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We develop a general formalism, based on the Wigner function representation of continuous-variable
quantum states, to describe the action of an arbitrary conditional operation on a multimode Gaussian state.
We apply this formalism to several examples, thus showing its potential as an elegant analytical tool
for simulating quantum optics experiments. Furthermore, we also use it to prove that Einstein-Podolsky-
Rosen steering is a necessary requirement to remotely prepare a Wigner-negative state.
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I. INTRODUCTION

In continuous-variable (CV) quantum physics, Gaussian
states have long been a fruitful topic of research [1–10].
They appear naturally as the ground states of systems of
many noninteracting particles in the form of thermal states
[11], or as the coherent states that describe the light emitted
by a laser [3]. Through nonlinear processes, it is possible
to reduce the noise beyond the shot noise limit (at the price
of increased noise in a complementary observable), and
create squeezed states [12–17]. For the purpose of metrol-
ogy, such squeezed states are often enough to obtain a
significant boost in performance [18–21].

On theoretical grounds, Gaussian states are relatively
easy to handle [8,9]. The quantum statistics of the
continuous-variable observables (e.g., the quadratures in
quantum optics) are described by Gaussian Wigner func-
tions. All interesting quantum features can be deduced
from the covariance matrix that characterises this Gaussian
distribution on phase space. Hence, whenever the num-
ber of modes remains finite, the techniques of symplectic
matrix analysis are sufficient to study Gaussian quantum
states. This has generated an extensive understanding of
the entanglement properties of Gaussian states [22–27],
and recently it has also led to the development of a mea-
sure for quantum steering (see [28]) of Gaussian states
with Gaussian measurements [29–32], which we refer to
as Einstein-Podolsky-Rosen (EPR) steering.

Even though they have many advantages, Gaussian
states are of limited use to quantum technologies beyond
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sensing. They have been shown to be easily simulated on
classical devices [33], and in particular Wigner negativ-
ity is known to be a necessary resource for reaching a
quantum computation advantage [34]. However, it should
be stressed that recent work has found large classes of
Wigner negative states that can also be simulated easily
[35]. In other words, Wigner negativity is necessary but
not sufficient to reach a quantum computation advantage
[36].

In the particular case of CV quantum computation,
Gaussian states play an essential role in the measurement-
based approach [37]. In this paradigm, one establishes
large Gaussian entangled states, known as cluster states,
which form the backbone of the desired quantum routine
[38]. Several recent breakthroughs have led to the experi-
mental realisation of such states [39–43]. Nevertheless, to
execute quantum algorithms that cannot be simulated effi-
ciently, one must induce Wigner negativity. In the spirit
of measurement-based quantum computation, this feature
is induced by measuring non-Gaussian observables, e.g.,
the number of photons, on a subset of modes [44–47].
Such a measurement then projects the remainder of the
system into a non-Gaussian state. The exact properties of
the resulting state depend strongly on the result of the
measurement.

The conditional preparation of non-Gaussian quantum
states is common procedure in quantum optics experiments
[48]. Basic examples include the heralding of single-
photon Fock states after parametric down-conversion [49–
51], photon addition and subtraction [52–57], and known
schemes to prepare more exotic states such as Schrödinger-
cat [58,59] or Gottesman-Kitaev-Preskill states [60]. It
should be noted that conditioning on the measurement
of Gaussian observables can also be relevant in certain
protocols [61]. Remarkably, though, a practical frame-
work to describe the effect of arbitrary conditional oper-
ations on arbitrary Gaussian states is still lacking. Notable
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exceptions where one does study arbitrary initial states
usually rely on specific choices for the conditional mea-
surement.

Here, in Sec. III, we introduce a practical framework
to describe the resulting Wigner function for a quantum
state that is conditionally prepared by measuring a subset
of modes of a Gaussian multimode state. The techniques
used in this work are largely based on classical multivariate
probability theory and provide a conceptually new under-
standing of these conditioned states. In Sec. IV, we unveil
the most striking consequence of this new framework: we
can formally prove that EPR steering in the initial Gaus-
sian state is a necessary requirement for the conditional
preparation of Wigner-negative states, regardless of the
measurement upon which we condition. This solidifies a
previously conjectured general connection between EPR
steering and Wigner negativity. As shown in Sec. V, our
framework reproduces a range of known state-preparation
schemes and can be used to treat more advanced scenarios,
which could thus far not be addressed by other analyti-
cal methods. First, however, we review the phase-space
description of multimode CV systems in Sec. II.

II. PHASE-SPACE DESCRIPTION OF
MULTIMODE CONTINUOUS-VARIABLE

SYSTEMS

The CV approach studies quantum systems with an
infinite-dimensional Hilbert space H based on observ-
ables, x̂ and p̂ , that have a continuous spectrum and obey
the canonical commutation relation [x̂, p̂] = 2i (the factor
2 is chosen to normalise the vacuum noise to 1). Common
examples include the position and momentum operators in
mechanical systems, or the amplitude and phase quadra-
tures in quantum optics. In this work, we use quantum
optics terminology, but the results equally apply to any
other system that is described by the algebra of canonical
commutation relations (i.e., any bosonic system).

In a single-mode system, the quadrature observables x̂
and p̂ determine the optical phase space. The latter is a
two-dimensional real space, where the axes denote the
possible measurement outcomes for x̂ and p̂ . It is com-
mon practice to represent a given state ρ̂ by means of
its measurement statistics for x̂ and p̂ on this optical
phase space, as in statistical physics. However, because
x̂ and p̂ are complementary observables, they cannot be
measured simultaneously, and thus, a priori, we cannot
construct a joint probability distribution of phase space that
reproduces the correct marginals to describe the measure-
ment statistics of the quadratures. Therefore, the phase-
space representation of quantum states are quasiproba-
bility distributions. The quasiprobability distribution that
reproduces the measurement statistics of the quadrature
observables as its marginals is known as the Wigner

function [62–64]

W(x, p) = 1
(2π)2

∫
R2

tr[ρ̂ei(α1 x̂+α2p̂)]e−i(α1x+α2p) dα1 dα2.

(1)

For some quantum states, this function has the peculiar
property of reaching negative values. This Wigner nega-
tivity is a genuine hallmark of quantum physics, and it is
understood to be crucial in reaching a quantum computa-
tional advantage.

Here, we consider a multimode system compris-
ing m modes. Every mode comes with its own
infinite-dimensional Hilbert space, associated to a two-
dimensional phase space, and observables x̂j and p̂j .
The total optical phase space is, thus, a real space R

2m

with a symplectic structure � = ⊕
m ω, where the two-

dimensional matrix ω is given by

ω =
(

0 −1
1 0

)
. (2)

Therefore, � has the properties �2 = −1 and �T = −�.
Any normalised vector �f ∈ R

2m defines a single optical
mode with an associated phase space span{�f , ��f } (i.e.,
when �f generates the phase-space axis associated with
the amplitude quadrature of this mode, ��f generates the
axis for the associated phase quadrature). Henceforth, we
refer to the subsystem associated with the phase-space
span{�f , ��f } as “the mode f ”. Every point �α ∈ R

2m can
also be associated with a generalised quadrature observ-
able

q̂(�α) =
m∑

k=1

(α2k−1x̂k + α2kp̂k). (3)

These observables satisfy the general canonical commu-
tation relation [q̂(�α), q̂( �β)] = −i�αT� �β. Physically, such
observable q̂(�α) can be measured with a homodyne detec-
tor by selecting the mode that is determined by the direc-
tion of �α, and multiplying the detector outcome by ‖�α‖. In
our theoretical treatment, such generalised quadratures are
useful to define the quantum characteristic function of any
multimode state ρ̂,

χρ̂(�α) = tr[ρ̂ exp{iq̂(�α)}] (4)

for an arbitrary point �α in phase space. The multimode
Wigner function of the state is then obtained as the Fourier
transform of the characteristic function

W(�x) = 1
(2π)2m

∫
R2m

χρ̂(�α)e−i�αT�x d�α, (5)

where �x ∈ R
2m can, again, be any point in the multimode

phase space, and the coordinates of �x represent possible
measurement outcomes for x̂j and p̂j .
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The Wigner function can be used to represent and char-
acterise an arbitrary quantum state of the multimode sys-
tem. In the same spirit, we can also define the phase-space
representation of an arbitrary observable Â as

WÂ(�x) = 1
(2π)2m

∫
R2m

tr[Â exp{iq̂(�α)}]e−i�αT�x d�α, (6)

such that we can fully describe the measurement statis-
tics of an arbitrary quantum observable on phase space, by
invoking the identity

tr[ρ̂Â] = (4π)m
∫

R2m
WÂ(�x)W(�x) d�x (7)

to evaluate expectation values. In practice, it is often chal-
lenging to obtain Wigner functions for arbitrary states or
observables, but in some cases they can take convenient
forms.

A particular class of convenient states are Gaussian
states, where the Wigner function W(�x) is a Gaussian. As
a consequence, the Wigner function is positive, and can
thus be interpreted as a probability distribution. This Gaus-
sian distribution is completely determined by a covariance
matrix V, and mean field �ξ , such that the Wigner function
takes the form

W(�x) = e−(1/2)(�x−�ξ)TV−1(�x−�ξ)

(2π)m
√

det V
. (8)

This forms the basis of our preparation procedure for non-
Gaussian states as we assume that our initial multimode
system is prepared in such a Gaussian state.

To perform the conditional state preparation, we divide
the m-mode system into two subsets of orthogonal modes,
f = {f1, . . . , fl} and g = {g1, . . . , gl′ } with l + l′ = m, and
perform a measurement on the modes in g. We can then
describe the subsystems of modes f and g by phase spaces
R

2l and R
2l′ , respectively. As such, the joint phase space

can be mathematically decomposed as R
2m = R

2l ⊕ R
2l′ .

A general point �x in the multimode phase space R
2m

can thus be decomposed as �x = �xf ⊕ �xg, where �xf and �xg
describe the phase-space coordinates associated with the
sets of modes f and g, respectively. In particular, �xf can
be expanded in a particular modes basis f1, . . . , fl as �xf =
(xf1 , pf1 , . . . , xfl , pfl), where the coordinates xfj and pfj are
obtained as

xfj = �xT �fj , (9)

pfj = �xT��fj . (10)

A completely analogous treatment is possible for the coor-
dinates associated with the set of modes g.

III. CONDITIONAL OPERATIONS IN PHASE
SPACE

In quantum optics, we associate a Hilbert space (more
precisely, a Fock space) to each of these modes. The
Hilbert space H of the entire system can then be structured
as H = Hf ⊗ Hg, where Hf (Hg) describes the quantum
states of the set of orthogonal modes f (g). Formally, the
state of our full m-mode system is then described by a
density matrix ρ̂ that acts on H.

Within this manuscript, we perform a conditional oper-
ation in the set of modes g, which we describe through a
(not necessarily normalised) set of Kraus operators [65] X̂j
that act on Hg [66]:

ρ̂ 	→
∑

j X̂j ρ̂X̂ †
j

tr[
∑

j X̂ †
j X̂j ρ̂]

. (11)

Such a conditional operation naturally arises as a post-
measurement state, when X̂j is a projector, or when Â =∑

j X̂ †
j X̂j is a more general positive operator-valued mea-

sure (POVM) element, as represented in the sketch in
Fig. 1. The positive semidefinite operator Â is useful to
express the reduced state of the set of modes f:

ρ̂f|Â = trg[Âρ̂]

tr[Âρ̂]
. (12)

Here trg denotes the partial trace of the Hilbert space Hg
associated with the set of mode g. Our general goal is to
understand the properties of the state ρ̂f|Â.

As we are interested in the Wigner function for the state
of the subset of modes f, we translate Eq. (12) to its phase-
space representation. We initialize the total system in a
Gaussian state with Wigner function W(�x). Subsequently,
we also define the Wigner function WÂ(�xg) of the positive
operator Â, which is a function that is defined according
to Eq. (6) on the phase space that describes the subset of
modes g. As such, we find that

Wf|Â(�xf) =
∫

R2l′ WÂ(�xg)W(�x) d�xg∫
R2m WÂ(�xg)W(�x) d�x . (13)

Because Â is a positive semidefinite operator, the denomi-
nator is a positive constant.

As presented in Eq. (13), the Wigner function Wf|Â(�xf)

is impractical to use and its properties are not appar-
ent. Hence, we now introduce some mathematical tools to
obtain a more insightful expression for Wf|Â(�xf). First, we
use the fact that, for Gaussian states, W(�x) is a probabil-
ity distribution on phase space, such that we can define the

020305-3



WALSCHAERS, PARIGI, and TREPS PRX QUANTUM 1, 020305 (2020)

conditional probability distribution through

W(�xg | �xf) = W(�x)
Wf(�xf)

, (14)

where Wf(�xf) is the reduced Gaussian state for the set of
modes f,

Wf(�xf) =
∫

R2l′
W(�x) d�xg. (15)

Because W(�x) is a Gaussian probability distribution, the
conditional probability distribution W(�xg | �xf) is also a
Gaussian distribution [67] given by

W(�xg | �xf) =
exp[−(1/2)(�xg − �ξg|�xf)

TV−1
g|�xf

(�xg − �ξg|�xf)]

(2π)l′√det Vg|�xf

(16)

with covariance matrix

Vg|�xf = Vg − VgfV−1
f VT

gf, (17)

where Vg and Vf are the covariance matrices describ-
ing the subsets of modes g and f in the initial state,
whereas Vgf describes all the initial Gaussian correlations
between those subsets. Note that this covariance matrix
is the same for all points �xf ∈ R

2l, which is a particular
property of Gaussian conditional probability distributions.
Furthermore, the distribution W(�xg | �xf) also contains a
displacement

�ξg|�xf = �ξg + VgfV−1
f (�xf − �ξf), (18)

where �ξg and �ξf describe the displacements of the initial
state in the sets of modes g and f, respectively.

Generally, the phase-space probability distribution
W(�xg | �xf) is not a valid Wigner function of a well-defined
quantum state, in the sense that it would violate the Heisen-
berg inequality. However, it does remain a well-defined
probability distribution, i.e., it is normalised and positive.
Thus, it still has interesting properties that we can exploit
to formulate a general expression for Wf|Â(�xf). Let us first
use Eq. (14) to recast Eq. (13) in the following form:

Wf|Â(�xf) =
∫

R2l′ WÂ(�xg)W(�xg | �xf)Wf(�xf) d�xg∫
R2m WÂ(�xg)W(�x) d�x (19)

= [
∫

R2l′ WÂ(�xg)W(�xg | �xf) d�xg]Wf(�xf)∫
R2m WÂ(�xg)W(�x) d�x . (20)

Subsequently, we can define

〈Â〉g|�xf = (4π)l′
∫

R2l′
WÂ(�xg)W(�xg | �xf) d�xg, (21)

which is the expectation value of the phase-space repre-
sentation of Â with respect to the probability distribution

W(�xg | �xf). Similarly, we can use Eq. (7) to introduce the
notation

〈Â〉 = tr[Âρ̂] = (4π)l′
∫

R2m
WÂ(�xg)W(�x) d�x (22)

for the expectation value of Â in the state ρ. Finally, we
can use Eqs. (21) and (22) to recast Eq. (20) in the form

Wf|Â(�xf) = 〈Â〉g|�xf

〈Â〉
Wf(�xf). (23)

The major advantage of this formulation is that 〈Â〉g|�xf rep-
resents the average with respect to a Gaussian probability
distribution, such that one can use several computational
techniques that are well known for Gaussian integrals. A
notable property is the factorisation of higher moments
in multivariate Gaussian distributions, such that 〈Â〉g|�xf
can generally be expressed algebraically in terms of the
components of Vg|�xf and �ξg|�xf (for more details, see the
Appendix).

Finally, we remark that 〈Â〉g|�xf = 〈Â〉 in the absence of
correlations between the set of modes g that are condi-
tioned upon and the set of modes f for which we construct
the reduced state. This result is directly responsible for
the previously obtained results related to the spread of
non-Gaussian features in cluster states [68].

IV. EINSTEIN-PODOLSKY-ROSEN STEERING
AND WIGNER NEGATIVITY

When two systems are connected through a quantum
correlation, one can, in some cases, perform quantum
steering [28]. Colloquially, we say that a subsystem X
can steer a subsystem Y when measurements of certain
observables in X can influence the conditional measure-
ment statistics of observables in Y beyond what is possible
with classical correlations. Ultimately, in quantum steer-
ing one studies properties of conditional quantum states as
compared to a local hidden variable model for any observ-
ables X and Y, acting on X and Y , respectively. Contrary
to the case of Bell nonlocality, quantum steering considers
an asymmetric local hidden variable model:

P(X = x, Y = y) =
∑

λ

P(λ)P(X = x | λ)PQ(Y = y | λ).

(24)

Here one assumes that the probability distributions PQ(Y =
y | λ) of steered party Y follow the laws of quantum
mechanics. For the party X , which performs the steering,
no such assumption is made and any probability distribu-
tion is allowed. Such a local hidden variable model can
typically be falsified, either by brute force computational
methods [69] or via witnesses [70]. These methods have
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been applied in a variety of contexts to experimentally
observe quantum steering [31,32,71–77].

A paradigmatic example is found when performing
homodyne measurements on the EPR state [78]: when the
entanglement in the system is sufficiently strong, one can
condition the x̂ and p̂ quadrature measurements in Y on
the outcome of the same quadrature measurement in X .
The obtained conditional probability distributions for the
quadrature measurements in Y can violate the Heisenberg
inequality, even when averaged over all measurement out-
comes in X . The violations of such a conditional inequal-
ity are impossible with classical correlations, but are a
hallmark of quantum steering.

Quantum steering can occur in all types of quantum
states, with all kinds of measurements. In CV quantum
physics, one often refers to the particular case of Gaussian
states that can be steered through Gaussian measurements
as EPR steering. Recently, other forms of steering for
Gaussian states have been developed under the name of
nonclassical steering [79]. In this approach, one checks
whether Gaussian measurements in X can induce a non-
classical conditional state in Y . Throughout this work, the
focus lies on EPR steering, where the systems X and Y are
the sets of modes f and g, respectively.

In previous work, we showed that EPR steering is a nec-
essary prerequisite to remotely generate Wigner negativity
through photon subtraction [80]. More precisely, when a
photon is subtracted in a mode g, the reduced state Wigner
function of a correlated mode f can only be nonpositive
if mode f is able to steer mode g. When one allows for
an additional Gaussian transformation on mode g prior to
photon subtraction, we found that EPR steering from f to
g is also a sufficient condition to reach Wigner negativity
in mode f .

The formalism that is developed in the previous section
allows us to generalize this previous result to arbitrary
conditional operations on an arbitrary number of modes.

Theorem 1. For any initial Gaussian state ρ̂ and any con-
ditional operation Â in Eq. (12), EPR steering between the
set of modes f and the set of modes g is necessary to induce
Wigner negativity in Wf|Â(�xf).

Proof. Gaussian EPR steering is generally quantified
through the properties of Vg|�xf . In particular, one can show
that the set of modes in f can jointly steer the set of modes

g if and only if Vg|�xf violates the Heisenberg inequal-
ity [29,30]. The crucial consequence is that W(�xg | �xf), as
given by Eq. (16), is itself a well-defined Gaussian quan-
tum state when the modes in f cannot steer the modes g.
For all possible �xf, we can thus associate this Gaussian
quantum state with a density matrix ρ̂g|�xf .

The crucial observation is that 〈Â〉g|�xf , as defined in
Eq. (21), is the expectation value of Â in a well-defined
quantum state ρg|�xf for any �xf. Because Â is a positive
semidefinite operator, we directly find that

〈Â〉g|�xf = tr[ρg|�xf Â] � 0 for all �xf ∈ R
2l. (25)

Therefore, the overall conditional Wigner function Wf|Â(�xf)

in Eq. (23) is non-negative. We can only achieve 〈Â〉g|�xf <

0 for certain points �xf ∈ R
2l when Vg|�xf violates the Heisen-

berg inequality. This concludes that in absence of EPR
steering Wf|Â(�xf) � 0. �

Note that the steps in this proof rely heavily on the fact
that the initial state is Gaussian. For other types of quantum
states, we cannot directly relate quantum steering to the
properties of W(�xg | �xf).

V. EXAMPLES

A. Heralding

In the first example, we consider a scenario where a
photon-number-resolving measurement is performed on
one of the output modes, which can be considered a special
case of the situation considered in Ref. [47]. Herald-
ing is ubiquitous in quantum optics, as it is one of the
most common tools to generate single-photon Fock states
[49–51].

To study heralding, we use Eq. (23) where a measure-
ment of the number of photons n in a single mode g is
performed. We assume that this measurement is optimal,
and, thus, that we project on a Fock state |n〉. In this case,
we set Â = |n〉〈n|, and therefore we obtain

WÂ(�xg) =
n∑

k=0

(
n
k

)
(−1)n+k‖�xg‖2k

k!
e−(1/2)‖�xg‖2

2π
, (26)

where we used the closed form of the Laguerre polyno-
mial. Hence, we can now use this expression to calculate
〈|n〉〈n|〉g|�xf . In this calculation, we must evaluate

WÂ(�xg)W(�xg | �xf) =
n∑

k=0

(
n
k

)
(−1)n+k‖�xg‖2k

k!

exp[−(1/2)(�xg − �ξg|�xf)
TV−1

g|�xf
(�xg − �ξg|�xf) − ‖�xg‖2]/2

4π2
√

det Vg|�xf

, (27)
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and we can recast

exp
[ − 1

2 (�xg − �ξg|�xf])
TV−1

g|�xf
(�xg − �ξg|�xf) − 1

2‖�xg‖2] = e−(1/2)[(1+Vg|�xf
)�xg−�ξg|�xf

]T[Vg|�xf
(1+Vg|�xf

)]−1[(1+Vg|�xf
)�xg−�ξg|�xf

]

× e
−(1/2)�ξT

g|�xf
[1+Vg|�xf

]−1�ξg|�xf . (28)

After a substitution in the integral, we then find that

〈|n〉〈n|〉g|�xf = 2 det(1 + Vg|�xf)
−1/2e

−(1/2)�ξT
g|�xf

[1+Vg|�xf
]−1�ξg|�xf

n∑
k=0

(
n
k

)
(−1)n+k

k!

×
∫

R2

‖(1 + Vg|�xf)
−1�xg‖2ke−(1/2)(�xg−�ξg|�xf

)Tσ−1(�xg−�ξg|�xf
)

2π
√

det σ
d�xg , (29)

where we defined σ = Vg|�xf(1 + Vg|�xf), which is now
the covariance matrix of a new Gaussian probability dis-
tribution. The final expression is then determined by the
moments of the Gaussian distribution with covariance
matrix σ and displacement �ξg|�xf . Even though this expres-
sion is relatively elegant, it can be remarkably tedious to
compute for larger values of n.

First, let us focus on the experimentally relevant case
where n = 1 as an illustration. The evaluation of Eq. (29)
is than conducted by calculating the second moments of a
Gaussian distribution, such that we ultimately find that

Wf| |1〉〈1|(�xf)

= {‖(1 + Vg|�xf)
−1�ξg|�xf‖2 + tr[(1 + Vg|�xf)

−1Vg|�xf ] − 1
}

× det(1 + Vg)
1/2

det(1 + Vg|�xf)
1/2

e−(1/2)�ξT
g|�xf

[1+Vg|�xf ]−1�ξg|�xf

tr[(1 + Vg)−1Vg] − 1
Wf(�xf),

(30)

where we set �ξg = 0, thus assuming that there is no mean
field in mode g. We note that this function reaches nega-
tive values if and only if tr[(1 + Vg|�xf)

−1Vg|�xf] < 1. Using
Williamson’s decomposition, as we did in Ref. [80], it can
be shown that this condition can only be fulfilled when the
set of modes f can perform EPR steering in mode g, or, in
other words, when Vg|�xf violates the Heisenberg inequality.
This is exactly what we can expect from our general result
in Sec. IV.

In general, we know that the Wigner function (23) can
only be negative when Vg|�xf is not a covariance matrix of
a well-defined quantum state. However, determining the
existence of zeroes of this Wigner function is a cumber-
some task. For heralding with n > 1, we therefore restrict
to numerical simulations using a specific initial state.

This specific initial state is generated by mixing two
squeezed thermal states on a balance beam splitter, where
one of the output modes will serve as f , and the other

as g. In the limiting case where the initial thermal noise
vanishes, we recover the well-known EPR state that mani-
fests perfect photon-number correlations between modes f
and g. In this case, it is clear that a detection of n photons
in mode g will herald the state |n〉 in mode f . However, by
introducing thermal noise, the photon-number correlations
fade and the properties of the heralded state in mode f
are less clear. Thermal noise will also gradually reduce the
EPR steering in the system, such that the Wigner negativ-
ity in mode f will vanish when the thermal noise becomes
too strong. Hence, with this example we can study the
interplay between Wigner negativity and EPR steering in a
controlled setting.

The squeezed thermal state is characterised by a covari-
ance matrix V = diag[δ/s, δs], where δ denotes the amount
of initial thermal noise, and s is the squeezing parame-
ter. We initially start with two copies of such a state, and

EPR steering

Conditioning

g

f ˆ

ˆ

ˆ

rf |A

r

A

ˆ

FIG. 1. Sketch of the conditional state-preparation scenario: a
multimode quantum state with density matrix ρ̂ is separated over
two subsets of modes, f and g. A measurement is performed on
the modes in g, yielding a result associated with a POVM element
Â. Conditioning on this measurement outcome “projects” the
subset of mode f into a state ρ̂f|Â. The directional EPR steering,
discussed in Sec. IV, is highlighted.
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(a)

(b) (c)

FIG. 2. Photon heralding with a particular Gaussian input state, generated by mixing two equal squeezed thermal states (b) on a
balanced beam splitter (a). On one of the outputs of the beam splitter, a projective measurement is performed on the Fock state |n〉,
which heralds a non-Gaussian state in the other mode. The Wigner functions of this non-Gaussian state are shown for the case where
n = 5, with varying degrees of EPR steering μ, controlled by varying the thermal noise δ for a fixed squeezing s = 5 dB. The Wigner
negativity, measured by N given in Eq. (32), is shown in (c) for varying degrees of EPR steering and a varying number of measured
photons n.

rotate the phase of one of them by π/2 (see Fig. 2). When
both modes are mixed on a beam splitter, the resulting state
manifests EPR steering depending on parameters δ and s,
which can be quantified through [30]

μ = max
{
0, − 1

2 log det Vg|�xf

}
, (31)

where we explicitly use the fact that Vg|�xf is a two-
dimensional matrix. When we then postselect on the num-
ber of photons, n, measured in one output mode, we herald
a conditional non-Gaussian state in the other mode. In Fig.
2, we show the resulting Wigner functions for the case
where the detected number of photons is n = 5. When the
amount of EPR steering is varied (note that μ = 0.55 cor-
responds to the pure state), we see that the resulting Wigner
function rapidly loses Wigner negativity. In full agreement
with our general result of the previous section, we also find
that the Wigner negativity vanishes when there is no EPR
steering.

A more quantitative study of the Wigner negativity can
be found in panel (c) of Fig. 2, where we vary both the
amount of steering μ and the number of detected pho-
tons n. The Wigner negativity is measured by the quantity

[81–83]

N =
∫

R2
|Wf |Â(�xf )| d�xf − 1. (32)

When the state is pure (here for μ = 0.55), a detection
of n photons in one mode herald a Fock state |n〉 in the
other mode and the Wigner negativity thus increases with
n. However, once the state is no longer pure and the steer-
ing decreases, we observe the existence of an optimal value
n for which the maximal amount of Wigner negativity is
obtained. For very weak EPR steering (e.g., μ = 0.08 in
this calculation), this optimal value is obtained for n = 1.

This numerical study shows the fruitfulness of our
presented framework to study a very concrete herald-
ing scheme. Furthermore, the example confirms the rela-
tionship between Gaussian EPR steering and Wigner
negativity.

B. Photon-added and -subtracted states

Ideal photon addition and subtraction are defined by act-
ing with a creation operator â† or annihilation operator â,
respectively, on the quantum state. In practice, these oper-
ations are often realised by using some form of heralding
[52], which we treated in the previous example. However,
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it tends to be more convenient to use the idealised model,
based on creation and annihilation operators, and it has
been shown experimentally that this model is highly accu-
rate. This model also fits the conditional state framework
of Eq. (11), where we set X̂j to be a creation or annihilation
operator.

In multimode systems, photon addition and subtraction
have been considered for their entanglement properties,
which sprouted a range of theoretical [84–91] and exper-
imental [92–94] results. Many of the obtained theoretical
results rely on the purity of the initial Gaussian state, and
are hard to generalise to arbitrary Gaussian states. In recent
years, there has been some progress in developing analyt-
ical tools to describe general photon subtracted states [91,
95], but it remains challenging to use these techniques to
evaluate entanglement measures. Therefore, related ques-
tions have been investigated, such as, for example, the
spread of non-Gaussian features in multimode systems
[68,80,96,97].

The framework presented in this manuscript is partic-
ularly fruitful to investigate the spread of non-Gaussian
features through photon addition or subtraction. We first
show how the results of Ref. [80] can be recovered via
Eq. (23). Then, we use the present framework to provide
analytical results for the states that can be obtained by
subtracting multiple photons in a multimode system.

1. Adding or subtracting a single photon

We start by studying the addition and subtraction of a
single photon. The scenario for photon-subtracted states
was studied in detail in Ref. [80] and our goal in this exam-
ple is to show how these previous results can be obtained
in the context of our present framework. Furthermore, we
also study photon addition, which has not yet been con-
sidered in the context of the remote generation of Wigner
negativity.

Creation and annihilation operators are by construction
operators that act on a single mode g. In the single-photon
scenario, we find the photon-subtracted state

ρ̂− = âg ρ̂â†
g

tr[n̂g ρ̂]
(33)

and the photon-added state

ρ̂+ = â†
gρ̂âg

tr[(n̂g + 1)ρ̂]
. (34)

These states clearly fit the framework of Eq. (11). In the
context of Eq. (12), the reduced state of the set of modes f
is obtained by choosing Â = n̂g and Â = n̂g + 1 for photon
subtraction and addition, respectively. We can then use Eq.
(23) to obtain the Wigner function in the subset of modes f,

for which we must evaluate 〈n̂g〉g|�xf . To this end, we eval-
uate the Wigner function of the number operator, which is
given by

Wn̂g (�xg) = 1
16π

(‖�xg‖2 − 2), (35)

such that we directly find that

〈n̂g〉g|�xf = 1
4 (trVg|�xf + ‖�ξg|�xf‖2 − 2), (36)

where the dependence on �xf comes from �ξg|�xf . Thus, we
find that, for the photon-subtracted state,

W−
f|n̂g

(�xf) = trVg|�xf + ‖�ξg|�xf‖2 − 2

trVg + ‖�ξg‖2 − 2
Wf(�xf). (37)

From this result, we immediately observe that the poten-
tial Wigner negativity of these states depends on whether
or not trVg|�xf < 2. In Ref. [80] it was shown through
the Williamson decomposition that trVg|�xf � 2

√
det Vg|�xf .

This directly implies that EPR steering (31) is a necessary
condition to reach Wigner negativity. It is instructive to
emphasise that

‖�ξg|�xf‖2 = ‖�ξg + VgfV−1
f (�xf − �ξf)‖2, (38)

from which one ultimately retrieves the expression

W−
f|n̂g

(�xf)= {‖�ξg + VgfV−1
f (�xf − �ξf)‖2 + trVg|�xf − 2}

trVg + ‖�ξg‖2 − 2
Wf(�xf),

which is the result that was derived in Ref. [80].
For the photon-added state, we can perform a com-

pletely analogous computation with

Wn̂g+1(�xg) = 1
16π

(‖�xg‖2 + 2), (39)

from which we find that

W+
f|n̂g

(�xf) = trVg|�xf + ‖�ξg|�xf‖2 + 2

trVg + ‖�ξg‖2 + 2
Wf(�xf). (40)

This result immediately shows that this Wigner function
is always positive, which implies that it is impossible to
remotely create Wigner negativity through photon addi-
tion.

In previous work, we highlighted that photon addition
always creates Wigner negativity in the mode where the
photon is added [91]. What we observe in Eq. (40) can
be understood as the complementary picture for the other
modes. This result also highlights an operational difference
between photon subtraction and addition: photon addition
is a more powerful tool to locally create Wigner negativ-
ity, whereas photon subtraction has the potential to create
Wigner negativity nonlocally (i.e., in modes that can steer
the mode in which the photon is subtracted).
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2. Subtracting multiple photons

When multiple photons are added or subtracted, or
when we chain combinations of addition and subtrac-
tion operations, the evaluation of 〈Â〉g|�xf(�xf) will rapidly
become more complicated. A general strategy to approach
this problem avoids the explicit evaluation of WÂ(�xg),
but rather uses standard techniques for the evaluation of
moments of multivariate Gaussian distributions. This ulti-
mately boils down to applying Wick’s theorem [98] and
summing over all matchings (see the Appendix for details).
Even though this task can be implemented numerically,
the corresponding analytical expressions quickly become
intractable.

To illustrate this method, we consider the multimode
scenario where two photons are subtracted in different
orthogonal modes, g1 and g2, which implies that the
conditioning implements the map

ρ 	→ âg1 âg2 ρ̂â†
g2 â†

g1

tr[n̂g1 n̂g2 ρ̂]
. (41)

This implies that we must apply our formalism with Â =
n̂g1 n̂g2 . To treat this problem with the technique of match-
ings, we use the Gaussian identity (note that we do not
explicitly write the dependence on �xf to simplify notation)

〈n̂g1 n̂g2〉g|�xf

= ∣∣〈âg1〉g|�xf

∣∣2 ∣∣〈âg2〉g|�xf

∣∣2 + 〈n̂g1〉′g|�xf

∣∣〈âg2〉g|�xf

∣∣2

+ 〈n̂g2〉′g|�xf

∣∣〈âg1〉g|�xf

∣∣2 + 〈â†
g1

âg2〉′g|�xf
〈â†

g2
〉g|�xf〈âg1〉g|�xf

+ 〈â†
g1

âg2〉′g|�xf
〈â†

g2
âg1〉′g|�xf

+ 〈â†
g1

â†
g2

〉′g|�xf
〈âg1 âg2〉′g|�xf

+ 〈n̂g1〉′g|�xf
〈n̂g2〉′g|�xf

+ 〈â†
g2

âg1〉′g|�xf
〈a†

g1
〉g|�xf〈âg2〉g|�xf

+ 〈â†
g1

â†
g2

〉′g|�xf
〈âg1〉g|�xf〈âg2〉g|�xf

+ 〈âg1 âg2〉′g|�xf
〈â†

g1
〉g|�xf〈â†

g2
〉g|�xf , (42)

where 〈·〉′g|�xf
denotes the nondisplaced version of the distri-

bution. We can immediately identify

〈âg1〉g|�xf = 1
2 (�ξT

g|�xf
�g1 + i�ξT

g|�xf
��g1); (43)

subsequently, from Eq. (36), we obtain

〈n̂g1〉′g|�xf
= 1

4 (trVg1|�xf − 2), (44)

and finally we find new types of terms that are given by

〈â†
g1

â†
g2

〉′g|�xf
= 1

4 [�gT
1 Vg|�xf �g2 − �gT

1 �TVg|�xf��g2

− i(�gT
1 Vg|�xf��g2 + �gT

1 �TVg|�xf �g2)] (45)

and

〈â†
g1

âg2〉′g|�xf
= 1

4 [�gT
1 Vg|�xf �g2 + �gT

1 �TVg|�xf��g2

+ i(�gT
1 Vg|�xf��g2 − �gT

1 �TVg|�xf �g2)]. (46)

The computation required to obtain the final result is
tedious but straightforward. We find that

〈n̂g1 n̂g2〉g|�xf

= 1
16 [(trVg1|�xf + ‖�ξg1|�xf‖2 − 2)(trVg2|�xf

+ ‖�ξg2|�xf‖2 − 2) + 2tr(CTC) + 4�ξT
g1|�xf

C�ξg2|�xf], (47)

where we have defined the submartix C as the off-diagonal
block of Vg|�xf via

Vg|�xf =
(

Vg1|�xf C
CT Vg2|�xf

)
. (48)

Nonzero entries in the block C can occur due to various
causes. First, they can be due to a correlation between the
modes g1 and g2 in the initial Gaussian state [as seen from
the term Vg in Eq. (17)]. However, nontrivial entries in C
also arise when modes g1 and g2 are both correlated to the
same modes in f, which is induced by the term VgfV−1

f VT
gf

in Eq. (17).
Result (47) directly shows the appearance of a triv-

ial term, (trVg1|�xf + ‖�ξg1|�xf‖2 − 2)(trVg1|�xf + ‖�ξg1|�xf‖2 − 2),
which multiplies the effect of photon subtraction in g1
with that of photon subtraction in g2. However, when both
modes are sufficiently “close” to each other, we find the
additional terms 2tr(CTC) + 4�ξT

g1|�xf
C�ξg2|�xf , which can be

interpreted as some form of interference between the two
photon subtractions.

In Fig. 3 we provide an illustration, where we inject
three pure squeezed vacuum states into a series of beam
splitters to generate an entangled three-mode state from
which we subtract two photons. The first two squeezed
vacuum states have 5 dB squeezing in opposite quadratures
and are mixed on the beam splitter with 75% transmittance.
One of the output ports will serve as mode g1, whereas
the other is injected into a section beam splitter of 25%
transmittance. In the other input port of this beam splitter,
we inject the third squeezed vacuum state, which is also
squeezed by 5 dB. One of the output ports of the 25% trans-
mittance beam splitter serves as mode g2, and in the other
output port we find mode f , which is the mode for which
we reconstruct the output Wigner function using Eq. (47).
Photon subtraction is represented by a highly transmitting
beam splitter that sends a small amount of light to a photon
detector. Two-photon subtraction then happens when both
detectors click at the same time, and we can condition the
state in mode f upon this detection outcome. This posts-
election scheme effectively implements the operators âg1
and âg2 on modes g1 and g2, respectively.
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FIG. 3. Conditional state Wigner function Wf |Â(�xf ), obtained
by subtracting a photon in two of the three modes in a three-
mode entangled state. This entangled state is generated by mixing
three squeezed vacuum states in a sequence of beam splitters
with transmittances of 75% (left) and 25% (right). Two of the
squeezed vacuum states are squeezed by 5 dB in the x quadrature
(left, right) and one is squeezed by 5 dB along the p quadra-
ture (middle). The photon subtraction is represented by highly
transmitting beam splitters that send a small fraction of light to a
photon detector, which effectively implements the operators âg1
and âg2 on the modes g1 and g2, respectively.

We observe that the conditional state Wf |Â(�xf ) with Â =
n̂g1 n̂g2 reaches negative values in two distinct regions of
phase space. Indeed, with the Williamson decomposition
of Vg|�xf we can quantify [30] the strength of EPR steering
from mode f to the set of modes g to be μ = 0.548. Fur-
thermore, the fact that there are two negativity regions is a
hallmark of the subtraction of two photons. This example
shows that our framework is a highly versatile tool for CV
quantum state engineering.

Finally, we consider the complementary scenario where
two photons are subtracted from one mode. In this case,
we can still use the perfect matching technique (42), when
creation and annihilation operators are in normal ordering.
In this case, we obtain Â = â†

gâ†
gâgâg , and analogously to

Eq. (42), we find that

〈â†
gâ†

gâgâg〉g|�xf = 1
16 [(trVg|�xf + ‖�ξg|�xf‖2)2 + 2tr(V2

g|�xf
)

+ 4�ξT
g|�xf

(Vg|�xf − 21)�ξg|�xf − 8trVg|�xf + 8].
(49)

This result can then be directly inserted into Eq. (23) to
obtain the final conditional state for the set of modes f
when two photons are subtracted in mode g. As expected,
the subtraction of two photons can induce Wigner negativ-
ity only when there is EPR steering from the modes f to
mode g.

As such, we have shown that our framework allows us
to analytically describe conditional non-Gaussian states in
a regime that is highly challenging for many other meth-
ods. For example, it is highly challenging to approach

the problem with the correlation function methods of Ref.
[91], even though this method is highly successful for
single-photon subtraction in multimode states.

These methods can in principle be extended to deal
with higher numbers of added and/or subtracted photons
in various modes. However, it must be emphasised that
one will quickly encounter practical boundaries as finding
all possible matchings is a computationally hard problem
[99]. Finding an exact description of the Wigner function
that is obtained by subtracting a large number of pho-
tons from a subset of an entangled Gaussian state seems
to be a computationally hard problem that has its roots in
graph theory. The problem of finding all matchings also
lies at the basis of Gaussian boson sampling [100,101],
and it is not expected to be easy to overcome. The prob-
lem of Gaussian boson sampling can in turn also be related
to CV sampling from photon-added or -subtracted states
[102].

VI. CONCLUSIONS

We present a general framework that describes the
Wigner function that is obtained by applying an arbitrary
operation on a subset of modes of a multimode Gaussian
state, and conditioning the remaining modes on this oper-
ation. The most natural way of interpreting this scenario
is by considering this operation to be a measurement, such
that the state of the remaining modes is obtained by post-
selecting on a specific measurement outcome, as is the
case for heralding. However, this framework can also be
used to study the nonlocal effects of photon addition and
subtraction.

Our framework relies heavily on classical probability
theory, and in particular on properties of conditional prob-
ability distributions (14). We use the fact that Gaussian
states have positive Wigner functions, such that associ-
ated conditional probability distributions on phase space
are well defined as probability distributions (but not nec-
essarily as quantum states, because they can violate the
Heisenberg inequality). In this regard, our general results
(21)–(22) are valid for all initial states with a positive
Wigner function.

Gaussian states are not only the most relevant initial
states from an experimental point of view, they also have
the theoretical advantage of leading to a Gaussian condi-
tional probability distribution. The latter is an enormous
advantage for evaluating the crucial quantity 〈Â〉g|�xf , as
defined in Eq. (21). On a more fundamental level, we note
that the covariance matrix (17) of this Gaussian condi-
tional probability distribution is essential in the theory of
EPR steering. This observation allows us to directly prove
that EPR steering is a necessary prerequisite for the con-
ditional preparation of Wigner negativity, regardless of the
conditional operation that is performed.
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In previous work, we already showed that Gaussian EPR
steering is also a sufficient ingredient for the remote prepa-
ration of Wigner negativity, in the sense that there always
exists a combination of a Gaussian operation and photon
subtraction in the modes g that induces Wigner negativity
in the modes f. We thus establish a fundamental relation
between Gaussian EPR steering and the ability to pre-
pare a Wigner-negative state in correlated modes. This
result is particularly important in the light of measurement-
based quantum computation, where large Gaussian cluster
states form the backbone for implementing a quantum
algorithm. The actual computation is then executed by per-
forming measurements (or more general operations) on
some modes of the cluster, in order to project the remain-
der of the system in a desired quantum state. To claim
that such a computation is universal, one must be able to
induce Wigner negativity. Our results therefore show that
EPR steering is an essential figure of merit in these cluster
states in order to claim that a cluster state is suitable for
universal quantum computation.

From a practical point of view, the examples in Sec. V
show that our framework is highly versatile. However, the
boundaries of analytical treatments are also highlighted.
Even though the obtained Eq. (21) for 〈Â〉g|�xf is easy to
interpret conceptually, the actual evaluation can still be
challenging. Regardless, we must emphasise that the ele-
gance and simplicity of our framework does allow us to
obtain results with far greater ease than previously pos-
sible. Many of the methods known in the literature are
either hard to generalise to arbitrary Gaussian initial states
[44,59], focused on one particular measurement or oper-
ation [47,91,95], or are just generally hard to interpret or
use analytically. Our framework can be applied to any ini-
tial Gaussian state, and any conditional operation, provided
the Wigner function of Â is known.

As such, our results provide a starting point for inves-
tigating a wide range of new questions related to multi-
mode conditional preparation of non-Gaussian states. By
establishing a fundamental relation between EPR steer-
ing and Wigner negativity, we specifically highlight that
this framework is also suited to obtain general analytical
results, which is often challenging in the study of states
that are both highly non-Gaussian and highly multimode.

APPENDIX: MATCHINGS

In Sec. 2, we refer to the method of perfect matchings
to evaluate 〈Â〉g|�xf , which we present here with more rigour
and detail.

The technique of perfect matchings is a common prac-
tice to evaluate correlation functions in Gaussian states,
which can be traced back to works such as Refs. [5,98].
In formal terms, we consider a Gaussian (also known as
“quasifree” in the mathematical physics literature) func-
tional 〈·〉g|�xf on the algebra of observables for the canonical

commutation relations [11]. A defining property of such
functionals is that truncated correlation functions [5] for
any product of more than two creation and annihilation
operators vanish. This property is the direct analog of the
cumulants of a multivariate Gaussian distribution and it
implies that the functional 〈·〉g|�xf is fully determined by
the quantities 〈â†

g1 â†
g2〉′g|�xf

= 〈âg1 âg2〉′∗g|�xf
, 〈â†

g1 âg2〉′g|�xf
, and

〈â†
g1〉g|�xf = 〈âg1〉∗g|�xf

. Here the 〈·〉′g|�xf
is the nondisplaced

version of the functional, which is formally defined as

〈â#
g1

â#
g2

〉′g|�xf
= 〈â#

g1
â#

g2
〉g|�xf − 〈â#

g1
〉g|�xf〈â#

g2
〉g|�xf , (A1)

where â#
g1

can be either a creation or an annihilation oper-
ator. We can then write the following general property of
the Gaussian functional:

〈â†
g1

· · · â†
gn

âgn+1 · · · âgn+m〉g|�xf

=
∑

M∈M

∏
{j1,j2}∈M

〈â#
j1 â#

j2〉′g|�xf

∏
{k}∈M

〈â#
k〉g|�xf . (A2)

Here M is the set of all “matchings” for the set
{g1, . . . , gn+m}. We use the term matching to refer to a par-
tition of the set {g1, . . . , gn+m} in subsets with either one or
two elements. An example of such a possible matching is
given by M = {{g1, g2}, . . . , {gn−1, gn}, {gn}, . . . , {gn+m}}.
For each partition M ∈ M, we then evaluate the product
of associated two-point and one-point functions, where any
pair {j1, j2} ∈ M is associated with 〈â#

j1 â#
j2〉′g|�xf

and {k} ∈ M
is associated with 〈â#

k〉g|�xf . Note that, for i = g1, . . . , gn,
the operator â#

i is a creation operator, whereas, for i =
gn+1, . . . , gn+m, it is an annihilation operator.

The problem of finding all matchings is a well-known
problem in graph theory. To make the connection, we
can represent each element of the set {g1, . . . , gn+m} as
a vertex in a full connected graph, and then consider
the resulting partitions as the matchings of this graph
[99]. The number of terms in Eq. (A2) quickly explodes
as the number of creation and annihilation operators
increases, which ultimately makes the problem of evalu-
ating 〈â†

g1 · · · â†
gn âgn+1 · · · âgn+m〉g|�xf computationally hard.

A subtle point in our treatment of 〈Â〉g|�xf is that 〈·〉g|�xf
is not an expectation value of a Gaussian quantum state.
Hence, it is legitimate to wonder up to what extent the tech-
niques of Gaussian quantum states can be used to evaluate
〈Â〉g|�xf . From its definition in Eq. (21), it can be deduced
that 〈·〉g|�xf is a functional on the algebra of observables. It
directly inherits the Gaussian properties from W(�xg | �xf),
such that it is a Gaussian functional. In particular, prop-
erty (A2) can be directly traced back to the structure of
the moments of the multivariate Gaussian probability dis-
tribution W(�xg | �xf). The Gaussian functional 〈·〉g|�xf is not
associated to a state because it is not a positive functional,
i.e., we can find positive operators Â for which 〈Â〉g|�xf < 0.
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For a Gaussian functional on the algebra of canonical com-
mutation relations to be equivalent to a quantum state,
one must impose additional constraints on the functional
to guarantee positivity [5,11]. These constraints ultimately
boil down to imposing the Heisenberg inequality.
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