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ABSTRACT: An expedient access to the first optically pure ru-
thenium complexes containing C1-symmetric cyclic (al-
kyl)(amino)carbene (CAAC) ligands is reported. They 
demonstrate excellent catalytic performances in asymmetric 
olefin metathesis with high enantioselectivities (up to 92% 
ee). Preliminary mechanistic insights provided by DFT mod-
els highlight the origin of the enantioselectivity. 

With the discovery of the 2nd generation Grubbs catalysts, 
N-heterocyclic carbenes (NHCs) have become inescapable 
ligands in olefin metathesis, in both academic and industrial 
research environments.1 This popularity has in part been at-
tributed to their remarkable aptitude in generating more sta-
ble, yet extremely reactive ruthenium catalysts. Owing to their 
unique and highly modular steric environment chiral variants 
of diaminocarbenes have attracted interests in the field.2 In-
deed, following reports by Grubbs and Hoveyda, a slew of Ru-
complexes featuring chiral diaminocarbene ligands, have been 
used with varying successes in asymmetric ring-opening 
cross-metathesis (AROCM)3 and ring-closing metathesis 
(ARCM).4 In 2007,5 a new class of carbenes namely cyclic (al-
kyl)(amino) carbenes (CAACs)6 arose as a contender to 
NHCs’s as ligands for olefin metathesis catalysts. Since then, 
CAACs have been shown to achieve over 340000 TON in 
ethenolysis processes meanwhile achieving remarkable cata-
lytic performances in a number of other metathesis transfor-
mations (Figure 1,a).7 Interestingly, despite these achieve-
ments there is still no report dealing with CAAC ligands in 
asymmetric metathesis. In 2019, we demonstrated that 
providing the right steric environment, a steroid derived chiral 
CAAC-copper complex CholestCAAC-CuCl could induce 
Asymmetric Conjugate Borylation (ACB).8  

 
Figure 1. (a) Selected examples of known racemic CAAC-Ru ole-
fin metathesis catalysts. (b) An expedient access to optically pure 
CAAC-Ru complexes (this work).  

Encouraged by these results we set to demonstrate the po-
tency of chiral CAAC-Ru complexes in asymmetric olefin me-
tathesis.9 Despite the availability of the ligand, we reasoned 
that the CholestCAAC or related chiral CAAC ligands derived 
from naturally abundant chiral building blocks would not pro-
vide the required structural modularity. The design of NHC 
chiral ligands is arguably plagued by tedious low yielding syn-
thetic procedures, very often, resulting in the preparation of a 
single enantiomer (see Figure S1 in Supporting Information, 
SI). Eager to streamline the screening of chiral CAAC-
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ruthenium catalysts, we envisaged using preparative high-per-
formance liquid chromatographic resolution (PrepHPLC), a 
time- and cost-effective technique extensively used in the 
pharmaceutical industry for bulk enantiomer resolution at the 
early stage of drug discovery.10 Consequently, we wish to re-
port an expedient access to enantiomerically pure ruthenium 
metathesis catalysts containing C1-symmetric CAAC ligands. 
Using PrepHPLC, optically pure (>99% ee) (R)- and (S)-
CAAC-Ru complexes were obtained in almost quantitative 
yields (Figure 1,b). We further demonstrate that chiral 
CAACs yield active, but more importantly very selective cata-
lysts for asymmetric ring-opening cross-metathesis 
(AROCM) reactions. 

Capitalizing on the high stability of Hoveyda-Grubbs 
CAAC ruthenium complexes, we began our investigation with 
the readily accessible air-stable chiral (rac)-Ru-1 catalyst (Ta-
ble 1).5 Since to the best of our knowledge the chiral HPLC 
resolution of racemic Hoveyda-Grubbs ruthenium complexes 
had never been reported,11 a range of chiral stationary phases 
was screened (see SI for details). Of the 10 columns evaluated 
using a mobile phase consisting of a heptane/isopropanol/di-
chloromethane mixture (70/10/20 ratio), only the amylose 
chiral stationary phases substituted with chloro-phenylcarba-
mate allowed for separations with good enantioselectivity and 
excellent resolution (Table 1). We selected Chiralpak IF® due 
to the shorter elution time, and good loading capacity, allow-
ing for the antipodes separation of (rac)-Ru-1 on a preparative 
scale (100 mg, 1 cm diameter column, flow-rate = 5 mL.min-
1) (Figure 2, a and b). Both (+)-Ru-1 (first eluted) and (–)-
Ru-1 (second eluted) enantiomers were isolated in excellent 
yields (46 and 45%) and remarkable enantiomeric purities 
(>99% and >98% ee, respectively). As expected, Electronic 
Circular Dichroism (ECD), furnishing chiroptical properties 
of the Ru-complex, showed the mirror-image spectra for both 
enantiomers (+)-(R)-Ru-1 and (–)-(S)-Ru-1 (Figure 2,c). 
Finally, we unambiguously confirmed the absolute configura-
tion of both enantiomers by X-ray diffraction (Figure 3). 

 

Chiral Phase (+)-Ru-1 k1 (–)-Ru-1 k2 a Resolution 

Chiralpak ID® 5.36  0.82 7.04 1.38 1.69 5.16 

Chiralpak IE® 5.34 0.81 7.63 1.59 1.96 8.24 

Chiralpak IF® 4.99 0.69 6.54 1.22 1.76 6.41 

Chiralpak IG® 6.42 1.18 8.87 2.01 1.71 5.39 

Table 1. Selective chiral stationary phase. 

 
Figure 2. UV (a) and Circular Dichroism (b) chromatograms at 
254 nm of (rac)-Ru-1 from Chiralpak IF. (c) Electronic Circular 
Dichroism (ECD) spectra in acetonitrile of (+)-(R)-Ru-1 (Blue) 
and (–)-(S)-Ru-1 (Red).  

 
Figure 3. Solid-state structure of (+)-(R)-Ru-1 (left) and (–
)-(S)-Ru-1 (right). Ellipsoids are drawn at 30% probability. 
Some hydrogens are omitted for clarity. 

The latter displayed a positive ECD-active band at 220 nm 
(De= +22) and three negative ones at 250 (De= –5), 350 (De= 
–2.5) and 440 nm (De= –5), respectively. To confirm the effi-
ciency of this chiral resolution protocol, we extended our 
method to Grela type CAAC-ruthenium metathesis com-
plexes (Ru-2-6) (see SI, Scheme S1 for details).12 To our de-
light, using the aforementioned conditions all complexes were  

Scheme 1. Library of optically pure CAAC-ruthenium 
complexes. 

 
a Isolated yield after preparative chiral resolution. b Determined by chiral-sta-
tionary phase HPLC analysis.  
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successfully resolved (up to 120 mg scale) and their respective 
(+)- and (–)-enantiomers isolated in good yields (from 37 to 
47%) and excellent optical purities, ranging from >98.5 to 
>99.5% ee (Scheme 1).13 Here again, we unambiguously con-
firmed the absolute configuration of second eluted Ru-2-6 
complexes by X-ray diffraction study (see Figure S2; SI). It is 
worth mentioning that these complexes feature the N-aryl 
fragment of the CAAC ligand in the apical position, syn to the 
styrenyl-ether unit.5  

Having obtained a small library of optically pure CAAC-
ruthenium complexes, we investigated their catalytic perfor-
mance in asymmetric olefin metathesis transformations.9 As a 
benchmark, we considered the asymmetric ring opening cross 
metathesis (AROCM) reaction of meso-norbornene deriva-
tive S1a.3 The reaction was performed in THF using 5 mol% 
of ruthenium catalyst and five equivalents of styrene (Table 
2). Using (S)-Ru-1 precatalyst at 50 °C, the reaction occurred 
slowly with a complete disappearance of the starting-material 
observed after 3 days (entry 1). Nevertheless, we were pleased 
to observe a significant enantioinduction (85% ee) for the ex-
pected metathesis product (S,R)-P1a, which was isolated in 
low 13% yield with a 80/20 E/Z ratio. With the (S)-Ru-2 
precatalyst, having an electron-withdrawing nitro group into 
the reactive arylidene ligand, the reaction was complete after 
24 h (entry 2) and the (S,R)-P1a was isolated in 53% yield 
with a slight improvement of both E/Z ratio and enantioselec-
tivity (85/15; 87% ee). Lowering the temperature to 35 °C en-
abled to improve the selectivity up to 90% ee, despite a pro-
longed reaction time (48 h, entry 3). Thanks to the prepara-
tive separation methodology, we could confirm that the oppo-
site precatalyst enantiomer (R)-Ru-2 catalyzed the formation 
of the (R,S)-P1a enantiomer with similar efficiencies (58% 

Table 2. Evaluation of optically pure Ru-1-6 complexes in cat-
alytic AROCM of norbornene S1aa 

 
Entry Ru-cat 

(mol%) 
T (°C) / 

Time 
conv.b 

(yield)c(%) 
E/Z  

ratiod 
Ee (E)-

P1a (%)e 

1 (S)-1 (5) 50/3d 99 (13) 80/20 85 (S,R) 

2 (S)-2 (5) 50/1d 99 (53) 85/15 87 (S,R) 

3 (S)-2 (5) 35/2d 99 (41) 85/15 90 (S,R)f,g 

4 (R)-2 (5) 35/2d 99 (58) 85/15 92 (R,S) 

5 (R)-3 (5) 35/2d 99 (55) 90/10 92 (R,S) 

6 (R)-4 (5) 35/2d 99 (49) 90/10 89 (R,S) 

7 (R)-5 (5) 50/5d 99 (18) 85/15 47 (R,S) 

8 (R)-6 (5) 35/5d 60 (45) 95/5 79 (R,S) 

a Reaction conditions: [Ru] catalyst (5%), styrene (5 equiv.), THF (0.15 
M). b Conversions were monitored by 1H NMR spectroscopy analysis. c 

Isolated yields after column chromatography. d E/Z ratio determined by 
SFC on the crude mixture.  e ee determined by SFC on a chiral stationary 
phase. fAbsolute configurations determined on the corresponding diol 
(see SI for details). g ee of (Z)-P1a: 17%.  

yield; 92% ee; entry 4). Looking to improve the chiral transfer 
from the CAAC ligand, we next investigated precatalyst (R)-
Ru-3 featuring a bulkier 2-naphthyl substituent. Compared to 
(R)-Ru-2, similar catalytic performance and ee were obtained 
(92% ee, entry 5 vs 3-4). Neither 3,5-dimethylphenyl, 3,5-
ditertbutylphenyl or cyclohexyl substitution at the stereo-
genic center led to higher chiral inductions (complexes (R)-
Ru-4-6, entries 6-8). It is worth mentioning that an excellent 
95/5 E-selectivity was achieved with (R)-Ru-6 despite its 
lower catalytic activity (entry 8).14 We also evaluated the in-
fluence of the solvent (CH2Cl2, 2-MeTHF, benzene or tolu-
ene), however with no significant improvement was observed 
(see SI for details). 

Following this optimization, we selected (R)-Ru-2, com-
bining high productivity and decent asymmetric induction 
(i.e. >90% ee), to examine the scope of AROCM using func-
tionalized-styrenes with norbornenes S1d-f and cyclopro-
pene S23b (Scheme 2). To our delight, (R)-Ru-2 catalyzed 
with similar efficiency the AROCM of S1b,c with methoxy 
and trifluoromethyl para-substituted styrenes. The resulting 
metathesis product P1b-c were isolated in 41-62% yield and 
74-80% ee. With norbornenes S1d-f, (R)-Ru-2 was again 
highly selective providing the corresponding metathesis prod-
ucts P1d-f in moderate to excellent isolated yields (50-94%) 
and good to excellent enantioselectivities (74, 83 and 92% ee, 
respectively). Of note, as reported in previous studies, a lower 
enantioselectivity was observed for each Z-stereoisomer (23-
38% ee).15 Regarding the AROCM of cyclopropene S2 with 
allyl acetate, both (R)-Ru-2 and (S)-Ru-4 gave the desired 
P2b, however in moderate yields and E/Z ratios. Neverthe-
less, good ee values were observed for Z-P2b (78-85% ee) 
while a moderate 48% ee was reached for the E-isomer. 

A preliminary mechanistic model for ROCM of nor-
bornene S1 and styrene is proposed in Scheme 3, based on 
DFT calculations.16 In agreement with previous studies,3a the 
formation of the p-nitro styrenylether in the reaction media 
suggests a Ru-benzylidene PS as propagating species. Owing 
to the C1-symmetry of CAAC ligands, we next considered two 
different geometries accessible via a metallacyclobutane with 
inversion at the Ru center.17 PSsyn in which the benzylidene 
unit is in apical position to the quaternary chiral center sub-
stituents (syn), and the PSanti featuring the benzylidene in ap-
ical position to the N-Dipp moiety (trans). Using the more 
stable PSsyn (See SI for details), we envisaged the norbornene 
S1 addition, providing the major (E)-P1, to be enantio- and 
diastereo-determining.3a In agreement with literature prece-
dents supporting the olefin coordination trans to the ancillary 
carbenic ligand,18 and norbornene reacting preferentially on 
its exo face, two metallacyclobutanes (MCB) were consid-
ered: MCB1 leading to (E)-(S,R)-P1 and MCB2 affording 
the opposite enantiomer (E)-(R,S)-P1. In line with (E)-
(S,R)-P1 (table 2; entry 3), being unambiguously identified 
as the major enantiomer (see SI for details), our DFT model 
supports MCB1 to be the privileged intermediate. In fact, in 
transition state B1-C1, leading to the formation of the metal 
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Scheme 2. Scope of AROCM catalyzed by optically pure Ru-2,4,6 complexes a 

 
Scheme 3. (a) Proposed mechanism, supported by DFT calculations, for AROCM of norbornenes S1 and styrene cata-
lyzed by (S)-Ru-2 and related olefin approaches providing (E)-P1 (b) (c, see SI for details).  

 
 
lacyclobutane MCB1, the quaternary chiral center substitu-
ents and the norbornene substrate lie quite far one from each 
other; at the contrary, transition state B2-C2 forming inter-
mediate MCB2 suffers from the steric clash between the two 
moieties (see short distances in Scheme 3c). This model is in 
agreement with the lower enantioinduction observed in the 
bulkier (R)-Ru-5 (table 2; entry 7), and supports the higher 
selectivity of (S)-Ru-6 versus (S)-Ru-2 in the formation of 
(E)-P1d (83% vs. 74% ee, scheme 2). 

To complete our study, we finally examined the challeng-
ing asymmetric cross-metathesis (ACM). As disclosed in 
Scheme 4, (S)-Ru-4 afforded P3 in 42% isolated yield and up 

to 50% ee. While this result is preliminary, it already surpasses 
state of art selectivity obtained with chiral diaminocarbene lig-
and (GII* precatalyst, 44% ee).3a,19 

Scheme 4. Preliminary result in asymmetric cross-metath-
esis. 
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In summary, an expedient access to a range of optically 
pure, well-defined, ruthenium complexes containing chiral 
CAAC ligands was developed. It relies on an efficient resolu-
tion of their racemic mixture via chiral prepHPLC on chiral-sta-
tionary phase. This process allowed for the isolation of air-sta-
ble (+) and (–)-enantiomers in good to nearly quantitative 
yields and excellent optically purity (ranging from >98 to 
>99.5%). Using these catalysts, excellent performances were 
observed in asymmetric ring-opening cross-metathesis 
(AROCM) with high enantioselectivities (up to 92% ee). 
Moreover, a promising 50% ee was reached in the more chal-
lenging asymmetric cross-metathesis (ACM), one of the high-
est selectivity reported so far. This novel approach paves the 
way for the development of more sophisticated CAAC transi-
tion-metal complexes and should create new opportunities in 
asymmetric catalysis.  
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