be `e for some
e ∈ N. In general, in the rest of this paper when an output of an algorithm is
required to be a power of `, we write `•.

We start by introducing a few notations taken from [33], before introducing
several sub-algorithms that we will use. Finally we describe a short version of
KLPT in Algorithm 3 built from these sub-algorithms.

An important notion introduced in [33] is that of special extremal orders. In
the quaternion algebra Bp,∞ = Q[i, j], a special extremal order is a maximal order
O0 containing a suborder admitting an orthogonal decomposition R + jR where
R = Z[ω] ⊂ Q[i] is a quadratic order of minimal discriminant (or equivalently
such that ω has smallest norm in O0). By orthogonal decomposition we mean
that R ⊂ (jR)⊥. The order O0 = 〈1, i, i+j2 , 1+k2 〉, with i2 = −1 and j2 = −p,
corresponding to the elliptic curve of j-invariant 1728 when p = 3 mod 4, is
one of the simplest examples of such special extremal orders, as it contains the
suborder Z[i] + jZ[i]. For the rest of this paper, we fix these notations for j, R, ω.
The method of resolution resulting in Algorithm 3 is inspired by [33, Lemma 5].
We introduce here a reformulation of this lemma using notations that we will
keep for the rest of this article.

Lemma 1. For any integral ideal I, the map

χI(α) = I
α

n(I)

is a surjection from I r {0} to the set of ideals J equivalent to I. For α 6= β, we
have χI(α) = χI(β) if and only if α = βδ where δ ∈ OR(I)×.

Proof. This map is well-defined as proved in [33]. We see that it is a surjection
by identifying I · J with a principal ideal OR(I)β. Then, it is clear that β ∈ I
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and J = χI(β). Finally, one can verify that OR(I)β1 = OR(I)β2 if and only if
β1 = δβ2 where δ ∈ OR(I)×.

With n(χI(α)) = n(α)/n(I), we see that finding J ∼ I of given norm N is
equivalent to finding some α ∈ I of norm n(I)N . This observation underlies the
solution of [33] for Algorithm 3.

Remark 3. In what follows will often define a projective point (C0 : D0) ∈
P1(Z/NZ) for some prime N and then, by an abuse of notation, define an
element C0 + ωD0 inside our maximal order.

Following [33,39], we define several sub-routines for KLPT. When it is relevant
for our analysis, we introduce those sub-protocols formally as in Algorithms 1
and 2 (the remaining routines can be found at [33]). In the descriptions below,
O0 denotes a special extremal order.

– EquivalentPrimeIdeal(I), given a left O0-ideal I, finds an equivalent left O0-
ideal of prime norm.

– RepresentIntegerO0
(M), given M ∈ N with M > p, finds γ ∈ O0 of norm M .

We summarize it in Algorithm 1. Therein, we write f(x, y) for the norm of
x+ ωy. Cornacchia(M ′) denotes Cornacchia’s well known algorithm [12]: on
input M ′ ∈ Z, it outputs either ⊥ if M ′ cannot be represented as f(x, y), or
a solution x, y to the norm equation M ′ = f(x, y).

– IdealModConstraint(I, γ), given an ideal I of norm N , and γ ∈ O0 of norm Nn,
finds (C0 : D0) ∈ P1(Z/NZ) such that µ0 = j(C0 + ωD0) verifies γµ0 ∈ I.

– StrongApproximationF(N,C0, D0), given a prime N and C0, D0 ∈ Z, finds
µ = λµ0 +Nµ1 ∈ O0 of norm dividing F , with µ0 = j(C0 + ωD0). We write
StrongApproximation`• when the expected norm is a power of `.

We provide in Algorithm 2 a description of StrongApproximation`• . For clar-
ity’s sake, our description closely follows [33]; however we will use in practice
a modification due to [39] which produces outputs of smaller norm (see
Remark 4).

Algorithm 1 RepresentIntegerO0
(M)

Require: M ∈ Z such that M > p
Ensure: γ = x+ yω + zj + tjω with n(γ) = M .

1: Set m = b
√

M
p(1+q)

c and sample random integers z, t ∈ [−m,m]2. Set M ′ =

M − pf(z, t).
2: If Cornacchia(M ′) = ⊥ go back to the previous step. Otherwise set x, y =

Cornacchia(M ′).
3: return γ = x+ ωy + j(z + ωt).
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Algorithm 2 StrongApproximation`•

Require: A prime number N , such that ` is a non quadratic residue modN , two values
C,D ∈ Z.

Ensure: µ = λµ0 + µ1 with µ0 = j(C + ωD), µ1 ∈ O0 such that n(µ) = `e1 for some
e1 ∈ N.

1: Select e1 ≥ pN4 and ajust the parity so that `e/p(C2 + qD2) is a quadratic residue
modN . We denote λ its square root.

2: Select a random pair z, t such that `e − pf(λC +Nz, λD+Nt) = 0 mod N2. This
can done by solving a linear equation modN and thus has N solutions.

3: Set M = `e−pf(λC+Nz,λD+Nt)

N2 and determines if the equation f(x, y) = M has a
solution (and its solution in the affirmative case) using Cornacchia’s algorithm. If
no solution exists, go back to Step 2.

4: return µ = λj(C + ω) +N(x+ ωy + j(z + ωt)).

Remark 4. Following [39], Algorithm 2 can be modified so that it is deterministic
and its outputs have smaller norm. The only difference lies in Step 2. Instead
of selecting a random solution z, t among the N possible pairs satisfying the
equation, the idea is to look for the one that will yield the best solution. We define
good solutions as the ones corresponding to small value of pf(λC+Nz, λD+Nt).
In [39], it is shown that good solutions correspond to short vectors in some lattice
L. Looking at the determinant of this lattice, we can prove that there exists a
solution of approximate size pN3 (instead of pN4). This in turns lets us define a
smaller exponent e1 in Step 1. By enumerating short vectors in increasing order,
we can make StrongApproximation deterministic.

We can now give a compact description of the KLPT algorithm. There are
several versions of it, depending on the norm sought for the output: we will write
KLPT`• when the algorithm produces an output of norm a power of `; KLPTT
when the norm is a divisor of T ∈ Z. The changes between the two variants are
minimal; for simplicity, we describe only KLPT`• in Algorithm 3.

Remark 5. The sub-routine EquivalentPrimeIdeal can be made deterministic if
we look for the ideal of smallest norm satisfying the desired condition. Since
we are looking at lattices of dimension at most 4, finding an ordered set
of smallest vectors can be done efficiently. We already pointed out in Re-
mark 4 that StrongApproximation can be made deterministic. The sub-routine
IdealModConstraint is also deterministic as shown in [33]. Making RepresentIntegerO0

deterministic is less natural, as there are several solutions for a given input M .
Nevertheless, we can fix an ordering for the tuple (x, y, z, t) of coordinates over
Z〈ω, j〉 and search for the smallest solution with respect to that ordering. In
conclusion, the whole algorithm KLPT can be made deterministic.

Remark 6. A result of [28] shows that the outputs of EquivalentPrimeIdeal and
KLPT only depend on the equivalence class of the input (in fact this is only true
with a minor tweak to the original algorithm of [33]). Hence, we will sometimes
abuse notations and use both as if they took inputs in Cl(O0).
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Algorithm 3 KLPT`•(I)

Require: I a left O0-ideal.
Ensure: J ∼ I of norm `e.
1: Compute L = EquivalentPrimeIdeal(I), L = χI(δ) for δ ∈ I with N = n(L).
2: Compute γ = RepresentIntegerO0

(N`e0) for e0 ∈ N.
3: Compute (C0 : D0) = IdealModConstraint(L, γ).
4: Compute ν = StrongApproximation`•(N,C0, D0)) and set β = γν and e such that
n(β) = N`e.

5: return J = χL(β).

Remark 7. Algorithm 3 only applies to O0-ideals. To handle ideals of arbitrary
maximal orders OL, OR, [33] starts by looking for two connecting ideals between
O0 and OL, and O0 and OR. This yields two left O0-ideals on which Algorithm 3
can be applied. Concatenation of the two outputs then gives the desired solution.
This strategy would be problematic in our signature scheme, as it would reveal
the secret key. In Algorithm 5 we present a solution that does not suffer from
this flaw, and that moreover produces ideals of smaller norm.

3 New identification protocol and signature scheme

In this section we describe our new identification protocol and signature scheme
based on supersingular isogeny problems. We refer to Appendix A for more
details on security definitions.

3.1 An identification protocol

Let λ be a security parameter. The setup is as follows.

setup : λ 7→ param Pick a prime number p and a supersingular elliptic curve E0

defined over Fp with known special extremal endomorphism ring O0. Select
an odd smooth number Dc of λ bits and D = 2e where e is above the diameter
of the supersingular 2-isogeny graph. To prove knowledge of the secret τ , the
prover engages in the following Σ-protocol with the verifier.

keygen : param 7→ (pk = EA, sk = τ) Pick a random isogeny walk τ : E0 → EA,
leading to a random elliptic curve EA. The public key is EA, and the secret
key is the isogeny τ .

The identification protocol goes as follows:

Commitment The prover generates a random (secret) isogeny walk ψ : E0 →
E1, and sends E1 to the verifier.

Challenge The verifier sends the description of a cyclic isogeny ϕ : E1 → E2 of
degree Dc to the prover.

Response From the isogeny ϕ ◦ ψ ◦ τ̂ : EA → E2, the prover constructs a new
isogeny σ : EA → E2 of degree D such that ϕ̂ ◦ σ is cyclic, and sends σ to
the verifier.
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Verification The verifier accepts if σ is an isogeny of degree D from EA to E2

and ϕ̂ ◦ σ is cyclic. They reject otherwise.

E0 E1

E2EA

τ

ψ

ϕ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Fig. 1. A picture of the identification protocol

We summarize the protocol in Fig. 1. Completeness follows from the correct-
ness of Algorithm 5, allowing a honest prover to construct σ : EA → E2 such that
ϕ̂◦σ is cyclic. Soundness is analysed in Section 3.2, and follows from the difficulty
of the Smooth Endomorphism Problem — a problem heuristically equivalent to
the classic Endomorphism Ring Problem. Zero-knowledge is more difficult to
prove, as we argue in Section 3.3, and we defer its analysis to Section 7.

3.2 Soundness

In this section, we prove that the protocol is sound if the following problem is
hard.

Problem 1 (Supersingular Smooth Endomorphism Problem). Given a prime p and
a supersingular elliptic curve E over Fp2 , find a (non-trivial) cyclic endomorphism
of E of smooth degree.

Remark 8. Note that under heuristics similar to those used in [25], the above
problem is equivalent to the Endomorphism Ring Problem (given E/Fp2 , compute
endomorphisms forming a Z-basis of End(E)). Indeed, random endomorphisms in
E can be constructed by taking a random walk E → E′, then finding a non-zero
cyclic endomorphism of E′. Therefore, one can adapt the heuristic algorithm [25,
Algorithm 8] to reduce the Endomorphism Ring Problem to Problem 1. The
converse reduction follows from the heuristic algorithm [25, Algorithm 7]. The
algorithms presented in [24] are also related to this problem.

Theorem 1 (Soundness). If there is an adversary that breaks the soundness
of the protocol with probability w and expected running time r for the public key
EA, then there is an algorithm for the Supersingular Smooth Endomorphism
Problem on EA with expected running time O(r/(w − 1/c)), where c is the size
of the challenge space.

The theorem is a consequence of the following lemma.
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Lemma 2. Given two accepting conversations (E1, ϕ, σ) and (E1, ϕ
′, σ′) where

ϕ 6= ϕ′, the composition σ̂′ ◦ ϕ′ ◦ ϕ̂ ◦ σ is a non-scalar endomorphism of EA of
smooth degree.

Proof. By construction, σ̂′◦ϕ′◦ϕ̂◦σ is an endomorphism of EA of degree (DDc)
2.

This shows that the degree is smooth. It remains to prove that it is not a scalar.
Suppose by contradiction that σ̂′ ◦ ϕ′ ◦ ϕ̂ ◦ σ = [DDc]. The compositions ϕ̂ ◦ σ
and ϕ̂′ ◦ σ′ are two cyclic isogenies from EA to E1 of same degree. Therefore
σ̂′ ◦ ϕ′ is the dual of ϕ̂ ◦ σ. We deduce that ϕ̂ ◦ σ = ϕ̂′ ◦ σ′, a contradiction.

Proof of Theorem 1. The endomorphism σ̂′ ◦ ϕ′ ◦ ϕ̂ ◦ σ in Lemma 2 corresponds
to a (possibly backtracking) sequence of isogenies, and removing the backtracking
subsequences, we obtain a solution to the Supersingular Smooth Endomorphism
Problem of EA. Therefore the protocol has special soundness for the relation R
defined as

(EA, α) ∈ R⇐⇒ α is a cyclic smooth degree endomorphism of EA.

It is therefore a proof of knowledge for R with knowledge error 1/c — see for
instance [17, Theorem 1]. In other words, an adversarial prover with success
probability w and running time r can be turned into a knowledge extractor for
R of expected running time O(r/(w − 1/c)). ut

3.3 Zero-knowledge: two insecure approaches

The sketch given in Section 3.1 is incomplete, as it does not specify a method
to compute the response isogeny σ. The zero-knwoledge property of the scheme
clearly depends on this method, and it turns out that all previously known
methods lead to insecure constructions. Indeed the trivial approach of setting
σ = ϕ ◦ ψ ◦ τ̂ immediately reveals the secret.

Following [28], it would be tempting to translate the isogeny ϕ ◦ ψ ◦ τ̂ to
the corresponding left ideal of OA ≈ End(EA), then apply the algorithm of [33]
to obtain another ideal in the same class, and finally translate that ideal back
to an isogeny σ : EA → E2. However this approach is no more secure, as the
algorithm of [33] ends up revealing some path from EA to E0, which is equivalent
to revealing τ as shown in [25].

In Sections 5 and 6 we will introduce a new variant of the KLPT algorithm
that conjecturally does not suffer from the same leakages. Then, we will prove
zero-knowledge in Section 7, under a new conjecturally hard computational
problem.

3.4 The signature scheme

The new signature scheme is simply a Fiat-Shamir transformation of the identifica-
tion protocol introduced in Section 3.1. Following the construction of [11] extended
in [42] for smooth degrees, if Dc =

∏n
i=1 `

ei
i , we write µ(Dc) =

∏n
i=1 `

ei−1
i (`i + 1)
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and we define an arbitrary function ΦDc(E, s), mapping integers s ∈ [1, µ(Dc)]
to non-backtracking sequences of isogenies of total degree Dc starting at E. Let
H : {0, 1}∗ → [1, µ(Dc)] be a cryptographically secure hash function.

The signature scheme is as follows.

sign : (sk,m) 7→ Σ Pick a random (secret) isogeny ψ : E0 → E1. Let s =
H(j(E1),m), and build the isogeny ΦDc(E1, s) = ϕ : E1 → E2. From the
knowledge of OA, and of the isogeny ϕ ◦ ψ : E0 → E2, construct an isogeny
σ : EA → E2 of degree D such that ϕ̂ ◦ σ is cyclic. The signature is the pair
(E1, σ).

verify : (pk,m,Σ) 7→ true or false Parse Σ as (E1, σ). From s = H(j(E1),m),
recover the isogeny ΦDc(E1, s) = ϕ : E1 → E2. Check that σ is an isogeny
from EA to E2 and that ϕ̂ ◦ σ is cyclic.

Theorem 2. The signature described above is secure against chosen-message
attacks in the random oracle model assuming the hardness of Problems 1 and 2.

Proof. This follows from Theorem 3 applied to the identification scheme described
in Section 3.1. The associated sigma-protocol is complete as explained briefly in
Section 3.1, special sound due to Theorem 1 and honest verifier zero-knowledge
as proved by combining Lemma 12 with Proposition 11.

4 Eichler orders and the Deuring correspondence

In this section we recall the notion of Eichler orders and we interpret them under
the Deuring correspondence. Eichler orders have been studied extensively in the
literature of quaternion algebras [23,40]. The results of this section appear to be
folklore (see [50, Remark 42.3.10]), we nevertheless provide a detailed treatment
for completeness.

An Eichler order is the intersection of two maximal orders inside Bp,∞. In all
this section we will consider the case of the Eichler order O = O0 ∩ O where O0

and O are maximal orders connected through an ideal I of norm n(I) such that
I * nOL(I) for any n > 1. This setting corresponds to curves E0, E connected
by an isogeny ϕI of cyclic kernel and degree n(I) with End(E0) ∼= O0 and
End(E) ∼= O.

Looking at the interpretation of Eichler orders under the Deuring correspon-
dence is in fact quite natural. There is a direct link between such orders and
integral ideals. Indeed, for a given ideal I, we can define the corresponding Eichler
order O = OL(I) ∩ OR(I). In this case, it is a well-known fact that the index of
O is the same in both O0 and O. In the litterature, the term level is used for
this quantity and it is equal to n(I) if I * nOL(I) for any n > 1 [33]. This last
condition implies that ϕI has cyclic kernel. Given the role of integral ideals in
the Deuring correspondence, it is not surprising that we are able to interpret
Eichler orders in the geometric world of elliptic curves.

The following proposition clarifies the link between ideals and Eichler orders.
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Proposition 1. O := O0 ∩ O = OL(I) ∩ OR(I) = Z+ I.

Proof. Since I is integral, it is clear that Z+ I ⊂ O. We conclude by observing
that the index of Z+ I in both O and O0 is n(I), the same as O.

One goal of this section is to interpret the elements in O under the Deuring
correspondence. As elements in O0 ∩ O we can see them as endomorphisms in
both End(E0) and End(E). What does that mean exactly?

Remark 9. The decomposition Z+ I allows one to refine the statement above.
In fact, we can separate elements in O according to whether their norm is
coprime to n(I) or not. Given that n(I)Z ⊂ I, it is easily verified that this
partition can be written as O = (I ∪ I)

⋃
(Zrn(I)Z+ I). It is well-known that

I = Hom(E,E0)ϕI . Hence, the elements in I correspond to the endomorphisms
ψ ◦ϕI for any isogeny ψ : E → E0. The same analysis proves I = Hom(E0, E)ϕ̂I .
The elements of I correspond to the same endomorphisms as those of I, but
decomposed as ψ̂ ◦ ϕ̂I in End(E).

We start by setting the vocabulary and notations for commutative isogeny dia-
grams in Section 4.1. Then, in Section 4.2, we study the elements of (Zrn(I)Z)+I
to complete our interpretation of Eichler orders as stated in Proposition 3. Finally,
in Section 4.3 we build upon our results to study class sets of Eichler orders.

4.1 Commutative Isogeny Diagrams

We define commutative diagrams of isogenies using the classical notations of
pushforward and pullback maps. Let us take 3 curves E0, E1, E2 and two separable
isogenies ϕ1 : E0 → E1 and ϕ2 : E0 → E2 of coprime degrees, N1 and N2.
Then, there is a fourth curve E3 and two pushforward isogenies [ϕ1]∗ϕ2 and
[ϕ2]∗ϕ1 going from E1 and E2 toward E3, verifying deg([ϕ1]∗ϕ2) = N2 and
deg([ϕ2]∗ϕ1) = N1. This yields the commutative diagram pictured in Fig. 2. The

E0

E1

E3

E2

ϕ1

ϕ2

[ϕ1]∗ϕ2

[ϕ2]∗ϕ1

ψ

Fig. 2. A commutative isogeny diagram

isogenies [ϕ2]∗ϕ1 and [ϕ1]∗ϕ2 are defined as the separable isogenies of respective
kernels ϕ2

(
ker(ϕ1)

)
and ϕ1

(
ker(ϕ2)

)
. We will sometimes refer to [ϕ2]∗ϕ1 as

the image of ϕ1 through ϕ2. The two sides of the diagram can be seen as two
decompositions of the same isogeny ψ = [ϕ2]∗ϕ1 ◦ ϕ2 = [ϕ1]∗ϕ2 ◦ ϕ1.



SQISign: compact post-quantum signatures from quaternions and isogenies 15

Remark 10. These commutative diagrams are at the heart of the SIDH key
exchange protocol [30].

There is a dual notion of pullback isogeny : given ϕ1 : E0 → E1 and ρ2 : E1 →
E3, of coprime degrees, we can define the pullback of ρ2 by ϕ1 as [ϕ1]∗ρ2 = [ϕ̂1]∗ρ2.
With this definition it is easy to see that ϕ2 = [ϕ1]∗[ϕ1]∗ϕ2.

For simplicity, when the isogenies have not been defined we will implicitly
write [I]∗J for the ideal I[ϕJ ]∗ϕI corresponding to the pushforward of ϕJ by ϕI .
The same holds for [I]∗J . With this convention, we extend the terms pushforward
and pullback to ideals. Next, we describe in Lemma 3 formulas to compute [I]∗J
and [I]∗J from I and J .

We take the notations of Fig. 2 and write I1 = Iϕ1
, I2 = Iϕ2

, J1 = [I2]∗I1,
J2 = [I1]∗I2 and K = Iψ.

Lemma 3. If N1 ∧N2 = 1, the three ideals J1, J2 and K are well-defined and :

(i) K = I1 ∩ I2.
(ii) J2 = I−11 (I1 ∩ I2) and J1 = I−12 (I1 ∩ I2).

(iii) I2 = [I1]∗J2 = I1J2 +N2O0 and I1 = I2J1 +N1O0.

Proof. When N1 ∧N2 = 1 the situation depicted in Fig. 2 is well-defined and so
are the corresponding ideals. By definition of ψ we have kerψ = kerϕ1 + kerϕ2,
(i) follows from the definition of kernel ideals. The composition of isogenies can be
rewritten in terms of ideals as K = I1J2 = I2J1, this together with (i) implies (ii).
The equality [I1]∗J2 = I1J2 +N2O0 of (iii) is a classical formula to decompose
an ideal of norm N1N2 with coprime N1, N2. For instance, it is used in [28,25].
The fact I2 = [I1]∗J2 stems from I2 = [I1]∗[I1]∗I2. The formula for I1 follows
similarly.

4.2 The endomorphism ring O

With the formalism of Section 4.1, we are ready to state Proposition 2, which
shows that the image through ϕ of the endomorphism corresponding to any
element in O ⊂ O0 (which is neither in I nor in Ī) is an endomorphism of E. To
make sense of the last sentence, we remind the reader that we identify quaternion
elements inside maximal orders with the corresponding endomorphisms (see
Remark 1).

Proposition 2. Let β ∈ O0 of norm coprime with N , then [O0β]∗I = I if and
only if β ∈ Or (I ∪ I). In particular, [I]∗O0β is a principal O-ideal equal to Oβ.

Proof. When β ∈ O r (I ∪ I), the norm of β is coprime with n(I) as noted
in Remark 9. Thus, Lemma 3 applies and we have [I]∗(O0β) = I−1(I ∩ O0β).
We now show that I ∩ O0β = Iβ. Indeed, since I is integral, Iβ ⊂ O0β and
as β ∈ O ⊂ O = OR(I) we also have Iβ ⊂ I. For the other side, let us take
x ∈ O0β ∩ I. We can write x = δβ for δ ∈ O0. Writing β = λ + α with λ ∈ Z
invertible modulo N and α ∈ I, we see that δ is necessarily in I. We have proven



16 L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski

that I ∩O0β = Iβ, and [I]∗(O0β) = I−1(I ∩O0β) concludes the first part of the
proof with I−1I = O.

Now, we show that if [O0β]∗I = I, then β is necessarily in O. If [O0β]∗I = I,
we know that the kernel E0[I] of ϕI is fixed by the action of β. This implies that
E0[I] is in an eigenspace of β (since E0[I] = kerϕI is a cyclic subgroup) and
there exists λ ∈ Z such that β − λ ∈ I. Hence, β ∈ O by Proposition 1.

We have shown that I ∩ O0β = Iβ and we can conlude the proof using the
formula [I]∗(O0β) = I−1(I ∩ O0β). We obtain [I]∗(O0β) = Oβ and this ideal is
principal since β ∈ O.

Said otherwise, the endomorphisms in Or(I∪I) leave ϕI stable. Equivalently,
the endomorphisms of O remain endomorphisms after being pushed forward by
ϕI , and thus belong to both End(E0) and End(E). This completes our analysis
of the elements of O that we summarize below.

Proposition 3. For β ∈ O one of the following holds :

– n(β) = 0 mod n(I) and β = α or β = α with α ∈ I and α = ψ ◦ ϕI ∈
End(E0) for ψ : E0 → E and ϕ̂I ◦ ψ̂ ∈ End(E).

– n(β) 6= 0 mod n(I) and β represents an endomorphism of both E and E0

with β ∈ End(E0) and [ϕI ]∗β ∈ End(E).

From Proposition 2, we deduce the following result which will underlie Algo-
rithm 5; it is a reformulation using the map χ of Lemma 1.

Corollary 1. Let J1, J2 be O0-ideals, with J1 ∼ J2 and gcd(n(J1)n(J2), n(I)) =
1. Suppose that J1 = χJ2(β) with β ∈ J2 ∩O. Then [I]∗J1 ∼ [I]∗J2 and [I]∗J1 =
χ[I]∗J2(β).

Proof. When χJ2(β) = J1, we can identify J2 · J1 with O0β. By Proposition 2
we know that [I]∗O0β = Oβ and by decomposing Oβ the same way as O0β, we
see that [I]∗J1 = χ[I]∗J2(β).

In fact, we can show that the converse of Corollary 1 does not hold in general.
As shown in Lemma 4, there are cases where β ∈ O0 rO can be found such that
[I]∗O0β is principal. In this context, there exists a β′ ∈ O distinct from β such
that [I]∗O0β = Oβ′. Of course n(β) = n(β′), however it appears that the trace
of β is not necessarily preserved in this case. This means that even though β
is sent to an endomorphism over E, the suborder Z[β] of O0 is not sent to an
isomorphic suborder Z[β′] ⊂ O.

Lemma 4. If there exists J 6= I of same norm with J ∼ I, then there exists
β ∈ O0 rO such that J = [O0β]∗I and [I]∗O0β is principal.

Proof. We need to show that we can always find β ∈ O0rO such that [O0β]∗I = J
(i.e. [I]∗O0β is principal since J ∼ I). This is the case if Jβ ⊂ I. Indeed, any
endomorphism of Jβ can be written as a composition of β with an element of
J . The kernel of the elements in J are exactly E0[J ] by definition, but since
Jβ is in I, the elements of Jβ send E0[I] to zero. The only possibility is that
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β(E0[I]) = E0[J ]. By definition of our pushforward isogenies this is equivalent to
[O0β]∗I = J . Hence, Jβ ⊂ I is sufficient to prove the result.

We just need to justify that such a β can be found for any given pair of
distinct I ∼ J . There are several ways to construct it, for instance we can do so
by computing IdealModConstraint(α, J) (the algorithm defined in Section 2.4) for
any α such that I = 〈α, n(I)〉. Finally, since I ∼ J we conclude that [I]∗O0β is
principal.

4.3 Ideal class sets of Eichler orders

For simplicity we now assume that O0 is special extremal as defined in Section 2.4.
This implies the existence of R = Z[ω] such that R + Rj ⊂ O0 with j2 = −p.
Given another maximal order O, we write again O = O0 ∩ O. We write I for
the ideal connecting O0 and O and we assume in this section that its norm N is
prime.

Class sets of ideals play an important role through the Deuring correspondence.
When O is a maximal order we can put Cl(O) in bijection with the set of
supersingular curves (see Table 1). This motivates studying Eichler orders, and
indeed isogeny graphs were first constructed through class sets of quaternion
orders by [41], and only later reinterpreted as isogeny graphs in [11].

Our definition of Eichler orders of level N is classical [49,50] and corresponds
to the definition of orders of level pN in the works of Pizer [40]. When N is
squarefree, the Eichler orders of level N are hereditary (see [50]) which implies
nice behaviors of the ideals (such as invertibility). Eichler [23] proved a formula
for the class number h(O) = |Cl(O)|. When N is prime we obtain

h(O) =
(p+ 1)(N + 1)

12
+ εN,p

where εN,p is a small value depending on N and p modulo 12. This, combined
with h(O0) = p/12 + εp, (εp depends on the value p mod 12) suggests that there
is a (N + 1)-to-1 correspondence between Cl(O) and Cl(O0), which we are now
going to exhibit.

Remark 11. By symmetry of the definition of O, everything could be restated
replacing O0 by O, up to replacing some pushforward notations [·]∗ by pullbacks
[·]∗ when it makes sense (or equivalently replacing I by I).

Let us write IN (O) for the set of left integral O-ideals of norm coprime to N
for any order O. We start by showing a connection between IN (O0) and IN (O).

Lemma 5. The map

Ψ : IN (O0) −→ IN (O)

J 7−→ J ∩O

is a well-defined bijection between the set of integral O0-ideals and O-ideals of
norm coprime with N . Its inverse is given by : Ψ−1 : J 7→ O0J.
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Proof. Verifying that the images of Ψ (resp. Ψ−1) are left integral O-ideals
(resp. O0-ideals) is straightforward from the definition. Then, it suffices to show
I = O0(I ∩ O) and J = O ∩ O0J for any I ∈ IN (O0) and J ∈ IN (O). This
is straightforward after seeing that any O0-ideal of norm coprime with N can
be written as J = O0〈α, n(J)〉 for some α ∈ O. The corresponding O-ideal is
J = J ∩O = O〈α, n(J)〉 and O0J = J . Moreover, this decomposition justifies
that the norm is preserved through Ψ .

Remark 12. From the fact that any ideal class of Cl(O) or Cl(O0) has a repre-
sentative of norm coprime with N , we can easily identify the equivalence classes
of IN (O0) and IN (O) to the ones of O0 and O respectively.

The bijection of Lemma 5 suggests defining the following equivalence relation
∼O on left O0-ideals of norm coprime with N . We say that J ∼O K if and
only if Ψ(J) ∼ Ψ(K) as O-ideals (here ∼ is the classical equivalence relation
introduced in Section 2.2 between ideals having the same left order). The bijection
Ψ transports the structure of ∼ to ∼O and this implies that we have defined an
equivalence relation.

Definition 1. We write ClO(O0) for the set of equivalence classes of IN (O0)
under ∼O.

From the definition, we have that ClO(O0) is in bijection with Cl(O) through
Ψ . In the next proposition we make the link between class sets and the results of
Section 4.2 by showing that we can obtain an explicit correspondence between
ideals of norm N and ClO(O0) using pushforward ideals.

Proposition 4. J ∼O K if and only if there exists β ∈ O such that K = χJ (β)
and β−1[K]∗Iβ = [J ]∗I.

Proof. We start by noting that β−1[K]∗Iβ = [J ]∗I is an equality of left OR(J)-
ideals. Indeed, K = χJ (β) implies OR(J) = β−1OR(K)β (equivalent ideals have
equivalent right orders).

By definition of ∼O and properties of our bijection Ψ , J ∼O K ⇔ K =
χJ(β) for some β ∈ O. In this case, applying the formula of Lemma 3 for
[K]∗I yields β−1[K]∗Iβ = βK · (I ∩K)β/n(β)n(K) which can be simplified as
J−1 · (I ∩K)β/n(K) with K = χβ(J). As noted in Corollary 1, when β ∈ O we
can write [I]∗K = χ[I]∗J (β). With this and the decomposition I∩J = I · [I]∗J , we
see that (I ∩ J) = (I ∩K)β/n(K). By replacing (I ∩K)β/n(K) in β−1[K]∗Iβ =
J−1 · (I ∩K)β/n(K) we obtain β−1[K]∗Iβ = J−1(I ∩ J) = [J ]∗I.

An interesting question is how the new equivalence relation ∼O relates to the
classical one ∼. In fact, ∼O is compatible with ∼ in the sense that J ∼O K implies
J ∼ K, as is easily verified from Corollary 1. This suggests partitioning ClO(O0)
in subsets indexed by the elements of Cl(O0). Understanding this partition is the
focus of Proposition 5 and will lead naturally to our final result of Proposition 6.
Hence, we write

ClO(O0) =
⋃

C∈Cl(O0)

ClO(C)
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where ClO(C) is the set of classes in ClO(O0) contained in C. As mentioned above,
the respective sizes of Cl(O0) and Cl(O) suggest that the partition above provides
an (N+1)-to-1 correspondence between Cl(O0) and Cl(O). The difference between
h(O) and (N + 1)h(O0) is entirely accountable to the classes C not treated by
Proposition 5, which we will briefly describe in Remark 13.

Proposition 5. For C ∈ Cl(O0), let us take L ∈ C and define OC := OR(L).
If O×C = 〈±1〉, then for any γ ∈ L r NOC and quadratic order S = Z[ωs] of
discriminant ∆S inside O0 in which N is inert, the map:

Θ : P1(Z/NZ) −→ ClO(C)
(C : D) 7−→ χL((C + ωsD)γ)

is a bijection. In particular, |ClO(C)| = N + 1.

Proof. First, it is clear that such γ and S can be found for any class C and
representative L. We propose to prove the proposition by decomposing Θ in
two bijections Θ1 and Θ2. For this, we reformulate our equivalence relation as
a relation on the ideal elements. For α0, α1 ∈ L of norm coprime with N , we
define the relation ∼O as α0α1/n(L) ∈ O. It is an equivalence relation and
we have χL(α0) ∼O χL(α1) ⇔ α0 ∼O α1. Indeed, since χL(α0) ∼O χL(α1)
we know that there exists β ∈ O such that χL(α0) = χL(βα1/n1) if we write
n(α) = n(L)n1. Then, since OR(L)× only contains ±1, we can say w.l.o.g that
α0 = βα1/n1 which implies that α0α1/n(L) ∈ O. Thus, we have showed that
Θ2 : α 7−→ χL(α) is a bijection between L/ ∼O and ClO(O0). Then, it remains
to show that Θ1 : (C : D) 7−→ (C +ωSD)γ is a bijection between P1(Z/NZ) and
L/ ∼O. First, Θ1 is well-defined. It stems from C + ωSD ∈ O0 = OL(L). Then,
Θ1 is injective. Indeed, if not, there exist µ1, µ2 ∈ S such that θ := µ1γγ µ2 is
in O. Let us rewrite θ = n(γ)µ1µ2 ∈ S. Since N is inert in S, we can assume
without loss of generality that n(θ) is coprime with N . Otherwise, this would
imply that either µ1 or µ2 have norm a multiple of N which contradicts the fact
that N is inert in S (for more details on quadratic orders see [16] for instance).
Since O = Z+ I by Proposition 1, there must be some λ such that (x− λ) +ωSy
is in I and has norm divisible by N . A necessary condition is that we can find
λ ∈ Z∗ such that the norm of θ−λ is divisible by N . Looking at the norm of θ−λ
we see that this is possible only if X2− tr(θ)X+n(θ) = 0 has a solution in Z/NZ.
The discriminant of this equation is 4∆Sy

2n(γ)2, and it is not a square since N is
inert in S. Thus, there are no solutions to the equation and this suffices to prove
the injectivity of our map. Bijectivity follows from a counting argument. We know
that |P1(Z/NZ)| = N + 1 and we can show that |L/ ∼O | = |ClO(C)| ≤ N + 1.
This last bound is a consequence of Proposition 4 which implies that |ClO(C)| is
bounded by the number of OR(L)-ideals of norm N . There are exactly N+1 such
ideals (this is easy to see for instance by looking at the number of corresponding
N -isogenies). Thus, we have showed that Θ1 and Θ2 are bijective maps. It is
clear that their composition is Θ, hence the result.
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Remark 13. Proposition 5 fails when OC contains non-trivial automorphisms.
Intuitively this can be explained because the map χI of Lemma 1 is not injective
(up to signs) anymore. If δ is such an automorphism, taking β ∈ Oδ is another
solution to obtain equivalence in Proposition 4. In this case, we see that [K]∗I
and [J ]∗I are the same ideals up to multiplication by an automorphism. This
justifies that the number ClO(C) is basically equal to N+1 divided by the number
of automorphisms (up to sign). The number of such exceptions depends on the
value of p mod 12 and is at most 2. When p = 3 mod 4, the special order O0 is
one of those exceptions (with i =

√
−1 as a non-trivial automorphism).

We conclude this section by interpreting Eichler order’s class set by putting
Cl(O) in bijection with elements over the geometric world of elliptic curves.

Proposition 6. Cl(O) is in bijection with the set of N -isogenies up to isomor-
phism.

Proof. We already mentioned (see Table 1) the bijection identifying a class
C ∈ Cl(O0) with a supersingular invariant jC corresponding to the isomorphism
class of some elliptic curve EC. This bijection is obtained by EC = E0/E0[J ]
for any J ∈ C. Similarly, if we take a class C ∈ ClO(O0) ' Cl(O) following
Definition 1, and J ∈ C, we associate C with the isogeny ϕC between the
pair of supersingular elliptic curves (EC , FC) defined as EC = E0/E0[J ] and
FC = E/E [K] with K = [I]∗J . By the properties of pushforward isogenies, EC
and FC are indeed N -isogenous and we have ϕC = [ϕJ ]∗ϕI for any J ∈ C. By
Propositions 4 and 5 and Remark 13, classes ClO(O) can be associated with the
set of OC-ideals of norm N up to left multiplication by an automorphism of OC .
It is clear that this is in bijection with the set of N -isogenies up to isomorphisms
under the Deuring correspondence.

5 New generalized KLPT algorithm

Building upon the results of Section 4 and specifically Corollary 1, we introduce
in this section a new algorithm to perform the computation of the response in
our identification protocol. We aim at solving the issues raised in Section 3.3
with the original KLPT algorithm [33].

5.1 A new method, with Eichler orders

The existence of the suborder O = Z〈ω, j〉 = R+Rj introduced in Section 2.4
is what makes special extremal orders good candidates for applying the KLPT
algorithm. Here, R = Z[ω] is a quadratic order of small discriminant generated
by ω, an element of small norm. The norm equation f(x, y) = M over R has a
good probability of being solvable for any M and as a consequence, solving norm
equations over O is easy.

To extend the KLPT algorithm to arbitrary orders, our approach is to find an
appropriate suborder in which we know how to solve norm equations. Note that
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for a generic maximal order, the norm of the smallest non-trivial endomorphism
ω is p2/3. In particular, a suborder of the form Z〈ω1, ω2〉 with ω1, ω2 orthogonal
can only be obtained with elements of high norm. In Appendix E, we present a
generalized KLPT algorithm based on this idea. This algorithm leads to bigger
and slower signatures than the one we describe here, but it might offer some
interesting trade-offs for security.

The method we now describe uses the Eichler orders studied in Section 4. The
link with isogenies under the Deuring correspondence provided by Proposition 3 is
already enough motivation to justify their use in our context. The other reason is
more practical: it lets us do computations inside special extremal orders. Indeed,
let us take O0 a special extremal order and O an arbitrary maximal order, our
goal is to extend the KLPT algorithm to left O-ideals. Then, the Eichler order
O = O ∩ O0 is a suborder of O0 and that allows us to apply the techniques
developed in [33] for special extremal orders.

5.2 The generic algorithm

We now use our observations of Section 4 to design a new GeneralizedKLPT
algorithm. As mentioned in Section 2.4, there are several possible variants of this
algorithm depending on the kind of norm we need to obtain. For simplicity, we
present the case `• where we look for an equivalent ideal of norm `e. Any other
variant is easily derived from this.

For the rest of this paper, let O0 and O be two maximal orders, with O0

being special extremal. These maximal orders are respectively isomorphic to the
endomorphism rings of two supersingular curves E0 and E. From now on, we
write Iτ (instead of I in the previous section) for the ideal connecting O0 with
O, and we denote its norm by Nτ . This notation is motivated by the fact that,
in the signature context, Iτ will be the ideal corresponding to the secret isogeny
τ of degree Nτ . Up to replacing O with an isomorphic representative, we can
assume that Nτ is prime and inert in R (we explain in Section 6.2, the reasons
behind this last condition). We consider the Eichler order O = O ∩O0 of level
Nτ (see Section 4 for more details).

Let I be a left integral O-ideal, given as input. Our purpose is to find e ∈ N
and J ∼ I of norm `e upon input I. As a consequence of Lemma 1, this problem
is equivalent to finding β ∈ I of norm n(I)`e and setting J = χI(β). From
Corollary 1, we see that if β ∈ I ∩O we have [Iτ ]∗J = χ[Iτ ]∗I(β). In particular,
β ∈ O ∩ [Iτ ]∗I and so we can search for β inside ([Iτ ]∗I) ∩O instead. The ideal
K ′ := [Iτ ]∗I is a left O0-ideal and this is a situation close to KLPT`• . The fact
that we look for a solution inside K ′∩O instead of just K ′ will add an additional
constraint. Proposition 1 allows us to write O = Z + Iτ , and intuitively this
decomposition tells us that the algorithm for integral ideals used in [33] will be
applicable to Eichler orders with small changes.

This suggests the method detailed in Algorithm 4, which can be seen as an
adaptation of the KLPT`• algorithm (Algorithm 3), replacing the input I by
I ∩O. In KLPT`• we satisfy the constraint that the desired element is in I using
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the sub-algorithm IdealModConstraint. We proceed similarly in Step 4 to ensure
that the solution is in O as well. Combining the two constraints ensures that the
solution is in their intersection. An algorithm to perform Step 4 will be described
in Section 6.2; its description is not needed to convey the principle of Algorithm 4.
An extension of StrongApproximation to the case where N is not prime (as in [33])
will be provided in Section 6.3.

Algorithm 4 GeneralizedKLPT`•(I, Iτ )

Require: I, a left O-ideal, and Iτ , a left O0-ideal and right O-ideal of norm Nτ .
Ensure: J ∼ I of norm `e.
1: Compute K′ = [Iτ ]∗I and set L = EquivalentPrimeIdeal(K′), L = χK′(δ) for δ ∈ K′

with N = n(L).
2: Compute γ = RepresentIntegerO0

(N`e0).
3: Compute (C0 : D0) = IdealModConstraint(L, γ).
4: Find (C1 : D1) ∈ P1(Z/NτZ) such that γj(C1 + ωD1)δ ∈ Z+ Iτ .
5: Compute C = CRTNτ ,N (C0, C1) and D = CRTNτ ,N (D0, D1).
6: Compute µ = StrongApproximation`•(NNτ , C,D) of norm `e1

7: Set β = γµ and e = e0 + e1 such that n(β) = N`e.
8: return J = [Iτ ]∗χL(β).

Lemma 6. Algorithm 4 is correct and returns J ∼ I of norm `e.

Proof. We assume here that the algorithm terminates without failure and do
not consider its complexity for now. First, Lemma 1 and the conservation of the
norm through pushforward ideals shows that J has norm `e. Then Corollary 1

applied to χL(β) = χK′
(

βδ
n(L)

)
implies that [Iτ ]∗χL(β) ∼ [Iτ ]∗K since βδ ∈ O.

This proves J ∼ I.

Remark 14. As pointed out in Remark 5, KLPT is essentially deterministic when
one looks for the smallest possible solution with this method. Given that the
only major difference in Algorithm 4 is the additional Step 4 (for which there is
only one solution as we will see in Section 6.2) it is not difficult to argue that
Algorithm 4 can be made deterministic.

5.3 On the length of the solution

We start by stating some length estimates for the solution of KLPT`• . This gives
a point of comparison and will be useful to do the same for Algorithm 5. As
we can see in Algorithm 3, the output has norm `e0+e1 . The size of the output
mostly depends on N and p. The prime p is fixed and does not depend on any
precise input but this is not the case for N . In fact this value depends only on the
equivalence class of the input I [28]. It was argued in [33] that for a random class
in Cl(O0), we can expect N = Õ(

√
p). With that, it was showed in [33] that we

have `e0 = Õ( pN ) and `e1 = Õ(pN4). This gives e0 + e1 ∼ 7
2 log`(p) as showed in
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[33]. However, as we mentioned earlier, [39] introduced an improvement allowing
one to decrease the size of e1. The improved version of StrongApproximation
allows one to reach `e1 = Õ(pN3), decreasing the size of the final output to
approximately 3 log`(p).

From that it is easy to see that Algorithm 4 yields a solution of norm
`e0+e1 with e0 + e1 ∼ 9

2 log`(p). Indeed, the estimate for e0 remains accurate
and the StrongApproximation step in Algorithm 4 provides an output of size
`e1 = Õ(p(NNτ )3) replacing N by NNτ . In general, we can expect Nτ to have a
size similar to N (i.e. Õ(

√
p) ), thus giving our final estimate of 9

2 log`(p). We
will argue in Section 7.2 that it might be acceptable to consider cases where Nτ
is significantly smaller than this average estimate. This allows us to decrease
the size of the solution. We give in Section 6.4 a more proper statement for the
approximations introduced above.

Remark 15. This analysis shows that our method succeeds in finding an ideal
of norm smaller than the solution proposed in [33]. Indeed, as mentioned in
Remark 7, their output is a concatenation of two solutions obtained from KLPT,
thus their output is of norm `e where e ∼ 6 log`(p). As noted in Section 3.3,
this was not our primary motivation but this is a nice improvement nonetheless.
Justifying that this new method meets our goal will be the focus of Section 7.

In our signature scheme, we will use a variant of Algorithm 4, called Signing-
KLPT, suited for our application. The purpose of Section 6 is to detail this
algorithm and to fill in the gaps left in the description of Algorithm 4.

6 Application to the signature scheme: the SigningKLPT
algorithm

In this section, we describe the SigningKLPT procedure used in our signature
scheme. This procedure, described in Algorithm 5, is a variant of Algorithm 4.
Most of its building blocks are common to Algorithm 3 and were introduced in
[33]. The rest of this section fills in the remaining gaps as follows.

1. In Section 6.1, we introduce the EquivalentRandomEichlerIdeal used in Step 1.

2. In Section 6.2, we describe the EichlerModConstraint algorithm to perform
Step 5 of Algorithm 5 (or Step 4 in Algorithm 4).

3. In Section 6.3, we extend StrongApproximation to the case where the first
argument is not prime. The quadratic reduosity condition of Step 6 is a
consequence of the changes to StrongApproximation.

4. The parameter e is fixed (and it only depends on p). To ensure this, we will
need to adapt the exponent e0 and e1 to the values N = n(L) and Nτ . That
is why we will write e0(N). In Section 6.4 we justify that this is possible.

We establish the termination, correctness and complexity of our algorithm in
Section 6.5.
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Algorithm 5 SigningKLPT(I, Iτ )

Require: Iτ a left O0-ideal and right O-ideal of norm Nτ , and I, a left O-ideal.
Ensure: J ∼ I of norm `e, where e is fixed.
1: Compute K = EquivalentRandomEichlerIdeal(I,Nτ )
2: Compute K′ = [Iτ ]∗K and set L = EquivalentPrimeIdeal(K′), L = χK′(δ) for
δ ∈ K′ with N = n(L). Set e0 = e0(N) and e1 = e− e0.

3: Compute γ = RepresentIntegerO0
(N`e0).

4: Compute (C0 : D0) = IdealModConstraint(L, γ).
5: Compute (C1 : D1) = EichlerModConstraint(Z+ Iτ , γ, δ).
6: Compute C = CRTNτ ,N (C0, C1) and D = CRTNτ ,N (D0, D1). If `ep(C2 + D2) is

not a quadratic residue, go back to Step 3.
7: Compute µ = StrongApproximation`•(NNτ , C,D) of norm `e1

8: Set β = γµ.
9: return J = [Iτ ]∗χL(β).

6.1 The randomization procedure

The purpose of Step 1 is to perform a randomization step which we will use to
argue the security of our signature. This addition has two interesting consequences
for us. First, the output of Algorithm 5 only depends on the equivalence class
of the input I. Second, it randomizes the execution as otherwise the algorithm
would be essentially deterministic as noted in Remark 14.

The EquivalentRandomEichlerIdeal algorithm receives an ideal I as input and
returns an equivalent random ideal. In this context equivalent random ideal means
that if we write C the class of I in Cl(O), we want an output ideal equivalent
to I and lying in a uniformly random class of ClO(C) (see Definition 1). This
condition might seem a bit arbitrary at first; however Proposition 7 will justify
that this is exactly the kind of randomness we need.

To reach this goal, we use the classical technique of finding some well-chosen
β ∈ I and output χI(β). The method to choose the β is inspired by the results of
Section 4.3. The idea is to use the bijection from Proposition 5 in order to sample
a class uniformly. Note that Proposition 5 does not hold for some special cases
of maximal orders O, but we may assume that this is not the case here (in the
worst case there are two such types of maximal orders among O(p) possibilities).

Algorithm 6 EquivalentRandomEichlerIdeal(I,Nτ )

Require: I a left O-ideal.
Ensure: K ∼ I of norm coprime with Nτ .
1: Sample a random element ωS in O until Nτ is inert in Z[ωS ].
2: Sample γ a random element in I such that n(γ)/n(I) is coprime with Nτ .
3: Select a random class (C : D) ∈ P1(Z/NτZ).
4: Set β = (C + ωSD)γ.
5: return K = χI(β)
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We start by showing that Algorithm 6 terminates and that the output
distribution is correct.

Lemma 7. Algorithm 6 terminates in polynomial time and outputs an ideal
equivalent to I and uniformly distributed among the Nτ + 1 possible classes of
ClO(O).

Proof. We can find in O(log(p)) attempts a quadratic suborder Z[ωS ] ⊂ O in
which Nτ is inert. Then, it is clear that taking a random element in I will verify
that n(γ)/n(I) is coprime with Nτ with overwhelming probability. Thus, the
algorithm terminates in polynomial time.

The algorithm concretely instantiates the map Θ from Proposition 5. This
map is bijective and we choose (C : D) uniformly at random inside P1(Z/NτZ)
so the output is uniformly distributed.

Consequently, the output of EquivalentRandomEichlerIdeal only depends on
the class (inside Cl(O)) of the ideal in input. The call to EquivalentRandomEichler-
Ideal in Step 1 of Algorithm 5 thus implies the following lemma that will prove
useful in Section 7.

Lemma 8. For any Iτ , the output distributions of SigningKLPT(I, Iτ ) and
SigningKLPT(J, Iτ ) are the same for any I ∼ J . Said otherwise, for fixed Iτ , the
output distribution of Algorithm 5 only depends on the equivalence class of the
ideal I in input.

Next, we describe how the distribution of L (as defined in Step 2 of Algo-
rithm 5) is determined by the output distribution of EquivalentRandomEichlerIdeal.
This is what motivates the current formulation of Algorithm 6.

Proposition 7. The set GI = {L,L = EquivalentPrimeIdeal([Iτ ]∗K) for K ∼ I}
has size at most Nτ + 1 and for every L ∈ GI there exists an output K =
EquivalentRandomEichlerIdeal(I) such that L = EquivalentPrimeIdeal([Iτ ]∗K).
When #GI = Nτ + 1, the ideal L is uniformly distributed inside this set.

Proof. As we mentioned already, there are exactly Nτ + 1 classes for K ∼ I in
ClO(O). By Corollary 19, the class of K in ClO(O) uniquely determines the class
of [Iτ ]∗K in Cl(O0). As noted in Section 2.4, the output of EquivalentPrimeIdeal
is well-defined and deterministic on Cl(O0). The result is proved if we combine
the above remark with Lemma 7.

Remark 16. In full generality, we cannot prove more than this Nτ + 1 upper
bound. However, in most cases this number is exactly equal to Nτ + 1. To
estimate the difference with the upper bound we need to count the number of
times when [Iτ ]∗K1 ∼ [Iτ ]∗K2 for K1 and K2 lying in different classes of ClO(O).
Rewriting this in our commutative diagram (recall that the norms of K1 and K2

are coprime with Nτ ) we have [Iτ ]∗K1 ∼ [Iτ ]∗K2 if and only if [K1]∗Iτ ∼ [K2]∗Iτ .

9 Corollary 1 uses pushforwards rather than pullbacks, but we obtain the desired result
by replacing I with I.
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Thus, each of the Nτ + 1 classes of ClO(O) that we consider is mapped to one
left OR(I)-ideal of norm Nτ through K 7→ [K]∗Iτ . Hence, we want to estimate
the number of pairs of distinct equivalent ideals of norm Nτ . In general, if Nτ + 1
is small compared to p, a maximal order has a very low probability of having
two distinct equivalent ideals of same norm Nτ , which means that with high
probability there are exactly Nτ + 1 classes. In any case, the number of possible
equivalence classes is in Θ(Nτ ).

6.2 Eichler modular constraint

Step 5 in Algorithm 5 (or Step 4 of Algorithm 4) is essential to find a solution
that lies in O = O ∩O0. More precisely for given γ, δ of norm coprime with Nτ
we need to find µ1 ∈ jR such that γµ1δ ∈ O. In fact, this can be done for any
γ, δ of norm coprime with Nτ . This is stated and proved in Proposition 8 below,
following a reasoning similar to the one used in [33] for IdealModConstraint.

The method of resolution is also strongly inspired by IdealModConstraint.
Namely, we use an explicit isomorphism O0/NτO0

∼= M2(Z/NτZ) and a cor-
respondence between the set of proper nonzero left ideals in M2(Z/NτZ) and
P1(Z/NτZ) to translate the condition γµ1δ ∈ Z + Iτ as a system of linear
equations mod Nτ . We write EichlerModConstraint(O, γ, δ) for this. It outputs
(C1 : D1) ∈ P1(Z/NτZ) such that γj(C1 + ωD1)δ ∈ O.

We remind the reader that we consider Nτ inert in R (where R is defined,
like in Section 2.4, as the quadratic suborder of minimal discriminant inside O0).
If Nτ is split, the method is very likely to work as well but there may be some
cases where it fails. Since the constraint that Nτ is inert in R is quite easy to
satisfy (see Section 8.3) we may assume that it holds.

Proposition 8. The sub-routine EichlerModConstraint on any input O, γ, δ re-
turns (C1 : D1) ∈ P1(Z/NτZ) such that γµδ ∈ O with µ = (C1 + ωD1)j.

Proof. In Algorithm 5, we want to find µ such that β = γµ verifies βδ ∈ O to
ensure that [Iτ ]∗χL(β) ∼ I. In Section 4.3, we showed that this was equivalent
to χL(β) lying in the correct equivalence class of Cl(O). To prove that a solution
can always be found it suffices to show that the map Θ′ : P1(Z/NτZ)→ Cl(O)
sending (C : D) to γ(C + ωD) is surjective. In fact, this map is almost the one
from Proposition 5 and is bijective (thus surjective) for the same reasons.

Hence we see that there always exists a solution µ such that χL(γµ) lies in
the correct class in ClO(O0) ≡ Cl(O) and this proves the result.

We deduce a useful corollary, which shows that EichlerModConstraint is inde-
pendent of the choice of δ. This is to be understood in the sense that if we replace
δ by another δ′ ∈ L verifying δ′ ∼O δ, where ∼O is the equivalence relation used
in the proof of Proposition 5, the output does not change. Note that from the
results of Section 4.3, this is equivalent to replacing K by another equivalent
ideal (over ClO(O)) in Step 1 of Algorithm 5.

Corollary 2. Taking δ, δ′ as above, for any given γ ∈ O0 of norm coprime with
Nτ , EichlerModConstraint(O, γ, δ) = EichlerModConstraint(O, γ, δ′).
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Proof. In the proof of Proposition 8, we showed that the map (C1 : D1)→ γj(C1+
ωD1) is injective for any γ of norm coprime with Nτ . This justifies that there
is only one solution in P1(Z/NτZ) giving a β with χL(β) in the correct class of
ClO(O0). Hence, EichlerModConstraint(O, γ, δ) and EichlerModConstraint(O, γ, δ′)
are both equal to this unique solution.

6.3 Strong Approximation step for composite numbers

Here we explain how we can extend the StrongApproximation algorithm described
in [33] to the case where the modular constraint is not modulo a prime but a
product of two primes NNτ . We refer to Algorithm 2 on page 9 for a detailed
description of the original algorithm. In fact, we can just follow the method
described in Algorithm 2 and replace N by NNτ . For parameter sizes of interest
to our application, the product NNτ behaves almost as a prime and the algorithm
will work just as well. The only difference is that we will sometimes encounter some
errors. There are two possibilities: first, the equation of Step 2 of Algorithm 2
may require to compute the inverse of non-invertible elements. Since N and
Nτ are large integers, non-invertible elements in Z/(NNτZ) are scarce and the
probability of not encountering such a special value mod(NNτ ) is overwhelming.

The second concern, however, is more problematic as it occurs with constant
probability. During Step 1 of Algorithm 2, parameters λ, e1 must be chosen such
that λ2(C2 +D2)p ≡ `e1 mod (NNτ ). This implies that `e1(p(C2 +D2))−1 is a
quadratic residue. When we work modulo a prime N (as in [33]), the solution is
to choose N such that ` is a non-quadratic residue modulo N . Then, depending
on whether the value p(C2 + D2) is a square modulo N , we choose the parity
of e1. Hence, fitting values λ, e1 can always be found. Unfortunately, in the
case of Algorithm 5 we cannot always find a solution. Firstly, the value of e1 is
fixed before the strong approximation to avoid any information leakage through
signatures. Secondly, in order for `e1p(C2+D2) to have a chance to be a quadratic
residue mod(NNτ ) (depending on the parity of e), we need that p(C2 +D2) has
the same quadratic residuosity modN and modNτ . With a fixed value of e1, the
failure probability of our quadratic residuosity condition is 3/4 assuming that
C2 +D2 is uniformly distributed mod(NNτ ).

Remark 17. Failure cases can be treated by rerandomizing some of the previous
steps of Algorithm 5. We do this by choosing another γ in Step 3 depending on a
quadratic condition checked in Step 6. To ensure that a suitable γ can be found
we need to have e0 big enough so that enough randomization is possible during
Step 3. This is discussed precisely in Section 6.4.

6.4 Suitable values for e0 and e1

For security (specifically zero-knowledge) it is important that our output has
fixed norm so that the size of the output does not reveal any information on the
input. In this section, we justify that it is possible to find a parameter e such
that finding an output of exact size `e is possible for almost every input. The
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exponent e is the sum of two exponents e0(N) and e1(N,Nτ ) whose individual
values depend on N and Nτ but whose sum can be fixed. In fact, we will pick e
following the approximations of [33] presented in Section 5.3 as they appear to
be quite tight in practice. To simplify notations we write log instead of log` in
the rest of this section. Let us refine the statements of Section 5.3. For KLPT, the
most important parameter is the size of N . We state in Lemma 9 that N cannot
be a lot bigger than

√
p. This result holds under an assumption on the norms

of elements in a Minkowski basis of an integral ideal, and heuristic assumptions
on the distribution of primes represented by some quadratic forms (see [33]).
We stress that this approximation is quite tight in practice as illustrated in the
experimental results of [33] and it seems to hold by taking ε = log log(p).

Lemma 9. There exists ε = O(log log(p)) such that for a random class C ∈
Cl(O0), the norm N of EquivalentPrimeIdeal(C) verifies log(N) < log(p)/2 + ε
with overwhelming probability.

This approximation is valid for both N and Nτ , and we will assume that
it holds for both values for the rest of this section. As we will not be able to
provide a tight lower bound on log(N), log(Nτ ), we need to adjust the exponents
e0 and e1 and that is why we write e0(N) and e1(N,Nτ ) for the lower bounds of
Lemmas 10 and 11. We recall our assumption that the failure probability in the
quadratic residuosity condition of Steps 6 is 3/4 on average for a given γ and δ.

In Lemmas 10 and 11, we assume that we are in an execution of Algorithm 5
that led to an ideal L of norm N . We keep the notation ε from Lemma 9. A
description of the RepresentInteger algorithm was given in Algorithm 1 on page 8.

Lemma 10. For any κ ∈ N, there exists η0 = O(log log(p) + log(κ)) such that
for any e0 ≥ e0(N) = log(p)− log(N) + ε+ η0, the probability that there exists
a solution γ = RepresentIntegerO0

(N`e0) that will lead to a correct execution of
Algorithm 5 is higher than 1− 2−κ.

Proof. From [33], we have the estimate

x =

√
N`e0

√
p log(p)h(R)

for x the number of solutions γ = RepresentIntegerO0
(N`e0). In particular, we

need N`e0 ≥ p to have at least one solution. If we associate the failure probability
3/4 to a given γ, for a fixed input I the probability that there exists one γ leading
to a successful execution of Algorithm 5 is 1− (3/4)x. To have this probability
higher that 1− 2−κ we need log(x) > c1 log(κ) where c1 = log(2)/ log(3/4). The
above estimate implies that log(x) is at least 1/2e0 + 1/2 log(N)− 1/2 log(p)−
1/2ε− log log(p)− log(h(R)). We obtain that choosing η0 = 2 log log(p)+2 log κ+
2 log(h(R)) is enough.

Remark 18. We note that taking κ ∼ log(p) ensures that the success probability
in Lemma 10 is overwhelming. In the case of (very unlikely) failure where one of
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the assumptions above does not hold, we simply abort and start the computation
again.

We conclude this section by evaluating the size of the exponent e1 in the
output of StrongApproximation. A description of this algorithm can be found in
Section 2.4. The algorithm for StrongApproximation(N, ·) in [39] computes close
vectors in some lattice of discriminant Õ(N3p).

Lemma 11. There exists η1 = O(log log(p)) such that if e1 ≥ e1(N,Nτ ) log p+
3 log(N) + 3 log(Nτ ) + η1, Step 7 of Algorithm 5 succeeds in finding a solution µ
of norm `e1 with overwhelming probability.

Proof. As mentioned in Section 2.4, the algorithm iterates through close vectors
of a lattice of discriminant pN3

τN
3
√
h(R) (here we have replaced the usual N by

NNτ , see Section 6.3) until some norm condition is met (see Step 3 of Algorithm 2).
Under the assumption that the distribution of this norm is uniformly random,
the condition will be met after O(log log(p)) attempts. Norm estimates for close
vectors give the conclusion.

6.5 Termination, correctness and complexity

We are now ready to state the following proposition. As noted in Remark 18, we
take κ ∼ log(p) for Lemma 10.

Proposition 9. Algorithm 5 terminates in heuristic probabilistic polynomial
time. It returns an ideal J ∼ I of fixed norm `e for any input I with overwhelming
probability if e ≥ 9/2 log(p)+6ε+η0+η1 where ε, η0, η1 are defined as in Lemmas 9
to 11.

Proof. The proof of correctness follows almost directly from Lemma 6, replacing
I by an equivalent K. Since the correctness of Algorithm 4 holds for any input
and K ∼ I, we see that Algorithm 5 is correct. Combining Lemmas 10 and 11
we see that we need to pick e0, e1 above the bounds e0(N), e1(N,Nτ ) for the
computation to succeed with overwhelming probability. We obtain e0 + e1 ≥
2 log(p) + 2 log(N) + 3 log(Nτ ) + η0 + η1 + ε. Taking the upper bound of Lemma 9
for both N and Nτ we obtain e ≥ 9/2 log(p) + 6ε + η0 + η1. Given that the
probability of failure is 3/4, the number of different values γ that we need to
choose before finding a fitting choice is logarithmic in p. This proves termination.
The complexity statement follows directly from the heuristic polynomial-time
complexities argued in [33]. From the description in Section 6.2, it is clear that
the complexity of EichlerModConstraint is the same as IdealModConstraint and it
is also polynomial in log(p).

Remark 19. In Section 8.3, we introduce a new key sampling method. The idea
is to choose a value Nτ smaller than the generic estimate of Lemma 9 in order
to reduce the size of e. To ensure this, we choose a bound Bτ and sample a
random degree smaller than this bound. In this case, we can state the result
of Proposition 9 in full generality by rewriting our bound in Lemma 11 as
e ≥ 3 log(p) + 3 log(Bτ ) + 3ε+ η0 + η1.
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Remark 20. Proposition 9 does not tell much about concrete efficiency. In fact, it
is quite easy to compare complexity of Algorithm 5 with the original one from [33]
(described in Algorithm 3). The only real differences between the two algorithms
are the executions of EquivalentRandomEichlerIdeal, EichlerModConstraint and
CRT in Algorithm 5. We argued in Section 6.2 that EichlerModConstraint is
in fact very similar to IdealModConstraint. We can see from the description in
Algorithm 6, that EquivalentRandomEichlerIdeal involves operations quite similar
to those of IdealModConstraint. It is quite obvious that CRT’s execution time
is negligible compared to all the other computations. Additionally, it is worth
mentioning that until the condition of Step 4 is not met, Algorithm 5 will loop.
As explained in Section 6.3, the probabilty of failure is assumed to be 3/4. All
this analysis shows that executing Algorithm 5 will take the same amount of time
than a few executions of Algorithm 3 with overwhelming probability. In practice,
this amounts to approximately 20 ms in our C implementation and is completely
negligible compared to other aspects of the signature (see Section 8.7).

7 Zero-Knowledge

We now discuss the Zero-Knowledge property of our identification scheme.

7.1 An ad hoc assumption

We prove that our identification scheme is computationally zero-knowledge
assuming that the distribution of the response isogeny σ can be simulated.

We define D(EA) as the distribution of isogenies σ in SQISign, for a given
public key EA.

Lemma 12. If we assume that for any SQISign public key EA, there exists
a probabilistic polynomial algorithm S, taking EA as input, whose output dis-
tribution is (computationally) indistinguishable from D(EA), then the SQISign
identification protocol is (computationally) Honest-Verifier Zero-Knowledge.

Proof. (sketch) We refer to Section 3 for a description of the scheme. We construct
a simulator as follows. The simulator generates the isogeny S(EA) = σ : EA → E2,
a uniformly random isogeny ϕ̂ : E2 → E1 of degree Dc, and outputs (E1, ϕ,E2, σ).
We now argue that transcripts constructed by the simulator are computationally
indistinguishable from real transcripts. First, observe that in the real transcript
all curves are nearly uniformly distributed, as long as Dc and the degree of ψ are
chosen large enough. This is due to the Ramanujan property of the supersingular
isogeny graphs (see [11]). With our asumption on S, the distribution of E2 is
(computationally) indistinguishable from the real one. The “challenge” φ is a
random isogeny of degree Dc and so it is identically distributed in both the real
and simulated transcripts, and thus so is the curve E1.

It remains to prove that the “response” isogeny σ and its real counterpart
cannot be efficiently distinguished, which stems directly from our assumption on
S and the definition of D(EA).
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In the following subsections we will focus on the instantiation of SQISign with
the SigningKLPT algorithm of Section 6 (Algorithm 5), and argue that in this
case, the distribution D(EA) is indistinguishable from the uniform distribution
of cyclic D-isogenies under the hardness of Problem 2.

7.2 On the distribution of signatures

The goal of this section is to understand the distribution of the isogenies σ
obtained from J = SigningKLPT(I, Iτ ). With Lemma 13, we will see that any
such σ is the image under the secret isogeny of some other isogeny ι. From the
proof of Lemma 13, it appears that ι lies in a specific set of isogenies: the set PNτ
from Definition 2. This fact is quite obvious from Lemma 13 and the definition of
PNτ (which closely follows Algorithm 5). What is less trivial is that any element
of PNτ is a possible output of our algorithm, and that this set can be entirely
computed from the knowledge of Nτ . We will prove this fact in Proposition 10,
and use it to state Problem 2 as our security assumption.

We represent in Fig. 3 the different isogenies involved in the proof of Lemma 13.
The isogenies and curves that are public are highlighted in bold.

EA

E0

E2

EL
E3

E4

τ

[ι]∗ τ

ϕL

ι

σ = [τ ]∗ι

γ`γN
µ

µL

γ`L

µτ

γ`τ

N -isogenies

`-isogenies

Nτ -isogenies

public isogenies

E0 public curves

Fig. 3. Analysis of Algorithm 5 under the Deuring correspondence

Lemma 13. Let L ⊂ O and β ∈ L be as in steps 2, 8 respectively of Algorithm 5.
The isogeny σ corresponding to the output J of Algorithm 5 is equal to σ = [τ ]∗ι,
where ι is an isogeny of degree `e verifying β = ι̂ ◦ ϕL.
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Proof. The endomorphism γ can be decomposed as γN ◦ γ` and then β = γµ =
γN ◦γ` ◦µ. Since β ∈ L, it can be rewritten γ`L ◦µL ◦ϕL if we compose the other
way, where γ`L ◦ µL = [ϕL]∗γ` ◦ µ. Thus, we see that ι is defined as the dual
of γ`L ◦ µL. Finally, σ is the image through τ of ι. We have the decomposition
σ = [τ ]∗ι = µτ ◦ γ`τ . Note that equivalently, σ can also be seen as the image
through τ ◦ γN of the dual of γ` ◦ ν.

To argue that ι lies in a public set PNτ , we need to understand what is the
exact link between τ and ι. It is clear that L is strongly related to ι as β = ι̂ ◦ϕL.
Hence, the codomain of ι is determined by the class of L in Cl(O0). This underlies
the definition of PNτ as the union of subsets UL,Nτ indexed by all possible L (see
Definition 2).

Remark 21. In Proposition 7, we saw that L lies among at most Nτ + 1 possible
values for a given input I. Each such L is uniquely determined by the class of K
(with respect to ∼O) computed in Step 1 of Algorithm 5. In this sense, it would
be more natural to divide outputs according to the classes of ClO(O). However,
with this point of view, it is less clear that the set PNτ is independent of τ .
As argued in Remark 16, this number is exactly Nτ + 1 with an overwhelming
probability. To simplify the remaining statements we will consider that we are in
this likely case.

Suppose we have chosen a class for L among the Nτ+1 candidates. We want to
determine how the rest of the computation follows from this initial choice. During
Step 3 we compute a value γ, and it is clear that N = n(L) uniquely determines
the distribution of outputs for RepresentIntegerO0

(N`e0(N)) (see Algorithm 1).
Then, the projective pair (C0 : D0) only depends on L and γ. We have proved in
Corollary 2 that the projective pair (C1 : D1) did not depend on the actual value
of δ, so it is also uniquely determined by the choice of class for K (and thus of
L) and γ. The rest of the computation is deterministic from there (up to failures
that imply picking another γ). We are now ready to characterize the set of all
possible outputs of our algorithm SigningKLPT.

Let us take the value e0(N) and e1(N,Nτ ) as defined in Section 6.4 for
Algorithm 5. For a given L of norm N , we consider UL,Nτ as the set of all isogenies
ι computed as in Lemma 13 from elements β = γµ ∈ L where γ is a random output
of RepresentIntegerO0

(N`e0(N)) and µ = (C + ωD)j where p(C2 +D2)`e1(N,Nτ )

is a quadratic residue modNNτ and is defined as C = CRTN,Nτ (C0, C1), D =
CRTN,Nτ (D0, D1) where (C0 : D0) = IdealModConstraint(L, γ) and (C1 : D1) is
a random element of P1(Z/NτZ). For an equivalence class C in Cl(O0) we write
UC,Nτ for UL,Nτ where L = EquivalentPrimeIdeal(C).

Definition 2. PNτ =
⋃
C∈Cl(O0)

UC,Nτ
With the next proposition we show that our definition of PNτ is the relevant one
as it accounts for all the output of Algorithm 5.

Proposition 10. The set PNτ from Definition 2 can be computed from the sole
knowledge of Nτ . The set {J, J = [Iτ ]∗Iι, ι ∈ PNτ } is exactly the set of outputs
SigningKLPT(I, Iτ ) for I ranging over all the non-trivial classes in Cl(O).
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Proof. The first point is direct from Definition 2. Indeed, it appears clearly from
the definition that each UC,Nτ can be computed from L = EquivalentPrimeIdeal(C)
and Nτ . With Lemma 13 and comparing the definition of the UL,Nτ with the steps
of Algorithm 5 we see that its outputs are all contained in {J, J = [Iτ ]∗Iι, ι ∈
PNτ }. To conclude the proof, we need to show that for any element J of
this set, there exists an ideal I and an execution of Algorithm 5 such that
SigningKLPT(I, Iτ ) = J . We write β = γµ corresponding to ι ∈ UL,Nτ for L ∼ Iι.
For such a J , any I ∼ J can work as input as a consequence of Lemma 8.
From Proposition 7, we know there exists K and a random input leading to
K = RandomEquivalentEichlerIdeal(I) with [Iτ ]∗K ∼O χL(β) during the execu-
tion of Step 1. We can obtain γ as the output of RepresentIntegerO0

(N`e0(N))
by definition of γ. Because of Corollary 2, we see that the elements C and D
obtained in the execution of Algorithm 5 are in the same classes as the elements
C ′, D′ used in the computation of µ = StrongApproximation(NNτ , C

′, D′) in the
definition of PNτ . Hence, we obtain the same element β ∈ L and we have just
described an execution of Algorithm 5 that led to the output J precisely.

7.3 Hardness Assumption for Zero-Knowledge

In this section, we present the hardness assumption on which the zero-knowledge
property will rely. We would like to show that the output of SigningKLPT cannot
be linked to any isogeny from E0 to EA and more specifically τ . The formulation of
Problem 2 is suggested by the results introduced in Lemma 13 and Proposition 10
where we showed that the signature isogeny σ is the image through τ of an
isogeny ι lying in some public set of isogenies PNτ , see Definition 2.

For D ∈ N and a supersingular curve E, we define IsoD,j(E) as the set of
cyclic isogenies of degree D, whose domain is a curve inside the isomorphism
class of E. When P is a subset of IsoD,j(E) and τ : E → E′ is an isogeny with
gcd(deg τ,D) = 1, we write [τ ]∗ P for the subset {[τ ]∗ φ | φ ∈ P} of IsoD,j(E′).
Finally, we denote by K a probability distribution on the set of cyclic isogenies
whose domain is E0, representing the distribution of SQISign private keys. With
these notations, we define the following computational problem:

Problem 2. Let p be a prime, and D a smooth integer. Let τ : E0 → EA be a
random isogeny drawn from K, and let Nτ be its degree. Let PNτ ⊂ IsoD,j0 as
in Definition 2, and let Oτ be an oracle sampling random elements in [τ ]∗PNτ .
Let σ : EA → ? of degree D where either

1. σ is uniformly random in IsoD,j(EA);
2. σ is uniformly random in [τ ]∗ PNτ .

The problem is, given p,D,K, EA, σ, to distinguish between the two cases with a
polynomial number of queries to Oτ .

We will assume that Problem 2 cannot be solved with non-negligible advantage
by any polynomial time adversary. In Appendix B we briefly discuss several
potential attack strategies; however, given current knowledge, no strategy seems
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to be better than a direct key recovery, computing τ from the knowledge of EA
only.

Remark 22. To ensure hardness of Problem 2, the size of the family PNτ used
in Proposition 10 must be exponential in the security parameter. We have
that |PNτ | = Θ̃(pNτ ). Indeed following the analysis of Section 7.2, there are
Θ(Nτ ) elements resulting from a given pair (L, γ) (the maximal number of
possibilities is Nτ + 1, and there is a constant probability that each element
meets the quadratic residuosity condition). There are h(O0) = Θ(p) possible L
and x = O(log(p)) = Θ̃(1) possible γ (following Lemma 10 and the discussion
afterwards).

Remark 23. Here we formulated the security assumption of SQISign as instanti-
ated on top of Algorithm 5. It is possible to devise variants of Algorithm 5, which
would entail different families PNτ in the definition of Problem 2. We argue in
Appendix B that any secure instantiation requires |PNτ | to be exponential in the
security parameter for any Nτ but that this condition is not sufficient.

In Proposition 11, we show the security reduction to Problem 2. The proof
relies on several heuristic assumptions that we summarize here for convenience.
The first one was the focus of Section 6.4.

Assumption 1 Under the heuristic assumptions used in Section 6.4, we can fix
a given degree D = `e with e depending only on p, such that Algorithm 5 succeeds
in finding an output of norm D for any input with overwhelming probability.

Proposition 10 is not enough to prove Proposition 11: we need some informa-
tion on the distribution of the outputs of Algorithm 5 inside PNτ . We will prove
in Lemma 14 that when the input is uniformly distributed inside Cl(O), the
output distribution of Algorithm 5 is statistically close to the uniform distribution
on the set of possible outputs. This result is obtained with one new assumption:

Assumption 2 The distribution of classes obtained by taking the classes of the
ideals Iι corresponding to ι ∈ PNτ is statistically close to the uniform distribution
on ClO(O0).

Lemma 14. Under the assumptions listed above, the outputs of Algorithm 5,
given uniformly distributed inputs, are distributed in a manner statistically indis-
tinguishable from the uniform distribution on {J, J = [Iτ ]∗Iι, ι ∈ PNτ }.

Proof. First, with Assumption 1, we showed in Section 6.4 that we can find an
output of the correct degree. By Proposition 10, it lies in {J, J = [Iτ ]∗Iι, ι ∈ PNτ }.
From Lemma 7, we see that K lies in a uniformly random class of ClO(O) and
so is K ′ in ClO(O0). Once this class is fixed, the output is uniquely determined
by the choice of γ. During, Step 3 a random γ is selected. Repeating until the
quadratic condition of Step 6 is met, we find a uniformly random solution among
the elements in PNτ contained in that equivalence class. By Assumption 2, this
is statistically indistinguishable from a uniformly random element of {J, J =
[Iτ ]∗Iι, ι ∈ PNτ }.
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Under Lemma 12, the next proposition entails that Zero-Knowledge security
reduces to Problem 2.

Proposition 11. When SQISign is instantiated with Algorithm 5, distinguishing
between D(EA) and the uniform distribution of D-isogenies starting from EA
reduces to Problem 2, under the heuristic assumptions listed above.

Proof. To prove Proposition 11, we will show that we can construct a distinguisher
for Problem 2 from a distinguisher between D(EA) and the uniform distribution
on IsoD,j(EA). When Algorithm 5 is used to compute σ, the distribution D(EA)
is statistically indistinguisahble from the distribution of isogenies corresponding,
through the Deuring Correspondence, to the output of SigningKLPT upon input
Iτ , I, where I lies in a uniformly random class of Cl(O) and Iτ is computed from
the secret key as an ideal corresponding to an isogeny between E0 and EA. Recall
that the distribution of E2 is nearly uniform, so the distribution of the class of I
in the real execution is statistically close to the uniform distribution.

Clearly, the two distinguishers have compatible inputs. To prove the reduction
we have to prove that the input distributions are statistically indistinguishable.
Recall that for both problems there are two possible cases: either the isogeny is
uniformly random of degree D or it has a special form. In the first case, the two
problems clearly share the same input distribution. The second case is covered
by Lemma 14.

8 Efficiency

In this section, we describe a concrete instantiation of our scheme. This includes
a precise description of the protocols outlined in Section 3.1, along with all the
missing sub-algorithms, concrete parameters and various ideas to improve the
overall efficiency. The resulting signature reaches 128-bit of classical security and
the post-quantum NIST level 1 and is very compact as highlighted in Table 2.
We also provide a proof-of-concept implementation of the protocol.

The algorithm SigningKLPT was extensively studied in Sections 5 and 6, and
we will see in Section 8.7 that it is reasonably efficient. The efficiency bottleneck
of our signature scheme turns out to be the translation of the input and output
ideals of Algorithm 5 from and to isogenies. Specifically, we seek to define two
families of algorithms:

– IdealToIsogeny: Given a left O-ideal I of smooth norm D, compute the
corresponding isogeny ϕI as a sequence of prime-degree isogenies.

– IsogenyToIdeal: Given an isogeny from E of smooth degree D, compute the
corresponding left O-ideal.

Algorithms for these tasks in the case where O and E are special extremal
were already introduced in [28]. They are very general, but not really efficient,
owing to their use of D-torsion points defined in algebraic extensions of Fp2 . A
classical solution would be to choose a special prime p such that the D-torsion is
Fp2 -rational. However in our case D is a power of 2 and, following the estimates of
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Section 5.3, we need D ≈ p9/2 (or at best D ≈ p15/4 using the idea of Section 8.3).
With these requirements finding such a prime is not feasible, we thus devise new
solutions to the two problems.

This section is organized as follows. We first present our version of IdealTo-
Isogeny in Section 8.1. We then introduce a set of concrete parameters in Sec-
tion 8.2, and we analyze two possible key spaces in Section 8.3. Following up,
we give a detailed description of our identification scheme in Section 8.4. We
conclude by presenting improvement perspectives in Section 8.6. Size and time
performances of the resulting signature scheme are presented in Section 8.7.

8.1 Translating ideals to isogenies

Let I be a left O0-ideal of smooth norm D where O0 is a special extremal maximal
order, and let E0 be a curve such that O0 is isomorphic to End(E0). In this
section we assume that we know an explicit representation of O0, meaning that we
know an explicit isomorphism between End(E0) and O0, allowing us to efficiently
evaluate endomorphisms of E0. We want to find the isogeny ϕI of degree D and
domain E0 corresponding to I. We will describe ϕI as the composition of several
prime degree isogenies represented by their kernels. Most of the ideas presented
in this section are adaptations of algorithms introduced in [28,25]; below we first
recall these algorithms then describe our improvements.

Algorithm in [25] As each primary factor of D can be treated separately let
us for simplicity assume that D = `e. The idea is to divide ϕI into g isogenies of
smaller degrees `f where the `f -torsion is defined over a reasonably small field
extension. Following [25], to write ϕI = ϕg ◦ . . . ϕ2 ◦ ϕ1 under the ideal filtration
I = I1 · I2 · · · Ig, we need an explicit representation of Oi = OR(Ii) in order to
compute the action of End(Ei) on Ei[`

f ], where Ei is the codomain of ϕi. In
Section 2.3, we introduced a formula due to [25] providing such a representation
from an ideal connecting Oi to O0 (equivalently an isogeny connecting Ei with
E0). However the formula in [25] involves division by the norm Ni of this ideal.
In particular if ei is the `-adic valuation of Ni, we would need to compute the
`f+ei -torsion points. It thus appears that having Ni coprime to ` is essential for
efficiency. We will therefore not be able to use I1 · · · Ii as the connecting ideal,
but we will instead use an equivalent ideal Ji of coprime degree. Fortunately, this
can be found with KLPT. This idea underlies all the algorithms introduced in
this section.

The discussion above motivates the introduction of a smooth integer T
representing the torsion coprime with ` that is accessible (i.e., defined over small
extensions of Fp2), we refer to Section 8.2 for concrete parameters illustrating
what we mean by “accessible” and “small”. Ideally, we would like to have Ji
of norm dividing T (obtained by execution of the variant KLPTT ) so that the
translations into the corresponding isogenies are efficient. However, once again
we are hindered by the size of KLPT’s outputs, which have norm around p3. We
now describe two tricks to reduce the torsion requirements.
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Computing half of the isogeny from the image curve Let us assume that
our ideal corresponds to ψ : E1 → E2 where ψ has degree D1D2 (with D1 and
D2 not necessarily coprime). Instead of trying to express ψ from E1 and using

the E1[D1D2] torsion, we can try and split ψ as ψ̂2 ◦ ψ1 where degψi = Di,
i = 1, 2. We compute ψ1 from E1[D1] and ψ2 from E2[D2]. We apply this idea in
Algorithm 7 to translate an ideal of norm dividing T 2 (instead of T previously)

to the corresponding isogeny. This means we now only need T ∼ p 3
2 instead of

T ∼ p3. We will see in Section 8.2 that this is indeed possible.

Meet-in-the-middle Let us now assume that D = D1D2D
′, where D′ is a

reasonably small integer (in our application, D, D1, D2, D′ are all `-powers). We

can write an isogeny ψ of degree D as ψ̂2 ◦ θ ◦ψ1 where degψ1 = D1, deg θ = D′

and degψ2 = D2. The two isogenies ψ1, ψ̂2 can be computed using E1[D1] and
E2[D2] as before. Writing E3 and E4 for their codomains we know that there is
θ : E3 → E4 of degree D′. If D′ is small and smooth, a meet-in-the-middle search
allows us to recover θ efficiently. This idea, combined with that of Section 8.1,
underlies Algorithm 8 IdealToIsogeny`2f+∆ , that is illustrated in Fig. 4. In our
implementation, this trick decreases the number of T -isogeny computations,
which currently are the efficiency bottleneck.

E0 E1

E3

E2

E4

E5

E6 θ

ϕ2

ϕ1

ϕK

ϕJ

ψ2

η

ρ2

ψ1

ψ′1

smooth (coprime with `) isogenies

`•-isogenies

meet-in-the-middle isogenies

Fig. 4. Graphical representation of the ideal to isogeny translation of Algorithm 8

Ideal to isogeny: our optimized solution We are now ready to present the
algorithm IdealToIsogeny`• used in our implementation. The algorithm translates
an O-ideal in the corresponding isogeny for any maximal order O. It requires
K a left O0-ideal and right O-ideal of degree `• along with the corresponding
isogeny ϕK : E0 → E where O ∼= End(E). As before we write `f for the accessible
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`•-torsion and T for the accessible smooth torsion coprime to `. We write ∆ for
a meet-in-the-middle parameter `∆ = D′ (see Section 8.1). The algorithm uses
the following subroutines.

– SpecialIdealToIsogeny(J, I, ϕI): described in Algorithm 7, it takes I, J two
left O0-ideals of norm n(I) = `• and n(J) dividing T 2 along with the isogeny
ϕI : E0 → E and outputs ϕJ .

– IdealToIsogeny`2f+∆(I, J,K, ϕJ , ϕK): described in Algorithm 8, it takes I a
left O0-ideal of norm dividing T 2`2f+∆, J containing I of norm dividing T 2

and K ∼ J of norm `• along with ϕJ , ϕK and outputs ϕ of degree `2f+∆

such that ϕI = ϕ ◦ ϕJ .

The algorithm IdealToIsogeny`•(I,K, ϕK) is described in Algorithm 9. Note
that we do not provide any proof of correctness and termination for Algorithms 7
to 9. This is because these algorithms already existed in essence in [25,28] and
were only improved with the ideas of Section 8.1 and Section 8.1 for efficiency.

Algorithm 7 SpecialIdealToIsogeny(J, I, ϕI)

Require: Two equivalent left ideals I, J of O0, with J of norm dividing T 2 and I of
norm `•, and the corresponding isogeny ϕI : E0 → E.

Ensure: ϕJ .
1: H1 ← J + TO0.
2: Let α ∈ I such that J = χI(α).
3: H2 ← 〈α, (n(J)/n(H1))〉.
4: ϕHi ← IdealToIsogenyT (Hi) : E0 → Ei.
5: Let ψ : E → E/ϕI(kerϕH2) = E1.
6: return ψ̂ ◦ ϕH1 .

8.2 Choosing the parameters

We discuss now the choice of the parameters and most importantly the prime p
that we will use. As mentioned above, we need a prime p such that the T`f -torsion
is accessible for T ' p3/2 and f is as big as possible. Recall that by “accessible”
we generally mean that the full T`f -torsion subgroup is defined over a small
extension of Fp2 . We can strengthen this by asking that T`f | (p2 − 1), which
implies that the full T`f -torsion is generated by four points with x-coordinates
in Fp2 , or equivalently by two Fp2-rational points on the curve with Frobenius
trace −2p and two other Fp2-rational points on its twist. Similar primes were
recently considered for use in B-SIDH [13], an adaptation of SIDH with smaller
(uncompressed) public keys.

For λ bits of classical security, we need a prime of 2λ bits as argued in
Section 8.3. In the implementation described in Section 8.7, we used the 256-bits
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Algorithm 8 IdealToIsogeny`2f+∆(I, J,K, ϕJ , ϕK)

Require: I a left O0-ideal of norm dividing T 2`2f+∆, an O0-ideal in J containing I of
norm dividing T 2, and an ideal K ∼ J of norm a power of `, as well as ϕJ and ϕK .

Ensure: ϕ = ϕ2 ◦ θ ◦ ϕ1 : E1 → E2 of degree `2f+∆ such that ϕI = ϕ ◦ ϕJ , L ∼ I of
norm dividing T 2 and ϕL.

0: Write ϕJ , ϕK : E0 → E1.
1: Let I1 = I + `fO0.
2: Let ϕ′1 = IdealToIsogeny`f (I1).
3: Let ϕ1 = [ϕJ ]∗ϕ

′
1 : E1 → E3.

4: Let L = KLPTT (I).
5: Let α ∈ K such that J = χK(α).
6: Let β ∈ I such that L = χI(β).
7: Let γ = βα/n(J). We have γ ∈ K, γ̄ ∈ L, and n(γ) = T 2`2f+∆n(K).
8: Let H1 = 〈γ, n(K)`fT 〉. We have ϕH1 = ψ1 ◦ ϕ1 ◦ ϕK : E0 → E5, where ψ1 has

degree T .
9: Let H2 = 〈γ, `fT 〉. We have ϕH2 = ρ2 ◦ ψ2 : E0 → E6, where ψ2 has degree T and
ϕ2 has degree `f .

10: Find η : E5 → E6 of degree `∆ with meet-in-the-middle.
11: Let ϕ2 ◦ θ = [ψ̂1]∗ρ̂2 ◦ η : E3 → E2 and ψ′1 = [ϕ̂2 ◦ η]∗ψ̂1

12: return ϕ = ϕ2θ ◦ ϕ1, L and ψ′1 ◦ ψ2.

prime p such that

p+ 1 = 233 · 521 · 72 · 11 · 31 · 83 · 107 · 137 · 751 · 827 · 3691 · 4019 · 6983

· 517434778561 · 26602537156291 ,

p− 1 = 2 · 353 · 43 · 103 · 109 · 199 · 227 · 419 · 491 · 569 · 631 · 677 · 857 · 859

· 883 · 1019 · 2713 · 4283 .

This prime verifies that p2−1 is a multiple of 233T where T is a 395-bit 213-smooth
number. We give more details on the search for such primes in Appendix C.

Algorithm 9 requires numerous evaluations of T -isogenies, and this will prove
to be the bottleneck of our scheme. The recent work of [5] provided a square root
speedup to compute and evaluate an isogeny of degree d. Their method appears
to be faster than the naive method for d ≥ 100 approximately and our scheme’s
implementation also benefits from this improvement.

8.3 Defining the key space

For statistical security, the secret isogeny should be of degree sufficiently large,
so to ensure a nearly uniform distribution of the public key EA in the set of
supersingular curves. However, a larger degree results in a bigger output for
Algorithm 5, hence poorer performance. In this section we discuss an alternative
key sampling method which trades off statistical security for efficiency. We will
use this alternative key space in our implementation. As our attempts at breaking
Problem 2 were unsuccessful, we solely focus on key recovery attacks that use
the public key only.
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Algorithm 9 IdealToIsogeny`•(I,K, ϕK)

Require: A left O-ideal I of norm a power of `, K a left O0-ideal and right O-ideal of
norm `•, the corresponding ϕK .

Ensure: ϕI .
1: Write I = In ⊂ · · · ⊂ I1 ⊂ I0 = O where n(Ii)/n(Ii−1) ≤ `2f+∆.
2: J ← KLPTT (K).
3: ϕJ ← SpecialIdealToIsogeny(J,K, ϕK).
4: for i = 1, . . . , n do
5: ϕi, J, ϕJ ← IdealToIsogeny`2f+∆(J · Ii, J,K, ϕJ , ϕK).
6: K ← K · Ii.
7: ϕK ← ϕi ◦ ϕK .
8: end for
9: return ϕn ◦ · · · ◦ ϕ1.

A natural method to generate the key would be as follows : we fix a bound Bτ ,
then we sample a prime degree Nτ randomly in [2, Bτ ] (coprime with ` and T )
and we finally sample a random isogeny of degree Nτ from E0. By the estimates of
Lemma 9, we see that an overwhelming proportion of the supersingular graph can
be reached with this method if Bτ is at least

√
p. When EA is nearly uniformly

distributed, the best known classical attack is due to Delfs and Galbraith [20]
and has cost O(p1/2). It consists in performing a random walk from EA until a
curve E′ in Fp is reached, then doing a search in the Fp-graph for an isogeny
connecting E′ to E0. The quantum version of this algorithm achieves a quadratic
speed-up using Grover’s algorithm, and thus has cost O(p1/4) [7]. Hence, for a
classical security level λ, and quantum security level µ = λ/2, it is enough to
choose log(p) = 2λ = 4µ. In particular, log(p) = 256, 384, 512 reach the NIST’s
security levels 1, 3 and 5 respectively.

A simple way to improve the efficiency of our protocols is to decrease the
bound Bτ . This is reminiscent of the SIDH protocol [30], in which only a small
fraction of the supersingular graph is used, and whose security is consequently not
amenable to a generic isogeny problem. However unlike in the SIDH case, slightly
reducing the key space does not improve the cost of known attacks. Indeed, in
our protocols Nτ is a large prime, thus meet-in-the-middle strategies à la [2]
would be ineffective.

When Bτ becomes small enough, exhaustive search becomes the best strategy:
compute all isogenies of degree smaller than Bτ , and compare their codomain
curve with EA. Every single isogeny can be computed in polynomial time in
log(p) even if Nτ is not smooth, because we can translate the ideal into a smooth
degree one with KLPT. Since there are Θ̃(Bτ ) possible degrees Nτ and Θ(Nτ )
cyclic isogenies for each of these degrees, the classical complexity of this attack
is in Θ̃(B2

τ ), and Grover’s algorithm yields again a quadratic speed-up at best.
To defeat this attack, we only need log(Bτ ) = 1

4 log(p) which is smaller than the
log(Nτ ) = 1

2 log(p) bound that we have in general.

This improvement produces a shorter and more efficient signature for the
same level of security, as it reduces the output size of Algorithm 5 from 9

2 log`(p)
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to 15
4 log`(p) (see Section 6.4). We use it for the implementations presented in

Section 8.7. With the parameters from Section 8.2, this gives an approximation
of 960 for the exponent e when ` = 2 for the smallest solution. As explained
in Section 6.4, to ensure termination on any input, we need to take e slightly
bigger than this estimate. Empirically, it appears that taking e = 1000 is already
enough.

8.4 The concrete protocol

Now that we have all the preliminary algorithms, we can provide a concrete
description of our identification scheme. Let us assume that we have found a
prime p as described above in Section 8.2. We recall that T ≈ p3/2 is the smooth
torsion defined over Fp2 for supersingular elliptic curves. For the challenge and
the commitment we divide T as Dc · T ′ where Dc is a λ-bit integer and T ′ a
2λ-bit integer. In the protocol presented below we decided to use D = `•. As
noted in Remark 24, this is not a necessity, and this choice implies a tradeoff
between signature and verification times.

Building τ (keygen) We use the efficiency improvement from Section 8.3 hence
fix Bτ = 1

2λ. The degree Nτ is a prime number inert in R and smaller than Bτ ,
chosen uniformly at random among such numbers.

Since Nτ is a large prime number, we never compute concretely the isogeny τ
as this would be too inefficient. Instead we use the corresponding ideal Iτ . This is
enough to apply SigningKLPT but it does not give us the public key EA. For this,
we compute another isogeny τ ′ : E0 → EA of degree `•. This can be done with
KLPT. We present an alternative (more efficient) key genereration procedure in
Appendix D. We briefly summarize the description above for keygen:

1. Select a prime Nτ ≤ Bτ that is inert in R uniformly at random.

2. Select a left O0-ideal Iτ of norm Nτ , uniformly at random among the Nτ + 1
possibilities.

3. Compute Jτ = KLPT`•(Iτ )

4. Compute τ ′ = IdealToIsogeny`•(Jτ ,O0, [1]E0) and set pk = EA the codomain
of τ ′.

Building ψ (commitment) There are several options for building the com-
mitment (and incidentally the challenge); we present the most efficient option
here. We note that for security reasons, ψ must be as hard to recover as the
secret. This suggests taking a smooth isogeny of degree about p (here we do not
gain anything by using the same idea as in Section 8.3). Given the factorization
T = Dc · T ′, we choose ψ as a random isogeny of degree T ′ from E0. With
this choice, computing the isogeny and converting it to an ideal is efficient. Let
Iψ := IsogenyToIdealT ′(ψ).
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Building ϕ (challenge) The previous choice of commitment generation was
motivated by the fact that we want an efficient way to translate the challenge into
its corresponding ideal. For λ-bit soundness security we need a challenge space
of size 2λ = O(

√
p), so the challenge isogeny needs to be of degree O(

√
p). Let

ϕ : E1 → E2 be a random cyclic isogeny of degree Dc. Since the T = T ′Dc-torsion
is accessible, computing the corresponding ideal will be efficient for the prover.

Building σ (response) The response is computed as follows:

1. Compute Iϕ = [Iψ]∗
(
IsogenyToIdealDc([ψ]∗ϕ)

)
.

2. Set I = Iτ · Iψ · Iϕ and compute J = SigningKLPT(I, Iτ ).
3. Compute σ = IdealToIsogeny`•(J, Jτ , τ

′).

8.5 Response and verification

In this section we discuss the verification part of the protocol. We remind the
reader that upon receiving σ, the verifier needs to check that it is an isogeny of
degree D between EA and E2 such that the composition with the challenge ϕ
is cyclic (this last part is trivial when D and Dc are coprime). All this can be
done by computing the chain of isogenies associated with σ. We decompose σ of
degree D = `e as σg ◦ · · · ◦ σ1 where each of the σj has degree at most `f (f = 33
in our case). The main problem is to find a compact and efficient representation
of σ that can be sent to the verifier. Inspired by key compression approaches for
SIDH/SIKE [53,36,3,14,37], we adopt the strategy described in Algorithms 10
and 11.

It is possible to compress a 2e isogeny in e bits when the domain is known,
however this compression is slower than what we achieve. This is because com-
puting the kernel for each new step of size 2f is somewhat slow. We can achieve
a faster decompression by adding a few bits of information for every σj . We
choose arbitrarily to take 4 for the number of these bits, but we stress that this
choice can be adjusted. For the sake of explanation, let us assume that each σj
has degree exactly `f . We use a canonical way to sample pseudo-random points
on any supersingular curve E known to both the prover and the verifier. This
means that they can both agree on an ordered list of points PE1 , P

E
2 , P

E
3 , · · ·

on E(Fp2). This is classical for key compression, and we refer to the sources
mentioned previously for more details. We keep this notation for Algorithms 10
and 11. We write c for (p+ 1)/2f .

Remark 24. Here we have made the choice of responding with isogenies of degree
2•, but this is not a necessity. In fact there is a tradeoff in efficiency of signature
vs. efficiency of verification. Signing time could be greatly improved by allowing
some T -torsion inside the response isogeny. However, in this case, the verifier
would be required to compute isogenies of degree dividing T which is a lot less
efficient than 2-isogenies, with the current parameters. For instance, if Nτ ≈ p1/4,
a response isogeny of degree T`• would decrease the `-valuation of σ’s degree by
a factor of 5/3 and replace this by a T -isogeny computation. As each iteration of
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Algorithm 10 Compression

Require: An isogeny σ = σg ◦ · · ·σ1 of degree `fg of codomain EA.
Ensure: A bit string of size (f + 4)(g − 1) + f representing σ.
1: Compute a canonically basis of the torsion EA[2f ] and encode in S1 an integer of
f bits, the kernel of σ1. This also determines Q1 a point orthogonal to the kernel.
Q2 ← σ1(Q1)

2: for j ∈ [2, g] do
3: Write Ej for the codomain of σj−1, k ← 1.
4: Deterministically generate a sequence k until R1, R2, · · · ∈ EA[2f ] until Rk is

orthogonal to Qj . If k < 24 − 1, set sj to be the binary representation of k. Else,
set sj = 1111.

5: Compute the f -bit integer Sj such that kerσj = 〈Rj + [Sj ]Qj〉.
6: Qj+1 ← σj(Qj).
7: end for
8: return S = S1||s2||S2|| · ||sg||Sg.

Algorithm 11 Decompression

Require: A bit string S of size (f + 4)(g − 1) + f representing σ.
Ensure: An isogeny σ = σg ◦ · · ·σ1 of degree `fg to codomain EA.
1: Parse S as S1||s2||S2|| · ||sg||Sg where each Sj has f bits and sj has 4 bits.
2: Compute canonically a basis of the torsion EA[2f ] and find R1 using S1. Define
σ1 as the isogeny of kernel R1 and determine Q1 a point orthogonal to the kernel.
Q2 ← σ1(Q1)

3: for j ∈ [2, g] do
4: Write Ej for the codomain of σj−1, k ← 1.
5: If sj 6= 1111, parse sj as an integer k and recover Rj . Else, k ← 16 and compute

R15, R16, . . . until Rj is orthogonal to Qj .
6: Parse Sj as an integer and compute σj from its kernel 〈Rj + [Sj ]Qj〉.
7: Qj+1 ← σj(Qj).
8: end for
9: return σ = σg ◦ · · · ◦ σ1.

Algorithm 8 requires several computation of T -isogenies, we can estimate that
this would decrease the signing time by approximately the same factor of 5/3.
This would come at the cost of requiring the verifier to compute one T -isogeny.
Further work could clarify the efficiency of our signature scheme if we were to
push this idea to its full extent and look for σ with a degree dividing some power
of T .

8.6 Improvement perspectives

The complexity of our signature scheme entails that there are several possible
choices of instantation, some of which might differ quite critically from the
solution we described. The potential for optimization is left to future work.

One of the critical points of improvement is the KLPT algorithm. The problem
lies not in the efficiency of this algorithm in itself but in the size of the solution.
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As mentioned, the solutions found by KLPT have approximate norm p3, far
from the smallest possible solution (which should be around p in the `• case
for instance). Even reducing the output size to p5/2 instead would mean a huge
improvement to our signature scheme. First, it would allow us to reduce the size
of T by a factor of p1/4. Apart from the obvious decrease in the cost of T -isogeny
computations, this would mean more room for `• in the accessible torsion. When
p is a 256-bit prime as in our example, we could hope for an accessible 296-torsion
instead of 232. This would divide the number of steps by a factor between 2
and 3 (depending on the actual value of ∆) in the execution of Algorithm 9.
Finally, this improvement would probably also imply a similar improvement for
SigningKLPT, which would reduce the size of the signing isogeny σ. We thus see
that we could roughly expect at least to divide the running time by a factor of
2 from this small improvement in KLPT. Unfortunately, such an improvement
remains out of reach for now, and it would probably not come from a simple
tweak on Algorithm 3.

8.7 The concrete instantiation

We discuss below the performance features of our implementation.

Signature size and comparison with existing schemes For λ bit of classical
security, we take a prime p ≈ 22λ. The public key is the j-invariant of the curve
EA and it is of size 2 log2(p) = 4λ. The secret can be seen as a pair Nτ , Iτ .
The integer Nτ is a log(p)/4-bit prime, and we can represent Iτ as a number
in [1, Nτ + 1], so another log(p)/4-bit integer. In total the secret key has size
λ. The signature is made of E1 and σ, where σ is compressed as described in
Section 8.5. As argued there, we can either use a full compression of exactly e
bits, or allow for a few additional bits to accelerate the verification time. With
the second method the size is e + 4(de/fe − 1). We recall that, using keys as
in 8.3, e = 15/4 log(p) + O(log(λ)). Representing the commitment curve E1

requires 2 log2(p) = 4λ additional bits. We summarize these values in Table 2
when λ = 128, for our concrete instantiation we have log2(p) = 256, f = 33 and
e = 1000.

Secret Key (bytes) Public Key (bytes) Signature (bytes)

16 64 204
Table 2. Size of SQISign keys and signature for the NIST-1 level of security.

These sizes make SQISign the most compact post-quantum digital signature
targeting NIST-1 level of security, in terms of combined public key and signature
size. With respect to round 3 candidates, it is more than 5 times more compact
than Falcon [27] in terms of combined size, and only trails GeMSS [9] in terms of
signature size. Signatures are more compact than RSA, and about three times
larger than ECDSA, for a comparable level of classical security.
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Performance We implemented SQISign in C, on top of the libpari library
of PARI/GP 2.11.4 [45], and a port of the isogeny evaluation code published
in [5]. Our code is available at https://github.com/SQISign/sqisign. We ran
experiments on a 3.40GHz Intel Core i7-6700 (Skylake) CPU with Turbo Boost
disabled. The code was compiled using clang-6.0 -O3 -Os -march=native

-mtune=native -Wall -Wextra -std=gnu99 -pedantic.

The results are summarized in Table 3. We empirically chose the parameter
∆ = 14. For key generation we generated 100 random keys. For signature we
generated 10 random keys and signed 10 random messages under each key. For
verification we generated 5 random keys, we signed 5 random messages under
each key, and we ran verification 10 times. We stress that we did not attempt
at producing a constant-time implementation, which appears to be an intensive
task owing to the complexity of the algorithms involved.

Keygen Sign Verify

1st quartile 1,922 7,687 140
Mcycles median 1,959 7,767 142

3rd quartile 2,000 7,909 148

1st quartile 564 2,256 41
ms median 575 2,279 42

3rd quartile 587 2,321 43
Table 3. Performance of SQISign in millions of cycles and in milliseconds. Statistics
over 100 runs for key generation and signature, and over 250 runs for verification.

In https://github.com/SQISign/sqisign-magma, we provide an additional
implementation in Magma [8]. It performs poorly compared to our C code, but
we hope it may serve as a useful reference.

9 Conclusion

We introduced a new signature scheme along with a concrete instantiation and
implementation. Our implementation proves that our signature is quite efficient
compared to other isogeny-based candidates. The associated identification scheme
is sound under classical isogeny assumptions, while its zero-knowledge relies on
hardness of a new ad hoc problem. We briefly justified that this new problem
bears some resemblance with existing hard problems, lending some credibility to
its conjectured hardness.

More work on understanding the output distribution of our generalized KLPT
algorithm is needed to gain confidence in the security of SQISign. It would be
interesting, for example, to reduce the zero-knowledge property to more classical
assumptions. Such a result would probably come at a cost in terms of efficiency
as this would mean using a different generalization of KLPT. Indeed, from

https://github.com/SQISign/sqisign
https://github.com/SQISign/sqisign-magma
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our analysis in Section 7 it appears unlikely to prove security under classical
assumptions with the current algorithm.

The second direction for improvement is efficiency. The scheme is complex
and there is a lot of potential for optimizations. A search for better parameters
could allow one to obtain a more efficient signature, and algorithmic progress in
any aspect of isogeny computations and evaluations would probably impact the
performance. The main bottleneck remains the translation from ideals to isogenies,
new techniques for which could greatly benefit our protocol. For instance, finding
a more direct algorithm that does not rely as heavily on rational torsion points
could yield a more efficient translation. Finally, any improvement to KLPT
producing ideals of smaller norm in reasonable time would improve every single
step of the translation, thus greatly reducing the signature time.
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Sciences, Séries A-B 273, A238–A241 (1971)

48. Venturi, D.: Zero-knowledge proofs and applications (2015)
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Supplementary Material

A Identification protocols and Fiat-Shamir signatures

We briefly recall here the standard security definitions for sigma-protocol (see
[17,31,48] for precise references).

A sigma protocol is a 3-round interactive protocol between a prover and a
verifier. For R, a relation on set Y ×X, we define the language L = {y ∈ Y,∃x ∈
X,R(x, y) = 1}. The verifier is given y ∈ L and the prover holds a witness x for
this y and wants to prove it to the verifier without revealing x. A transcript is a
triple (a, b, c) where a is the commitment, b the challenge and c is the response.
In the end, the verifier outputs a bit, indicating whether it accepts the transcript.

Definition 3. A sigma-protocol is complete if the verifier outputs 1 with proba-
bility 1. A sigma-protocol is special sound if there exists an extractor that recovers
the witness x from two valid transcipts (a, b, c) and (a, b′, c′) sharing the same
commitment. A sigma-protocol is (computationally) honest verifier zero-knowledge
if there is an efficient simulator that generates valid transcripts on input y ∈ L
that are (computationally) indistinguishable from transcripts of the real protocol.

It is a classical result (for instance see [48]) that a canonical identification
scheme secure against impersonation under passive attacks can be constructed
from a complete, special sound and honest verifier zero-knowledge sigma-protocol.
A signature scheme unforgeable under chosen message attacks can be derived
from such an identification scheme using the Fiat-Shamir transform [26]. This
way of constructing signatures from sigma-protocols is standard and we refer the
readers to [1] for the proof of the following result:

Theorem 3. Let ID be a non-trivial canonical identification scheme that is
secure against impersonation under passive attacks. Let S be the signature derived
from ID using the Fiat-Shamir transform. Then S is unforgeable under chosen-
message attacks in the random oracle model.

Extending the result above to the quantum random oracle model is an active
area of research. Unruh proposed in [46] a post-quantum adaptation of the Fiat-
Shamir transform, however the cost of applying Unruh’s transformation is rather
high. More recently, several results have appeared proving the security of the
unmodified Fiat-Shamir transform under mild assumptions [35,22], however we
leave it as an open question to prove similar results for SQISign.

B Cryptanalysis attempts at Problem 2

The zero-knowledge property of our identification scheme, hence the security
of our signature scheme, relies on the hardness of Problem 2. In Appendix B.1
we start by looking at Problem 2 without any specific instantiation of families



SQISign: compact post-quantum signatures from quaternions and isogenies 51

PNτ (we will only make assumptions on the size of PNτ ). Then, in Appendix B.2
we study the case where a specific property verified by the family PNτ might
prove useful to break Problem 2, before arguing that our concrete family PNτ of
Definition 2 does not verify such a problematic property.

B.1 Cryptanalysis for generic families of PNτ

To this aim, we introduce several variants of Problem 2 (Problems 3 to 5), which
we obtain by modifying the size of PNτ and the range of possible values Nτ .
While we show that the first two problems can be solved efficiently, we also argue
that existing cryptanalysis techniques fall short for the last one.

A first important remark is that since PNτ can be computed without the
knowledge of τ we do not have to worry about σ having problematic properties
such as revealing a path from EA to a special curve E (hence revealing critical
information). This could, of course, happen but it cannot be more than an unlucky
coincidence. The density of special curves being low in the set of all supersingular
curves, this event will only happen with negligible probability. Thus, to produce
an effective distinguisher, an adversary has to exploit the information that σ is
the image through τ of an element of the public set PNτ .

In Problem 3 we assume that the value of Nτ is fixed and publicly known,
and we impose the constraint that the size of PNτ is polynomial in the security
parameter λ.

Problem 3. Let p be a prime and D be a smooth number, let Bτ be a positive
integer and let Nτ be a prime smaller than Bτ coprime with D. Let EA be
a supersingular curve for which there exists τ : E0 → EA of degree Nτ . Let
PNτ ⊂ IsoD,j0 be a subset of size polynomial in λ and Oτ an oracle sampling
random elements in [τ ]∗PNτ . Let σ : EA → ? of degree D where either

1. σ is a uniformly random isogeny of degree D starting from EA.
2. σ is a uniformly random element of [τ ]∗ PNτ .

The problem is to distinguish between these two cases with a polynomial number
of calls to Oτ .

This problem can be easily solved due to the small size of PNτ . Indeed, the
number of isogenies in [τ ]∗PNτ being polynomially bounded implies that we can
enumerate them all with a polynomial number of calls. Once the list is made,
distinguishing is easy.

Even though the problem is already broken, let us also study the prospects
of key recovery as well, it will prove useful for the rest of this section. In fact,
the setting of Problem 3 might also allow efficient key recovery. The precise
analysis is a bit tedious, so we do not prove formally that this attack succeeds in
polynomial time, we just sketch a brief outline and argue why it appears to be
troublesome. If σ is the image of ι ∈ PNτ through τ , then its kernel is the image
of the kernel of ι. In [38], an attack on SIDH is devised using similar information
(the action of the secret isogeny on some torsion group). Namely if Nτ is smaller
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than a certain bound (depending on D), this could allow an adversary to recover
τ . The actual parameters in our scheme are of the size that are troublesome for
such an attack, where the degree of σ is a lot bigger than Nτ . With the estimates
from Section 6.4, we see that D ∼ N9

τ in the generic case and this is enough for
the attack of [38] (that was recently improved in [34]).

Also note that the fact that Nτ is public allows one to improve the brute-force
key recovery attack. Indeed, in this case there are only O(Nτ ) possible secret
isogenies. As mentioned in Section 8.3, the brute-force attack can be performed
in Θ(Bτ ) in this case.

In Problem 4 we look at a modified version of Problem 3 where we remove
the assumption that Nτ is public.

Problem 4. Let p be a prime, D a smooth number and Bτ and a positive integer.
Let EA be a supersingular curve for which there exists τ : E0 → EA of prime
degree Nτ with Nτ ≤ Bτ . Let PNτ ⊂ IsoD,j0 be a family of subsets indexed by
Nτ of size polynomial in λ and Oτ is an oracle sampling random elements in
[τ ]∗PNτ . Let σ : EA → ? of degree D where either

1. σ is a uniformly random isogeny of degree D starting from EA.
2. σ is a uniformly random element of [τ ]∗ PNτ .

The problem is to distinguish between the two cases with a polynomial number
of calls to Oτ .

For the same reasons as Problem 3, we can easily produce a distinguisher
for Problem 4. Indeed, even if the exact Nτ value is unknown, there is still only
one valid value and so [τ ]∗PNτ has polynomial size. Just as before, we can get it
entirely by querying the oracle (we do not even have to know which Nτ was used
for this) and the problem is easy. A brute-force attack to recover the key will
now cost Θ(B2

τ ) as we are back in the case described in Section 8.3. Moreover,
the torsion attack of [38] can no longer be applied as it requires the knowledge of
the exact value of Nτ . However, it is still possible to try and perform it on all
possible Nτ until one works. This would yield an attack in Θ(Bτ ). For Problem 5
we go back to the case where Nτ is public, but this time PNτ has exponential
size with respect to the security parameter.

Problem 5. Let p be a prime and D be a smooth number, let Bτ be positive
integers and let Nτ be a prime smaller than Bτ coprime with D. Let EA be
a supersingular curve for which there exists τ : E0 → EA of degree Nτ (not
provided as input). Let PNτ ⊂ IsoD,j0 be a family of subsets indexed by Nτ and
let Oτ be an oracle sampling random elements in [τ ]∗PNτ . Let σ : EA → ? of
degree D where either

1. σ is a uniformly random isogeny of degree D starting from EA.
2. σ is a uniformly random element of [τ ]∗ PNτ .

The problem is to distinguish between the two cases with a polynomial number
of calls to Oτ .
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In this case, similarly to Problem 3 the brute-force key recovery attack is in
Θ(Bτ ). Moreover, it is not clear that we can exploit the information provided
by σ to help the key recovery. In particular, the potential key recovery attack
against Problem 3 appears difficult to apply in this setting. The set PNτ is too
large to efficiently identify a possible preimage for kerσ. We are reduced to
trying all possible values for ker[τ ]∗σ which is too long. In full generality, the call
to the oracles appear to be difficult to exploit as well. Indeed, enumerating all
possibilites is out of the question and it seems difficult to exploit anything else.

With the analysis above, it appears that having a secret Nτ is important to
prevent efficient attacks for key recovery, while having PNτ of large size is the
important feature for guaranteeing the hardness of the distinguishing problem.

B.2 Exploiting the specific properties of PNτ

We will present here an attack that takes advantage of a hypothetical special
property of a family PNτ . Let us assume that there exists an integer D1 dividing D
and polynomial in the security parameter such that for Nτ there is a cyclic isogeny
of degree D1 from E0 which is not in INτ = {ι1 of degree D1,∃ι2, ι2 ◦ ι1 ∈ PNτ }.
Then the set {σ1 of degree D1,∃σ2, σ2 ◦ σ1 ∈ [τ ]∗PNτ } similarly misses some
isogenies of degree D1 from EA. This allows one to build a distinguisher.

Short of exploiting similar properties that allow one to construct a distinguish-
ing criterion based on the study of a small, specific part of σ, Problem 2 seems
computationally hard. For instance, if the family PNτ verified the above criterion
but only for D1 that is exponential in the security parameter, it is unclear that a
distinguisher could be built from this knowledge.

Now let us argue that the family PNτ of Definition 2 does not suffer from
such a flaw. This is quite visible from Fig. 3. We see that the isogeny ι is equal
to µL ◦ γ`L. In particular, the beginning of ι is entirely determined by γ, the
number of possible γ depends on the number of different values n(L). In fact,
since the value γ is not depending on Nτ , this decomposition is shared by all
PNτ . Note that by the estimates of Lemma 9, we expect γ`L to have at least
degree

√
p with overwhelming probability. Even assuming a lot of redundancy

in the n(L) for L spanning the classes of Cl(O0) and a value x (cf Section 6.4)
polynomial in λ, this number is exponential in λ. Moreover, given the algorithm
RepresentIntegerO0

introduced in [33] and the high number of possible inputs,
there is no reason that the isogenies γ`L verify a property similar to the one
described in the beginning of this section with a degree D1 polynomial in λ.

In the event that a distinguisher could still be built based on the study of
the part of σ corresponding to γ, we note that this flaw could be prevented by
increasing the bound e0(N) in Step 3 of Algorithm 5. As explained in Section 6.4,
we choose a quite tight bound allowing only a polynomial number of solutions
(in the security parameter) for a given N . At a little cost in terms of efficiency,
the bound could be increased so that the number of solutions is exponential for
each N .
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C Searching for SQISign friendly primes

As outlined in Section 8, to efficiently implement SQISign, like most other isogeny-
based protocols, it is necessary to select curves with a large torsion subgroup,
and thus special primes.

However, unlike SIDH and CSIDH which only need to control the smoothness
of p+ 1, SQISign benefits from simultaneously controlling both p− 1 an p+ 1.
Finding primes such that p2 − 1 has a smooth factor considerably larger than
p is a difficult task. This problem was recently considered in the context of the
SIDH-like key exchange B-SIDH [13], where the focus is on finding p such that
p2− 1 is fully smooth. Here, we have a slightly different problem, as we only need
p2 − 1 to contain a large enough smooth factor; in addition, we want it to be
divisible by a large power of `. Concretely, for a NIST-1 security level, we look
for a prime p of 256 bits, such that p2 − 1 contains a smooth odd factor of about
400 bits, and is also divisible by a large power of 2.

An earlier version of [13] explored the possibility of using Størmer’s the-
orem [44] for this search, however this theorem does not match exactly our
needs; on top of that, a recent update to [13] reports that Størmer’s theorem
doesn’t seem to produce good results for meaningful sizes. We thus took a simpler
approach in our search: we constructed primes p such that

p± 1 = 2a · α ·A,
p∓ 1 = 2 · β ·B,

where

– a+ log2(αβ) ≈ 2λ, where λ is the security parameter
– α, β are odd B1-smooth for some bound B1,
– there is a γ|AB that is B2-smooth and such that log2(αβγ) > t for some

threshold t.

We construct them by choosing a, α and β, using the Chinese remainder theorem
to reconstruct p, and then testing for the primality of p and the smoothness of
AB.

We use two tricks to increase the probability of success. First, to increase the
probability that p is prime, we always include some small factors in α or β, namely
3, 5, 7 and 11. Second, and most importantly, to increase the probability that AB
contains a large smooth factor, we observe that we have freedom in the choice
of log2(A) and log2(B), as long as log2(AB) = 2λ− 1, and that the probability
of having a large smooth factor γ|AB is not maximized by log2(A) ≈ log2(B)
unless γ = AB.

Concretely, for 2λ = 256 and t = 395, we used the following parameters:
a = 32, B1 = 210 and B2 = 214. Using the probability estimates of [4], we found
that the smoothness probability is maximized by taking log2(B) = 87, and thus
log2(β) = 168, log2(α) = 56 and log2(A) = 168. We fixed α = 521 · 7 · 11, and
β = 3b ·

∏
i δi where the number of B1-smooth integers in β is chosen to guarantee

a large enough search space.
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We implemented this strategy in C using the GMP library. A search effort
of about 6 cpu-years produced several useful primes, the most interesting ones
being

p+ 1 = 233 · 521 · 72 · 11 · 31 · 83 · 107 · 137 · 751 · 827 · 3691 · 4019 · 6983

· 517434778561 · 26602537156291 ,

p− 1 = 2 · 353 · 43 · 103 · 109 · 199 · 227 · 419 · 491 · 569 · 631 · 677 · 857 · 859

· 883 · 1019 · 2713 · 4283 ,

used in our implementation, and

p+ 1 = 2 · 353 · 37 · 101 · 127 · 131 · 163 · 241 · 331 · 677 · 733 · 751 · 761 · 863

· 977 · 1321 · 3823 · 4583 · 5581 · 5939

p− 1 = 233 · 521 · 7 · 11 · 461 · 569 · 577 · 673 · 1487 · 1847 · 3163 · 4337

· 2959539923 · 1604895447402629 .

Accidentally, our search also produced the B-SIDH-friendly prime

p+ 1 = 232 · 521 · 7 · 11 · 163 · 1181 · 2389 · 5233 · 8353 · 10139 · 11939

· 22003 · 25391 · 41843 · 3726787 · 6548911 ,

p− 1 = 2 · 356 · 31 · 43 · 59 · 271 · 311 · 353 · 461 · 593 · 607 · 647 · 691

· 743 · 769 · 877 · 1549 · 4721 · 12433 · 26449 .

We note, however, that the most recent version of [13] contains new primes, such
as B-SIDHp250, which are smoother than this. It seems possible to combine the
new technique presented there with our approach to produce even better SQISign
friendly primes.

D An alternative key generation procedure

Here, we present an alternative key generation procedure. It is more efficient
than the one of Section 8.4 but the distribution of the resulting secret key is
more difficult to analyze. We state it here for completeness. The idea is quite
simple: instead of generating first Iτ and then computing Jτ using KLPT, we
generate an endomorphism γ of norm Nτ `

• and then derive Iτ and Jτ from
it. The endomorphism γ can be generated using RepresentInteger. Since this
algorithm allows one to find endomorphisms that are a lot smaller than the one
used in KLPT, we can obtain τ ′ of smaller norm. Let us write eτ the `-valuation
of the degree of τ ′. With KLPT we have eτ ≈ 2 log(p) + 2 log(Nτ ). Using this new
method, the lower bound on eτ becomes the diameter of the graph (so that every
secret isogeny of degree Nτ can be generated that way). This allows one to take
eτ ≈ log(p). When eτ is smaller, key generation becomes more efficient as the
translation from Jτ to τ ′ becomes faster. This idea leads to the key generation
described below.
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1. Select a prime Nτ ≤ Bτ that is inert in R uniformly at random.
2. Compute γ ∈ O0 a random solution of γ = RepresentIntegerO0

(Nτ `
eτ ) and

set Iτ = 〈γ,Nτ 〉, Jτ = 〈γ̄, `eτ 〉.
3. Compute τ ′ = IdealToIsogeny`•(Jτ ,O0, [1]E0

) and set pk = EA the codomain
of τ ′.

We leave the study of this method and in particular the distribution of Iτ
and its security implications to future work.

E An alternative method for the generalized KLPT

In this section, we present an alternative method to solve the generalized KLPT.
This method produces outputs of bigger norm than Algorithm 5, but might be
more interesting from a security standpoint. We present only present the method
here, leaving a security analysis for future work.

As highlighted in Section 5, the main problem is to find a nice suborder in
which we are able to solve norm equations efficiently. The principal idea behind
Algorithm 4 is to use the Eichler order O. However, in the context of the signature,
this order has a strong link with the secret τ since it is equal to Z+Iτ . Intuitively,
this seems a bit dangerous. That is why we propose here to use a suborder of
O that contains much less information about the secret. If Nτ is the level our
Eichler order, we can look for a solution inside Z+NτO0 ⊂ O. This suborder is
shared by the Nτ + 1 Eichler orders of level Nτ contained in O0, thus it contains
less information about the secret than O. The suborder Z + NτO0 contains a
suborder with the nice orthognal basis 〈1, Nτω,Nτ j,Nτ jω〉. Given this structure,
our algorithm is somewhat closer to KLPT than our Algorithm 4. First, we show
how to solve norm equations inside this order before stating the full algorithm.

E.1 Norm equation inside Z+NτO0

Interestingly enough, solving norm equations inside this order has already been
studied in a cryptographic context in [38]. More recently, solving a similar norm
equation was required for the parameter generation of the new encryption scheme
SÉTA [42]. The method is summarized in Algorithm 12. The analysis of [38]
shows that a solution is found when M ∼ p2N2

τ .

E.2 The generalized algorithm

We now describe informally our generalized KLPT algorithm using the sub-
order Z + NτO0. We will follow the general path of KLPT Algorithm 3 with
modified sub-algorithms. The input is I. First, we start by computing L =
EquivalentPrimeIdeal(I). Then, Algorithm 12 replaces RepresentIntegerO0

in Step 2
of Algorithm 3. We obtain a γ of normN`e0 (with e0 big enough so that we can find
a solution). Similarly, we can use a small adpatation of IdealModConstraint to find
µ = X + ωNτW such that γµ ∈ L. Since we need to adapt StrongApproximation
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Algorithm 12 RepresentIntegerZ+NτO0
(M)

Require: M ∈ Z such that M > p2N2
τ

Ensure: either ⊥ or γ = x+Nτ (yω + zj + tjω) with n(γ) = M .
1: If M is not a square modN2

τ output ⊥, else set x to be the squareroot of M
modN2

τ .
2: Set A = (M − x2)/N2

τ .
3: while qA is not square modp do
4: x← x+N2

τ , A← (M − x2)/N2
τ . If A < 0 output ⊥.

5: end while
6: Set B = (A− qy2)/p.
7: while B = z2 + qt2 has no solution do
8: increase y by p or increase x by Nτ and go back to 2. If B < 0 output ⊥.
9: end while

10: return x+Nτ (yω + zj + tjω).

to this new suborder, we need µ ∈ Z+ ωNτZ instead of µ ∈ j(Z+ ωZ), as we
had in Algorithm 3. This does not change the fact that we can find such X,W .
Then, we perform the strong approximation similarly to Algorithm 2, with small
adaptations that we describe next.

We want to find integers λ,w, x, y, z and a positive integer e1 such that

(λW +Nw)2 + qN2
τ (λX +Nx)2 + pN2

τN
2(y2 + qz2) = `e1 .

We first arbitrarily fix w = x = 0 mod p (relaxing this might lead to some
improvement). Looking at the equation modulo Np we fix the value of λ. We then
look at the equation modulo N2

τ , which fixes w modulo N2
τ . Let w = p(w0+N2

τw
′)

and x = px′, where w0 is chosen such that the equation is satisfied modulo N2
τ .

The equation becomes

(λW +Npw0 +NpN2
τw
′)2 + qN2

τ (λX +Npx′)2 + pN2
τN

2(y2 + qz2) = `e1 .

Our next goal is to make sure the first two terms are as small as possible, while
satisfying a necessary condition modulo N2. This can be modeled as a closest
vector problem. Indeed the congruence condition modulo N2 can be written as

(w′, x′) = (a0, b0) + 〈(N, 0), (α, 1)〉

for some efficiently computable a0, b0, α. Introducing new variables w′′ = NpN2
τ (w′−

a0) and x′′ = NpNτq
1/2(x′ − b0) the first two terms can be re-written as

||(w′′, x′′)− (c0, d0)||22

for efficiently computable c0, d0, where (w′′, x′′) is in the lattice

〈(N2pN2
τ , 0), (NpN2

τα,NpNτq
1/2)〉.

The discriminant of that lattice is N3p2N3
τ q

1/2 ≈ p5. We compute a reduced
basis for that lattice, then search for vectors close to (c0, d0) until the equation
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has a solution for (y, z), which is computed with Cornachia’s algorithm. The
Gaussian heuristic suggests we can find β with e1 ≈ 5 log p. Combining this, with
the estimate of the previous section we obtain a total estimate e0+e1 ≈ 15/2 log p
in the generic case. This is to be compared with the 9/2 log(p) of Algorithm 5. If
we assume Nτ ≈ p1/4, the size becomes 25/4 log(p) which is comparatively closer
to 15/4 log(p), but still a lot bigger.
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