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For elliptic systems with block structure in the upper half-space and t-independent coefficients, we settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new. We also elucidate optimal ranges for problems with fractional regularity data.

The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator.

Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.

This mostly self-contained monograph provides a comprehensive overview on the field and unifies many earlier results that have been obtained by a variety of methods.

Introduction and main results

1.1. Objective of the monograph. Consider the elliptic system of m equations in (1 + n) dimensions, n ≥ 1, given by n i,j=0 m β=1 ∂ i A α,β i,j (x)∂ j u β (t, x) = 0 (α = 1, . . . , m, t > 0, x ∈ R n ),

where ∂ 0 := ∂ ∂t and ∂ i := ∂ ∂x i if i = 1, . . . , n. Note that the coefficients do not depend on the normal variable t > 0. Ellipticity will be described below, but when m = 1, the uniformly elliptic equations are included.

Boundary value problems for such systems have been extensively studied since the pioneering work of Dahlberg [START_REF] Dahlberg | Estimates of harmonic measure[END_REF] in the late 1970s. The upper half-space situation is prototypical for Lipschitz graph domains. The case of t-independent coefficients is already challenging and meaningful since t-dependent coefficients are usually treated via perturbation techniques. 1 As usual in the harmonic analysis treatment of elliptic boundary value problems, solutions are taken in the weak sense, interior estimates involve non-tangential maximal functions and/or conical square functions and convergence at the boundary is to be understood in an appropriate non-tangential sense.

In this monograph, we consider the class of systems in block form, that is, when there are no mixed ∂ ∂t ∂ ∂x i -derivatives. In short notation, the system can be written as (1.1) ∂ t (a∂ t u) + div x (d∇ x u) = 0

where the matrix A = (A α,β i,j (x)) above is block diagonal with diagonal (matrix) entries a = a(x) and d = d(x), hence the name. These systems enjoy the additional feature that one can always produce strong solutions using the Poisson semigroup e -tL 1/2 associated with the sectorial operator L := -a -1 div x d∇ x on the boundary. 2 Existence and uniqueness of solutions to the boundary value problems are therefore inseparably tied to operator theoretic properties of L.

Our goal is to identify all spaces of boundary data of Hardy, Lebesgue and homogeneous Hölder-type, for which the Dirichlet and Neumann boundary value problems have weak solutions, and then prove uniqueness in these cases. Thus, we aim at proving well-posedness results for the largest possible class of boundary spaces.

To this end, we unify and improve, with several new results along the way, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, abstract layer potentials replacing fundamental solutions in the absence of local regularity of solutions, . . . Prior to this work, only the two-dimensional situation was fully understood for the boundary value problems. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The uniqueness results are completely new. We essentially close this topic by obtaining well-posedness in ranges of boundary spaces likely to be sharp in all dimensions.

For Dirichlet-type problems these ranges go beyond the semigroup theory for e -tL 1/2 on Lebesgue or Sobolev spaces. The global picture is that for the regularity problem, one can go one Sobolev exponent down from the semigroup range and for the Dirichlet problem, one can go one Sobolev exponent up. In particular, we exhibit for the first time the possibility of solving Dirichlet problems for Hölder and BMO-data without relying on any sort of duality with an adjoint problem with data in a Hardy space. For the Neumann problem, we shall provide a missing link to the existing literature, so that well-posedness in the optimal range of boundary spaces follows from earlier results. This range is the one provided by the semigroup theory.

Natural extensions of the results above are the Dirichlet and Neumann problems for data with fractional regularity between 0 and 1, for which we also provide well-posedness results. This concerns data in Besov and even Hardy-Sobolev spaces. We believe they are optimal in the formulation of the problem as well as in the ranges of spaces.

Most recent results in the field rely on one of two opposing strategies, sometimes referred to as second-and first-order approaches. None of these two approaches can be used 'off-the-shelf' in order to cover the full range of results that we are aiming at here. Indeed, in the former, the Poisson semigroup e -tL 1/2 is usually treated by comparison with the heat semigroup e -t 2 L , which offers better decay properties. 3When a = 1, it may happen that L is sectorial of angle larger than π /2, and hence -L does not generate a heat semigroup. This forces us to rely on resolvents (1 + t 2 L) -1 instead, which offer sufficient offdiagonal decay but introduce new and partly unsuspected technicalities. In the first-order approach, the elliptic equation is rewritten as an equivalent first-order system of Cauchy-Riemann-type for the variable F = [a∂ t u, ∇ x u] ⊤ called the conormal gradient. 4 The approach is genuinely built on the use of resolvents of a first order operator, but the range of admissible data spaces is limited since it treats the interior estimates for Dirichlet and Neumann problems simultaneously.

Most of our arguments are carried out at the second-order level, but whenever convenient, we employ first-order methods to give more efficient proofs and novel results, even when a = 1. Readers, who are not familiar with the first-order approach, may find in this monograph a light introduction to some important features of the theory, while keeping technicalities at the absolute minimum. We also characterize all ranges of boundary spaces that have previously been obtained through first-order methods, using only the second-order operator L. We believe that this helps in rendering accessible the cornerstones of the first-order method to the broader audience that they deserve. At the same time, the block structure will reveal interesting new phenomena that could not be captured by the first-order method.

1.2. The elliptic equation. Consider again the elliptic equation (1.1). The value of m (the number of equations) is irrelevant to everything that follows and the reader may assume m = 1 when it comes to differential operators such as gradient and divergence. 5 We write (1.1) as Lu :=div(A∇u) = -∂ t (a∂ t u)div x d∇ x u = 0, where

A = a 0 0 d : R n → L(C m × C mn )
is the coefficient matrix of dimension m(1 + n) in block form. The equation is understood in the weak sense: By Lu = 0 we mean that u ∈ W 1,2 loc (R 1+n + ; C m ) satisfies

R 1+n + A∇u • ∇φ dtdx = 0 (φ ∈ C ∞ 0 (R 1+n + ; C m )).
We assume that A is measurable and that there is a constant λ ∈ (0, ∞) called ellipticity constant, such that the following hold. First, A is bounded from above:

A ∞ ≤ λ -1 .
Second, A is bounded from below on the subspace H of vector fields

f = [f 0 , . . . f n ] ⊤ in L 2 (R n ; (C m ) 1+n
) that satisfy the curl-free condition

∂ j f k = ∂ k f j whenever 1 ≤ j, k ≤ n: Re Af, f ≥ λ f 2 2 (f ∈ H), (1.2)
where the angular brackets denote the inner product on L 2 . Due to the block form, this lower bound can be written equivalently as two separate conditions 6 : Strict ellipticity 7 of a, Re a(x)ξ, ξ ≥ λ|ξ| 2 (x ∈ R n , ξ ∈ C m ), (1.3) so that a is also invertible in L ∞ (R n ; C m ), and the Gårding inequality for d, (1.4) which in general is weaker than strict ellipticity.

Re d∇ x v, ∇ x v ≥ λ ∇ x v 2 2 (v ∈ C ∞ 0 (R n ; C m )),
1.3. The critical numbers. We use Hardy and homogeneous Hardy-Sobolev spaces H p and Ḣ1,p in the range p ∈ (1 * , ∞) with the convention that for p ∈ (1, ∞) they coincide with Lebesgue and homogeneous Sobolev spaces L p and Ẇ1,p , respectively. We denote by p * and p * the lower and upper Sobolev conjugates of p. In particular, 1 * := n /(n+1).

We keep on denoting by L = -a -1 div x d∇ x the boundary operator associated with (1.1), defined as a sectorial operator in L 2 with maximal domain in W 1,2 .

The applications to boundary value problems require understanding the functional properties of the Poisson semigroup (e -tL 1/2 ) t>0 , which comes as the natural solution operator, on Hardy and Hardy-Sobolev spaces. The existence of the Poisson semigroup operator e -tL 1/2 is granted from the functional calculus for L on L 2 . 8 Two intervals will rule our entire theory:

• (p -(L), p + (L))
is the maximal open set within (1 * , ∞) for which the family (a(1 + t 2 L) -1 a -1 ) t>0 is uniformly bounded on H p .

• (q -(L), q + (L)) is the maximal open set within (1 * , ∞) for which (t∇ x (1 + t 2 L) -1 a -1 ) t>0 is uniformly bounded on H p . The endpoints p ± (L), q ± (L) are called critical numbers associated with L. 9 They have various characterizations proved throughout the monograph. For example, replacing (1 + t 2 L) -1 by e -tL 1/2 leads to the same intervals, which shows that the critical numbers capture sharp uniform boundedness properties of the Poisson semigroup for L in Hardy spaces. 10 We give a systematic study of these numbers, their inner 6 This follows since in the definition of H the first component f 0 is arbitrary and the curl-free condition is equivalent to [f 1 , . . . , f n ] ⊤ = ∇ x h for some distribution h, see [85, p. 59]. Then use that C ∞ 0 is dense in the homogeneous Sobolev space Ẇ1,2 , see [START_REF] Sohr | The Stokes problem for exterior domains in homogeneous Sobolev spaces[END_REF]Thm. 1].

7

The term strict accretivity is also common. 8 This is a classical construction. We give the necessary background in Section 3. 9 The idea to use critical numbers for the sake of a flexible theory that applies to any given operator originates in [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]. Therein, they have been defined for a = 1 through L p -boundedness of the heat semigroup. We shall prove that when a = 1 our intervals coincide with the ones of [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF] in the range (1, ∞), see Section 12.

10 This is proved in Section 12.

relationship and their values depending on the dimension for the class of all L. In particular, we shall show that they are independent of a. 11 Of course, that does not mean that we can assume a = 1 in general.

For now, all one needs to know is that the best conclusion for the critical numbers for the class of all L is

(p -(L), p + (L)) ⊇      ( 1 2 , ∞) if n = 1 [1, ∞) if n = 2 [ 2n n+2 , 2n n-2 ] if n ≥ 3 and (q -(L), q + (L)) ⊇ ( 1 2 , ∞) if n = 1 [ 2n n+2 , 2] if n ≥ 2
and that in general p -(L) = q -(L) and p + (L) ≥ (q + (L)) * . Including systematically exponents p ∈ (1 * , 1] is a novelty of our approach for both the functional properties of L for its own sake 12 and the applications to boundary value problems. 1.4. Square root problem and Hardy spaces. One may wonder how we determine the spaces of data for the boundary value problems. Typically, they should include Lebesgue spaces, and Sobolev spaces in the range p > 1 and also Hardy and Hardy-Sobolev spaces in the range p ≤ 1, as well as their intermediate fractional spaces. Indeed, it is natural from the point of view of regularity theory to incorporate the possibility of having estimates for p ≤ 1, as is the case for instance for equations with real coefficients. The limitation to p > 1 * can be understood from Sobolev embeddings and duality: The best one can hope for in absence of smoothness of the coefficients is regularity theory in Hölder spaces of exponents less than 1.

The whole theory is built from the case p = 2. For the regularity problem 13 , it was Kenig 14 who observed that the required interior estimates are linked to the Kato conjecture for L, that is, the homogeneous estimate

aL 1/2 f 2 ≃ ∇ x f 2 ,
which identifies the domain of L 1/2 as the Sobolev space W 1,2 since a is invertible in L ∞ . This conjecture is now solved. 15 11 This is proved in Section 6. 12 Section 10 is about consequences for the functional calculus and Section 14 provides a connection to kernel estimates. 13 More precisely, the problem (R) L 2 defined in Section 1.5.

14 See [71, Rem. 2.5.6]. 15 In the case a = 1, these are the results in [34] when n = 1, [START_REF] Hofmann | The solution of the Kato problem in two dimensions[END_REF] when n = 2 and [START_REF] Auscher | The solution of the Kato square root problem for second order elliptic operators on R n[END_REF] in all dimensions. When a = 1, this is proved in [START_REF] Kenig | Kato's square roots of accretive operators and Cauchy kernels on Lipschitz curves are the same[END_REF] when n = 1 and then [START_REF] Axelsson | Quadratic estimates and functional calculi of perturbed Dirac operators[END_REF] in all dimensions.

The H p -theory for the square root of L consists in comparing aL 1/2 and ∇ x in H p . One estimate is the H p -boundedness of the Riesz transform ∇ x L -1/2 a -1 , namely ∇ x f H p aL 1/2 f H p , and then there is the reverse estimate. Of course, the left multiplication with the strictly elliptic function a can be omitted when p > 1. The conclusion is 16 ∇ x f H p aL 1/2 f H p if and only if q -(L) < p < q + (L)

for the Riesz transform and that the reverse estimate holds in a larger range, namely

aL 1/2 f H p ∇ x f H p if (q -(L) * ∨ 1 * ) < p < p + (L).
What allows us to push the discussion to the range of exponents 1 * < p ≤ 1 is the systematic use of Hardy and Hardy-Sobolev spaces H p L and H 1,p L associated with L that are defined using square functions involving the functional calculus of L.

This foreshadows the main operator theoretic result of the monograph. Indeed, our approach to obtaining square function bounds and non-tangential maximal function bounds as in Theorem 1.1 and Theorem 1.2 below is to determine the ranges of exponents for which abstract Hardy and Hardy-Sobolev spaces associated to L coincide with concrete spaces. 17 The upshot is that up to equivalent p-quasinorms, we are able to show H p L = H p ∩ L 2 if and only if p -(L) < p < p + (L) (1.5) and H 1,p L = Ḣ1,p ∩ L 2 if (q -(L) * ∨ 1 * ) < p < q + (L), (1.6) where identification fails at the upper endpoint. 18 Even for the functional calculus per se these identifications yield interesting new results. 19 We now come to the boundary value problems. 16 This is proved in Section 11. In the Lebesgue range (1, ∞) it was first done in [START_REF] Auscher | Calcul fontionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux)[END_REF] when n = 1 and 1 < p < ∞, and reproved in [START_REF] Auscher | The square root problem of Kato in one dimension, and first order elliptic systems[END_REF]. For all dimensions, when a = 1, the optimal range of p within (1, ∞) was settled in [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF] after earlier works of [START_REF] Blunck | Calderón-Zygmund theory for nonintegral operators and the H ∞ functional calculus[END_REF][START_REF] Hofmann | L p bounds for Riesz transforms and square roots associated to second order elliptic operators[END_REF]. For discussions in the Hardy range p ≤ 1 when a = 1, see [START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF]. Smaller intervals within the Lebesgue and Hardy range when a = 1 have been obtained in [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]48,[START_REF] Hytönen | Kato's square root problem in Banach spaces[END_REF]. 17 This approach is of course not new and the very reason why these spaces have been introduced. The latest development and exposition can be found in [3]. Elaborations on Hardy-Sobolev spaces associated to L were previously considered in [START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF] when a = 1 and then in [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]48] for general Dirac operators. 18 This is proved in Section 9, except for the openness of H(L) and H 1 (L) at the upper endpoint, which are obtained in Section 11 as a consequence of the results for the Riesz transform. When a = 1 and m = 1, results are obtained in [START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF] with a different definition for the Hardy-Sobolev space and p ≤ 2, and limitations to p > 1 for the identification for the Hardy space.

19 See Section 10.

1.5. Main results on Dirichlet problems. Since for general systems the solutions might not be regular, we use the Whitney average variants of the non-tangential maximal function in order to pose our boundary value problems. Also we formulate the approach to the boundary in a non-tangential fashion using Whitney averages. When we get back to systems where solutions have pointwise values, these variants turn out to be equivalent to the usual non-tangential pointwise control and limits. More precisely, we let

N * (F )(x) := sup t>0 -- W (t,x) |F (s, y)| 2 dsdy 1/2 (x ∈ R n ).
with W (t, x) := ( t /2, 2t) × B(x, t).

For 1 < p < ∞, the L p Dirichlet problem with non-tangential maximal control and data f ∈ L p (R n ; C m ) consists in solving

(D) L p      Lu = 0 (in R 1+n + ), N * (u) ∈ L p (R n ), lim t→0 --W (t,x) |u(s, y) -f (x)| dsdy = 0 (a.e. x ∈ R n ).
For the endpoint problem (D) L 1 the natural data class turns out to be a subspace of L 1 , namely the image of H 1 under multiplication with the bounded function a -1 .

As usual, well-posedness means existence, uniqueness and continuous dependence on the data. Compatible well-posedness means wellposedness together with the fact that the solution agrees with the energy solution that can be constructed via the Lax-Milgram lemma if the data f also belongs to the boundary space Ḣ1 /2,2 (R n ; C m ) for energy solutions.

Let us formulate our principal result on the Dirichlet problem, where we denote by S the standard conical square function

S(F )(x) := |x-y|<s |F (s, y)| 2 dsdy s 1+n 1 2 (x ∈ R n ).
Theorem 1.1 (Dirichlet problem). Let p ≥ 1 be such that p -(L) < p < p + (L) * . Given f ∈ L p (R n ; C m ) when p > 1 and f ∈ a -1 H 1 (R n ; C m ) when p = 1, the Dirichlet problem (D) L p is compatibly well-posed. The solution has the following additional properties.

(i) There is comparability N * (u) p ≃ af H p ≃ S(t∇u) p .

(ii) The non-tangential convergence improves to L 2 -averages lim t→0 --

W (t,x)
|u(s, y)f (x)| 2 dsdy = 0 (a.e. x ∈ R n ).

(iii) When p < p + (L), then au is of class 20 C 0 ([0, ∞); H p (R n ; C m ))∩ C ∞ ((0, ∞); H p (R n ; C m )) with u(0, •) = f and sup t>0 au(t, •) H p ≃ af H p .

(iv) When p ≥ p + (L), then for all T > 0 and compact K ⊆ R n , u is of class C([0, T ]; L 2 (K; C m )) with u(0, •) = f and there is a constant c = c(T, K) such that

sup 0<t≤T u(t, •) L 2 (K) c f p .
As expected, the solution above is given by u(t, x) = e -tL 1/2 f (x) if in addition we have f ∈ L 2 and by an extension by density of this expression for the respective topologies for general f . In the range p < p + (L) we can use the extension to a proper C 0 -semigroup on the data space, which explains the regularity result (iii). However, and this was never observed before, the range of exponents in the statement exceeds by one Sobolev exponent the range provided by the semigroup theory. 21 This means that in this case u is understood as a function of both variables t and x simultaneously that does not come from a semigroup action.

Parts (i) and (iii) in the theorem remain true for the Poisson semigroup extension u(t, x) = e -tL 1/2 f (x) of data f ∈ a -1 (H p ∩ L 2 ), even when p -(L) < p < 1. This is why we have systematically incorporated multiplication by a in our estimates, although it can be omitted when p > 1. 22 For 1 * < p < ∞, the H p regularity problem consists in solving, given

f ∈ Ḣ1,p (R n ; C m ), (R) L p      Lu = 0 (in R 1+n + ), N * (∇u) ∈ L p (R n ), lim t→0 --W (t,x) |u(s, y) -f (x)| dsdy = 0 (a.e. x ∈ R n ).
As a (quasi-)Banach space Ḣ1,p is a space of tempered distributions modulo constants but this point of view is not appropriate for the regularity problem. What we mean here is that the data f is a tempered distribution such that ∇ x f ∈ H p . By Hardy-Sobolev embeddings any 20 As usual, the notation C 0 ([0, ∞)) means continuity and limit 0 at infinity. 21 When a = 1, Mayboroda [START_REF] Mayboroda | The connections between Dirichlet, regularity and Neumann problems for second order elliptic operators with complex bounded measurable coefficients[END_REF] dealt with variants where the L 2 -averages in the maximal functions are replaced with L p -averages. Her range of exponents is not the same and indeed, she shows that well-posedness is limited to the semigroup range. 22 These estimates can be extended to f in a closure of the data class for the quasinorm a • H p . However, since H p does not embed into L 1 loc for p < 1 and a is not smooth, it is unclear whether this abstract extension has any reasonable (e.g. distributional) interpretation on the level of the boundary value problem. Even if a = 1, (ii) has no meaning for us.

such distribution is a locally integrable function and this gives a meaning to the boundary condition. 23 Our principal result exhibits again an extended range of compatible well-posedness. 24 The solution is given by the Poisson semigroup if the data also belongs to L 2 and appropriate extensions thereof in the general case.

Theorem 1.2 (Regularity problem). Let (q -(L) * ∨ 1 * ) < p < q + (L). Then the regularity problem (R) L p is compatibly well-posed. Given f ∈ Ḣ1,p (R n ; C m ), the unique solution u has the following additional properties.

(i) There are estimates N * (∇u) p ≃ S(t∇∂ t u) p ≃ ∇ x f H p g H p with g = -aL 1/2 f being the conormal derivative of u, where the square root extends from Ḣ1,p (R n ; C m ) ∩ W 1,2 (R n ; C m ) by density. (ii) For a.e. x ∈ R n and all t > 0, --

W (t,x) |u(s, y) -f (x)| 2 dsdy 1 2 t N * (∇u)(x).
In particular, the non-tangential convergence improves to L 2averages. Moreover, lim t→0 u(t, •) = f in D ′ (R n ). (iii) If p ≥ 1, then for a.e. x ∈ R n , lim t→0 --

W (t,x) a∂ t u ∇ x u - g(x) ∇ x f (x) 2 dsdy = 0,
where g is as in (i).

(iv) ∇ x u is of class C 0 ([0, ∞); H p (R n ; C m ))∩C ∞ ((0, ∞); H p (R n ; C m ))
with ∇ x u(0, •) = ∇ x f and

∇ x f H p ≃ sup t>0 ∇ x u(t, •) H p .
If p < n, then up to a constant 25 23 In fact, the condition N * (∇u) ∈ L p (R n ) guarantees existence of a trace in Ḣ1,p in the sense of this limit at the boundary. See Appendix A.

u ∈ C 0 ([0, ∞); L p * (R n ; C m )) ∩ C ∞ ((0, ∞); L p * (R n ; C m )) with u(0, •) = f and f p * ≤ sup t>0 u(t, •) p * ∇ x f H p + f p * .

24

The fact that there is an extended range related to a Sobolev exponent down was observed by Mayboroda [START_REF] Mayboroda | The connections between Dirichlet, regularity and Neumann problems for second order elliptic operators with complex bounded measurable coefficients[END_REF] when a = 1, who establishes N * (∇u) p ∇ x f p for p ∈ (p -(L) * ∨ 1, 2 + ε] inspired from the estimate L 1/2 f H p ∇ x f H p in a similar range from [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]. We point out that Step V in the proof of [START_REF] Mayboroda | The connections between Dirichlet, regularity and Neumann problems for second order elliptic operators with complex bounded measurable coefficients[END_REF]Thm. 4.1] has a flaw that can be fixed (personal communication of S. Hofmann) or treated differently, see the argument in [START_REF] Chen | The regularity problem for uniformly elliptic operators in weighted spaces[END_REF]. 25 The constant is chosen via Hardy-Sobolev embeddings such that f ∈ L p * .

(v) If p > p -(L), then a∂ t u is of class C 0 ([0, ∞); H p (R n ; C m )) and, with g as in (i),

N * (∂ t u) p ≃ sup t≥0 a∂ t u(t, •) H p ≃ g H p ≃ ∇ x f H p .
As mentioned earlier, prior to these two results the situation was fully understood only in the case of boundary dimension n = 1. 26 One may wonder whether in the case p + (L) > n there are results for the Dirichlet problem with exponents 'beyond ∞', which, in view of Sobolev embeddings, we think of corresponding to the homogeneous Hölder spaces Λα (R n ; C m ), 0 ≤ α < 1, with the endpoint case Λ0 := BMO. We define the Carleson functional

C α (F )(x) := sup t>0 1 t α 1 t n t 0 B(x,t) |F (s, y)| 2 dyds s 1/2 (x ∈ R n ).
For α ∈ (0, 1), one formulation of the Dirichlet problem with data f ∈ Λα (R n ; C m ) consists in solving

(D) L Λα      Lu = 0 (in R 1+n + ), C α (t∇u) ∈ L ∞ (R n ), lim t→0 --W (t,x) |u(s, y) -f (x)| dsdy = 0 (a.e. x ∈ R n ).
The interior control from the Carleson functional alone implies existence of a non-tangential trace f ∈ Λα (R n ; C m ) as in the third line 27 , so that this is the weakest possible formulation of the boundary behavior. Again, we regard Λα as a space of functions to make sense of the limit condition. This non-tangential trace also satisfies N ♯,α (uf ) ∞ C α (t∇u) ∞ , where on the left-hand side we use the sharp functional on Whitney averages

N ♯,α (u -f )(x) := sup t>0 1 t α -- W (t,x) |u(s, y) -f (y)| 2 dsdy 1/2 (x ∈ R n ).
Such a trace result is not available for α = 0 and we formulate the boundary behavior for the endpoint problem differently, using convergence of Cesàro averages, which is natural from the point of view of 26 This is due to [START_REF] Auscher | Calcul fontionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux)[END_REF], where existence and uniqueness are shown in the largest possible range 1 < p < ∞ as well as existence for a Dirichlet problem in the Hardy range 1 * = 1 /2 < p ≤ 1. When n ≥ 2 and a = 1, non-tangential maximal functions estimates pertaining to the Dirichlet and regularity problems first appeared in [START_REF] Mayboroda | The connections between Dirichlet, regularity and Neumann problems for second order elliptic operators with complex bounded measurable coefficients[END_REF] and some related square functions estimates are in [13]. Uniqueness has not been considered in general, except for systems having regular solutions [START_REF] Hofmann | Layer potentials and boundary value problems for elliptic equations with complex L ∞ coefficients satisfying the small Carleson measure norm condition[END_REF]61]. A possible strategy for general elliptic systems has been developed in [START_REF] Auscher | On uniqueness results for Dirichlet problems of elliptic systems without De giorgi-Nash-Moser regularity[END_REF], but it only covers some smaller range of exponents when it comes to the block situation. 27 We include a proof of the trace theorem in Appendix A.

both our construction and our approach to uniqueness theorems:

(D) L Λ0      Lu = 0 (in R 1+n + ), C 0 (t∇u) ∈ L ∞ (R n ), lim t→0 -2t t |u(s, •) -f | ds = 0 (in L 2 loc (R n ; C m ))
. The discussion of non-tangential traces naturally leads us to formulating a modified Λα -Dirichlet problem

( D) L Λα      Lu = 0 (in R 1+n + ), N ♯,α (u -f ) ∈ L ∞ (R n ), lim t→0 --W (t,x) |u(s, y) -f (x)| dsdy = 0 (a.e. x ∈ R n ).
As we have seen above, this second problem is a priori comparable to the first one when α > 0. 28 We obtain compatible well-posedness for both problems in the same range of exponents. In order to formulate the theorem, and systematically throughout this book, we denote by L ♯ the boundary operator for the adjoint equation

L * u = 0, that is L ♯ = -(a * ) -1 div x d * ∇ x .
Theorem 1.3 ( Λα Dirichlet problem). Suppose that p + (L) > n and that 0 ≤ α < 1n /p + (L). Then the Dirichlet problems (D) L Λα and ( D) L Λα are compatibly well-posed. Given f ∈ Λα (R n ; C m ), the unique solution u is the same for both problems and has the following additional properties.

(i) There is comparability

C α (t∇u) ∞ ≃ f Λα .
(ii) One has the upper bound

N ♯,α (u -f ) ∞ f Λα and convergence lim t→0 -- W (t,x)
|u(s, y)f (x)| 2 dsdy = 0 (a.e. x ∈ R n ).

In addition, u is of class C([0, T ]; L 2 loc (R n ; C m )) with u(0, •) = f for every T > 0. (iii) If, moreover p -(L ♯ ) < 1 and α < n( 1 /p -(L ♯ ) -1), then u is of class C 0 ([0, ∞); Λα weak * (R n ; C m )) ∩ C ∞ ((0, ∞); Λα weak * (R n ; C m )) and sup t>0 u(t, •) Λα ≃ f Λα . 28 Uniqueness for the BMO-Dirichlet problem with interior Carleson control and Whitney average convergence at the boundary appears to be out of reach. See [START_REF] Martell | The BMO-Dirichlet problem for elliptic systems in the upper half-space and quantitative characterizations of VMO[END_REF][START_REF] Martell | Fatou-type theorems and boundary value problems for elliptic systems in the upper half-space[END_REF] for a very recent account on such Fatou-type theorems in the case of elliptic systems with constant coefficients.

In addition, u is of class Λα (R 1+n + ; C m ), with

u Λα (R 1+n + )
f Λα .

Since Λα ∩ L 2 is not dense in Λα , we cannot extend the Poisson semigroup to the boundary space by density. In (iii), Λα is considered as the dual space of H p , where α = n( 1 /p -1), with the weak * topology.

The assumption in (iii) implies p + (L) = ∞ and that the solution can be constructed by duality, using the extension of the Poisson semigroup for L * = a * L ♯ (a * ) -1 to H p . Therefore the solution keeps the Λα -regularity in the interior. This construction has appeared earlier. 29The construction of the solution under the mere assumption that p + (L) > n is much more general and we have

u(t, x) = lim j→∞ e -tL 1/2 (1 {| • |<2 j } f )(x),
where p + (L) > n is used already to prove convergence of the righthand side in L 2 loc (R 1+n + ; C m ). This opens the possibility of uniquely solving Dirichlet problems for Hölder continuous (or BMO) data, while producing solutions that have no reason to be in the same class in the interior of the domain. To the best of our knowledge this phenomenon is observed for the first time. Note also that p + (L) > n always holds in dimension n ≤ 4, so that in these dimensions both BMO-Dirichlet problems are compatibly well-posed.

1.6. Dirichlet problems with fractional spaces of data. If we think of the Dirichlet problem (D) L p as a boundary value problem with regularity s = 0 for the data and the regularity problem (R) L p as a Dirichlet problem with regularity s = 1, we can depict the exponents for both problems simultaneously in an ( 1 /p, s)-diagram. There are two classical scales of data spaces to fill the intermediate area of points with 0 < s < 1: The homogeneous Hardy-Sobolev spaces Ḣs,p that can be obtained from the endpoints by complex interpolation and the homogeneous Besov spaces Ḃs,p that result from real interpolation. 30 For 0 < p ≤ ∞ and 0 < s < 1 satisfying 1 /p < 1 + s /n 31 , the Dirichlet problem with data f ∈ Ḃs,p (R n ; C m ) consists in solving

(D) L Ḃs,p      Lu = 0
(in R 1+n + ), W (t 1-s ∇u) ∈ L p (R 1+n + ; dtdx t ), lim t→0 --W (t,x) |u(s, y)f (x)| dsdy = 0 (a.e. x ∈ R n ), where W (F ) is the Whitney average functional

W (F )(t, x) = -- W (t,x) |F (s, y)| 2 dsdy 1 2 ((t, x) ∈ R 1+n + ).
For 0 < p < ∞ and 0 < s < 1 satisfying 1 /p < 1 + s /n, the Dirichlet problem with data f ∈ Ḣs,p (R n ; C m ) consists in solving

(D) L Ḣs,p      Lu = 0 (in R 1+n + ), S(t 1-s ∇u) ∈ L p (R n ), lim t→0 --W (t,x) |u(s, y) -f (x)| dsdy = 0 (a.e. x ∈ R n )
where S is the same conical square function as before. 32 For p = ∞ we can identify B s,∞ = Λs , so that (D) L Ḃs,∞ is a third formulation of a Dirichlet problem for that space of data. The endpoint problems for the Hardy-Sobolev scale are formulated for data in Strichartz' BMO-Sobolev spaces Ḣs,∞ = ḂMO s and consist in solving

(D) L Ḣs,∞      Lu = 0
(in R 1+n + ), C 0 (t 1-s ∇u) ∈ L ∞ (R n ), lim t→0 --W (t,x) |u(s, y)f (x)| dsdy = 0 (a.e. x ∈ R n ).

We note that the approach to the boundary in these problems is not in the sense of the usual trace theory, that is by extension of the restriction map to the boundary defined on smooth functions. In fact, this approach would work for Besov spaces 33 but not for Hardy-Sobolev spaces which are not trace spaces in this sense. Our choice of a non-tangential 31 When 0 < p < ∞, this Sobolev-type condition characterizes the spaces that can be obtained by interpolation between data spaces for the Dirichlet problem (L p with p > 1) and the regularity problem (H p with p > 1 * ), see Section 2. [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]. In particular, it is the natural restriction guaranteeing that all distributions in Ẋs,p are locally integrable functions. The spaces B s,∞ and H s,∞ also have this property, see Section 2.5. 32 Boundary value problems for general elliptic equations (m = 1) with data of fractional regularity have been pioneered by Barton-Mayboroda [START_REF] Barton | Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces[END_REF]. They treat Ḃs,p -data for equations with the de Giorgi-Nash-Moser property. This assumption was then removed in the first-order approach by Amenta along with the first author [3] and their approach includes the problems with Ḣs,p -data. Thanks to the block structure we do not have to include a limiting condition for u as t → ∞ in the formulation of our fractional Dirichlet problems. Such a condition appears in the general framework of [3] but not in [START_REF] Barton | Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces[END_REF]. 33 This is the point of view taken in [START_REF] Barton | Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces[END_REF]. See also [3].

convergence of Whitney averages has one main advantage, valid for all situations: each interior control implies existence of a unique measurable function f , called non-tangential trace (in the sense of Whitney averages), such that the third condition holds, whether or not u is a weak solution to Lu = 0. In this sense, we prescribe the boundary limit in the weakest possible form. If, via a trace operator, lim t→0 u(t, •) also exists in the sense of distributions (modulo constants), then the two notions of boundary trace coincide (modulo constants). 34 The same limit condition was taken in the boundary value problems from the previous section (except for one of the Dirichlet problems with BMO-data). We stress again that we consider the data spaces as classes of measurable functions and not as distributions (modulo constants) and that this is possible due to the assumption 1 /p < 1 + s /n. 31 In the figures below, we collect compatible well-posedness results from the previous section on thick horizontal boundary segments at s = 0 and s = 1. For p = ∞, we can represent these results also on a thick vertical segment at 1 /p = 0. Empty circles indicate boundary points that are not contained in a segment of well-posedness. This allows us to create a map f → u for different values of ( 1 /p, s) on these lines and, roughly speaking, we can interpolate to fill in a shaded region for compatible solvability of both fractional problems. 35 Of course, interpolation does not preserve uniqueness. Still, we shall be able to show uniqueness (and hence compatible well-posedness) even in a possibly larger region than for existence of a solution. 36 Theorem 1.4. Let 0 < s < 1 and 1 * < p ≤ ∞. If ( 1 /p, s) belongs to the region displayed in Figure 1, Figure 2 or Figure 3 (including the thick vertical segment), then (D) L Ẋs,p is compatibly well-posed. As customary, we obtain continuous dependence on the data: the interior control is bounded by the data in the boundary space. For the problems corresponding to all thick segments we have also seen the reverse estimates in the previous section. Various additional regularity properties in the spirit of Theorem 1.1 -1.3 hold depending on the particular boundary space. 37 In the following diagrams a color code allows us to distinguish different zones that explain the relation of the corresponding well-posedness results with the first-and second-order operator theory that we develop 34 All this is shown in Appendix A. Similar trace theorems appear in [3,Sec. 6.6], where they are used to derive non-tangential convergence of the solution at the boundary a posteriori. 35 The fact that not only the data spaces but also the interior control from the functionals S and W interpolate, shows again that these are natural classes of solutions from our perspective.

The corresponding regions and the proof of the uniqueness theorems can all be found in Section 21. 37 Precise results are stated and proved in Section 19. in parallel. A reader who is not familiar with these tools (yet) might ignore the different colors for the time being and focus only on the shape of the regions.

• Gray corresponds to what can be obtained from the theory of first order DB-adapted Hardy spaces in [3]. • Blue shows extra information obtained from the theory of Ladapted Hardy-Sobolev spaces. • Red indicates results outside of the theory of operator-adapted Hardy spaces.

All shaded regions in the strip 0 < s < 1 capture a situation that is common to Hardy-Sobolev and Besov data and we set Ẋ to designate Ḣ or Ḃ. They depict three different cases: first p + (L) ≤ n, next p + (L) > n but p -(L ♯ ) ≥ 1 and eventually p -(L ♯ ) < 1, which turns out to imply p + (L) = ∞ by duality. 38We begin by illustrating the situation when p + (L) ≤ n. In this case we obtain the segment on the bottom line for s = 0 and the top line for s = 1 from Theorems 1.1 and 1.2, respectively. This leads to Figure 1. In all such figures we shall write p L + instead of p + (L) and so on for the sake of a clearer typeset. In the case p + (L) > n we can extend the bottom line to exponents 'beyond infinity', using Theorem 1.3. The point corresponding to compatible well-posedness of (D) L Λα is (α /n, 0). We shall see that this also leads to compatible well-posedness of (D) L Ḃα,∞ at (0, α) as stated. A similar result holds for (D) L Ḣα,∞ at (0, α). 39 Figure 2 illustrates this extension in the case that p + (L) > n but p -(L ♯ ) ≥ 1. This is the generic situation in dimensions n = 3, 4. Figure 3 describes the case when p -(L ♯ ) < 1, which happens for instance when n = 1, 2 or for special classes of systems such as equations (m = 1) with real-valued coefficients d. 40 1 2
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1 q L + 1 (q L ♯ + ) ′ 1-1 p L ♯ - 1 p L -∨1 1 (p L -) * ∨1 * n+1 n 1 p 0 -1 n s 1 0 n p L ♯ - -n θ Figure 3.
Compatible well-posedness region for Besov and Hardy-Sobolev data when p -(L ♯ ) < 1. This implies p + (L) = ∞ and hence there is no horizontal thick red line as in Figure 2. The number θ from [3] has a specific meaning, see Proposition 19.3, and is not larger than n( 1 /p L ♯ --1), which is the limitation of part (iii) in Theorem 1.3 for Besov-data. 1.7. Neumann problems. Although this is not central to our monograph, we complete the discussion with results on the Neumann problem. For 1 * < p < ∞, the Neumann problem with data g ∈ H p (R n ; C m ) consists in solving (modulo constants)

(N) L p      Lu = 0 in R 1+n + , N * (∇u) ∈ L p (R n ), lim t→0 a∂ t u(t, •) = g (in D ′ (R n ; C m )).
Note that due to the block structure a∂ t u is indeed the conormal derivative ∂ ν A u = e 0 • A∇u. Here, constants are solutions which do not change the Neumann data so we must argue modulo constants.

In order to understand how our results help in deducing a range of exponents for which the Neumann problem is compatibly well-posed from existing literature, we recall the first-order approach. For block systems it simply begins by writing (1.1) in the equivalent form

∂ t a∂ t u ∇ x u + 0 div x -∇ x 0 a -1 0 0 d a∂ t u ∇ x u = 0 0 , (1.7)
where the second line is a dummy equation, or in short notation ∂ t F + DBF = 0, (1.8) where F = ∇ A u := [a∂ t u, ∇ x u] ⊤ is the conormal gradient and DB is called perturbed Dirac operator. This operator is bisectorial and there are associated abstract Hardy spaces H p DB . The idea then is to work backwards from that: first classify all weak solutions to (1.8) in the usual classes and then try to reconstruct u from its conormal gradient.

The principal thesis in the work of the first author with Stahlhut [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF] and Mourgoglou [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF] is that there is an open interval I L ⊆ (1 * , ∞) such that if p ∈ I L , then

• the conormal gradient of every weak solution to (N) L p has an a priori representation via the semigroup associated with |DB| := ((DB) 2 ) 1/2 , • existence of a compatible solution for every g ∈ H p (R n ; C m ) implies uniqueness and hence compatible well-posedness 41 . The interval I L corresponds to identification H p DB = H p D of abstract and concrete Hardy spaces up to equivalent p-quasinorms and a certain L p -coercivity assumption of B when p > 2.

In the block case one can produce a formal solution to the Neumann problem by u(t, x) := -L -1/2 e -tL 1/2 (a -1 g)(x), so that once this is made rigorous, compatible well-posedness of (N) L p follows in the range p ∈ I L . This being said, our main contribution for the Neumann problem lies in proving the equality 42 I L = (q -(L), q + (L)) (1.9) and then we conclude the following result.

Theorem 1.5 (Neumann problem). Let q -(L) < p < q + (L). Then the Neumann problem (N) L p is compatibly well-posed (modulo constants). With the determination of I L at hand, one can write down all further implications from [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF] for solutions with the a priori representation of ∇ A u. This would lead us too far from the objective of our monograph. Let us just mention that there are additional regularity properties for solutions to (N) L p in Theorem 1.5, similar to Theorem 1.2, and that well-posedness of an adjoint 'rough' Neumann problem follows by duality. 43 Finally, in the spirit of Section 1.6, there are fractional Neumann problems in between for which ranges of compatible well-posedness 41 This is Theorem 1.8 in [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF] 42 The proof is in Section 15, Corollary 15.2 and the principal issue is to prove the p-coercivity for p > 2. Before it was only known that when a = 1, I L cannot be larger than (q -(L), q + (L)) and that its upper endpoint is q + (L) if in addition d is strictly elliptic, see [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]Sec. 12.4.1]. 43 For further regularity in the Neumann problem, see Corollary 1.2 in [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF]. Therein, the Dirichlet data is given by f = -L -1/2 (a -1 g) ∈ Ḣ1,p using a suitable extension of the square root. For the duality with the rough Neumann problem see Theorem 1.6 and then Theorem 1.3 and Corollary 1.4 in [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF] for the a priori representation and regularity for its solutions.

have also been described via I L . 44 In fact, this is the gray region in the diagrams above.

1.8. Synthesis. We close the introduction with a comment further explaining the color code in the diagrams in Section 1.6. Heuristically, the H p -theory for DB comprises the theory for L at both smoothness scales s = 0 and s = 1. On the level of Hardy spaces, this becomes apparent in the fact that the interval in (1.9) is the intersection of intervals of identification for H p L and H 1,p L , compare with (1.5) and (1.6). On the level of boundary value problems, the first-order approach via DB yields ranges of exponents in which problems with Neumann and Dirichlet data are simultaneously well-posed -this is the gray region. The L-adapted theory allows us to separate issues and obtain significantly larger ranges for the problems with Dirichlet data -gray and blue regions. Finally, there is a new phenomenon -solving Dirichlet problems for one Sobolev conjugate above the limitation of the Hardy space theory in the red region.

1.9. Notation. The following notation will be used throughout the monograph.

Geometry and measure. We let B(x, r) ⊆ R n the open ball of radius r > 0 around x ∈ R n . Given a ball B ⊆ R n of radius r(B), we write cB for the concentric ball of radius cr(B) and define the annular regions C j (B), j ∈ N, by

C 1 (B) := 4B, C j (B) := 2 j+1 B \ 2 j B (j ≥ 2).
The same type of notation will be used for cubes instead of balls. In this case, ℓ(Q) denotes the sidelength of Q. In order to avoid even the slightest confusion, let us explicitly state that for us N := {1, 2, 3, . . .}.

We write the Euclidean distance on finite-dimensional vector spaces as d(x, y) := |x -y| and extend the notation to sets

E, F ⊆ R n via d(E, F ) := inf{d(x, y) : x ∈ E, y ∈ F }.
In R 1+n we denote points by (t, x) and define the open upper halfspace

R 1+n + := {(t, x) : t > 0, x ∈ R n }.
We write | • | for the Lebesgue measure if the underlying Euclidean space is clear form the context. For integral averages we use -and -- in R n and R 1+n , respectively, as well as the notation (f ) E := -E f . We use the (uncentered) Hardy-Littlewood maximal operator defined for measurable functions on R n via 44 See [3] for an introduction to and results on these problems.

M(f )(x) := sup B∋x - B |f | dy (x ∈ R n ),
where the supremum runs over all balls B that contain x. Occasionally, we also use cubes instead of balls.

Gradient and divergence of vector-valued functions. Partial derivatives of C m -valued functions are taken componentwise. If f is a C m -valued function on a subset of R n or R 1+n , then

∇ x f := [∂ x 1 f, . . . , ∂ xn f ] ⊤ is a function valued in C mn ∼ = (C m ) n . In the opposite direction, if F = [F 1 , . . . , F n ] ⊤ is C mn -valued, then we let div x F = ∂ x 1 F 1 + . . . + ∂ xn F n .
Gradient and divergence with respect to all variables in R 1+n are de-

fined as ∇f = [∂ t f, ∇ x f ] ⊤ and div = ∂ t F ⊥ + div x F if F = [F ⊥ , F ] ⊤ is valued in C m × C mn .
Exponents. We let

1 p ′ = 1 - 1 p (p ∈ [1, ∞], Hölder conjugate), 1 p * = 1 p + 1 n (p ∈ (0, ∞], lower Sobolev conjugate), 1 p * = 1 p - 1 n (p ∈ (0, n), upper Sobolev conjugate), 1 [p 0 , p 1 ] θ = 1 -θ p 0 + θ p 1 (p i ∈ (0, ∞], θ ∈ [0, 1], interpolating index).
The underlying dimensions for Sobolev conjugates is usually n and will always be clear from the context. We also agree on p * := ∞ for p ≥ n.

Constants. Given a, b ∈ [0, ∞], we write a b to mean a ≤ Cb for some C > 0 (often times called 'implicit constant') that is independent of a and b. We write a ≃ b to mean a b and b a. In this case one of a, b is equal to ∞ (or 0) precisely when both are. Unless stated otherwise, estimates in this monograph are quantitative in the sense that constants in estimates depend only on constants quantified in the relevant hypotheses. Such dependence will usually be clear.

Index. This monograph has an index. For the sake of readability we shall occasionally refer to results by their name listed in the index instead of a number in the text.

Preliminaries on function spaces

Throughout, we consider C k -valued functions for some fixed k ∈ N. For simplicity we often drop the dependence of k in the notation and write L 2 (R n ) = L 2 (R n ; C k ), and so on. On R n we abbreviate further L 2 = L 2 (R n ). Concerning the dilemma that parts of the literature only treat scalar-valued functions, we agree on using such results for k > 1 without further notice in the following cases:

• Splitting into components is immediately clear from the definition (e.g.

L 2 (R n ; C k ) ∼ = k j=1 L 2 (R n ; C)),
• Proofs are exactly the same except for a systematic replacement of absolute values by Hermitian norms (e.g. Calderón-Zygmund decompositions or atomic decompositions). The reader can consult this section to find all necessary background whenever new function spaces pop later on in the text.

2.1. Lebesgue spaces and distributions. On a (Lebesgue) measurable set E ⊆ R n we let L p (E), p ∈ (0, ∞], be the (quasi-)Banach space of functions classes with finite (quasi)norm

f L p (E) := E |f | p dx 1 p .
The right-hand side is interpreted as the essential supremum when p = ∞. We abbreviate

• p := • L p (R n ) .
The classes of functions that are p-integrable on compact subsets of E are denoted by L p loc (E) and carry the natural Fréchet topology.

We write C ∞ 0 (O), where O ⊆ R n is open, and S(R n ) for the test functions with compact support and of Schwartz-type, respectively. Their topological duals are the distribution spaces D ′ (O) and S ′ (R n ). The subspace Z(R n ) ⊆ S(R n ) is the space of Schwartz functions f whose Fourier transform F f satisfies D α F f (0) = 0 for all multiindices α ∈ N n 0 . The dual Z ′ (R n ) can be identified with the quotient S ′ (R n )/P(R n ), where P(R n ) is the space of polynomials on R n , see [START_REF] Triebel | Theory of function spaces[END_REF]Sec. 5.2.1].

For 

p ∈ [1, ∞] the Sobolev spaces W 1,p (O) is the collection of those f ∈ L p (O) that satisfy ∇ x f ∈ L p (O)
(SF )(x) := Γ(x) |F (s, y)| 2 dsdy s 1+n 1 2 (x ∈ R n ). (2.1)
For α ≥ 0 the Carleson functional is defined as

C α F (x) := sup r>0 1 r α 1 r n r 0 B(x,r) |F (t, y)| 2 dydt t 1 2 . (2.2)
With a slight abuse of notation, we denote by t -s F the function (t, y) → t -s F (t, y). Definition 2.1. Let s ∈ R, α ≥ 0 and p ∈ (0, ∞]. For finite p the tent space T s,p consists of all functions F ∈ L 2 loc (R 1+n + ) with finite quasinorm

F T s,p := S(t -s F ) p .
For p = ∞ the tent space T s,∞;α consists of all functions F ∈ L 2 loc (R 1+n + ) with finite norm

F T s,∞;α := C α (t -s F ) ∞ .
Remark 2.2. For brevity we set T p := T 0,p for finite p and we abbreviate and T s,∞ = T s,∞;0 with the special case T ∞ := T 0,∞;0 . We also note that F → t s F is an isometric isomorphism from T p onto T s,p and from T ∞;α onto T s,∞;α .

All tent spaces are quasi-Banach spaces (Banach when p ≥ 1) and their topology is finer than the one on L 2 loc (R 1+n + ). Both statements follow directly from the bounds

SF (x) ≥ t -1+n 2 F L 2 ((t,2t)×B(x,t)) C α F (x) ≥ t -1+n 2 -α F L 2 (( t 2 ,t)×B(x,t))
for t > 0 and x ∈ R n and Fatou's lemma. Moreover, for p < ∞ there is a universal approximation technique by functions in L 2 (R 1+n + ) with compact support [2, Prop. 1.4]: ∀F ∈ T s,p : lim j→∞ 1 (j -1 ,j)×B(0,j) F = F (in T s,p ).

'Universal' refers to the fact that the same approximating sequence can be used in all tent spaces that F belongs to. Results of this type will be important for us since we shall often work with intersections of spaces. We could also change the cones Γ(x) to If p ∈ (0, ∞), then the (anti-)dual space of T s,p can be identified through the L 2 duality pairing

F, G = R 1+n + F (s, y) • G(s, y) dsdy s , (2.3) see [2, Prop. 1.9 & Thm. 1.11]. We have (T s,p ) * = T -s,p ′ if p > 1 T -s,∞;n( 1 p -1) if p ≤ 1 .
In particular, T 2 = L 2 (R 1+n + , dtdx t ) with equivalent norms, which can also be seen directly by Fubini's theorem:

R n |x-y|<s |F (s, y)| 2 dsdy s 1+n dx = ω n R 1+n + |F (s, y)| 2 dsdy s ,
where ω n is the measure of the unit ball in R n . This technique is called averaging trick in the following.

We shall need one more tent space that is related to the (modified) non-tangential maximal function

N * F (x) := sup t>0 -- W (t,x) |F (s, y)| 2 dsdy 1 2 , (2.4) where x ∈ R n and W (t, x) := ( t /2, 2t) × B(x, t) is called Whitney box . Definition 2.3. Let p ∈ (0, ∞). The tent spaces T 0,p ∞ consists of all functions F ∈ L 2 loc (R 1+n + ) with finite (quasi-)norm F T 0,p ∞ := N * F p .
As before, these are quasi-Banach (Banach when p ≥ 1) spaces with a topology that is stronger than L 2 loc (R 1+n + ). Moreover, a change of Whitney parameters to W (t, x) = (c -1 0 t, c 0 t) × B(x, c 1 t) with c 0 > 1 and c 1 > 0 leads to an equivalent T 0,p ∞ -norm. For the reader's convenience we reprove this fact in Section A together with further auxiliary properties of non-tangential maximal functions.

Z-spaces.

In the context of boundary value problems these spaces emerged from the work of Barton-Mayboroda [START_REF] Barton | Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces[END_REF] under a different name. Their relation to tent spaces has been noted by Amenta [START_REF] Amenta | Interpolation and embeddings of weighted tent spaces[END_REF].

For measurable functions F on R 1+n + we introduce the Whitney average functional

W (F )(t, x) = -- W (t,x) |F (s, y)| 2 dsdy 1 2 ((t, x) ∈ R 1+n + ). Definition 2.4. Let s ∈ R and p ∈ (0, ∞]. The Z-space Z s,p consists of all functions F ∈ L 2 loc (R 1+n + ) with finite quasi-norm F Z s,p := W (t -s F ) L p (R 1+n + , dtdx t ) .
All Z-spaces are quasi-Banach spaces (Banach when p ≥ 1), their topology is finer than the one on L 2 loc (R 1+n + ) and for p < ∞ they have the same universal approximation technique as the tent spaces. This can simply be checked by hand or deduced by real interpolation since Z-spaces are the real interpolants of tent spaces, see Section 2.6 below. Many properties of tent spaces have a Z-space analog: A change of Whitney parameters leads to equivalent quasi-norms (Remark A.2), the averaging trick reveals Z 0,2 = L 2 (R 1+n + , dtdx t ) = T 0,2 and the L 2 duality pairing (2.3) gives rise to

(Z s,p ) * = Z -s,p ′ if p > 1 Z -s+n( 1 p -1),∞ if p ≤ 1 , see [3, Prop. 2.22 & Thm. 2.28].
2.4. Hardy spaces. For p > 1 we set H p := L p and for p ≤ 1 we denote by H p the real Hardy space of Fefferman-Stein [START_REF] Fefferman | H p spaces of several variables[END_REF]. For p = 1 we have the continuous inclusion

H 1 ⊆ L 1 .
We shall exclusively work in the range p > 1 * and for most of our applications it will be convenient to think of H p -spaces in terms of atoms.

Definition 2.5. Let p ∈ (1 * , 1] and q ∈ (1, ∞]. An L q -atom for H p is a function a supported in a cube Q ⊆ R n such that a q ≤ ℓ(Q) n q -n p and R n adx = 0.
Of course we could also use balls instead of cubes in the definition. The atomic decomposition [89, Sec. III.3.2] states that every f ∈ H p can be written as f = ∞ i=1 λ i a i , where the sum converges unconditionally in H p , the a i are L ∞ -atoms for H p and the scalars λ i satisfy

(λ i ) ℓ p f H p . (2.5) Moreover f H p ≃ inf f = ∞ i=1 λ i a i (λ i ) ℓ p .
When working with operators that are defined on some space L s , s ∈ (1, ∞), but not on distributions, the following compatibility property will be important: If f ∈ H p ∩ L s , then the series that realizes (2.5) can be taken such that it also converges in L s . In fact, the explicit construction in [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF] has this property, as carefully verified in [START_REF] Rocha | A note on Hardy spaces and bounded linear operators[END_REF]. Occasionally, we shall need that for p ∈ (1 * , 1] smooth functions with compact support and integral zero are dense in H p . This follows, for example, by mollification of L ∞ -atoms for H p with a smooth kernel [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF]Thm. 3.33].

2.5. Homogeneous smoothness spaces. Good textbooks for further background are [START_REF] Grafakos | Modern Fourier analysis[END_REF][START_REF] Peetre | New thoughts on Besov spaces[END_REF][START_REF] Sawano | Theory of Besov spaces[END_REF][START_REF] Triebel | Theory of function spaces[END_REF]]. An operator-theoretic perspective on these spaces will emerge later on in Section 8.5. All function spaces will be on R n and for the sake of a clear exposition we omit this from our notation.

Let ψ ∈ C ∞ 0 be supported in the annulus 

ψ(2 j ξ) = 1 (ξ ∈ R n \ {0})
and introduce for j ∈ Z the associated Littlewood-Paley operators

∆ j f := F -1 (ψ(2 j •)F f ). Here F denotes the Fourier transform on R n . Whenever f ∈ Z ′ , then j∈Z ∆ j f = f (in Z ′ ), (2.6)
see [START_REF] Sawano | Theory of Besov spaces[END_REF]Prop. 2.11]. The Paley-Wiener-Schwartz theorem [START_REF] Hörmander | Linear partial differential operators[END_REF]Thm. 1.7.7] asserts that the packets ∆ j f are smooth functions of moderate growth and the general idea behind the following homogeneous smoothness spaces is to measure them in Lebesgue-type norms.

Definition 2.6. Let s ∈ R and p ∈ (0, ∞]. The homogeneous Hardy-Sobolev space Ḣs,p when p < ∞ is the set of those f ∈ Z ′ with finite (quasi)norm

f Ḣs,p := j → 2 js ∆ j f (•) ℓ 2 (Z) p .
The endpoint space Ḣs,∞ is determined by the norm

f Ḣs,∞ := inf f = j∈Z ∆ j f j j → 2 js |f j (•)| ℓ 2 (Z) ∞ .
The homogeneous Besov space Ḃs,p is the set of those f ∈ Z ′ with finite (quasi)norm

f Ḃs,p := j → 2 js ∆ j f p ℓ p (Z) .
Remark 2.7. Within the full scale of homogeneous Besov-Triebel-Lizorkin spaces the common notation for Ḣs,p and Ḃs,p is Ḟs p,2 and Ḃs p,p , respectively.

In the following let X denote either B or H. Then Ẋs,p is a quasi-Banach space (Banach when p ≥ 1), different choices of ψ lead to equivalent (quasi)norms and there are continuous inclusions

Z ⊆ Ẋs,p ⊆ Z ′ . Moreover, Z is dense in Ẋs,p when p < ∞ via a universal approximation technique [92, Sec. 5.1.5]: If ϕ ∈ S is such that ϕ(0) = 1 and F ϕ is supported in |ξ| ≤ 1, then ∀f ∈ Ẋs,p : lim N →∞ lim δ→0 ϕ(δ •) |j|≤N ∆ j f = f (in Ẋs,p ).
'Universal' has the same meaning and purpose as for the tent spaces and the approximants are in Z provided that δ < 2 -N -1 . While the ambient space Z ′ is well-suited for general considerations, applications to boundary value problems require more concrete 'realizations' of Ẋs,p . This issue can be resolved thanks to an observation due to Peetre [81, p. 52-56], see also [START_REF] Sawano | Theory of Besov spaces[END_REF]Sec. 2.4.3]. Suppose that L ∈ N 0 is such that L > sn /p and let P L-1 be the space of polynomials of degree at most L -1. Then for any f ∈ Ẋs,p the series in (2.6) converges in S ′ /P L-1 and identifying f with the limit yields an isometric copy of Ẋs,p that is continuously embedded into the ambient space S ′ /P L-1 . In particular, the spaces of smoothness s < 1 can be viewed as subspaces of S ′ /C and even of S ′ if s ≤ 0 and p < ∞.

Within these smaller ambient spaces, Ẋs,p can often be given an equivalent and more familiar quasinorm that does not make sense modulo all polynomials. For example, we have the Littlewood-Paley theorem

Ḣ0,p = H p = L p (1 < p < ∞), Ḣ0,p = H p (p ≤ 1),
see [START_REF] Grafakos | Modern Fourier analysis[END_REF]Sec 6.2 & 6.4] and in accordance with the observation above L p and H p do not contain any polynomials besides 0. For p = ∞ we have Ḣ0,∞ = BMO =: Λ0 , (2.7) see [START_REF] Triebel | Theory of function spaces[END_REF]Sec. 5.2.4] and references therein. Here, BMO is the John-Nirenberg space of functions modulo constants with bounded mean oscillation

f BMO := sup B - B |f (x) -(f ) B | dx,
where the supremum is taken over all balls in R n . For 0 < s < 1 we denote by Λs the Hölder space of functions modulo constants with finite norm

f Λs := sup x =y |f (x) -f (y)| |x -y| s ,
which can be identified with Λs = Ḃs,∞ (0 < s < 1), see [START_REF] Triebel | Theory of function spaces[END_REF]Thm. 5.2.3.2]. Next, we recall relevant duality results in the case of finite exponents p. Since in this case Z is dense in Ẋs,p , we can view the (anti-)dual space ( Ẋs,p ) * as a subspaces of Z ′ by restricting functionals to Z. In this sense we have

( Ẋs,p ) * = Ẋ-s,p ′ (1 ≤ p < ∞).
A direct proof for inhomogeneous spaces that applies mutatis mutandis in our homogeneous setting is given in [START_REF] Triebel | Theory of function spaces[END_REF]Sec. 2.11.2], see also [START_REF] Triebel | Theory of function spaces[END_REF]Sec. 5.2.5]. For s = 0 and p = 1 this is the famous H 1 -BMO duality of Fefferman-Stein [START_REF] Fefferman | H p spaces of several variables[END_REF]. In the case p < 1 we shall only need the duality

( Ḣ0,p ) * = Λn( 1 p -1) (1 * < p ≤ 1), (2.8)
see [START_REF] Jawerth | Some observations on Besov and Lizorkin-Triebel spaces[END_REF]Thm. 4.2] or again [START_REF] Triebel | Theory of function spaces[END_REF]Sec. 2.11.2]. An alternative proof is given in [START_REF] Frazier | A discrete transform and decompositions of distribution spaces[END_REF]Rem. 5.14].

Spaces for different smoothness parameters are related via a lifting property. The Riesz potential

I σ := F -1 (| • | -σ F f ) is an isomorphism
Ẋs,p → Ẋs+σ,p . This is proved in [START_REF] Triebel | Theory of function spaces[END_REF]Sec. 5.2.3] for p < ∞ and follows by duality for p = ∞, see [START_REF] Triebel | Theory of function spaces[END_REF]Rem. 2.3.8.2]. On the basis of (2.7) we find that Ḣs,∞ = I s (BMO) =: ḂMO s (0 < s < 1) agree up to equivalent norms with Strichartz' ḂMO s -spaces. We have Ḣs,∞ ⊆ Ḃs,∞ with continuous inclusion as a mere consequence of the definitions and the inclusion ℓ 2 (Z) ⊆ ℓ ∞ (Z). In particular, Ḣs,∞ is a space of Hölder continuous functions of exponent s. An equivalent, more concrete norm is given by

f ḂMO s := sup Q 1 |Q| Q Q |f (x) -f (y)| 2 |x -y| n+2s dxdy 1 2 , (2.9)
where the supremum is taken over all cubes Q ⊆ R n , see [START_REF] Strichartz | Bounded mean oscillation and Sobolev spaces[END_REF]Thm. 3.3].

Together with the Mihlin multiplier theorem [92, Sec. 5.2.2/3] the lifting property also yields

Ḣ1,p = {f ∈ S ′ /C : ∇ x f ∈ Ḣp } f Ḣ1,p ≃ ∇ x f Ḣp .
For p > 1 these are the more common homogeneous Sobolev spaces and we write Ẇ1,p := Ḣ1,p & Ẇ-1,p = ( Ẇ1,p ′ ) * = Ḣ-1,p (p > 1).

In our usual range of exponents p ∈ (1 * , ∞) any distribution f ∈ Ḣ1,p can be identified with a locally integrable function. This follows by density of Z in Ḣ1,p and the extended Sobolev embedding theorem that we recall for later reference. Proposition 2.8. There are continuous embeddings

Ḣ1,p ⊆ Ḣp * (1 * < p < n), Ḣ1,p ⊆ Λ1-n p (n ≤ p < ∞).
The second part is the classical Morrey inequality [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Thm. 7.17]. The first part is a special case of the general embedding theorem

Ẋs 0 ,p 0 ⊆ Ẋs 1 ,p 1 (0 < p 0 < p 1 < ∞, s 0 -n /p 0 = s 1 -n /p 1 ), see [67, Thm. 2.1].
2.6. Interpolation functors. Here, and throughout the monograph, 'complex interpolation' refers to the Kalton-Mitrea complex interpolation method [69, §3], which is well-defined for quasi-Banach spaces and agrees with the classical Calderón complex interpolation method on couples of Banach spaces. As usual, we write [• , •] θ , θ ∈ (0, 1), for the complex interpolation bracket. 'Real interpolation' refers to the classical K-method [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Sec. 3.10] and the corresponding interpolation bracket is denoted by (• , •) θ,p , θ ∈ (0, 1), p ∈ (0, ∞].

We gather the standard interpolation formulae that will be needed in the further course. To this end we let 0 < p 0 , p 1 ≤ ∞, s 0 , s 1 ∈ R, θ ∈ (0, 1) and set p := [p 0 , p 1 ] θ , s := (1θ)s 0 + θs 1 .

As for tent and Z spaces, we have up to equivalent quasi-norms,

T s 0 ,p 0 , T s 1 ,p 1 θ = T s,p (one p i finite), T s 0 ,p 0 , T s 1 ,p 1 θ,p = Z s,p (s 0 = s 1 ), Z s 0 ,p 0 , Z s 1 ,p 1 θ,p = Z s,p (s 0 = s 1 ), see [3, Thm. 2.12 & Thm. 2.30 & Prop. 2.31].
The required interpolation identities for Ẋs,p have been proved in [3,Thm. 4.28 & Thm. 5.2] via an approach based on tent and Z spaces. Their proof uses the language of operator-adapted spaces that will be introduced in Section 8. We have up to equivalent quasinorms Ḣs 0 ,p 0 , Ḣs 1 ,p 1 θ = Ḣs,p (one p i finite), Ẋs 0 ,p 0 , Ẋs 1 ,p 1 θ,p = Ḃs,p (s 0 = s 1 ). Different proofs for some of the identities have been given in many earlier references including [START_REF] Frazier | A discrete transform and decompositions of distribution spaces[END_REF][START_REF] Kalton | Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations[END_REF][START_REF] Triebel | Theory of function spaces[END_REF].

Preliminaries on operator theory

A particularly useful reference for our purpose is Haase's book [START_REF] Haase | The functional calculus for sectorial operators[END_REF] and the reader is advised to refer thereto whenever necessary.

3.1. Definition of the elliptic operators. We let a and d be the coefficients of L as in (1.1). The bounded multiplication operator B and the first-order Dirac operator D are defined with maximal domain in

L 2 (R n ; C m × C mn ) by B := a -1 0 0 d , D := 0 div x -∇ x 0 .
We note that D is self-adjoint. Hence, it splits

L 2 into an orthogonal sum N(D) ⊕ R(D). The null space N(D) consists of all f = [f ⊥ , f ] ⊤ with f ⊥ = 0 and div x f = 0 and the closure of the range R(D) = H is the space in our ellipticity assumption (1.2). Consequently, (1.2) is equivalent to Re R n Bf • f dx ≥ λ R n |a -1 f ⊥ | 2 + |f | 2 dx (f ∈ R(D)),
or again, using angular brackets to denote inner products, equivalent to

Re BDu, Du Du 2 2 (u ∈ D(D)). (3.1)
Because of this, we say that B is accretive (or elliptic) on the range of D.

The perturbed Dirac operators

BD := 0 a -1 div x -d∇ x 0 , DB := 0 div x d -∇ x a -1 0 (3.2)
are again considered with maximal domain in L 2 . Since B is bounded, DB is closed and as consequence of (3.1) also BD is closed. Their squares contain the following second-order operators:

L 0 0 M := -a -1 div x d∇ x 0 0 -d∇ x a -1 div x = (BD) 2 , (3.3) L 0 0 M := -div x d∇ x a -1 0 0 -∇ x a -1 div x d = (DB) 2 . (3.4)
The definition of L coincides with the more traditional variational approach to defining second-order operators. Indeed, the Lax-Milgram lemma provides an isomorphism,

Λ : Ẇ1,2 → Ẇ-1,2 , Λu, v = R n d∇ x u • ∇ x v dx. (3.5)
We have Λu :=div x d∇ x u in the sense of distributions and one sees that u ∈ D(L) means that u ∈ L 2 ∩ Ẇ1,2 with Λu ∈ L 2 and Lu = a -1 Λu. Note that the domain of L does not depend on a. Occasionally, we will write L 0 :=div x d∇ x , for the divergence form operator L in the special case a = 1, that is to say, the maximal restriction of Λ to an operator in L 2 .

3.2.

(Bi)sectorial operators. Statements and proofs for sectorial and bisectorial operators usually go mutadis mutandis. Most authors have decided to showcase sectorial operators. In case of doubt the reader can consult [START_REF] Egert | On Kato's conjecture and mixed boundary conditions[END_REF]Ch. 3], which goes the other way round.

Let ω ∈ (0, π). We define the sector S + ω := {z ∈ C : | arg z| < ω} and agree on S + 0 := (0, ∞). A linear operator T on a reflexive Banach space X is sectorial of angle ω ∈ [0, π) if its spectrum is contained in S + ω and if for every µ ∈ (ω, π), M T,µ := sup

z∈C\S + µ z(z -T ) -1 || X→X < ∞. (3.6)
Usually, ω T denotes the smallest angle ω with this property. A sectorial operator is densely defined, induces a topological kernel/range splitting

X = N(T ) ⊕ R(T ), (3.7)
and the restriction of T to R(T ) is sectorial, injective and has dense range [START_REF] Haase | The functional calculus for sectorial operators[END_REF]Prop. 2.1.1].

Bisectorial operators of angle ω ∈ [0, π /2) are defined analogously upon replacing sectors with bisectors S ω := S + ω ∪ (-S + ω ) and share the same properties. If T is bisectorial of angle ω, then writing

(z 2 -T 2 ) -1 = -(z -T ) -1 (-z -T ) -1 we see that T 2 is sectorial of angle 2ω. Moreover, N(T 2 ) = N(T ) and hence R(T 2 ) = R(T ), see [53, Prop. 2.1.1e)].
As prototypical examples, BD and DB are bisectorial of the same angle ω BD = ω DB with

R(BD) = B R(D), R(DB) = R(D), (3.8)
see [START_REF] Auscher | Solvability of elliptic systems with square integrable boundary data[END_REF]Prop. 3.3]. From (3.3) and (3.4) we obtain that L, M, L, M are sectorial of angle not larger than 2ω BD , but possibly exceeding π /2, with

R(L) × R(M) = (L 2 (R n ; C m )) × dR(∇ x ) (3.9) R( L) × R( M) = (L 2 (R n ; C m )) × R(∇ x ). (3.10)
In particular, L and L have dense range and hence they are injective.

Classes of holomorphic functions

. Let µ ∈ (0, π). The classes Ψ τ σ (S + µ ), σ, τ ∈ R, consist of those holomorphic functions ϕ : S + µ → C that satisfy |ϕ(z)| |z| σ ∧ |z| -τ (z ∈ S + µ ).
We write H ∞ (S + µ ) := Ψ 0 0 (S + µ ) for the bounded holomorphic functions on S + µ . The classes of functions with some decay and arbitrarily large polynomial decay at 0 and ∞ are

Ψ + + (S + µ ) := σ,τ >0 Ψ τ σ (S + µ ) and Ψ ∞ ∞ (S + µ ) := σ,τ >0 Ψ τ σ (S + µ ),
respectively. We suppress reference to S + µ in the notation when the relevant sector is clear from the context.

On bisectors we use the same notation and call a function nondegenerate if it does not identically vanish on one of the two connected components. An example of a degenerate function is z + [z], where

[z] := √ z 2 (z ∈ C \ iR)
is defined via the principal branch of the logarithm.

3.4. Holomorphic functional calculi. For the same reason as before, we can focus on the sectorial case. So, let T be sectorial and let

µ ∈ (ω T , π). If ψ is of the form ψ(z) = a + b(1 + z) -1 + ϕ(z) for some α, β ∈ C and ϕ ∈ Ψ + + (S + µ ), then ψ(T ) is defined as a bounded operator on X via ψ(T ) = α + β(1 + T ) -1 + 1 2πi ∂S + ν ϕ(z)(z -T ) -1 dz, (3.11)
where ν ∈ (ω T , µ), the choice of which does not matter in view of Cauchy's theorem, and ∂S + ν is oriented such that it surrounds the spectrum of T counter-clockwise in the extended complex plane. The definition extends to larger classes of functions by regularization: If e(T ) and (eψ)(T ) are already defined by the procedure above and if e(T ) is injective, then

ψ(T ) := e(T ) -1 (eψ)(T )
is defined as a closed operator and can be shown not to depend on the choice of e. The expected relations

ψ(T ) + φ(T ) ⊆ (ψ + φ)(T ) ψ(T )φ(T ) ⊆ (ψφ)(T )
hold and there is equality if ψ(T ) is bounded.

Since the restriction of T to R(T ) is an injective sectorial operator, e(z) = z(1 + z) -2 regularizes any bounded holomorphic function in

H ∞ (S + µ ). The convergence lemma states that if (ψ j ) j is a bounded sequence in H ∞ (S + µ ) that converges pointwise to ψ, then ψ(T ) = lim j→∞ ψ j (T ) (3.12)
in the sense of strong convergence on R(T ).

We say that T has a bounded

H ∞ -calculus on R(T ) (of angle µ ≥ ω T ) if for all ν ∈ (µ, π) there is a constant M ∞ T,ν such that ψ(T ) R(T )→R(T ) ≤ M ∞ T,ν ψ L ∞ (S + ν ) (ψ ∈ H ∞ (S + ν )). (3.13)
In fact, by the convergence lemma, it suffices to have the bound for all ψ ∈ Ψ + + (S + ν ). In Hilbert spaces, these properties are independent of the angle µ. This is one of the statements of the following fundamental result due to McIntosh [START_REF] Mcintosh | Operators which have an H ∞ functional calculus[END_REF], see also [START_REF] Haase | The functional calculus for sectorial operators[END_REF]Thm. 7.3.1]. The dependence of the implicit constants easily follows from the proof and is also explicitly stated in [64, Thm. 10.4.16/19].

Theorem 3.1 (McIntosh).

Let T be a (bi)sectorial operator in a Hilbert space H. Then T has a bounded H ∞ -calculus of some angle on R(T ) (equivalently, of angle ω T ) if and only if the quadratic estimate

f H ≃ ∞ 0 ϕ(tT )f 2 H dt t 1/2
holds for all f ∈ R(T ) and some (equivalently, all) admissible and nondegenerate ϕ ∈ Ψ + + . For fixed angle ν, the bound M ∞ T,ν for the H ∞ -calculus depends on M T,µ for some µ ∈ (ω T , ν) and implicit constants in the quadratic estimates, and vice versa.

We also recall the important reproducing formula for sectorial operators [START_REF] Haase | The functional calculus for sectorial operators[END_REF]Thm. 5.2.6] and remark that up to the usual modifications there is a bisectorial version [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]Prop. 4.2]. Lemma 3.2 (Calderón reproducing formula). Let T be a sectorial operator in a reflexive Banach space X and let ϕ ∈ Ψ + + on a suitable sector be such that

∞ 0 ϕ(t) dt t = 1. Then ∞ 0 ϕ(tT )f dt t = f (f ∈ R(T ))
as an improper strong Riemann integral.

Remark 3.3. For any non-zero φ ∈ H ∞ there is ψ ∈ Ψ ∞ ∞ on the same sector such that ϕ := φψ satisfies the Calderón reproducing formula, for example ψ(z) := cφ(z)e -z-1/z , where holds as unbounded operators from R(DB) into R(BD), whenever one side is defined by the respective functional calculus. Elaborating further along these line, we obtain Lemma 3.6 (Intertwining relations). Let ϕ ∈ H ∞ on a suitable bisector and ψ ∈ H ∞ on a suitable sector. Then

c -1 = ∞ 0 |φ(t)| 2 e -t-
Dϕ(BD)f = ϕ(DB)Df (f ∈ D(D)) and div x ψ(M)f = ψ( L) div x f , (f ∈ D(div x )), -∇ x ψ(L)f ⊥ = ψ( M)∇ x f ⊥ , (f ⊥ ∈ W 1,2 ).
Proof. For the first identity we note that Df ∈ R(D) = R(DB) by (3.8). Hence, we can apply (3.15) to Df in order to obtain BDϕ(BD)f = Bϕ(DB)Df and the claim follows since B is accretive on R(D). By means of (3.14) and the analogous identity for DB the identities for L and M follow. 

L * 0 0 M * = -div x d * ∇ x (a * ) -1 0 0 -∇ x (a * ) -1 div x d * . (3.16)
The Ψ + + -calculus of any (bi)sectorial operator dualizes in the expected manner ψ(T ) * = ψ * (T * ), where ψ * (z) = ψ(z) . If T has dense range, for example T = L, then this relation also holds for all ψ ∈ ∪ σ,τ ∈R Ψ τ σ , see [START_REF] Haase | The functional calculus for sectorial operators[END_REF]Prop. 7.0.1(d)]. When a = 1, the operator L * is in the same class as L. When a = 1, the operator L * is not in the same class as L but is similar to such an operator under conjugation with a * . This is why instead of L * we usually work with

L ♯ := -(a * ) -1 div x d * ∇ x = (a * ) -1 L * a *
when it comes to duality arguments.

3.6. Kato problem and Riesz transform. Since z → [z] /z and its inverse are bounded and holomorphic on any bisector, the bounded H ∞ -calculus for BD entails that BD and [BD] share the same domain along with comparability

BDf 2 ≃ [BD]f 2 (f ∈ D(BD)).
The left-hand side is also comparable to Df 2 by ellipticity. Looking at the first component and using the specific form of BD and its square, see (3.2) and (3.3), we obtain the resolution of the Kato conjecture.

Theorem 3.7 (Resolution of the Kato conjecture). It follows that D(L 1/2 ) = W 1,2 with the homogeneous estimate L 1/2 f 2 ≃ ∇ x f 2 .
As a consequence, we obtain a bounded extension L 1/2 : Ẇ1,2 → L 2 by density that is injective with closed range. It is an isomorphism since its range contains R(L), which is dense in L 2 by (3.9). We denote its inverse by L -1/2 . In particular, the Riesz transform

∇ x L -1/2 is a bounded operator on L 2 .
The domains of fractional powers of exponent α ∈ (0, 1 /2) can be determined by complex interpolation.

Corollary 3.8. If α ∈ (0, 1 /2), then D(L α ) = Ḣ2α,2 ∩ L 2 with the ho- mogeneous estimate L α f 2 ≃ f Ḣ2α,2 . Proof. By [15, Thm. 5.1] we have D(L α ) = [L 2 , Ẇ1,2 ] 2α ∩ L 2 with the homogeneous estimate L α f 2 ≃ f [L 2 , Ẇ1,2 ] 2α and from Section 2.6 we know that [L 2 , Ẇ1,2 ] 2α = Ḣ2α,2 .

3.7.

Off-diagonal estimates. We develop on these estimates in Section 4 below. Here we only gather the well-known L 2 -bounds for our standard operators from Section 3.2.

Definition 3.9. Let Ω ⊆ C \ {0} and let V 1 , V 2 be finite-dimensional Hilbert spaces. A family (T (z)) z∈Ω of linear operators L 2 (R n ; V 1 ) → L 2 (R n ; V 2 ) satisfies L 2 off-diagonal estimates of order γ > 0 if there exists a constant C such that 1 F T (z)1 E f 2 ≤ C 1 + d(E, F ) |z| -γ 1 E f 2
holds for all measurable subsets E, F ⊆ R n , all z ∈ Ω and all f ∈ L 2 (R n ; V 1 ). It there are constants C, c > 0 such that the stronger estimate

1 F T (z)1 E f 2 ≤ Ce -c d(E,F )
|z| 1 E f 2 holds, then the family is said to satisfies off-diagonal estimates of exponential order .

While decay of polynomial order is most suitable for the abstract theory that we develop in the upcoming sections, our prototypes actually satisfy the exponential estimate. For completeness, we include the argument from [8, Prop. 5.1].

Proposition 3.10. The resolvent families ((1 + itBD) -1 ) t∈R\{0} and ((1 + itDB) -1 ) t∈R\{0} satisfy L 2 off-diagonal estimates of exponential order.

Proof. We begin with the resolvents of T (t) := ((1 + itBD) -1 . Fix t, E, F and set d := d(E, F ). The family (T (t)) t∈R\{0} is uniformly bounded in L 2 since BD is bisectorial. Hence, it suffices to obtain the exponential estimate for |t| ≤ αd, where α > 0 will be chosen later on in dependence of dimensions and ellipticity. Thus, we obtain for all f ∈ L 2 that

We introduce

G := {x ∈ R n : d(x, F ) ≤ d /2}. As d(F, c G) ≥ d /2, we can pick a smooth function ϕ that satisfies 1 F ≤ ϕ ≤ 1 G and ∇ x ϕ ∞ ≤ C /d
1 2 e αd |t| 1 F T (t)1 E f 2 ≤ ηT (t)1 E f 2 = [η, T (t)]1 E f 2 , (3.17)
where [η, T (t)] = ηT (t) -T (t)(η •) is the commutator between T (t) and multiplication with η and we have used η1 E = 0. Next, we expand

[η, T (t)] = T (t)[1 + itBD, η]T (t) = itT (t)B[D, η]T (t). (3.18)
By the product rule we find that [D, η] acts via multiplication by a function θe (αd/|t|)ϕ , where θ is supported in G and uniformly bounded by a dimensional multiple of αd /|t| ∇ϕ ∞ ≤ Cα /|t|. Since T (t) and B are (uniformly) bounded on L 2 , we conclude that

ηT (t)1 E f 2 ≤ Cα e αd |t| ϕ T (t)1 E f 2 ≤ Cα ηT (t)1 E f 2 + T (t)1 E f 2 ,
where C depends on ellipticity and dimension and the second step merely follows from η = e (αd/|t|)ϕ -1. Setting α := 1 /2C, we can absorb the first term on the right-hand side back into the left-hand side and we are left with

ηT (t)1 E f 2 ≤ 1 2 T (t)1 E f 2 .
Using (3.17) on the left and uniform boundedness of T (t) on the right completes the proof for the resolvents of BD.

For DB the only modification in the argument concerns (3.18), where B appears on the right of [D, η].

Remark 3.11. The off-diagonal estimates extend to complex parameters t = z ∈ S µ for any µ ∈ (0, π /2ω BD ). The proof is literally the same but it is also instructive to remark that one can use Stein interpolation against the uniform resolvent bounds. This argument appears in greater generality in Lemma 4.13 below.

Corollary 3.12. The following families (T (z)) z∈S + µ satisfy off-diagonal estimates of exponential order:

(i) T (z) = (1 + z 2 T ) -1 if µ ∈ (0, (π-ω T ) /2) and T ∈ {L, L, M, M }. (ii) T (z) = z∇ x (1 + z 2 L) -1 if µ ∈ (0, (π-ω L ) /2).
In particular, these families satisfy L 2 off-diagonal estimates of arbitrarily large order.

Proof. By Stein interpolation, see the preceding remark, it suffices to argue for z ∈ R \ {0}. Thanks to Proposition 3.10 we have off-diagonal estimates of exponential order for

1 2 (1 + izBD) -1 + (1 -izBD) -1 = (1 + z 2 (BD) 2 ) -1 ,
as well as for the corresponding family with DB replacing BD. Thus, (i) follows from (3.3) and (3.4). Similarly, we have

1 2 (1 + izDB) -1 -(1 -izDB) -1 = -iz div x d(1 + z 2 M ) -1 iz∇ x a -1 (1 + z 2 L) -1
and we obtain the required off-diagonal estimates for

z∇ x a -1 (1 + z 2 L) -1 = z∇ x (1 + z 2 L) -1 a -1
as stated in (ii).

H p -H q bounded families

In this section we discuss general principles for H p -H q -bounded operator families. We provide a toolbox that will allow us to manipulate resolvent families associated with our first and second-order operators efficiently on an abstract level.

4.1. Abstract principles. Throughout we work under the following assumption unless stated otherwise:

• (T (z)) z∈Ω is a family of bounded operators L 2 (R n ; V 1 ) → L 2 (R n ; V 2 ) indexed over some set Ω ⊆ C \ {0}, where the V i are finite-dimensional Hilbert spaces, • a i ∈ L ∞ (R n ; L(V i )), i = 1, 2, are such that a i (x) is invertible for a.e. x and a -1 i ∈ L ∞ (R n ; L(V i )). (4.1) 
Definition 4.1. Let (T (z)) z∈Ω be an operator family as in (4.1) and let 0 < p ≤ q < ∞. This family is

a 1 H p -a 2 H q -bounded if a -1 2 T (z)a 1 f H q |z| n q -n p f H p (z ∈ Ω, f ∈ H p ∩ L 2 ). (4.2)
Usually, Ω is a half-line, a sector or a bisector in our application, hence the follow-up on the scaling in (4.2).

Remark 4.2.

(i) We omit Ω and simply write (T (z)) when the context is clear. We speak of a H p -boundedness when a 1 = a 2 = a and p = q. If q > 1, then multiplication by a 2 is an automorphism of H q = L q and hence a 2 may be dropped on the left-hand side of (4.2). We simply speak of a 1 H p -L qboundedness. If also p > 1, then a 1 may be dropped as well and we speak of L p -L q -boundedness (L p -boundedness if p = q).

(ii) Occasionally, we shall use the following extensions to the notions above. First, we can include endpoint Lebesgue spaces for a 1 H p -L q , q ∈ {1, ∞}, and L p -L q -boundedness, p, q ∈ {1, ∞}. Second, when 0 < p < ∞ and 0 ≤ α < 1, we speak of

a 1 H p -a 2 Λα -boundedness if a -1 2 T (z)a 1 f Λα |z| -α-n p f H p (z ∈ Ω, f ∈ H p ∩ L 2
) and make the same kind of notational abbreviations and extensions as before.

Since the Hardy spaces interpolate by the complex method and have a universal approximation technique, the notion of a 1 H p -a 2 H qboundedness interpolates as well. Moreover, the notions 'dualize' in the expected way as the next lemma shows. Lemma 4.3. Let (T (z)) be as in (4.1).

(i

) If 1 ≤ p ≤ q ≤ ∞, then (T (z)) is L p -L q -bounded if and only if (T (z) * ) is L q ′ -L p ′ -bounded. (ii) If 1 * < p ≤ 1 ≤ q ≤ ∞, then (T (z)) is a 1 H p -L q -bounded if and only if (T (z) * ) is L q ′ -(a * 1 ) -1 Λn( 1 p -1) -bounded.
Proof. We can assume a 1 = 1 and a 2 = 1 -otherwise we replace (T (z)) by (a -1 2 T (z)a 1 ). All of the claims take the abstract form that one of (T (z)) and (T (z) * ) is X 1 -X 2 -bounded and the other one should be X 3 -X 4 -bounded. As

T (z)f, g = f, T (z) * g (z ∈ Ω, f, g ∈ L 2 ),
it suffices to know that the X 4 -norm can be computed by testing against functions in X 1 ∩ L 2 . Above, either X 1 is a Hardy or Lebesgue space and X 4 is its dual (so the claim follows since X 1 ∩ L 2 is dense in X 1 ) or X 1 = L ∞ and X 4 = L 1 (and the claim follows by testing against characteristic functions of bounded sets).

The next lemma provides us with a useful criterion for a family to map a given H q -space back into H 2 = L 2 . Lemma 4.4. Let (T (z)) be a family as in (4.1) with V 1 = V 2 =: V and a 1 = a 2 =: a. Suppose that there exist p, ̺ ∈ (0, 2) for which (T (z)) is a H p -a H p and a H ̺ -L 2 -bounded. Then, for each q ∈ (p, 2), there exists an integer β = β(p, q, ̺) such that (T β (z)) is a H q -L 2 -bounded.

Proof. If ̺ ≤ p, then we can simply interpolate and take β = 1. Henceforth, we assume p < ̺.

Consider a ( 1 /s, 1 /t)-plane as in Figure 4 where

( 1 /s, 1 /t) is marked pro- vided (T (z)) is a H s -a H t -bounded. The initial configuration are the vertices A = ( 1 /p, 1 /p), B = ( 1 /2, 1 /2) and C = ( 1 /̺, 1 /2)
. By interpolation, we obtain their convex hull, that is to say, the closed triangle ABC.

Boundedness properties for (T 2 (z)) are visualized in Figure 4 as follows: Take a point X = ( 1 /s, 1 /t) on AC, move to AB on a horizontal line, then move to AC on a vertical line and call that point If 1 /q ≤ 1 /̺, then ABC contains the point ( 1 /q, 1 /2) and we can take β = 1. Otherwise, the segment AC contains at least one point X 0 with abscissa 1 /q. Starting from there, we construct X β := (X β-1 ) ′ as above. After a finite number β(p, q, ̺) of steps X β lies on the segment BC with constant ordinate 1 /2. Hence (T β (z)) is a H q -a H 2 -bounded, that is, a H q -L 2 -bounded.

X ′ = ( 1 /t, 1 /t ′ ). Then (T 2 (z)) is a H s -a H t ′ -bounded. 1 t 1 s B A C X X ′

4.2.

Off-diagonal estimates. For Lebesgue spaces we shall make extensive use of off-diagonal estimates. Definition 4.5. Let 1 ≤ p ≤ q ≤ ∞. An operator family (T (z)) z∈Ω as in (4.1) satisfies L p -L q off-diagonal estimates of order γ > 0 if

1 F T (z)1 E f q |z| n q -n p 1 + d(E, F ) |z| -γ 1 E f p for all measurable subsets E, F ⊆ R n , all z ∈ Ω and all f ∈ L p ∩ L 2 .
If there are is a constant c > 0 such that the stronger estimate

1 F T (z)1 E f q |z| n q -n p e -c d(E,F )
|z| 1 E f p holds, then the family is said to satisfies off-diagonal estimates of exponential order .

As usual, we shall simply speak of L p off-diagonal estimates when p = q. For p = q = 2 this notion is consistent with Definition 3.9. Duality for Lebesgue spaces yields the principle that (T (z)) satisfies L p -L q off-diagonal estimates of order γ (resp. of exponential order) if and only if (T (z) * ) satisfies L q ′ -L p ′ off-diagonal estimates of order γ (resp. of exponential order). As for composition of off-diagonal estimates, we have the following rule. Lemma 4.6. Let 1 ≤ p ≤ q ≤ ∞. Let (T (z)) and (S(z)) be families as in (4.1) that are compatible in the sense that (S(z)T (z)) is defined. Suppose that they satisfy L p -L q and L q -L r off-diagonal estimates of orders γ S and γ T , respectively. Then (S(z)T (z)) satisfies L p -L r offdiagonal estimates of order γ S ∧ γ T . If the order is exponential for both families, then the same is true for the composition.

Proof. Given E, F ⊆ R n , we put d := d(E, F ) and define G := {x ∈ R n : d(x, E) ≤ d /2}. Since we have d(E, c G) ≥ d /2 and d(F, G) ≥ d /2, the claim follows on splitting 1 F S(z)T (z)1 E = 1 F S(z)1 G T (z)1 E + 1 F S(z)1c G T (z)1 E
and applying L p -L q and L q -L r off-diagonal estimates.

Taking E = F = R n , we see that L p -L q off-diagonal estimates are a stronger notion than L p -L q -boundedness, but more is true. This is well-known but we include a proof for convenience. Lemma 4.7. Let 1 ≤ p ≤ q ≤ ∞. If an operator family (T (z)) as in (4.1) satisfies L p -L q off-diagonal estimates of order γ > n, then it is L q -bounded and L p -bounded.

Proof. If p = ∞, then q = ∞, and L ∞ off-diagonal estimates imply L ∞ -boundedness. From now on we may assume p < ∞.

Let f ∈ L p . For fixed z, we partition R n into closed, axis-parallel cubes {Q k } k∈Z n of sidelength |z| with center |z|k. From Hölder's inequality and the assumption we obtain

T (z)f p p = k∈Z n 1 Q k T (z)f p p ≤ |z| n-np q k∈Z n 1 Q k T (z)f p q ≤ |z| n-np q k∈Z n j∈Z n 1 Q k T (z)1 Q j f q p ≤ k∈Z n j∈Z n C 1 + d(Q j , Q k ) |z| -γ 1 Q j f p p . Let | • | ∞ be the ℓ ∞ -norm on R n and d ∞ the corresponding distance. Then d(Q j , Q k ) ≥ d ∞ (Q j , Q k ) = |z| max{|j -k| ∞ -1, 0}.
Young's convolution inequality yields

T (z)f p p ≤ k∈Z n j∈Z n C 1 + |j -k| ∞ -γ 1 Q j f p p ≤ C k∈Z n 1 + |k| ∞ -γ p j∈Z n 1 Q j f p p .
The sum in k converges since for fixed m ∈ N there are

(2m + 1) n - (2m -1) n = O(m n-1 ) points k ∈ Z n with |k| ∞ = m.
The sum in j equals f p p . This proves the L p -boundedness of (T (z)). The same argument applies to the dual family, which satisfies L q ′ -L p ′ off-diagonal estimates of order γ. This yields L q -boundedness of (T (z)).

Remark 4.8. Re-examining the above proof reveals that (T (z)) even satisfies L p and L q off-diagonal estimates, both of order γn, and that the order is exponential provided that this is the case for the L p -L q off-diagonal estimates.

Indeed, assume that f is supported in a set E and that the L p -norm is taken on a set F with d := d ∞ (E, F ) ≥ 4|z|. All cubes Q k and Q j that are necessary to cover E and F , respectively, satisfy 2|k -j| ∞ |z| ≥ d. Consequently, we only need to sum over k ∈ Z n with |k| ≥ d /2|z| in the final estimate. This sum is dominated by a multiple of (1 + d /|z|) -γ+n . If the order for the L p -L q off-diagonal estimates is exponential, then we would sum over e -c|k|∞ and get control by e -cd 2|z| . By duality, the same conclusions are true on L q .

The previous lemma provides a means to obtain uniform boundedness in one space from sufficient decay between different spaces. We also need a result of this type for p < 1. Lemma 4.9. Let (T (z)) be an operator family as in (4.1). Suppose that ̺ ∈ (1 * , 1) and q ∈ (1, ∞) are such that (T (z)) is a 1 H ̺ -L q -bounded and satisfies L q off-diagonal estimates of arbitrarily large order. In addition assume R n ((a 2 ) -1 T (z)a 1 f )(x)dx = 0 for all z and all compactly supported f ∈ L 2 with integral zero. Then (T (z)) is a 1 H p -a 2 H pbounded for every p ∈ (̺, 1].

Proof. We can assume a 1 = 1 and a 2 = 1. Otherwise we replace T (z) with (a 2 ) -1 T (z)a 1 . Relying on the (L 2 -convergent) atomic decomposition for H p ∩ L 2 (see Section 2.4) it suffices to show that there is a constant C such that T (z)a H p ≤ C for all z and all L ∞ -atoms a for H p .

Step 1: Molecular decay. We show that there exist C, ε independently of a, z and j ≥ 1 such that

T (z)a L q (C j (Q)) ≤ C(2 j ℓ(Q)) n q -n p 2 -εj , (4.3)
where Q is the cube associated with a. For j = 1 we can simply use L q -boundedness and Hölder's inequality:

T (z)a q ≤ C a q ≤ Cℓ(Q) n q a ∞ ≤ Cℓ(Q) n q -n p .
For j ≥ 2 the off-diagonal assumption yields

T (z)a L q (C j (Q)) ≤ C γ 2 j ℓ(Q) |z| -γ a L q (Q) ≤ C γ 2 j ℓ(Q) |z| -γ ℓ(Q) n q -n p (4.4)
with γ > 0 at our disposal. Likewise, H ̺ -L q -boundedness yields

T (z)a L q (C j (Q)) ≤ C|z| n q -n ̺ a H ̺ ≤ C|z| n q -n ̺ ℓ(Q) n ̺ -n p , (4.5)
where in the second step we have used that ℓ(Q) n/p-n/̺ a is an L ∞ -atom for H ̺ . Now, fix δ > 0 such that 1 /p -1 /q = (1 -2δ)( 1 /̺ -1 /q). This is possible since we have p > ̺. For |z| ≥ 2 j(1-δ) ℓ(Q) we use (4.5) to get

T (z)a L q (C j (Q)) ≤ C2 j(1-δ)( n q -n ̺ ) ℓ(Q) n q -n p = C(2 j ℓ(Q)) n q -n p 2 -δ( n ̺ -n q )j ,
whereas for |z| ≤ 2 j(1-δ) ℓ(Q) we employ (4.4) and find

T (z)a L q (C j (Q)) ≤ C γ 2 -jγδ ℓ(Q) n q -n p .
We take γ > δ -1 ( n /pn /q) to make sure that these bounds take the form (4.3).

Step 2: Conclusion. Since f := T (z)a has integral zero by assumption, (4.3) implies f H p ≤ C for some constant independent of f . Indeed, this is due to the molecular theory of Taibleson-Weiss [91, Thm. 2.9] but we include their argument in our special case in the subsequent lemma.

Lemma 4.10. Let p ∈ (1 * , 1] and q ∈ (1, ∞). Suppose f ∈ L 2 has integral zero and satisfies for some C, ε > 0, some cube Q ⊆ R n and all j ≥ 1,

f L q (C j (Q)) ≤ C(2 j ℓ(Q)) n q -n p 2 -εj .
Then, there exists a constant C ′ depending on C, ε and dimensions, and L q -atoms a j for H p with support in

C j+1 (Q) ∪ C j (Q), such that f = ∞ j=1 C ′ 2 -εj a j
with unconditional convergence in L 1 loc . In particular, the sum also converges in H p and f

H p ≤ C ′ 2 ε -1 .
Proof. The final statement follows from the atomic representation, using the maximal function characterization of H p , see also [89, p.106].

To prove the rest, we set

f j := 1 C j f, p j := (f ) C j (Q) 1 C j (Q) .
Then f jp j has mean value zero and satisfies

f j -p j q ≤ 2 f j q ≤ 2C(2 j ℓ(Q)) n q -n p 2 -εj .
This means that 2 εj 2 n/q-n/p (2C) -1 (f jp j ) is an L q -atom for H p . Next, letting c j := ∞ k=j C k (Q) f dx, summation by parts gives a pointwise identity

(4.6) ∞ j=1 p j = ∞ j=1 (c j -c j+1 ) 1 C j (Q) |C j (Q)| = ∞ j=1 b j with b j := c j+1 1 C j+1 (Q) |C j+1 (Q)| - 1 C j (Q) |C j (Q)| .
There are no boundary terms since we have c 1 = 0 and, from the assumption,

|c j | ≤ ∞ k=j |C k (Q)| 1-1 q 1 C k (Q) f q ∞ k=j (2 k ℓ(Q)) n-n p 2 -εk ≃ (2 j ℓ(Q)) n-n p 2 -εj , so |c j | /|C j (Q)|
tends to 0 as j → ∞. Identity (4.6) holds in L 1 loc with unconditional convergence because the sums are locally finite since b j has support in C j+1 (Q) ∪ C j (Q). Moreover, b j has mean value zero and satisfies

b j q ≤ |c j+1 | |C j+1 (Q)| 1 q |C j+1 (Q)| + |C j (Q)| 1 q |C j (Q)| ≤ C ′′ (2 j ℓ(Q)) n q -n p 2 -εj .
Hence, 2 εj 4 n/q-n/p (C ′′ ) -1 b j is an L q -atom for H p and f = ∞ j=1 f jp j + b j is the representation we are looking for. 4.3. Interpolation principles. We continue with interpolation properties. Our main tool will be the Stein interpolation theorem, which we state in an abstract version due to Voigt [START_REF] Voigt | Abstract Stein interpolation[END_REF]. In the following we work on the strip S := {z ∈ C : 0 ≤ Re z ≤ 1}. Proposition 4.11 ([93]). Let (X 0 , X 1 ) and (Y 0 , Y 1 ) be two interpolation couples of Banach spaces and let Z be a dense subspace of X 0 ∩ X 1 . Let (T (z)) z∈S be a family of linear mappings Z → Y 0 + Y 1 with the following properties for all f ∈ Z:

(i) The function T (•)f : S → Y 0 + Y 1 is continuous, bounded and holomorphic in the interior of S.

(ii) For j = 0, 1 the restriction T (•)f : j + iR → Y j is continuous and there is a constant M j that does not depend on f such that

sup t∈R T (j + it)f Y j ≤ M j f X j .
Then for all θ ∈ (0, 1) and all f ∈ Z,

T (θ)f [Y 0 ,Y 1 ] θ ≤ M 1-θ 0 M θ 1 f [X 0 ,X 1 ] θ . Remark 4.
12. The classical version of the theorem is when X j and Y j are L p -spaces, 1 ≤ p ≤ ∞, and Z is the space of step functions, [START_REF] Grafakos | Classical Fourier analysis[END_REF]Thm. 1.3.4]. Then continuity is not required in (ii) and in (i) it suffices to assume that for all f, g ∈ Z and all z ∈ S the integral R n T (z)f •g dx converges absolutely and defines a bounded and continuous function of z that is holomorphic in the interior of S. For example, it suffices that T (•) : S → L 2 is bounded, continuous and holomorphic in the interior. Such weakening of assumptions is not possible for general interpolation couples [START_REF] Cwikel | Interpolation of analytic families of operators[END_REF].

As a first application we state the following Lemma 4.13. Let p 0 , q 0 , p 1 , q 1 ∈ [1, ∞], p i ≤ q i and ω ∈ (0, π). Let (T (z)) z∈S + ω be a uniformly bounded family on L 2 as in (4.1) that depends holomorphically on z. Let θ ∈ (0, 1) and set

p θ := [p 0 , p 1 ] θ and q θ := [q 0 , q 1 ] θ . (i) If (T (z)) z∈(0,∞) is L p 0 -L q 0 -bounded and (T (z)) z∈S + ω is L p 1 -L q 1 - bounded, then (T (z)) z∈S + θω is L p θ -L q θ -bounded (ii) If (T (z)) z∈(0,∞) is L p 0 -L q 0 -
bounded and (T (z)) z∈S + ω satisfies L p 1 -L q 1 off-diagonal estimates of order γ, then (T (z)) z∈S + θω satisfies L p θ -L q θ off-diagonal estimates of order θγ. (iii) If (T (z)) z∈(0,∞) satisfies L p 0 -L q 0 off-diagonal estimates of order γ and (T (z)) z∈S + ω is L p 1 -L q 1 -bounded, then (T (z)) z∈S + θω satisfies L p θ -L q θ off-diagonal estimates of order (1θ)γ. Exponential order in the assumptions leads to exponential order in the conclusion with the decay parameter c changed accordingly.

Proof. We begin with part (ii). We fix ν ∈ (-ω, ω) and r > 0. Then we fix measurable sets E, F ⊆ R n and consider the family S(z) := e (z-θ) 2 1 F T (re iνz )1 E . This family is uniformly bounded on L 2 and holomorphic in an open neighborhood of the strip 0 ≤ Re z ≤ 1. By assumption we have for all t ∈ R and all step functions f ,

S(it)f q 0 ≤ C 0 |re -νt | n q 0 -n p 0 e 1-t 2 f p 0 ≤ C 0 (re -ω|t| ) n q 0 -n p 0 e 1-t 2 f p 0 and S(1 + it)f q 1 ≤ C 1 |re -νt | n q 1 -n p 1 1 + d(E, F ) |re -νt | -γ e 1-t 2 f p 1 ≤ C 1 (re -ω|t| ) n q 1 -n p 1 1 + d(E, F ) re ω|t| -γ e 1-t 2 f p 1 .
We use 1 + d(E,F ) /re ω|t| ≥ e -ω|t| (1 + d(E,F ) /r) in the second line and that the additional factor e -t 2 acts in our favor, in order to give

S(it)f q 0 ≤ M 0 r n q 0 -n p 0 f p 0 , S(1 + it)f q 1 ≤ M 1 r n q 1 -n p 1 1 + d(E, F ) r -γ f p 1 ,
where the M j are still also independent of r, ν and E, F . Stein interpolation yields

S(θ)f [q 0 ,q 1 ] θ ≤ M 1-θ 0 M θ 1 r n q θ -n p θ 1 + d(E, F ) r -θγ f [p 0 ,p 1 ] θ .
Since we have S(θ)f = 1 F T (re iνθ )1 E f , this estimates means that T (z) satisfies L p θ -L q θ off-diagonal estimates of order θγ for z ∈ S + θω . The proof of part (iii) is exactly the same except that now the estimate for S(it) comes with decay.

The proof of part (i) does not need the sets E, F and uses the same interpolation argument for z → e (z-θ) 2 T (re iνz ).

Finally, the proof in case of exponential order in the assumptions follows mutadis mutandis.

If we freeze z and view T (z) as a constant family, then the same argument leads to Lemma 4.14. Let p 0 , q 0 , p 1 , q 1 ∈ [1, ∞] with p i ≤ q i and suppose that a family as in (4.1) is L p 0 -L q 0 -bounded and satisfies L p 1 -L q 1 offdiagonal estimates of order γ (of exponential order). Then for each θ ∈ (0, 1) it satisfies L [p 0 ,p 1 ] θ -L [q 0 ,q 1 ] θ off-diagonal estimates of order θγ (of exponential order).

4.4.

Applications to the functional calculus. We turn to the more specific setting that the family (T (z)) is modeled after the resolvents of a sectorial operator. In this section, we assume that

• T is a sectorial operator on L 2 (R n ; V ) of some angle ω ∈ [0, π)
, where V is a finite-dimensional Hilbert space, • ((1 + t 2 T ) -1 ) t>0 satisfies L 2 off-diagonal estimates of arbitrarily large order.

(4.7)

Lemma 4.15. Let p ∈ (1, ∞) be such that ((1 + t 2 T ) -1 ) t>0 is L p - bounded. Let θ ∈ (0, 1].
Then for every µ ∈ (0, θ(π-ω) /2) the family 2] θ off-diagonal estimates of arbitrarily large order.

((1 + z 2 T ) -1 ) z∈S + µ satisfies L [p,
Proof. The resolvent z → (1 + z 2 T ) -1 on L 2 is a bounded holomorphic function on S + µ for any µ ∈ (0, (π-ω) /2). We apply Lemma 4.13 twice.

First, interpolation between the L 2 -bounds on sectors and the L 2 off-diagonal estimates on the positive real axis yields L 2 off-diagonal estimates of arbitrarily large order on S + µ for any µ ∈ (0, (π-ω) /2). Second, interpolation between the L 2 off-diagonal estimates on sectors and the L p -bounds on the positive real axis yields the claim.

We obtain off-diagonal estimates for the functional calculus similar to [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]Part II]. In applications we usually work with holomorphic functions that are in the respective classes on any sector and the technical conditions on the angles can be ignored. On the other hand, the order of off-diagonal decay is of utmost importance: It is mainly the decay of ψ at z = 0, quantified by the classes Ψ τ σ from Section 3.4, that limits the available off-diagonal for (ψ(t 2 T )) t>0 . Lemma 4.16. Let p ∈ (1, ∞) be such that ((1 + t 2 T ) -1 ) t>0 is L pbounded. Let θ ∈ (0, 1], put q := [p, 2] θ and fix an angle µ ∈ (0, θ(π-ω) /2). Let σ, τ > 0 and ψ ∈ Ψ τ σ (S + π-2µ ). Then the following estimates hold. (i) Let (η(t)) t>0 be a continuous and uniformly bounded family of functions in H ∞ (S + π-2µ ). Then for all measurable sets E, F ⊆ R n , all t > 0 and all f ∈ L q ∩ L 2 ,

1 F η(t)(T )ψ(t 2 T )1 E f q η ψ σ,τ,µ 1 + d(E, F ) t -2σ f q .
The norms are ψ σ,τ,µ := sup z∈S + π-2µ

|ψ(z)| /(|z| σ ∧|z| -τ ) and η := sup t>0 η(t) ∞ . (ii) Furthermore, if η(t)(z) = ϕ(t 2 z) for some ϕ ∈ Ψ 0 σ (S + π-2µ ), then for all 0 < r ≤ t and with the same dependencies,

1 F ϕ(r 2 T )ψ(t 2 T )1 E f q ψ σ,τ,µ ϕ σ,0,µ 1 + d(E, F ) r -2σ f q .
(iii) Finally for each γ ∈ [0, σ] ∩ [0, τ ), it follows for all r > 0 with the same dependencies,

ϕ(r 2 T )ψ(t 2 T )f q ψ σ,τ,µ ϕ σ,0,µ r 2 t 2 γ f q .
Proof. Throughout, let f q = 1. We pick an angle ν ∈ (µ, θ(π-ω) /2). By Lemma 4.15 we have L q off-diagonal estimates of arbitrarily large order for the resolvents for z ∈ S + ν . Here, we use the order 2σ + 1. We begin with the first estimate and put X := d(E,F ) /t. Since

η(t)(T )ψ(t 2 T ) = 1 2πi ∂S + π-2ν η(t)(z)ψ(t 2 z)(z -T ) -1 dz = 1 2πi ∂S + π-2ν η(t)(zt -2 )ψ(z)(1 -t 2 z -1 T ) -1 dz z , (4.8) 
where (-t 2 z -1 ) 1/2 ∈ S + ν , we obtain

1 F η(t)(T )ψ(t 2 T )1 E f q ∂S + π-2ν η |ψ(z)| (1 + |z| 1/2 X) 2σ+1 d|z| |z| ≤ η ψ σ,τ,µ ∂S + π-2ν |z| σ ∧ |z| -τ (1 + |z| 1/2 X) 2σ+1 d|z| |z| .
(4.9)

In the case X ≤ 1, we minimize the denominator by 1 to derive the desirable bound

1 F η(t)(T )ψ(t 2 T )1 E f q η ψ σ,τ,µ .
In the case X ≥ 1, we split the integral at |z| = X -2 to give the desirable bound

1 E η(t)(T )ψ(t 2 T )1 F f q η ψ σ,τ,µ X -2 0 |z| σ d|z| |z| + ∞ X -2 |z| σ (|z| 1/2 X) 2σ+1 d|z| |z| η ψ σ,τ,µ X -2σ .
This completes the proof of (i).

Turning to the second estimate, we take η(r)(z) = ϕ(r 2 z) in (4.8) and change variables to

ϕ(r 2 T )ψ(t 2 T ) = 1 2πi ∂S + π-2ν ϕ(z)ψ(t 2 r -2 z)(1 -r 2 z -1 T ) -1 dz z .
This time we set X := d(E,F ) /r and obtain

1 F ϕ(r 2 T )ψ(t 2 T )1 E f q ∂S + π-2ν |ϕ(z)||ψ(t 2 r -2 z)| (1 + |z| 1/2 X) 2σ+1 d|z| |z| . (4.10)
The important observation is that

|ϕ(z)| ≤ ϕ σ,0,µ (|z| σ ∧ 1) (4.11)
and, since r ≤ t,

|ψ(t 2 r -2 z)| ≤ ψ ∞ ∧ ( ψ σ,τ,µ |t 2 r -2 z| -τ ) ≤ ψ σ,τ,µ (1 ∧ |z| -τ ), so that |ϕ(z)||ψ(t 2 r -2 z)| ≤ ψ σ,τ,µ ϕ σ,0,µ (|z| σ ∧ |z| -τ ).
Thus, we can bound the right-hand side in (4.10) by the same parameter integral that already appeared on the far right in (4.9) and get the same bound (1 + X) -2σ for the integral. Now, (ii) follows.

As for (iii), we first argue as in (ii) with E = F = R n and X = 0 to obtain

ϕ(r 2 T )ψ(t 2 T )f q ψ σ,τ,µ ϕ σ,0,µ ∞ 0 (1 ∧ |z| σ ) |t 2 r -2 z)| σ ∧ |t 2 r -2 z)| -τ d|z| |z| .
Using (1 ∧ |z| σ ) ≤ |z| γ in order to get a homogeneous estimate and changing variables, we conclude

ϕ(r 2 T )ψ(t 2 T )f q ψ σ,τ,µ ϕ σ,0,µ r 2 t 2 γ ∞ 0 |z| γ |z| σ ∧ |z| -τ d|z|
|z| and the remaining integral is finite since we assume 0 ≤ γ < τ .

The decay of ψ at the origin can be replaced by the assumption that ψ(z) has a limit as |z| → 0 with order of convergence O(|z| σ ) for some σ > 0. The exemplary result of this type is as follows. The obtained order of decay is optimal and already attained when T = -∆ x .

Corollary 4.17. Let p ∈ (1, ∞) be such that ((1 + t 2 T ) -1 ) t>0 is L pbounded and let θ ∈ (0, 1). Then (e -tT 1/2 ) t>0 satisfies L [p,2] θ off-diagonal estimates of order 1.

Proof. This is a consequence of the preceding two lemmata since we can write e -z 1/2 = ψ(z) + (1 + z) -1 with ψ ∈ Ψ 1 1/2 on any sector.

Conservation properties

In order to extend the operator theory for L to Hardy spaces, we need to guarantee that certain operators f (L) preserve vanishing zeroth moments or have the conservation property f (L)c = c whenever c is a constant. In absence of integral kernels, the action of such operators on constants is explained via off-diagonal estimates as follows.

Proposition 5.1. Let T be a bounded linear operator on L 2 (R n ; V ), where V is a finite dimensional Hilbert space. If T satisfies L p offdiagonal estimates of order γ > n /p for some p ∈ [2, ∞), then T can be extended to a bounded operator

L ∞ (R n ; V ) → L p loc (R n ; V ) via T f := ∞ j=1 T (1 C j (B(0,1)) f ). (5.1) Moreover, if (η j ) ⊆ L ∞ (R n ; C) is a family such that • sup j η j ∞ < ∞, • ∞ j=1 η j (x) = 1 for a.e. x ∈ R n ,
• η j has compact support, which for some C, c and all sufficiently large j is contained in B(0, C2 j )\B(0, c2 j ),

(5.2) then T f = ∞ j=1 T (η j f ),
where the right-hand side converges in L p loc (R n ; V ) and in particular in L 2 loc (R n ; V ). Remark 5.2. A particular example for a family with the required properties is η j = 1 C j (B) for an arbitrary ball (or cube) B ⊆ R n .

Proof. We put B := B(0, 1) and fix any compact set K ⊆ R n . For all large enough j we have d(K, C j (B)) ≥ 2 j-1 and therefore

T (1 C j (B) f ) L p (K) 2 -jγ f L p (C j (B)) 2 j( n p -γ) f ∞ .
Hence, the series on the right-hand side of (5.1) converges absolutely in L p (K) and the limit satisfies

T f L p (K) ≤ C K f ∞ for a constant C K that depends on K but not on f .
Next, we pick an integer j 0 ≥ 1 such that c2 j 0 ≥ 1 and therefore 2 J B ⊆ B(0, c2 J+j 0 ) for all J ≥ 1. If J is large enough so that the annular support of η j is granted, then J j=1 1 C j (B) -J+j 0 j=1 η j vanishes on 2 J+1 B, has support in C ′ 2 J B for some C ′ that does not depend on J and is uniformly bounded. The off-diagonal bounds yield again

J j=1 T (1 C j (B) f ) - J+j 0 j=1 T (η j f ) L p (K) 2 J( n p -γ) f ∞ ,
which shows that ∞ j=1 T (η j f ) converges to T f in L p (K). We begin with the conservation property for the resolvents of the perturbed Dirac operator BD that has appeared implicitly in several earlier works [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF][START_REF] Rosén | Layer potentials beyond singular integral operators[END_REF]. The proof relies on the cancellation property Dc = 0 for constants c (where D is understood in the sense of distributions).

Proposition 5.3. If α ∈ N and z ∈ S π/2-ω BD , then for all c ∈ C m × C mn , (1 + izBD) -α c = c = (1 + z 2 (BD) 2 ) -α c.
Proof. Let R > 0 and (η j ) be a smooth partition of unity on R n subordinate to the sets

D 1 := B(0, 4R), D j := B(0, 2 j+1 R) \ B(0, 2 j-1 R) (j ≥ 2), such that η j ∞ + 2 j R ∇ x η j ∞ ≤ C for a dimensional constant C.
We begin with the resolvents of BD, which satisfy L 2 off-diagonal estimates of arbitrarily large order by Proposition 3.10 and composition. According to Proposition 5.1 we can write

(1 + izBD) -α c = ∞ j=1 (1 + izBD) -α (η j c), so that (1 + izBD) -α+1 c -(1 + izBD) -α c = ∞ j=1 iz(1 + izBD) -α BD(η j c),
where we set (1 + izBD) 0 c := c and used η j c ∈ D(D) = D(BD). Now, BD(η j c) has support in B(0, 2 j+1 R) \ B(0, 2 j-1 R) also for j = 1 and satisfies BD(η j c) ∞ ≤ C|c| B ∞ R -1 . The off-diagonal estimates yield

(1 + izBD) -α+1 c -(1 + izBD) -α c L 2 (B(0,R/2)) R n 2 -γ-1 ∞ j=1 2 j( n 2 -γ) with an implicit constant that is independent of R. Sending R → ∞ gives (1 + izBD) -α+1 c = (1 + izBD) -α c. Since (1 + izBD) 0 c = c, we conclude (1 + izBD) -α c = c for all α.
The argument for the resolvents of (BD) 2 is identical and draws upon the identity

(1 + z 2 (BD) 2 ) -α+1 c -(1 + z 2 (BD) 2 ) -α c = ∞ j=1 z 2 BD(1 + z 2 (BD) 2 ) -α BD(η j c).
The off-diagonal decay for z 2 BD(1+z 2 (BD) 2 ) -α follows again by composition since this operator can be written as

- iz 2 (1 -izBD) -1 -(1 + izBD) -1 (1 + z 2 (BD) 2 ) -α+1 .
As a corollary we obtain the conservation property for the secondorder operator L. The reader can refer to [START_REF] Ouhabaz | Analysis of heat equations on domains[END_REF]Sec. 4.4] and references therein for related conservation properties in the realm of semigroups.

Corollary 5.4. Let α ∈ N and z ∈ S + (π-ω L )/2 . Let c ∈ C m and let f ∈ L 2 have compact support. Then one has the conservation formula

(1 + z 2 L) -α c = c
and its dual version

R n a(1 + z 2 L) -α a -1 f dx = R n f dx.
Proof. The left-hand sides are holomorphic functions of z (valued in L 2 loc and C m , respectively). Hence, it suffices to argue for z = t ∈ (0, ∞). We have

(1 + t 2 (BD) 2 ) -α = (1 + t 2 L) -α 0 0 (1 + t 2 M) -α ,
so the fist claim follows from the conservation property for BD. As (a * ) -1 L * a * belongs to the same class as L, we also get

R n a(1 + t 2 L) -α a -1 f • c dx = R n f • (1 + t 2 (a * ) -1 L * a * ) -α c dx = R n f • c dx
and since c ∈ C m is arbitrary, the second claim follows.

We turn to more general operators in the functional calculus. In view of Lemma 4.16 the decay of the auxiliary function at the origin limits the available off-diagonal decay and hence, in contrast with the case of resolvents, we have to use Proposition 5.1 for exponents p = 2.

Lemma 5.5. Let p ∈ [2, ∞) be such that ((1+t 2 L) -1 ) t>0 is L p -bounded.
Suppose that ψ is of class Ψ τ σ on any sector, where τ > 0 and σ > n /(2p). Then

ψ(t 2 L)c = 0 (c ∈ C m , t > 0).
Proof. Let θ ∈ (0, 1] be such that q := [p, 2] θ satisfies σ > n /(2q). According to Lemma 4.16 the family (ψ(t 2 L)) t>0 satisfies L q off-diagonal estimates of order 2σ > n /q. Hence, ψ(t 2 L)c is defined via Proposition 5.1. Lemma 4.13 provides L q off-diagonal decay for the resolvents of L of arbitrarily large order on some sector S + µ . We pick ν ∈ (0, µ) and write the definition of ψ(t 2 L) as

ψ(t 2 L) = 1 2πi ∂S + π-2ν ψ(t 2 z)(1 -z -1 L) -1 dz z .
Setting B := B(0, 1) ⊆ R n , we formally have

j≥1 ψ(t 2 L)(1 C j (B) c) = 1 2πi ∂S + π-2ν ψ(t 2 z) j≥1 (1 -z -1 L) -1 (1 C j (B) c) dz z = 1 2πi ∂S + π-2ν ψ(t 2 z)c dz z = 0,
where the second line uses the conservation property and the third one Cauchy's theorem. It remains to justify convergence and interchanging sum and integral sign in the first line.

To this end, fix any compact set K ⊆ R n . Using off-diagonal estimates, we obtain for all j large enough to grant for d(K, C j (B)) ≥ 2 j-1 that

ψ(t 2 z)(1 -z -1 L) -1 (1 C j (B) c) L q (K) |ψ(t 2 z)|(1 + 2 j-1 |z| 1 2 ) -γ c L q (C j (B)) 2 j( n q -γ) t -2τ |z| -γ 2 -τ if |z| ≥ 1 t 2σ |z| σ-γ 2 if |z| ≤ 1 ,
where γ > 0 is at our disposal. We take n /q < γ < 2σ, in which case the right-hand side takes the form 2 -jε F t (z) with ε > 0 and F t ∈ L 1 (∂S + π-2ν , d|z| /|z|), locally uniformly in t. This justifies at once convergence and interchanging sum and integral sign in L q (K).

Our third conservation property concerns the Poisson semigroup. In line with the previous result we need L p -boundedness of the resolvents for large p to compensate for the poor decay of e -√ z -1 at the origin. Proposition 5.6 (Conservation property for the Poisson semigroups).

If ((1 + t 2 L) -1 ) t>0 is L p -bounded for some p > n, then e -tL 1/2 c = c (c ∈ C m , t > 0). Proof. We have e -√ z = (1 + z) -1 + ψ(z) with ψ ∈ Ψ 1
1/2 on any sector and the claim follows from Corollary 5.4 and Lemma 5.5.

The four critical numbers

We introduce the sets

J (L) := p ∈ (1 * , ∞) : ((1 + t 2 L) -1 ) t>0 is a -1 H p -bounded and N (L) := p ∈ (1 * , ∞) : (t∇ x (1 + t 2 L) -1 ) t>0 is a -1 H p -H p -bounded ,
where we recall that 1 * = n /(n+1). These sets contain p = 2 (Corollary 3.12) and since the notion of a 1 H p -a 2 H p -boundedness interpolates, they are in fact intervals. Definition 6.1. The lower and upper endpoints of J (L) are denoted by p -(L) and p + (L), respectively. Similarly, the endpoints of N (L) are denoted by q -(L) and q + (L).

The exponents p ± (L) and q ± (L) are called critical numbers in the following. In this section we study intrinsic relations between these numbers, using the machinery developed in Section 4. For the various duality arguments in this section we recall that L ♯ = -(a * ) -1 div x d * ∇ x is in the same class as L and similar to L * under conjugation with a * . In particular, we have

1 ∨ p -(L ♯ ) = p + (L) ′ , (1 ∨ p -(L)) ′ = p + (L ♯ ). (6.1)
6.1. General facts on critical numbers. Here, we prove the following general relations between the four critical numbers. In fact, there are only three of them since p -(L) and q -(L) coincide. The two inequalities are best possible in the class of all operators L, see Remark 6.8 further below. Theorem 6.2. The critical numbers satisfy

p -(L) = q -(L), p + (L) ≥ q + (L) * , p -(L) ≤ (q + (L ♯ ) ′ ) * .
We prepare the proof through a sequence of lemmata that are of independent interest.

Lemma 6.3. Let n ≥ 2. Then (2 * , 2 * ) ⊆ J (L) and ((1 + t 2 L) -1 ) t>0 is L 2 -L q -bounded and L q ′ -L 2 -bounded for every q ∈ [2, 2 * ] ∩ [2, ∞).
Proof. We have 2 * = ∞ when n = 2 and 2 * < ∞ when n ≥ 3. The restriction on q is precisely such that we have the Gagliardo-Nirenberg inequality

u q ∇ x u α 2 u 1-α 2 (u ∈ W 1,2 (R n )),
where α = n /2n /q. We set u := (1 + t 2 L) -1 f , f ∈ L 2 , t > 0, and use the L 2 -boundedness of the resolvent and gradient families to give

(1 + t 2 L) -1 f q t -α f 2 .
Hence, the resolvents are L 2 -L q -bounded. Interpolation with the L 2 off-diagonal estimates by means of Lemma 4.14 leads to L 2 -L q offdiagonal estimates of arbitrarily large order for any q ∈ [2, 2 * ) and L q -boundedness follows from Lemma 4.7.

The rest follows by duality and similarity by applying the above to L ♯ in place of L.

In dimension n = 1 we have 2 * = 2 /3 and by analogy with the previous lemma we expect that ( 2 /3, ∞) ⊆ J (L). However, in the onedimensional situation we have div x = ∇ x and this allows us to improve the lower bound to the best possible value

1 * = 1 /2. Lemma 6.4. Let n = 1. Then ( 1 /2, ∞) ⊆ J (L) and (2, ∞) ⊆ N (L). Moreover ((1 + t 2 L) -1 ) t>0 is a -1 H p -L 2 -bounded for every p ∈ ( 1 /2, 2] and ((1 + t 2 L) -1 ) t>0 and (t d dx (1 + t 2 L) -1 ) t>0 are both L 2 -L q -bounded for every q ∈ [2, ∞).
Proof. In the one-dimensional setting the operator L takes the form L = -a -1 d dx (d d dx ) and the space H in (1.2) coincides with L 2 . In particular, just as a, also d is strictly elliptic.

Step 1: L 2 -L q -bound for the gradients. It suffices to obtain the bound for t = 1 with an implicit constant that depends on the coefficients only through ellipticity. Indeed, for t = 1 we can use the change of variable f t (x) := f (tx) in order to write

t d dx (1 + t 2 L) -1 f (x) = ( d dx (1 + L t ) -1 f t )(t -1 x), where L t := -a -1 t d dx (d t d dx )
has the same ellipticity constant as L. Let now f ∈ L 2 and set u := (1 + L) -1 f , so that d dx (d d dx u) = afau. In one dimension the Sobolev embedding W 1,2 ⊆ L q holds for any q ∈ [2, ∞). Thus, we have

d dx u q ≃ d d dx u q d d dx u W 1,2 d d dx u 2 + af 2 + au 2 f 2 ,
where in the final step we have used the L 2 -boundedness of the resolvent and gradient families. This is the required L 2 -L q -bound.

Step 2: L q -bound for the gradients. This follows from Lemma 4.14 and Lemma 4.7 as in the previous proof. Hence, we have (2, ∞) ⊆ N (L).

Step 3: Bounds for the resolvents.

Let q ∈ [2, ∞) and define ̺ ∈ ( 1 /2, 2 /3] through 1 -1 /q = 1 /̺ -1.
For f ∈ L 2 and t > 0 we use the Sobolev embedding Ẇ1,q ⊆ Λ1-1 /q and the result of Step 1 for L ♯ to give

(1 + t 2 L ♯ ) -1 f Λ1-1/q d dx (1 + t 2 L ♯ ) -1 f q t -1+ 1 q -1 2 f 2 .
Hence, the resolvents of L ♯ are L 2 -Λ1-1/q -bounded. Since we have L ♯ = (a * ) -1 L * a * , we obtain by duality that the resolvents of L are a -1 H ̺ -L 2 -bounded, see Lemma 4.3. They also satisfy L 2 off-diagonal estimates of arbitrarily large order and have the cancellation property

R n a(1 + t 2 L) -1 a -1 f dx = 0 if f ∈ L 2 has
compact support and integral zero, see Corollary 5.4. Hence, we are in a position to apply Lemma 4.9 and obtain a -1 H p -boundedness for p ∈ (̺, 1].

Since q ∈ [2, ∞) was arbitrary, the conclusion is that the resolvents are a -1 H ̺ -L 2 -bounded and a -1 H p -bounded for all for all ̺ ∈ ( 1 /2, 2 /3] and all p ∈ ( 1 /2, 1]. By interpolation with the L 2 -bound we can allow all ̺, p ∈ ( 1 /2, 2]. Finally, the L 2 -L q and L q -bounds of the resolvents for all q ∈ (2, ∞) follow again duality and similarity, by applying the results for p ∈ (1, 2] to L ♯ .

We also need a result that allows us to switch between powers of the resolvent in H p -H q -estimates. Lemma 6.5. Let 1 * < p ≤ q < ∞ with q > 1 and n /pn /q < 1. Suppose that there exists an integer β ≥ 1 such that (t∇

x (1 + t 2 L) -β-1 ) t>0 is a -1 H p -L q -bounded. Then also (t∇ x (1 + t 2 L) -1 ) t>0 is a -1 H p -L q - bounded.
Proof. Let t > 0 and f ∈ L 2 . The Calderón reproducing formula for the injective sectorial operator T = 1 + t 2 L and the auxiliary function

ϕ(z) = z(1 + z) -β-1 reads f = β ∞ 0 (1 + t 2 L)(1 + u + t 2 uL) -β-1 f du. (6.2)
Applying the bounded operator t∇ x (1 + t 2 L) -1 and re-arranging terms gives

t∇ x (1 + t 2 L) -1 f = β ∞ 0 1 (1 + u) β+ 1 2 u 1 2 ut 2 1 + u 1 2 ∇ x 1 + ut 2 1 + u L -β-1 f du.
Now, we let f ∈ H p ∩ L 2 , apply the formula to a -1 f , and take L q norms on both sides, in order to give

t∇ x (1 + t 2 L) -1 a -1 f q f H p ∞ 0 1 (1 + u) β+ 1 2 u 1 2 ut 2 1 + u 1 2 ( n q -n p ) du ≤ t n q -n p f H p ∞ 0 u n 2q -n 2p -1 2 (1 + u) β+ 1 2 + n 2q -n 2p du.
The numerical integral in u converges as we have n /qn /p > -1 by assumption.

Proof of Theorem 6.2. The argument is in two steps.

Step 1: Resolvent estimates from gradient bounds. Here, we show the upper bound in the first line and the second and third lines. In dimension n = 1 we have p -(L) = 1 * and p + (L) = ∞ by Lemma 6.4 and there is nothing to prove. For the rest of the step we assume n ≥ 2.

Let ̺ ∈ N (L). If ̺ < n, then a Sobolev embedding yields for all f ∈ H ̺ ∩ L 2 and all t > 0 that

(1 + t 2 L) -1 a -1 f L ̺ * t -1 t∇ x (1 + t 2 L) -1 a -1 f H ̺ t -1 f H ̺ .
Hence, the resolvents of L are a -1 H ̺ -L ̺ * -bounded. Likewise, if ̺ > n, then we obtain for all f ∈ L ̺ ∩ L 2 and all t > 0 that

(1 + t 2 L) -1 f Λ1-n/̺ t -1 f L ̺ .
By duality the resolvents of L ♯ are (a * ) -1 H r -L ̺ ′ -bounded. The exponent r is determined by 1n /̺ = n( 1 /r -1), that is, r = (̺ ′ ) * . From these observations, we can infer further mapping properties in each case.

Step 1a: The Lebesgue case 1 < ̺ < n. The resolvents of L are L ̺ -L ̺ * -bounded. Lemma 4.14 yields L [̺,2] θ -L [̺ * ,2] θ off-diagonal estimates of arbitrarily large order, where θ ∈ (0, 1) is arbitrary. Lemma 4.7 yields both L [̺,2] θ and L [̺ * ,2] θ -boundedness. Consequently, we must have p -(L) ≤ ̺ and p + (L) ≥ ̺ * .

Step 1b: The Hardy case ̺ ≤ 1. Since N (L) is an interval, we have (̺, 2) ⊆ N (L). The first part applies to all exponents in (1, 2) instead of ̺ and we first get L q -boundedness of the resolvents of L for all q ∈ (1, 2 * ) and then L q off-diagonal estimates of arbitrarily large order by interpolation.

If ρ = 1, then p -(L) ≤ ̺ follows directly. Now, assume ̺ < 1. As ̺ > 1 * , we can take q := ̺ * and have L q off-diagonal estimates of arbitrarily large order and a -1 H ̺ -L qboundedness. For compactly supported f ∈ L 2 , Corollary 5.4 yields

R n a(1 + t 2 L) -1 a -1 f dx = 0.
We have verified the assumptions of Lemma 4.9 and obtain that the resolvents of L are a -1 H p -bounded for every p ∈ (̺, 1]. Therefore, we have again p -(L) ≤ ̺.

Step 1c: The Hölder case ̺ > n. From the preliminary discussion we know that the resolvents of L ♯ are (a * ) -1 H (̺ ′ ) * -L ̺ ′ -bounded. We claim that they satisfy L ̺ ′ off-diagonal estimates of arbitrarily large order. Taking the claim for granted, p -(L ♯ ) ≤ (̺ ′ ) * follows as in the previous step.

For the claim we first prove (1, 2) ⊆ J (L ♯ ). In dimension n = 2 this is due to Lemma 6.3. In dimension n ≥ 3 we have (2, n) ⊆ N (L) since the latter is an interval that contains 2 and ̺. Step 1a applies to all exponents in (2, n) in place of ̺ and yields (2, ∞) ⊆ J (L). By duality, we get again (1, 2) ⊆ J (L ♯ ). As we have ̺ ′ ∈ (1, 2), the L ̺ ′ off-diagonal estimates for the resolvents of L ♯ follow by interpolation with the L 2 -result.

Let us conclude Step 1. In dimension

n ≥ 3 the set N (L) ∩ (1 * , n) is non-empty because it contains 2. Letting ̺ vary over N (L) ∩ (1 * , n), we conclude p -(L) ≤ q -(L) and p + (L) ≥ q + (L) * from Steps 1a & 1b.
In dimension n = 2 the same argument applies unless q -(L) = 2. But in this case 45 the inequalities in question trivially hold because we have p -(L) ≤ 1 and p + (L) = ∞ by Lemma 6.3.

As for the third line in the theorem, if q + (L ♯ ) ≤ n, then

p -(L) ≤ (p + (L ♯ )) ′ ≤ (q + (L ♯ ) * ) ′ = (q + (L ♯ ) ′ ) *
follows from (6.1) and the second line. If q + (L ♯ ) > n, then the inequality p -(L) ≤ (q + (L ♯ ) ′ ) * follows from Step 1c with the roles of L and L ♯ switched.

Step 2: Gradient bounds from resolvent estimates. Let p ∈ J (L) with p < 2. Hence, ((1+t 2 L) -1 ) t>0 is a -1 H p -bounded. Lemmata 6.3 and 6.4 guarantee that this family is L ̺ -L 2 -bounded for some ̺ ∈ (1, 2). According to Lemma 4.4, we find for every q ∈ (p, 2) an integer β(q) ≥ 1 such that ((1 + t 2 L) -β(q) ) t>0 is a -1 H q -L 2 -bounded. By composition with the L 2 -bounded gradient family, (t∇ x (1 + t 2 L) -β(q)-1 ) t>0 is a -1 H q -L 2 -bounded.

Step 2a: The Lebesgue case p ≥ 1. We know that (t∇ x (1+t 2 L) -β(q)-1 ) t>0 is L q -L 2 -bounded. By composition, this family also satisfies L 2 offdiagonal estimates of arbitrarily large order. Since this holds for every q ∈ (p, 2), we can run the usual argument: L q -L 2 off-diagonal estimates of arbitrarily larger order follow by interpolation and this implies L q -boundedness. Thanks to Lemma 6.5 we get L q -boundedness also for (t∇ x (1 + t 2 L) -1 ) t>0 . Since q ∈ (p, 2) was arbitrary, we have q -(L) ≤ p.

Step 2b: The Hardy case p < 1. We slightly refine the argument in the Lebesgue case by appealing to Lemma 4.9. In the following let q ∈ (p, 1) and s ∈ (1, 2) such that 1 /q -1 /s < 1 /n. Such s exists since we have p > 1 * . First, consider the family (t∇ x (1 + t 2 L) -β(q)-1 ) t>0 . It is a -1 H q -L 2bounded and satisfies L 2 off-diagonal estimates of arbitrarily large order. For compactly supported f ∈ L 2 we get that (1 + t 2 L) -β(q) a -1 f and ∇ x (1 + t 2 L) -β(q) a -1 f are in L 1 from the L 2 off-diagonal decay of order γ > n /2. The integral of the gradient of a W 1,1 -function vanishes, so R n t∇ x (1 + t 2 L) -β(q) a -1 f dx = 0. We have checked the assumptions of Lemma 4.9 and obtain a -1 H q -H q -boundedness for every q. This interpolates with the original a -1 H q -L 2 -boundedness, so that the conclusion is a -1 H q -L s -boundedness for all q and s. Now, we consider (t∇ x (1+t 2 L) -1 ) t>0 . Lemma 6.5 yields a -1 H q -L sboundedness for all q and s. Step 2a applies to s and yields L sboundedness, which implies L s off-diagonal decay of arbitrarily large order for every s by interpolation with the L 2 -result. As before, we also have

R n t∇ x (1 + t 2 L) -1 a -1 f dx = 0 for compactly supported f ∈ L 2 .
We have again verified the assumptions of Lemma 4.9 and conclude for a -1 H q -H q -boundedness for every q. Thus, we have q -(L) ≤ p.

As p ∈ J (L) ∩ (1 * , 2) was arbitrary, Steps 2a & 2b yield the missing inequality q -(L) ≤ p -(L) that completes the proof of the first line in the theorem. 6.2. Worst-case estimates for the critical numbers. The following extrapolation from the L 2 -theory has been proved by an application of Šne ȋberg's stability theorem [START_REF] Auscher | Nonlocal self-improving properties: a functional analytic approach[END_REF][START_REF] Sneiberg | Spectral properties of linear operators in interpolation families of Banach spaces[END_REF]. Proposition 6.6 ([21,Prop. 4.5]). There exists ε > 0, depending on ellipticity and dimensions, such that whenever p ∈ [2ε, 2 + ε], then

((1 + itDB) -1 ) t∈R is L p -bounded.
We use this result to give the following global picture for the critical numbers for the class of all L in all dimensions. Proposition 6.7. The following relations hold.

(i)

In dimension n = 1, p -(L) = q -(L) = 1 2 & p + (L) = q + (L) = ∞.
(ii) In dimension n ≥ 2 there exists ε > 0, depending on ellipticity and dimensions, such that

p -(L) = q -(L) ≤ 2 * -ε & p + (L) ≥ 2 * + ε & q + (L) ≥ 2 + ε.
Proof. The identification q -(L) = p -(L) in any dimension is due to Theorem 6.2. In dimension n = 1, Lemma 6.4 shows that p -(L) = 1 /2 and q + (L) = ∞ = p + (L) take the best possible values. Hence, (i) follows.

As for (ii), we use (3.4) to write, whenever t > 0,

1 2 (1 + itDB) -1 -(1 -itDB) -1 = -itDB(1 + t 2 (DB) 2 ) -1 = -it div x d(1 + t 2 M ) -1 it∇ x a -1 (1 + t 2 L) -1 .
This family is L p -bounded for p ∈ [2-ε, 2+ε] due to Proposition 6.6. In particular, the second component is L p -bounded and since a is strictly elliptic, the same is true for

t∇ x a -1 (1 + t 2 L) -1 a = t∇ x (1 + t 2 L) -1 .
Hence, for a possibly different choice of ε we have q + (L) ≥ 2 + ε and q -(L) ≤ 2ε. The same thing for L ♯ . Now, the claim follows from Theorem 6.2.

Remark 6.8. (i) In the one-dimensional setting the identification of the critical numbers could also be obtained from the kernel estimates in [START_REF] Auscher | Heat kernels of second order complex elliptic operators and applications[END_REF]. They are only stated for m = 1 but the argument literally applies to systems (m > 1) under our ellipticity assumption. In fact, the proof of Lemma 6.4 mimics some intermediate steps in [START_REF] Auscher | Heat kernels of second order complex elliptic operators and applications[END_REF]. The value p -(L) = 1 /2 has appeared in a related context in [START_REF] Auscher | Calcul fontionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux)[END_REF]. (ii) In higher dimensions the bounds above cannot be improved in general, even when a = 1 and m = 1. More precisely, given ε > 0, any of p -(L) < 2 *ε, p + (L) > 2 * + ε, q + (L) > 2 + ε can fail for some L. Indeed, for p ± in dimensions n ≥ 3, counterexamples rely on Frehse's irregular solution [START_REF] Frehse | An irregular complex valued solution to a scalar uniformly elliptic equation[END_REF] and can be found in [START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF]Prop. 2.10]. In view of Theorem 6.2 such counterexamples satisfy 2 * + ε ≥ p + (L) ≥ q + (L) * ≥ 2 * . Hence, they also serve as counterexamples to the general improvement of q + and show that the inequalities in Theorem 6.2 are best possible in the class of all operators L.

When n = 2, the counterexample for q + due to Kenig comes with d real symmetric [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]Sec. 4.2.2]. The same operator is a counterexample for the general improvement on p -, that is, p -(L) can be as close to 2 * = 1 as one wants. Hence, the final inequality in Theorem 6.2 is again best possible.

6.3. a-independence of critical numbers. It is tempting to compare the critical numbers for L with those for

L 0 = -div x d∇ x ,
seeing L = a -1 L 0 as a multiplicative perturbation of L 0 . Let us prove that the critical numbers for both operators are indeed the same. Theorem 6.9. The critical numbers for L and L 0 coincide, that is,

p ± (L) = p ± (L 0 ) & q ± (L) = q ± (L 0 ).
Proof. The claim in dimension n = 1 is an immediate consequence of Proposition 6.7. The proof in dimensions n ≥ 2 is divided into six steps.

Step

1: p -(L) ≤ p -(L 0 ). Let p ∈ J (L 0 ) ∩ (1 * , 2 * ].
This interval is non-empty thanks to Proposition 6.7. We set p 0 := p, define iteratively p k := p * k-1 and stop at the first exponent k + ≥ 0 with p k + ∈ (2 * , 2]. We shall prove by backward induction that (p k , 2] ⊆ J (L) for all k. Hence, we eventually find (p, 2] ⊆ J (L) and taking the infimum over all p yields p -(L) ≤ p -(L 0 ).

Once again by Proposition 6.7, we have (p k + , 2] ⊆ J (L). For the inductive step we assume (p k , 2] ⊆ J (L) and pick any q ∈ (p k-1 , 2 * ]. For all t > 0 we have

1 = (a + t 2 L 0 )(1 + t 2 L 0 ) -1 + (1 -a)(1 + t 2 L 0 ) -1
as operators on L 2 . Multiplication by (1 + t 2 L) -1 a -1 = (a + t 2 L 0 ) -1 from the left yields the key identity

(1 + t 2 L) -1 a -1 = (1 + t 2 L 0 ) -1 + (1 + t 2 L) -1 a -1 (1 -a)(1 + t 2 L 0 ) -1 . (6.3)
On the right-hand side ((1+t 2 L) -1 ) t>0 is L q * -bounded by the induction hypothesis. By Theorem 6.2 we have q -(L 0 ) = p -(L 0 ) so that ((t∇ x (1+ t 2 L 0 ) -1 ) t>0 is H q -bounded. By a Sobolev embedding we have

(1 + t 2 L 0 ) -1 f q * ∇ x (1 + t 2 L 0 ) -1 f H q t -1 f H q ,
whenever f ∈ H q ∩ L 2 and t > 0. Hence, ((1 + t 2 L 0 ) -1 ) t>0 is H q -L q *bounded. Now, it follows from (6.3) that ((1+t 2 L) -1 ) t>0 is a -1 H q -L q *bounded. This was the key step.

If q > 1, then we have L q -L q * -boundedness for the resolvents of L. Interpolation with the L 2 off-diagonal estimates (Lemma 4.14) followed by Lemma 4.7 yields (q, 2] ⊆ J (L).

If q = 1, then (p k-1 , 2 * ] also contains exponents that are strictly smaller than 1 and we can jump right into the following case.

In the remaining case q < 1 we have a -1 H q -L q * -boundedness for the resolvents of L. As q * is an interior point of J (L) by the induction hypothesis, we get again L q * off-diagonal estimates of arbitrarily large order from the ones on L 2 by interpolation. For compactly supported

f ∈ L 2 , Corollary 5.4 yields R n a(1 + t 2 L) -1 a -1 f dx = 0.
This means that we have verified the assumptions of Lemma 4.9 and (q, 2] ⊆ J (L) follows.

Step 2: p -(L 0 ) ≤ p -(L). We only need a key identity replacing (6.3) and allowing us to deduce H q -L q * -boundedness of ((1 + t 2 L 0 ) -1 ) t>0 from L q * -boundedness of ((1+t 2 L 0 ) -1 ) t>0 and a -1 H q -L q * -boundedness of ((1 + t 2 L) -1 ) t>0 . The rest of the proof for p -(L) ≤ p -(L 0 ) was symmetric in L and L 0 .

For the new key identity we split

1 = (1 + t 2 L 0 )(a + t 2 L 0 ) -1 + (a -1)(a + t 2 L 0 ) -1
and multiply by (1 + t 2 L 0 ) -1 from the left in order to get the desirable decomposition

(1 + t 2 L 0 ) -1 = (1 + t 2 L) -1 a -1 + (1 + t 2 L 0 ) -1 (a -1)(1 + t 2 L) -1 a -1 .
Step 3: q -(L) = q -(L 0 ). It follows from the first two steps and Theorem 6.2.

Step 4: p + (L) = p + (L 0 ). Simply note that by duality relations (6.1) and the first two steps we have

p + (L) = (1 ∨ p -(L ♯ )) ′ = (1 ∨ p -(L ♯ 0 )) ′ = p + (L 0 ). Step 5: q + (L 0 ) ≤ q + (L). Let 2 ≤ q < q + (L 0 ). For t > 0 we use a new decomposition, namely t∇ x (1 + t 2 L) -1 = t∇ x (1 + t 2 L 0 ) -1 (a + t 2 L 0 + 1 -a)(1 + t 2 L) -1 = t∇ x (1 + t 2 L 0 ) -1 a + t∇ x (1 + t 2 L 0 ) -1 (1 -a)(1 + t 2 L) -1 . (6.4)
On the right-hand side (t∇ x (1 + t 2 L 0 ) -1 ) t>0 is L q -bounded by assumption and ((1 + t 2 L) -1 ) t>0 is L q -bounded since we have q + (L 0 ) ≤ p + (L 0 ) = p + (L) by Theorem 6.2 and Step 4. Thus, (t∇ x (1 + t 2 L) -1 ) t>0 is L q -bounded. Taking the supremum over all q, we obtain q + (L 0 ) ≤ q + (L).

Step 6: q + (L) ≤ q + (L 0 ). The argument follows by reversing the roles of L and L 0 in Step 4 and using the identity

t∇ x (1 + t 2 L 0 ) -1 = t∇ x (a + t 2 L 0 ) -1 (1 + t 2 L 0 + a -1)(1 + t 2 L 0 ) -1 = t∇ x (1 + t 2 L) -1 a -1 + t∇ x (1 + t 2 L) -1 a -1 (a -1)(1 + t 2 L 0 ) -1
instead of (6.4).

As an application of Theorem 6.9 we determine the critical numbers of multiplicative perturbations of the (coordinatewise acting) Laplacian.

Corollary 6.10. In any dimension it follows that

p -(-a -1 ∆ x ) = q -(-a -1 ∆ x ) = 1 * , p + (-a -1 ∆ x ) = q + (-a -1 ∆ x ) = ∞.
This result is originally due to McIntosh-Nahmod, see Theorem 3.3 and §5.(v) in [START_REF] Mcintosh | Heat kernel estimates and functional calculi of -b∆[END_REF]. Here, we have used a rather different and simpler method. In Section 14, we shall discuss kernel estimates Proof of Corollary 6.10. In view of Theorem 6.2 we only have to prove that q + (-a -1 ∆ x ) = ∞. By Theorem 6.9 we have q + (a -1 ∆ x ) = q + (-∆ x ) and there are many ways to see that

q + (-∆ x ) = ∞. One is to note that t∇ x (1 + t 2 (-∆ x )) -1 corresponds to the Fourier multiplier ξ → it(1 + t 2 |ξ| 2 ) -1 ξ
, which falls under the scope of the Mihlin multiplier theorem.

Riesz transform estimates: Part I

We introduce the set

I(L) := p ∈ (1 * , ∞) : ∇ x L -1/2 is a -1 H p -H p -bounded . (7.1)
Some clarification on the meaning of ∇ x L -1/2 being a -1 H p -H p -bounded is necessary since there are two possible interpretations:

• As we have seen in Section 3.6, L 1/2 : W 1,2 → L 2 extends to an isomorphism Ẇ1,2 → L 2 that we denote again by L 1/2 . In this sense R L := ∇ x L -1/2 is defined as a bounded operator on L 2 . The question of a -1 H p -H p -boundedness for R L fits into the abstract framework of Section 4 and means that

R L a -1 f H p f H p (f ∈ H p ∩ L 2 )
and when p > 1 equivalently that

R L f p f p (f ∈ L p ∩ L 2 ).
• We could also avoid the extension, work directly with ∇ x L -1/2 defined on R(L 1/2 ) and ask for

∇ x L -1/2 a -1 f H p f H p for all f ∈ H p ∩ R(aL 1/2 ).
We opt for the first interpretation, which is stronger. Then, by interpolation, I(L) is an interval and we make the following Definition 7.1. The lower and upper endpoint of I(L) are denoted by r -(L) and r + (L), respectively.

The two interpretations above agree if

H p ∩ R(aL 1/2 ) is dense in H p ∩ L 2
, but a priori this information might not be available. It happens for p ∈ J (L)∩(1, ∞) though, as the following more general lemma shows.

Lemma 7.2. If p ∈ J (L) ∩(1, ∞), then the spaces L p ∩ D(L k ) ∩R(L k ), k ∈ N, are all dense in L p ∩ L 2 .
Proof. By the Hahn-Banach theorem it suffices to check density for the weak topology. Given f ∈ L p ∩ L 2 , we consider approximants in

D(L k ) ∩ R(L k ) defined by f j := (jL) k (1 + jL) -k (1 + j -1 L) -k = (1 -(1 + jL) -1 ) k (1 + j -1 L) -k (j ∈ N).
By the convergence lemma we have f j → f in L 2 as j → ∞. On the other hand, (f j ) is bounded in L p ∩ L 2 and this space is reflexive since it is isomorphic to a closed subspace of a reflexive space, namely the diagonal in L p × L 2 . Hence, it has a weak accumulation point in L p ∩ L 2 , which by L 2 -convergence has to be f . In this section we shall identify (r -(L), r + (L)) ∩ (1, ∞). Hence, we are studying L p -boundedness of ∇ x L -1/2 . Later on, in Section 11, we will complete the results on the Riesz transform by identifying I(L) in the full range of exponents. This will require different methods.

Here is our main result on the Riesz transform in the L p -scale.

Theorem 7.3. The endpoints of I(L) ∩ (1, ∞) can be characterized as follows:

r -(L) ∨ 1 = p -(L) ∨ 1 & r + (L) = q + (L).
Theorem 7.3 requires establishing four implications that we shall present in a separate section each. The outline follows [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]Ch. 5]. To begin with, we need suitable singular integral representations for R L . Let α ∈ N. Writing out the Calderón reproducing formula for the auxiliary function z 3α+1/2 (1 + z) -9α and applying R L = ∇ x L -1/2 on both sides, we have for all f ∈ L 2 the representation via an improper Riemann integral

R L f = 1 c α ∞ 0 t∇ x (1 + t 2 L) -3α (t 2 L) 3α (1 + t 2 L) -6α f dt t , (7.2)
where c α is a constant depending on α. We note that on the right-hand side we do not have to deal with the extension of the square root. More precisely, the truncated Riesz transforms defined for ε ∈ (0, 1) via

R ε L f := 1 c α ∇ x L -1/2 1/ε ε (1 + t 2 L) -3α (t 2 L) 3α+1/2 (1 + t 2 L) -6α f dt t (7.3)
converge strongly on L 2 towards R L as ε → 0. The way to treat the kernel in (7.2) or ( 7.3) will be through L p -L 2 and L 2 -L p off-diagonal bounds that we record in the next lemma.

Lemma 7.4. Let p ∈ J (L) and let q be between p and 2. There exists an integer β = β(p, q, n) with the following property.

(i) If p < 2, then ((1+t 2 L) -β ) t>0 and (t∇ x (1+t 2 L) -β-1 ) t>0 satisfy L q -L 2 off-diagonal estimates of arbitrarily large order. (ii) If p > 2, then ((1 + t 2 L) -β ) t>0 satisfies L 2 -L q off-diagonal
estimates of arbitrarily large order.

Proof. We begin with (i). The resolvents are L p -bounded by assumption and L ̺ -L 2 -bounded for some ̺ = ̺(n) ∈ (1, 2) due to Lemmata 6.3 and 6.4. Lemma 4.4 furnishes an integer

β = β(p, q, n) such that ((1 + t 2 L) -β ) t>0 is L q -L 2 -bounded.
This holds for all such exponents q, so the off-diagonal estimates follow by interpolation with the L 2 -result. The claim for the gradients follows by composition since

(t∇ x (1 + t 2 L) -1
) satisfies L 2 off-diagonal estimates of arbitrarily large order.

As for (ii), we can argue by duality and similarity. Indeed, (i) applies to L ♯ := (a * ) -1 L * a * and we have (2, (p 

-(L ♯ ) ∨ 1) ′ ) = (2, p + (L)).
7.1. Sufficient condition for 1 < p < 2. We prove (p -(L) ∨ 1, 2) ⊆ I(L). Due to the L 2 -bound and the Marcinkiewicz interpolation theorem it suffices to show that R L is of weak type (p, p) for every p ∈ (p -(L) ∨ 1, 2). We fix such p and use Blunck-Kunstmann's criterion [START_REF] Blunck | Calderón-Zygmund theory for nonintegral operators and the H ∞ functional calculus[END_REF] in its simplified version as stated in [6, Thm. 1.1]: Proposition 7.5. Let p ∈ [START_REF] Amenta | Tent spaces over metric measure spaces under doubling and related assumptions[END_REF][START_REF] Amenta | Interpolation and embeddings of weighted tent spaces[END_REF]. Suppose that T is a sublinear operator of strong type (2, 2) and let A r , r > 0, be a family of bounded linear operators on

L 2 (R n ). Assume for j ≥ 2 that 1 |B| C j (B) |T (1 -A r(B) )f | 2 1 2 ≤ g(j) 1 |B| B |f | p 1 p (7.4)
and for j ≥ 1 that

1 |B| C j (B) |A r(B) f | 2 1 2 ≤ g(j) 1 |B| B |f | p 1 p , (7.5)
for all balls B and all f ∈ L 2 with support in B. If Σ = j g(j)2 jn/2 is finite, then T is of weak type (p, p) with a bound depending on p 0 , p, Σ and the strong type (2, 2)-bound.

We check (7.4) and (7.5) for T = R L the Riesz transform and A r := 1ϕ(r 2 L), (7.6) where

ϕ(z) := (1 -(1 + z) -β ) 3α . (7.7)
Here, α ∈ N is as in (7.2). It will be chosen larger in the further course. Since p is not the lower endpoint of J (L) ∩ (1, 2], we can pick β ∈ N sufficiently large according to Lemma 7.4 to have L p -L 2 off-diagonal estimates of arbitrarily large order for ((1 + t 2 L) -β ) t>0 at our disposal.

Step 1: Verification of (7.5) with g(j) = c2 -γj and arbitrary γ > 0.

Expanding A r = - 3α k=1 3α k (-1) k (1 + r 2 L) -βk (7.8)
and using the L p -L 2 off-diagonal decay, we immediately get (7.5) with g(j) = c2 -jγ with γ > 0 as large as we want and c depending on α, β, γ. We take γ > n /2 to meet the summing condition in Proposition 7.5.

Step 2: Verification of (7.4) with g(j) = c2 j(n/2-n/p-α) . Let B be a ball of radius r > 0 and let f be supported in B. We abbreviate C j (B) by C j and for j ≥ 2 we introduce D j := 2 j-1 B. Then

d(C j , D j ) ≃ 2 j r ≃ d(B, c D j ).
The representation (7.2) yields

R L (1 -A r )f L 2 (C j ) ≤ ∞ 0 t∇ x (1 + t 2 L) -3α 1 D j ψ(t 2 L)ϕ(r 2 L)f L 2 (C j ) dt t + ∞ 0 t∇ x (1 + t 2 L) -3α 1c D j ψ(t 2 L)ϕ(r 2 L)f L 2 (C j ) dt t , (7.9) 
with an auxiliary function

ψ(z) := c α z 3α (1 + z) -6α . (7.10)
From now on we require 3α ≥ β + 1. Composing L 2 off-diagonal estimates for the resolvents and their gradients and L p -L 2 off-diagonal estimates for the β-th powers of the resolvents, we find that

t∇ x (1 + t 2 L) -3α = t∇ x (1 + t 2 L) -3α+β (1 + t 2 L) -β
satisfies L p -L 2 off-diagonal estimates of arbitrarily large order. Thus,

t∇ x (1 + t 2 L) -3α 1 D j ψ(t 2 L)ϕ(r 2 L)f L 2 (C j ) t n 2 -n p 1 + 2 j r t -γ ψ(t 2 L)ϕ(r 2 L)f p , (7.11)
with γ > 0 at our disposal. From (7.7) and (7.10) we can read off the decay properties ϕ ∈ Ψ 0 3α and ψ ∈ Ψ 3α 3α . Thus we find by the third part of Lemma 4.16 that

ψ(t 2 L)ϕ(r 2 L)f p r t 2α f p . (7.12)
We remark that in applying Lemma 4.16 we do not need to switch to an exponent q ∈ (p, 2] since p is not the lower endpoint of J (L) ∩ [START_REF] Amenta | Tent spaces over metric measure spaces under doubling and related assumptions[END_REF][START_REF] Amenta | Interpolation and embeddings of weighted tent spaces[END_REF]. The combination of the previous two estimates is

t∇ x (1 + t 2 L) -3α 1 D j ψ(t 2 L)ϕ(r 2 L)f L 2 (C j ) r t 2α-n 2 + n p 1 + 2 j r t -γ r n 2 -n p f p
and integrating the resulting bound with respect to dt /t and changing variables to s = 2 j r /t leads us to

∞ 0 t∇ x (1 + t 2 L) -3α 1 D j ψ(t 2 L)ϕ(r 2 L)f L 2 (C j ) dt t ≤ g(j)r n 2 -n p f p ,
where

g(j) := 2 j( n 2 -n p -2α) ∞ 0 s 2α-n 2 + n p (1 + s) γ ds s .
We take γ > 2αn /2+ n /p to have a finite integral in s and 2α > nn /p to take care of the summing condition in Proposition 7.5. This completes the treatment of the first integral on the right of (7.9). For the second integral the roles of uniform boundedness and offdiagonal estimates are reversed. Indeed, as c D j and C j intersect, our replacement for (7.11) becomes

t∇ x (1 + t 2 L) -3α 1c D j ψ(t 2 L)ϕ(r 2 L)f L 2 (C j ) t n 2 -n p ψ(t 2 L)ϕ(r 2 L)f L p ( c D j ) (7.13)
and from the first and second part of Lemma 4.16 we obtain the bound

ψ(t 2 L)ϕ(r 2 L)f L p ( c D j )    1 + 2 j-1 r t -6α f p if t ≤ r (1 + 2 j-1 ) -6α f p if t ≥ r.
In addition we still have the uniform bound (7.12) and thus, using both estimates raised to the power 1 /2, we have

ψ(t 2 L)ϕ(r 2 L)f L p ( c D j ) r t α 1 + 2 j r t -3α f p . (7.14)
We combine the latter estimate with (7.11), integrate in t and change variables to s = 2 j r /t as before in order to obtain

∞ 0 t∇ x (1 + t 2 L) -3α 1c D j ψ(t 2 L)ϕ(r 2 L)f L 2 (C j ) dt t g(j)r n 2 -n p f p
where this time

g(j) := 2 j( n 2 -n p -α) ∞ 0 s α-n 2 + n p (1 + s) 3α ds s .
We take α > n /pn /2 to have a finite integral in s and α > nn /p to take care of the summing condition in Proposition 7.5. This completes the treatment of the second integral on the right of (7.9) and also the proof of the weak (p, p)-bound for R L is complete.

7.2. Sufficient condition for p > 2. We prove (2, q + (L)) ⊆ I(L).

We let p ∈ (2, q + (L)) and prove that the Riesz transform R L is L pbounded. We use again the singular integral representation (7.2) with a parameter α ∈ N to be chosen large in the further course of the proof. The kernel of the truncated Riesz transforms R ε L in (7.3) given by t∇

x (1 + t 2 L) -3α (t 2 L) 3α (1 + t 2 L) -6α = t∇ x (1 + t 2 L) -1 (1 -(1 + t 2 L) -1 ) 3α (1 + t 2 L) -6α (7.15)
is L p -bounded since we have p < p + (L) by Theorem 6.2. Consequently, each R ε L is L p -bounded with a bound depending on ε and it suffices to establish a uniform L p -bound in order to conclude for L p -boundedness of R L . To this end we ultimately fix some p 0 ∈ (p, q + (L)) and employ the following criterion. Proposition 7.6 ([6, Thm. 1.2]). Let p 0 ∈ (2, ∞]. Suppose that T is a sublinear operator acting on L 2 (R n ) and let A r , r > 0, a family of linear operators acting on L 2 (R n ). Assume

1 |B| B |T (1 -A r(B) )f | 2 1 2 ≤ C(M(|f | 2 )) 1 2 (y) (7.16) and 1 |B| B |T A r(B) f | p 0 1 p 0 ≤ C(M(|T f | 2 )) 1 2 (y) (7.17) for all f ∈ L 2 , all balls B and all y ∈ B. If 2 < p < p 0 and T f ∈ L p whenever f ∈ L p ∩ L 2 , then T f p ≤ c f p ,
where c depends only on n, p, p 0 , C. As p 0 < p + (L), we can use again Lemma 7.4 to find some large β ∈ N for which ((1 + t 2 L) -β+1 ) t>0 satisfies L 2 -L p 0 off-diagonal estimates of arbitrarily large order. Then we define the same approximating family A r as in (7.6) and our task is to verify (7.16) and (7.17) for T = R ε L and a constant C that does not depend on ε.

We assume right away that 6α ≥ β -1. By composition, this guarantees that the kernel in (7.15) is L 2 -L p 0 -bounded and hence that R ε L also maps L 2 into L p 0 .

Step 1: Verification of (7.16). Let f ∈ L 2 and B a ball of radius r. We claim that

R ε L (1 -A r )f L 2 (B) r n 2 ∞ j=1 g(j) - 2 j+1 B |f | 2 1 2 (7.18)
with g(j) = C2 -j(α-n) and C a constant that does not depend on ε.

Since each integral on the right-hand side is bounded by M(|f | 2 )(y) for every y ∈ B, this bound yields (7.16) provided that we take α > n.

For the claim we write f = ∞ j=1 f j , where f j := 1 C j f and C j := C j (B), and obtain

R ε L (1 -A r )f L 2 (B) ≤ ∞ j=1 R ε L (1 -A r )f j L 2 (B) .
The term for j = 1 is readily handled by

L 2 -boundedness of R ε L (1-A r ): R ε L (1 -A r )f 1 L 2 (B) f L 2 (4B) ≃ r n 2 - 4B |f | 2 1 2
.

Note that the L 2 -bound is independent of ε, r and depends only on dimensions and ellipticity. This follows from writing

R ε L (1 -A r ) = R L F ε,r (L) as in (7.
3) and using the functional calculus on L 2 . For j ≥ 2 we re-introduce the auxiliary function ψ from (7.10) and the sets D j := 2 j-1 B. In analogy with (7.9) we write

R ε L (1 -A r )f j L 2 (B) ≤ ∞ 0 t∇ x (1 + t 2 L) -3α (1c D j + 1 D j )ψ(t 2 L)ϕ(r 2 L)f j L 2 (B) dt t .
By composition, t∇ x (1 + t 2 L) -3α satisfies L 2 off-diagonal estimates of arbitrarily large order when t > 0. Therefore, we continue by

∞ 0 1 + 2 j r t -3α ψ(t 2 L)ϕ(r 2 L)f j L 2 ( c D j ) dt t + ∞ 0 ψ(t 2 L)ϕ(r 2 L)f j L 2 (D j ) dt t .
We can re-use (7.12) with p = 2 and likewise (7.14) if we replace ( c D j , f ) with (D j , f j ) due to the different support properties in the ongoing argument. Indeed, these bounds have been obtained assuming only p ∈ (p -(L), 2]. Altogether, we obtain a bound by

∞ 0 r t 2α 1 + 2 j r t -3α f j 2 + r t α 1 + 2 j r t -3α f j 2 dt t ≤ 2 -jα f L 2 (2 j+1 B) ∞ 0 s 2α + s α 1 + s 3α ds s ,
where the integral in s is finite. The claim (7.18) follows.

Step 2: Verification of (7.17). Let g ∈ Ẇ1,p 0 ∩ W 1,2 and B a ball of radius r. We claim that

- B |∇ x A r g| p 0 1 p 0 ≤ C ∞ j=1 g(j) - 2 j+1 |∇ x g| 2 1 2 (7.19)
holds with a summable sequence g(j) that does not depend on ε. Taking this for granted, the right-hand side is bounded by M(|∇g| 2 )(y) 1/2 for every y ∈ B and, given f ∈ L 2 , the function

g := 1 c α 1/ε ε t(1 + t 2 L) -3α (t 2 L) 3α (1 + t 2 L) -6α f dt t verifies ∇ x A r g = R ε L A r f and ∇ x g = R ε L f
. At the beginning of the proof we have seen that R ε L maps L 2 into L p 0 . Therefore g ∈ Ẇ1,p 0 and we obtain (7.17).

In order to prove (7.19), we perform two more reduction steps. Expanding A r as in (7.8), we see that it suffices to establish (7.19) with A r replaced by (1 + r 2 L) -βk , k ≥ 1. Moreover, thanks to the conservation property in Corollary 5.4 we can replace g by g -(g) B .

Concerning off-diagonal estimates of arbitrarily large order, we obtain type L 2 -L p 0 for

r∇ x (1 + r 2 L) -βk = r∇ x (1 + r 2 L) -1 (1 + r 2 L) -βk+1
by composition: Indeed, for the gradient family we have L p 0 -L p 0 by interpolation of the L 2 -result with L q -boundedness for some q ∈ (p 0 , q + (L)), and β was chosen such that already the (β -1)-th powers of resolvents have L 2 -L p 0 . As usual, we split g-g B = j≥1 (g-g B )1 C j (B) and obtain

- B |∇ x (1 + r 2 L) -β (g -g B )| p 0 1 p 0 r -1-n 2 j≥1 2 -jγ g -g B L 2 (C j (B)) ,
where γ > 0 is at our disposal. Poincaré's inequality [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Prop. 7.45] provides the bound

g -g B L 2 (C j (B)) ≤ g -g B L 2 (2 j+1 B) 2 jn r ∇ x g L 2 (2 j+1 B) .
We conclude that

- B |∇ x (1 + r 2 L) -β (g -g B )| p 0 1/p 0 j≥1 2 j( 3n 2 -γ) - 2 j+1 |∇ x g| 2 1/2 .
We take γ > 3n /2 to grant summability of g(j) := 2 j(3n/2-γ) and the proof of (7.19) is complete.

7.3. Necessary condition for 1 < p < 2. We suppose that the Riesz transform is L p -bounded for some p ∈ (1, 2) and prove that p ≥ p -(L).

In dimension n ≤ 2 we have p -(L) ≤ 1, see Proposition 6.7. Hence, we can restrict ourselves to dimensions n ≥ 3.

We set p 0 := p, define iteratively p k := p * k-1 and stop at the first exponent k + ≥ 0 with p k + ∈ (2 * , 2]. We shall prove by backward induction that (p k , 2] ⊆ J (L) for all k. Hence, we eventually find (p, 2] ⊆ J (L), that is to say, p ≥ p -(L).

We have

(p k + , 2] ⊆ (2 * , 2] ⊆ J (L) by Proposition 6.7.
For the inductive step we assume (p k , 2] ⊆ J (L) and pick any q

∈ (p k-1 , 2 * ].
Then q * is an interior point of J (L) and hence (tL

1/2 (1 + t 2 L) -1 ) t>0 is L q * -bounded by Lemma 4.16. For f ∈ L q ∩ R(L 1/2 ) we can therefore estimate (1 + t 2 L) -1 f q * t -1 L -1/2 f q * t -1 ∇ x L -1/2 f q t -1 f q ,
where the final step uses q ∈ (p, 2] ⊆ I(L). We need to make sure that this estimates applies to sufficiently many functions f . We stress that Lemma 7.2 is useless in this regard since q ∈ J (L) is precisely what we are trying to prove. Lemma 7.7. In any dimension n, it follows that if q ∈ I(L) satisfies q < 2 * , then

H q ∩ L 2 ⊆ R(aL 1/2 ).
Momentarily, let us take the lemma for granted. If q > 1, then multiplication by a is an automorphism of L q ∩ L 2 . Hence, we have L q ∩ L 2 ⊆ R(L 1/2 ) and the previous bound implies L q -L q * -boundedness of the resolvents. As usual, we can interpolate with the L 2 off-diagonal estimates and then use Lemma 4.7 to obtain (q, 2] ⊆ J (L). Since q ∈ (p k-1 , 2 * ] was arbitrary, (p k-1 , 2] ⊆ J (L) follows.

This completes the proof modulo the Proof of Lemma 7.7. For clarity we denote by T L the extension of the bijection

L 1/2 : W 1,2 → R(L 1/2 ) to an isomorphism Ẇ1,2 → L 2 , so that R L = ∇ x T -1 L . Let f ∈ H q ∩ L 2 . Interpolation yields f ∈ H 2 * ∩ L 2 and 2 * ∈ I(L). Hence, ∇ x T -1 L a -1 f ∈ H 2 * . Modulo constants we obtain T -1 L a -1 f ∈ L 2 by the Hardy-Sobolev embedding and consequently T -1 L a -1 f ∈ W 1,2 . By definition of T L this means that a -1 f ∈ R(L 1/2 ).
7.4. Necessary condition for p > 2. We let p ∈ (2, r + (L)) and prove that p ≤ q + (L). In fact, it suffices to prove [2, p) ⊆ J (L): For q ∈ (2, p) we then obtain L q -boundedness of

t∇ x (1 + t 2 L) -1 = (∇ x L -1/2 )((t 2 L) 1/2 (1 + t 2 L) -1
) by composition, applying Lemma 4.16 to the second factor.

The argument is similar to the previous section. We set p 0 := p, define iteratively p k := (p k-1 ) * and stop at the first exponent k -≥ 0 with p k -∈ [2, 2 * ). Then [2, p k-) ⊆ J (L) by Proposition 6.7. Now, assume [2, p k ) ⊆ J (L) and pick any q ∈ [2 * , p k-1 ). Since q * is an interior point of J (L), the family (tL 1/2 (1 + t 2 L) -1 ) t>0 is L q * -bounded by Lemma 4.16. Moreover, q * ∈ [2, p) ⊆ I(L), so for all f ∈ L q ∩ L 2 , we get

(1 + t 2 L) -1 f q ∇ x (1 + t 2 L) -1 f q * L 1/2 (1 + t 2 L) -1 f q * t -1 f q * , which shows that ((1 + t 2 L) -1 ) t>0 is L q * -L q -bounded. Interpolation with the L 2 off-diagonal estimates and then Lemma 4.7 yield [2, q) ⊆ J (L). Since q ∈ [2, p k-1 ) was arbitrary, [2, p k-1 ) ⊆ J (L) follows.
By backward induction we eventually arrive at the desired conclusion [2, p) ⊆ J (L).

Operator-adapted spaces

Operator-adapted Hardy-Sobolev spaces are our main tool in this monograph and will be essential for understanding most of the following sections. They have been developed in various references starting with semigroup generators in [17, [START_REF] Duong | Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus[END_REF]57,[START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF] up to the recent monographs focusing on bisectorial operators [3,[START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]. Still we need some unrevealed features and we take this opportunity to correct some inexact arguments from the literature. For general properties of adapted Hardy spaces we closely follow [3,Sec. 3], where the authors develop an abstract framework of twoparameter operator families that provides a unified approach to sectorial and bisectorial operators. The application to bisectorial operators with first-order scaling has been detailed in [3,Sec. 4] and we review their results in Section 8.1. Section 8.2 provides all necessary details in order to apply the framework to sectorial operators with second-order scaling and we summarize the results that are relevant to us. This will justify using parts of [3] for sectorial operators in the further course.

The abstract framework allows us to treat operator-adapted Besov spaces simultaneously without any additional effort. These spaces will only be needed in the final Section 19 and the reader might ignore them till then. 8.1. Bisectorial operators with first-order scaling. To set the stage, we assume that

• T is a bisectorial operator in L 2 = L 2 (R n ; V ) of some angle ω ∈ [0, π 2 ), where V is a finite-dimensional Hilbert space, • T has a bounded H ∞ -calculus on R(T ), • ((1 + itT ) -1 ) t∈R\{0} satisfies L 2 off-diagonal estimates
of arbitrarily large order.

(8.1)

These are called Standard Assumptions in [3,Ch. 4]. In fact, [3] requires for all ν ∈ (0, π /2ω) that the family ((1 + izT ) -1 ) z∈Sν satisfies L 2 off-diagonal estimates of arbitrarily large order but this follows already from the first and third assumption in (8.1) by interpolation, see Lemma 4.13. The reader may recall from Sections 3.5 and 4 that T * satisfies the standard assumptions as well.

In the following we suppress the reference to bisectors from notation of classes of holomorphic functions since we allow any bisector of angle larger than ω. We mimic the extension to the upper half-space by convolutions in the definition of the classical Hardy spaces by associating with each ψ ∈ H ∞ on a bisector the extension operator

Q ψ,T : R(T ) → L ∞ (0, ∞; L 2 ), (Q ψ,T f )(t) = ψ(tT )f. (8.2) If in addition ψ ∈ Ψ + + , then Q ψ,T
is defined on all of L 2 and by McIntosh's theorem it maps L 2 boundedly into L 2 (0, ∞, dt t ; L 2 ) = T 0,2 = Z 0,2 . Hence, we can look at the bounded dual operator

C ψ,T := (Q ψ * ,T * ) * : L 2 (0, ∞, dt t ; L 2 ) → L 2
, where ψ * (z) = ψ(z), which is given by the weakly convergent integral

C ψ,T F = ∞ 0 ψ(tT )F (t) dt t . (8.3)
Of course, the integral converges strongly in L 2 if F has compact support in (0, ∞). We call C ψ,T a contraction operator. It is denoted by S ψ,T in [3] and we change notation in order to distinguish it from conical square functions.

Definition 8.1. Let ψ ∈ H ∞ , s ∈ R and p ∈ (0, ∞). The sets H s,p ψ,T := {f ∈ R(T ) : Q ψ,T f ∈ T s,p ∩ T 0,2 }, B s,p ψ,T := {f ∈ R(T ) : Q ψ,T f ∈ Z s,p ∩ Z 0,2 },
equipped with what will be shown to be quasinorms

f H s,p ψ,T := Q ψ,T f T s,p , f B s,p ψ,T := Q ψ,T f Z s,p
, are called pre-Hardy-Sobolev and pre-Besov space space of smoothness s and integrability p adapted to T , respectively. The function ψ is called auxiliary function.

In order to treat pre-Hardy-Sobolev and pre-Besov spaces simultaneously, we introduce the concise notation

X s,p ψ,T := {f ∈ R(T ) : Q ψ,T f ∈ Y s,p ∩ Y 0,2 }
, where the pair (Y, X) is either (T, H) or (Z, B). These pairs are called (X, X) in [3] but it will be convenient to keep the symbol X for a different purpose. For ψ ∈ Ψ + + the condition Q ψ,T f ∈ Y 0,2 is redundant and if in addition ψ is non-degenerate, then by McIntosh's theorem we have up to equivalent norms

X 0,2 ψ,T = R(T ). (8.4)
For general values of s and p and auxiliary functions ψ ∈ H ∞ = Ψ 0 0 we still have that X s,p ψ,T is quasinormed [3,Prop. 4.3] and, up to equivalent quasinorms, independent of the auxiliary function in the following classes.

Proposition 8.2 ([3, Prop. 4.4]). Let s ∈ R and p ∈ (0, ∞). Up to equivalent norms, X s,p ψ,T does not depend on the choice of ψ ∈ H ∞ as long as it is non-degenerate and of class Ψ τ σ with the following technical conditions on the decay parameters:

• τ > -s + | n /2 -n /p| and σ > s if p ≤ 2, • τ > -s and σ > s + | n /2 -n /p| if p ≥ 2.
This allows us to drop the dependence on ψ.

Definition 8.3. Let s ∈ R and p ∈ (0, ∞). Denote by X s,p T the quasinormed space X s,p ψ,T for any ψ ∈ Ψ τ σ as in Proposition 8.2. When s = 0, simply write X p T := X 0,p T . Usually, we take ψ with sufficiently large decay to describe these spaces.

Proposition 8.4 ([3, Prop. 4.7]). Let s ∈ R and p ∈ (0, ∞) and suppose that ψ ∈ Ψ τ σ is non-degenerate, where • τ > s and σ > -s + | n /2 -n /p| if p ≤ 2, • τ > s + | n /2 -n /p| and σ > -s if p ≥ 2. Then X s,p T = C ψ,T (Y s,p ∩ Y 0,2 ) and f → inf F Y s,p : F ∈ Y s,p ∩ Y 0,2 & C ψ,T F = f .
is an equivalent quasinorm.

The spaces X s,p T are not complete in general unless p = 2. This is why we use the subscript 'pre' and remove it when taking completions. As usual, a completion of a quasinormed space Q is an isometric map

ι : Q → Q, where Q is a complete quasinormed space and ι(Q) is dense in Q. For Q := X s,p
T , there are compatible completions of these spaces within the same ambient space L 2 loc (R 1+n + ): the construction in [3,Prop. 4.20], called canonical completion, is to take

ι := Q ψ,T with ψ ∈ Ψ ∞ ∞ & Q := Q ψ,T (X s,p T ) ⊆ Y s,p . Definition 8.5. Let ψ ∈ Ψ ∞ ∞ be non-degenerate. For s ∈ R and p ∈ (0, ∞) denote by ψX s,p
T the canonical completion of the quasinormed space X s,p T . By the Calderón reproducing formula (here for bisectorial operators, see [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]Prop. 4

.2]) the function ψ has a non-degenerate sibling ϕ ∈ Ψ ∞ ∞ such that C ϕ,T Q ψ,T = 1 on R(T )
. This allows us to summarize the full construction of operator adapted Hardy spaces in one commutative diagram, see Figure 5. 

ψX s,p T Y s,p ψX s,p T ψX s,p T Q ψ,T (X s,p T ) Y s,p ∩ Y 0,2 X s,p T Q ψ,T (X s,p T ) P Id C ϕ,T Q ψ,T Q ψ,T
,p ∩ Q ψ (X 0,2 T ) = Q ψ (X s,p T ).
The canonical completions inherit many properties tent and Z-spaces via Figure 5. Two important examples are the following approximation results that have been tacitly used in [3]. By a slight abuse of notation we allow X ∈ {B, H} to be different in the assumption and the conclusion.

Lemma 8.6. Let ψ ∈ Ψ ∞ ∞ be non-degenerate. If F ∈ ψX s 0 ,p 0 T for some s 0 ∈ R, p 0 ∈ (0, ∞), then there exists (F j ) j ⊆ ψX 0,2
T with F j → F in every space of type ψX s,p T that F belongs to. Proof. This is an immediate consequence of Figure 5. Indeed, since 1 (j -1 ,j)×B(0,j) F ∈ Y 0,2 is a universal approximation of F with respect to tent and Z-spaces, see Sections 2.2 and 2.3, we can take F j := P (1 (j -1 ,j)×B(0,j) F ).

Lemma 8.7. Let s 0 ∈ R and p 0 ∈ (0, ∞). Given f ∈ X s 0 ,p 0 T , there is a sequence (f j ) j in k∈Z R(T k ) with f j → f in every space of type X s,p T that f belongs to. In particular, convergence holds in X 0,2 T ⊆ L 2 . Proof. Again by Figure 5 we have f = C ϕ,T F with F := Q ψ,T f and therefore f j := C ϕ,T (1 (j -1 ,j)×B(0,j) F ) have the required universal approximation property. Thanks to ϕ ∈ Ψ ∞ ∞ we also obtain that

f j = T k j j -1 (tT ) -k ϕ(tT )(1 B(0,j) F (t)) dt t k+1 ∈ R(T k ) (k ∈ Z).
One necessity for the canonical completions is the following interpolation result.

Proposition 8.8 ([3, Thm. 4.28]). Let ψ ∈ Ψ ∞ ∞ be non-degenerate. Let 0 < p 0 , p 1 < ∞, s 0 , s 1 ∈ R, θ ∈ (0, 1) and set p := [p 0 , p 1 ] θ , s := (1 -θ)s 0 + θs 1 . Up to equivalent quasinorms it follows that [ψH s 0 ,p 0 T , ψH s 1 ,p 1 T ] θ = ψH s,p T and if s 0 = s 1 , (ψX s 0 ,p 0 T , ψX s 1 ,p 1 T ) θ,p = ψB s,p T . When p ∈ (1, ∞), the spaces ψX p
T and ϕX p ′ T * are in natural duality with each other as described in [3,Prop. 4.23] provided that ϕ, ψ ∈ Ψ ∞ ∞ are siblings. Since by definition the pre-Hardy-Sobolev and pre-Besov spaces are dense in their completions, we can equivalently state this result as follows.

Proposition 8.9.

Let p ∈ (1, ∞). Then, whenever f ∈ L 2 , sup g∈X p ′ T * | f, g | g X p ′ T * ≃ f X p T ,
where

• , • is the inner product on L 2 .
The 'raison d'être' of these spaces is that the H ∞ -calculus of T extends to them in the best possible way.

Proposition 8.10 ([3, Thm. 4.14].). Let s ∈ R, p ∈ (0, ∞) and ν ∈ (ω, π /2). Then for all η ∈ H ∞ (S ν ), η(T )f X s,p T η ∞ f X s,p T (f ∈ X s,p T ). Moreover, if ϕ ∈ Ψ 1 -1 (S ν ) and ψ ∈ Ψ -1 1 (S ν ), then ϕ(T )f X s+1,p T f X s,p T (f ∈ D(ϕ(T )) ∩ X s,p T ) and ψ(T )f X s-1,p T f X s,p T (f ∈ D(ψ(T )) ∩ X s,p
T ), where the implicit constants also depend on ϕ and ψ.

The second part indicates that the spaces for different smoothness parameters are related through a lifting property. Indeed, recall that ( z /[z])(T ) and its inverse are bounded operators on R(T ) since T has a bounded H ∞ -calculus and that therefore T and [T ] share the same domain and range. Thus, using (ϕ, ψ) = ( 1 /ψ, ψ) with either ψ(z) = z or ψ(z) = [z] in the proposition above, we obtain Corollary 8.11. The operators T and

(T 2 ) 1/2 are bijections X s+1,p T ∩ D(T ) → X s,p T ∩ R(T ) that satisfy T f X s,p T ≃ f X s+1,p T ≃ [T ]f X s,p T .
From the H ∞ -calculus we immediately obtain that (e -t[T ] ) t≥0 is a bounded semigroup on X s,p T . In fact, we also have strong continuity and stability. Proposition 8.12 ([3, Prop. 4.33]). Let s ∈ R and p ∈ (0, ∞). For all f ∈ X s,p T the following limits hold in X s,p T :

lim t→0 e -t[T ] f = f and lim t→∞ e -t[T ] f = 0. 8.2.
Sectorial operators with second-order scaling. In this case our standard assumptions are that

• T is a sectorial operator on L 2 = L 2 (R n ; V ) of some angle ω ∈ [0, π), where V is a finite-dimensional Hilbert space, • T has a bounded H ∞ -calculus on R(T ), • ((1 + t 2 T ) -1 ) t>0 satisfies L 2 off-diagonal estimates of arbitrarily large order, (8.5) 
and we allow holomorphic functions on any sector of angle larger than ω in the following considerations. We define the extension for ψ ∈ H ∞ with second-order scaling

Q ψ,T : R(T ) → L ∞ (0, ∞; L 2 ), (Q ψ,T f )(t) = ψ(t 2 T )f
and if in addition

Ψ + + , then Q ψ,T is again defined on all of L 2 , maps into L 2 (0, ∞, dt t ; L 2
) and we have the dual operator

C ψ,T := (Q ψ * ,T * ) * , C ψ,T F = ∞ 0 ψ(t 2 T )F (t) dt t ,
where the integral converges weakly in L 2 . Most of the theory in [3,Sec. 3 & 4] has been written for abstract continuous two-parameter families (S t,τ ) t,τ >0 on L 2 and hence applies in extenso to families

(ψ(t 2 T )η(T )ϕ(τ 2 T )) (8.6)
with a sectorial operator as above, instead of

(ψ(tT )η(T )ϕ(τ T )) (8.7)
with a bisectorial operator. Here,

ψ ∈ Ψ τ 1 σ 1 , ϕ ∈ Ψ τ 2 σ 2 , η ∈ Ψ τ 3
σ 3 are auxiliary functions with σ j , τ j ∈ R. The only difference with the results of bisectorial operators lies in how large these parameters have to be in order to arrive at the desired conclusion.

The three fundamental mapping properties for families of type (8.7) in [3] -Lemma 3.17, Lemma 3.18 and Theorem 3.19 -remain to hold for families of type (8.6) and then the same conclusion holds already if one replaces σ j , τ j by σ j /2, τ j /2 in the assumptions. Indeed, following the self-contained proofs in [3], one readily sees that the assumptions on the auxiliary functions are exclusively determined by [3,Thm. 3.8], which in turn provides the order of L 2 off-diagonal decay that one can get for families of the form (η(t)ψ(tT )) t>0 if (η(t)) t>0 is a continuous bounded family of functions in H ∞ and ψ ∈ Ψ τ σ . Precisely, [3, Thm. 3.8] allows any order up to γ = σ. On the other hand, in Lemma 4.16 we have proved the same conclusion for (η(t)ψ(t 2 T )) t>0 under the mere assumption ψ ∈ Ψ τ /2 σ/2 . From this discussion we conclude that qualitatively the results of Section 8.1 that build on [3] remain valid for sectorial operators with second-order scaling but there are the following quantitative changes. The technical conditions of Proposition 8.2 become

• τ > -s /2 + | n /4 -n /(2p)| and σ > s /2 if p ≤ 2, • τ > -s /2 and σ > s /2 + | n /4 -n /(2p)| if p ≥ 2,
with the same type of modification in Proposition 8. [START_REF] Arendt | Integral representations of resolvents and semigroups[END_REF]. In Proposition 8.10 the assumption on the angle is again best possible, that is ν ∈ (ω, π) and η ∈ H ∞ (S + ν ), and the second part of holds for ϕ ∈ Ψ

1/2 -1/2 (S + ν ) and ψ ∈ Ψ -1/2
1/2 (S + ν ). As a consequence, the lifting property of Corollary 8.11 uses √ T . Performing only the purely symbolic replacement of √ z 2 by √ z at all occasions in the statement and proof of Proposition 8.12, we immediately obtain the following version for sectorial operators.

Proposition 8.13. Let s ∈ R and p ∈ (0, ∞). For all f ∈ X s,p T the following limits hold in X s,p T :

lim t→0 e -t √ T f = f and lim t→∞ e -t √ T f = 0.
8.3. Molecular decomposition for adapted Hardy spaces. Molecular decompositions for H p T with p ∈ (0, 1] have been pioneered in [START_REF] Duong | Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus[END_REF]57,[START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF] for divergence form operators T =div x d∇ x . For (bi)sectorial operators satisfying our standard assumptions, the same kind of decomposition has been used in many references including [3,[START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF] but a proof seems to be missing in the literature. We take the opportunity to close this gap. The construction closely follows [START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF] but heat semigroup bounds have to be replaced with more technical resolvent bounds.

Throughout this section T is again a (bi)sectorial operator that satisfies the standard assumptions of Section 8.1 or Section 8.2 and we define H p T by the abstract theory for first or second-order scaling, respectively. (i) If T is bisectorial with first-order scaling

Definition 8.14. Let p ∈ (0, 1], ε > 0 and M ∈ N. A function m ∈ L 2 is called (H p T , ε, M)-molecule if there exists a cube Q ⊆ R n
((ℓ(Q)T ) -k m L 2 (C j (Q)) ≤ (2 j ℓ(Q)) n 2 -n p 2 -jε .
(ii) If T is sectorial with second-order scaling

((ℓ(Q) 2 T ) -k m L 2 (C j (Q)) ≤ (2 j ℓ(Q)) n 2 -n p 2 -jε .
Remark 8.15. Summing up the bounds in j gives the global L 2 -bound

((ℓ(Q) ̺ T ) -k m 2 ≤ cℓ(Q) n/2-n/p
, where ̺ ∈ {1, 2} is the order of scaling and c depends on p, ε, M. If ε > n/2, then we can use Hölder's inequality before summing and obtain

((ℓ(Q) ̺ T ) -k m 1 ≤ cℓ(Q) n-n/p . Definition 8.16. Let p ∈ (0, 1], ε > 0 and M ∈ N. A molecular (H p T , ε, M)-representation of f ∈ R(T ) is a series ∞ i=0 λ i m i that con- verges towards f unconditionally in L 2 such that (λ i ) ∈ ℓ p and each m i is a (H p T , ε, M)-molecule.
The molecular Hardy space

H p T,mol,ε,M := f ∈ R(T ) : f has a molecular (H p T , ε, M)-representation is equipped with the quasi norm f H p T,mol,M := inf (λ i ) ℓ p
, where the infimum is taken over all admissible representations.

With these definitions at hand, we establish the following Theorem 8.17.

Let p ∈ (0, 1], ε > 0 and M ∈ N with M > n /p -n /2 if T is bisectorial with first-order scaling or M > n /(2p) -n /4 if T is sectorial with second-order scaling. Then H p T,mol,ε,M = H p T
with equivalent quasinorms and the equivalence constants depend on T only through the bounds that are quantified in the standard assumptions.

As in many earlier references, the proof relies on the atomic decomposition for tent spaces that we recall beforehand.

Definition 8.18. Let p ∈ (0, 1]. A T p -atom associated with a cube Q ⊆ R n is a measurable function A : R 1+n + → C N with support in Q × (0, ℓ(Q)) such that ℓ(Q) 0 Q |A(s, y)| 2 dsdy s 1 2 ≤ ℓ(Q) n 2 -n p . Proposition 8.19 ([35, Prop. 5]). Let p ∈ (0, 1]. There is a constant C such that every F ∈ T p can be written as f = ∞ i=0 λ i A i with un- conditional convergence in L 2 loc (R 1+n + ), where each A i is a T p -atom and (λ i ) ℓ p ≤ C F T p .
Remark 8.20. The unconditional convergence is not stated explicitly but is immediate from the construction, see [35, (4.5)]. Indeed, we have

λ i A i = F 1 ∆ i , where (∆ i ) i is a collection of pairwise disjoint subsets of R 1+n
+ . This also implies that for f ∈ T p ∩ T 2 the atomic decomposition converges in T 2 = L 2 (R 1+n + , dtdx t ). The proof of Theorem 8.17 relies on two lemmata. Lemma 8.21. Let p ∈ (0, 1] and ε > 0. Let M ∈ N and ψ ∈ Ψ + + as follows:

•

M > n /p -n /2 and ψ(z) = z 2M (1 + iz) -4M if T is bisectorial with first-order scaling, • M > n /(2p) -n /4 and ψ(z) = z 2M (1 + z) -4M if T is sectorial
with second-order scaling. Then there exists a constant C depending on these parameters and the bounds that are quantified in the standard assumptions such that

Q ψ,T m T p ≤ C
holds for every (H p T , ε, M)-molecule m. Proof. We give the proof for bisectorial T with first-order scaling. Up to consistently changing the scaling, the argument for sectorial operators is identical. Since

ψ(z) = (-i) 2M ((1 + iz) -1 -(1 + iz) -2 ) 2M
we obtain by composition that (ψ(tT )) t>0 satisfies L 2 off-diagonal estimates of arbitrarily large order.

Let m be a (H p T , ε, M)-molecule associated with a cube Q of sidelength ℓ. We need a uniform L p -bound for the square function

S ψ,T m(x) := |x-y|<t |ψ(tT )m(y)| 2 dtdy t 1+n 1/2 . Since H 2 T = R(T ), we have that S ψ,T f 2 f 2 for all f ∈ R(T ).
In particular, we obtain from Hölder's inequality and the molecular decay the local bound

S ψ,T m L p (16Q) ≤ |16ℓ| n p -n 2 Sm L 2 (16Q) ≤ C.
It remains to prove that there is α > 0 depending only on ε, M, p such that for all j ≥ 4 we have a uniform bound

S ψ,T m L 2 (C j (Q)) ≤ C2 -jα (2 j ℓ) n 2 -n p . (8.8)
Indeed, this implies S ψ,T m L p (C j (Q)) ≤ C2 -jα as before and the global L p -bound for S ψ,T m follows by summing up the p-th powers of these estimates.

In order to establish (8.8), we split the integral in t at height 2 θ(j-1) ℓ, where θ ∈ (0, 1) will be fixed later: 

S ψ,T m L 2 (C j (Q)) ≃ C j (Q) |x-y|<t |ψ(tT )m(y)| 2 dtdy t 1+n dx 1/2 2 θj(j-1) ℓ 0 D j (Q) |ψ(tT )m(y)| 2 dydt t 1/2 + ∞ 2 θ(j-1) ℓ R n |ψ(tT )m(y)| 2 dydt t 1/2 =: I + II , where D j (Q) := 2 j+2 Q \ 2 j-1 Q
II = ∞ 2 θ(j-1) ℓ R n |(tT ) M ψ(tT )b(y)| 2 dydt t 2M +1 1/2 (2 θj ℓ) -M b 2 ≤ C2 -j(θM + n 2 -n p ) (2 j ℓ) n 2 -n p
and we can achieve α := θM + n /pn /2 > 0 by taking θ sufficiently close to 1. This completes the treatment of II .

As for I , we decompose further I = I 1 + I 2 , where I k corresponds to replacing m with m k defined as

m 1 := 1 2 j+3 Q\2 j-2 Q m, m 2 := 1c (2 j+3 Q\2 j-2 ) m.
The L 2 -bound for S ψ,T and the molecular estimates yield

I 1 m 1 2 ≤ j+2 k=j-2 m 2 L 2 (C k (Q)) ≤ C2 -2jε (2 j ℓ) n 2 -n p .
Since the support of m 2 is at distance at least 2 j-2 ℓ from D j (Q), we get can infer from the off-diagonal decay for ψ(tT ) that

I 2 m 2 2 θ(j-1) ℓ 0 1 + 2 j-2 ℓ t -2γ dt t 1/2 m 2 (2 j ℓ) -2γ 2 θ(j-1) ℓ 0 t 2γ dt t 1/2 ≤ C(2 j ℓ) n 2 -n p 2 -j((1-θ)γ+ n 2 -n p )
, where we have used again Remark 8.15 in the final step and γ is still at our disposal. We have already fixed θ ∈ (0, 1) and it suffices to take γ large enough so that α := (1θ)γ + n /2n /p > 0. This completes the treatment of I and hence we have established our goal (8.8).

Lemma 8.22. Let p ∈ (0, 1]. Let ε > 0 and M ∈ N. Let ψ(z) = z 2M (1 + iz) -4M if T is bisectorial with first-order scaling and ψ(z) = z 2M (1 + z) -4M
is T is sectorial with second-order scaling. There exists a constant c depending on these parameters and the bounds that are quantified in the standard assumptions, such that c -1 C ψ,T A is a (H p T , ε, M)-molecule, whenever A is a T p -atom. Proof. Again we only do the proof in the bisectorial case and the sectorial case follows line by line up to the usual modifications.

Let A be a T p -atom associated with a cube Q of sidelength ℓ and set

m := C ψ,T A = ℓ 0 (tT ) 2M (1 + itT ) -4M A(t) dt t ,
where we have used the support property of A. The integral converges weakly in L 2 but as M ≥ 1, the integral

b := ℓ 0 t M (tT ) M (1 + itT ) -4M A(t)
dt t converges strongly and we have T M b = m. We establish the molecular bounds for m up to a generic renorming factor c.

In preparation of the argument, let g ∈ L 2 . For k = 0, . . . , M we bound the L 2 inner product

| (ℓT ) -k m, g | ≤ ℓ -k ℓ 0 | t k (tT ) 2M -k (1 + itT ) -4M A(t), g | dt t = ℓ -k ℓ 0 t k | A(t), ϕ(tT * )g | dt t ≤ ℓ 0 A(t) 2 L 2 (Q) dt t 1/2 ℓ 0 ϕ(tT * )g 2 L 2 (Q) dt t 1/2 ≤ ℓ n 2 -n p ℓ 0 ϕ(tT * )g 2 L 2 (Q) dt t 1/2
, where ϕ ∈ Ψ M M is given by ϕ(z) := z 2M -k (1iz) -4M and we have used the support and the molecular bound of A. Taking the supremum over all g with support in 4Q normalized to g 2 = 1 and controlling the square function via McIntosh's theorem, we obtain

(ℓT ) -k m L 2 (4Q) ≤ cℓ n 2 -n p ,
which is the required molecular bound for j = 1. The family (ϕ(tT )) t>0 satisfies L 2 off-diagonal estimates of arbitrarily large order by decomposition since we can expand

ϕ(z) = (-i) 2M -k (1 -(1 + iz) -1 ) 2M -k (1 + iz) -2M -k .
For j ≥ 2 we take the supremum over all normalized g in L 2 with support in L 2 (C j (Q)) and obtain

(ℓT ) -k m L 2 (C j (Q)) ℓ n 2 -n p ℓ 0 2 j-1 ℓ t -2γ dt t 1/2 ≤ cℓ n 2 -n p 2 -(j-1
)γ , with γ > 0 at our disposal. We take γ > n /pn /2 + ε to obtain the required molecular decay.

Putting it all together, we give the Proof of Theorem 8.17. Let f ∈ H p T,mol,ε,M and let f = ∞ i=0 λ i m i be an L 2 convergent molecular representation. We define H p T via the admissible auxiliary function ψ from Lemma 8.21. Let ̺ ∈ {1, 2} be the scaling order. We have

Q ψ,T f p T p = x∈R n |x-y|<t |ψ(t ̺ T )f (y)| 2 dtdy t 1+n p/2 dx ≤ R n ∞ i=0 |λ i | |x-y|<t |ψ(t ̺ T )m i (y)| 2 dtdy t 1+n 1/2 p dx ≤ ∞ i=0 |λ i | p Q ψ,T m i p T p ≤ C p ∞ i=0 |λ i | p , (8.9) 
where the first step uses L 2 -convergence, the second step is due to p ≤ 1 and monotone convergence and the third step is by Lemma 8. 

f = C ψ,T F with F ∈ T p ∩ T 2 and F T p ≤ 2 f H p T .
According to Proposition 8.19 and the subsequent remark, we can write F = ∞ i=0 λ i A i , where the sum converges unconditionally in T 2 , each A i is a T p -atom and we have (λ

) i ℓ p ≤ C F T p . Since C ψ,T : T 2 → L 2 is bounded, we get an unconditionally L 2 -convergent representation f = C ψ,T F = ∞ i=0 λ i C ψ,T A i = ∞ i=0 (cλ i )c -1 m i ,
where c is the constant from Lemma 8.22 and the m i := C ψ,T A i are (H p T , ε, M)-molecules. This proves f H T,mol,ε,M ≤ 2Cc f H p T . 8.4. Connection with the non-tangential maximal function. We recall the non-tangential maximal function

N * F (x) := sup t>0 -- W (t,x) |F (s, y)| 2 dsdy 1/2
, where W (t, x) := ( t /2, 2t) × B(x, t). At this level of generality we do not know whether H p T could be characterized via N * as in [START_REF] Duong | Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus[END_REF][START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF] but, using the molecular decompositions, we can give upper bounds for the non-tangential maximal function of resolvent families and Poisson-type semigroups acting on H p T if p ≤ 1. Such result can be extend to p ≤ 2 by interpolation provided the result for p = 2 holds, which might be a concern in itself.

We begin with a simple comparison of the non-tangential maximal function and the uncentered Hardy-Littlewood maximal operator M in R n . Lemma 8.23. Let ψ : (0, ∞) → L(L 2 ) be a strongly measurable family that satisfies L 2 off-diagonal estimates of order γ > n/2. Then there is a constant C depending on dimensions and the off-diagonal bounds, such that --

W (t,x) |ψ(s)f (y)| 2 dsdy ≤ C M(|f | 2 )(x)
for all f ∈ L 2 and all (t, x) ∈ R 1+n + . Proof. Set B := B(x, t) and split f = j≥0 f j , where f j := 1 C j (B) f . For t /2 < s < 2t we have by assumption

B |ψ(s)f j (y)| 2 dy 1 + (2 j -1)t s -2γ f 2 L 2 (C j (B)) 2 -2γj 2 j B |f | 2 t n 2 -j(2γ-n) M(|f | 2 )(x).
The claim follows by summing in j and averaging in s.

We also recall Kolmogorov's lemma for bounding the maximal operator on L θ for θ < 1, see for instance [39, Lem. 5.16].

Lemma 8.24 (Kolmogorov). Let θ ∈ (0, 1) and E ⊆ R n a set of finite measure. There is a constant

C = C(θ, n) such that E | M f (y)| θ dy ≤ C|E| 1-θ f θ 1 (f ∈ L 1 ).
With these tools at hand, we establish a first non-tangential maximal bound on H p T .

Proposition 8.25. Let p ∈ (0, 1] and ε > 0. Let M ∈ N and ψ ∈ H ∞ as follows:

• M > n /p -n /2 and ψ(z) = (1 + iz) -2M if T is bisectorial with first-order scaling, • M > n /(2p) -n /4 and ψ(z) = (1 + z) -2M if T is sectorial with
second-order scaling. Then there exists a constant C depending on these parameters and the bounds that are quantified in the standard assumptions such that

N * (Q ψ,T f ) p ≤ C f H p T (f ∈ H p T ). Proof. Let f ∈ H p T and f = ∞ i=0 λ i m i be an L 2 -convergent molecular representation as in Theorem 8.17. Then Q ψ,T f = ∞ i=0 λ i Q ψ,T m i in L ∞ (0, ∞; L 2
) and by sublinearity of the maximal function we find

N * (Q ψ,T f ) p p ≤ ∞ i=0 |λ i | N * (Q ψ,T m i ) p p ≤ ∞ i=0 |λ i | p N * (Q ψ,T m i ) p p .
Consequently, it suffices to treat the case that f = m is an (H p T , ε, M)molecule (associated with a cube Q of sidelength ℓ). We only write out the argument in the bisectorial case. As usual, the proof is identical in the sectorial case upon changing the scaling.

Step 1: Local bound for N * . By composition, the family (ψ(tT )) t>0 satisfies L 2 off-diagonal estimates of arbitrarily large order. Therefore, Lemma 8.23 yields N * (Q ψ,T m) ≤ C(M(|m| 2 )) 1/2 a.e. on R n and by means of Kolmogorov's lemma and Remark 8.15 we get

N * (Q ψ,T m) p L p (16Q) 16Q | M(|m| 2 )(y)| p 2 dy ≤ |16Q| 1-p 2 m p 2 ≤ C p .
Step 2: Decomposition of N * on annuli. It remains to show that there is α > 0 depending only on ε, M, p such that for all j ≥ 4 we have a uniform bound

N * (Q ψ,T m) p L p (C j (Q)) ≤ 2 -jα C p . (8.10)
The claim then follows by summing up in j. To this end, we fix j ≥ 4 and split

N * (Q ψ,T m) ≤ N loc * (Q ψ,T m) + N glob * (Q ψ,T m)
, where the local and global parts correspond to restricting the size of Whitney boxes in the definition of N * to t ≤ ℓ and t ≥ ℓ, respectively.

Step 3: Bound for

N loc * on C j (Q). Let 0 < t < ℓ and x ∈ C j (Q). Splitting m = i≥0 m i , where m i := 1 C i (Q) m, we get -- W (t,x) |(1 + isT ) -2M m| 2 dsdy 1/2 |i-j|≥2 t -n 2 1 + d(B(x, t), C i (Q)) t -γ m i 2 + |i-j|≤1 M(|m i | 2 )(x) 1 2 ,
where we have used L 2 off-diagonal decay of the resolvents whenever |i -j| ≥ 2 and Lemma 8.23 whenever |i -j| ≤ 1. The order γ > 0 is at our disposal. For any set E ⊆ R n we have

1 + d(B(x, t), E) t ≥ 1 2 + d(x, E) 4t as follows by distinguishing whether or not t ≥ d(x,E) /2. Specializing to E = C i (Q) with |i -j| ≥ 2, we get 1 + d(B(x, t), C i (Q)) t ≥ 1 2 + d(x, C i (Q)) 4t 2 i∨j ℓ 4t .
We also have

m i 2 ≤ |2 i∨j Q| 1 2 - 2 i∨j Q |m i | 2 dy 1 2
(2 i∨j ℓ)

n 2 M(|m i | 2 )(x) 1 2 
.

Applying these bounds on the right-hand side of our estimate leads us to --

W (t,x) |(1 + isT ) -2M m| 2 dsdy 1/2 i≤j-2 (2 j ℓ) n 2 -γ t γ-n 2 M(|m i | 2 )(x) 1 2 + |i-j|≤1 M(|m i | 2 )(x) 1 2 + i≥j+2 (2 i ℓ) n 2 -γ t γ-n 2 M(|m i | 2 )(x) 1 2 . 
(8.11)

From now on we require γ > n /2. On the right-hand side t appears with positive exponent and hence the supremum over 0 < t ≤ ℓ is attained for t = ℓ. We conclude that

N loc * (Q ψ,T m)(x) i≤j-2 2 j( n 2 -γ) M(|m i | 2 )(x) 1 2 + |i-j|≤1 M(|m i | 2 )(x) 1 2 + i≥j+2 2 i( n 2 -γ) M(|m i | 2 )(x) 1 2 . 
(8.12)

Kolmogorov's lemma and the molecular bounds for m imply

C j (Q) | M(|m i | 2 )(x)| p 2 dx ≤ |C j (Q)| 1-p 2 m i p 2 ≤ C2 j( n p -n 2 )p 2 i( n 2 -n p -ε)p ,
so that integrating the p-th power of (8.12) in x ∈ C j (Q) yields

N loc * (Q ψ,T m) p L p (C j (Q)) i≤j-2 2 j( n p -γ)p 2 i( n 2 -n p -ε)p + |i-j|≤1 2 j( n p -n 2 )p 2 i( n 2 -n p -ε)p + i≥j-2 2 j( n p -n 2 )p 2 i(n-n p -ε-γ)p ≃ 2 j( n p -γ)p + 2 -jε + 2 j( n 2 -ε-γ)p .
This establishes (8.10) for N loc * provided that eventually we take γ > n /p (which implies γ > n /2).

Step 4: Bound for N glob * on C j (Q). We write m = T M b as in Definition 8.14. We have

(1 + itT ) -2M m = (it) -M (it) M (1 + itT ) -2M m = (it) -M ((1 + itT ) -1 -(1 + itT ) -2 ) M b =: (it) -M ϕ(tT )b,
where (ϕ(tT )) t>0 satisfies L 2 off-diagonal estimates of arbitrarily large order. Hence, we can repeat the first part of Step 3 with ϕ, b replacing ψ, m and due to the additional factor (it) -M our substitute for (8.11) becomes --

W (t,x) |(1 + isT ) -2M m| 2 dsdy 1/2 i≤j-2 (2 j ℓ) n 2 -γ t γ-n 2 -M M(|b i | 2 )(x) 1 2 + |i-j|≤1 t -M M(|b i | 2 )(x) 1 2 + i≥j+2 (2 i ℓ) n 2 -γ t γ-n 2 -M M(|b i | 2 )(x) 1 2
with γ > 0 at our disposal and b

i := 1 C i (Q) b. We require γ < n /2 + M.
Then t appears with negative exponent on the right-hand side and passing to the supremum for all t ≥ ℓ, we get

N glob * (Q ψ,T m)(x) i≤j-2 2 j( n 2 -γ) M(|ℓ -M b i | 2 )(x) 1 2 + |i-j|≤1 M(|ℓ -M b i | 2 )(x) 1 2 + i≥j+2 2 i( n 2 -γ) M(|ℓ -M b i | 2 )(x) 1 2 .
Now, ℓ -M b = (ℓT ) -M m satisfies the same L 2 -bounds on annuli as m and we can repeat the arguments in Step 3 in order to conclude (8.10) for N glob * provided that at the end of the proof we take again γ > n /p. This requirement is compatible with γ < n /2 + M since we have M > n /pn /2 by assumption.

In the context of boundary value problems it will be important to have a statement as above with a Poisson-like semigroup replacing the resolvents. To this end we need the following fact.

Lemma 8.26. Let p ∈ (0, ∞). There is a constant C = C(n, p) such that N * (F ) p ≤ C F T p (F ∈ L 2 loc (R 1+n + )
). We add a proof for convenience.

Proof. Let (t, x) ∈ R 1+n + . Since (s, y) ∈ W (t, x) implies |x -y| < t ≤ 2s and t ≥ s/2, we have that -- W (t,x) |F (s, y)| 2 dsdy 1/2 ≤ C |x-y|<2s |F (s, y)| 2 dsdy s 1+n 1/2 .
The right-hand side does not depend on t and its L p -quasinorm in x is equivalent to F T p by a change of aperture. The claim follows by taking the supremum in t and integrating the p-th powers in x.

Proposition 8. [START_REF] Barton | Gradient estimates and the fundamental solution for higher-order elliptic systems with rough coefficients[END_REF].

Let p ∈ (0, 1]. Let ψ(z) = e - √ z 2 if
T is bisectorial with first-order scaling and ψ(z) = e -√ z if T is sectorial with secondorder scaling. Then there exists a constant C depending on the bounds that are quantified in the standard assumptions, such that

N * (Q ψ,T f ) p ≤ C f H p T (f ∈ H p T ).
Moreover, the bound continues to hold for p ∈ (1, 2] if it holds for p = 2.

Proof. First, let p ∈ (0, 1] and define an auxiliary function ϕ as follows:

• If T is bisectorial with first-order scaling, let M > n /pn /2 and ϕ(z

) := ψ(z) -(1 + iz) -2M . Then ϕ ∈ Ψ 2M 1 , so that the technical condition in Proposition 8.2 holds. • If T is sectorial with second-order scaling, let M > n /(2p) -n /4
and ϕ(z

) := ψ(z) -(1 + z) -2M . Then ϕ ∈ Ψ 2M 1/2
and the corresponding technical condition for sectorial operators (Section 8.2) holds. We find for all

f ∈ H p T that N * (Q ψ,T f ) p ≤ N * (Q ϕ,T f ) p + N * (Q ψ-ϕ,T f ) p Q ϕ,T f T p + N * (Q ψ-ϕ,T f ) p f H p T ,
where the second step is due Lemma 8.26 and the third step uses the definition of the H p T -norm and Proposition 8.25. Suppose in addition that this bound holds for p = 2. Let φ ∈ Ψ ∞ ∞ and recall the definition of H p T via the contraction mapping C φ (Proposition 8.4). The claim is then equivalent to F → N * (Q ψ,T C φ F ) being bounded T p ∩ T 2 → L p for the respective p-norms. By assumption this holds for p = 2 and from the first part of the proof it follows p = 1, so the claim follows by complex interpolation for positive sublinear operators [START_REF] Janson | On the interpolation of sublinear operators[END_REF]. 8.5. D-adapted spaces. The unperturbed Dirac operator D satisfies the standard assumptions of Section 8.1. In order to fully understand the associated Hardy-Sobolev and Besov spaces, we need the orthogonal projection

P D : L 2 → R(D) ⊆ L 2 . From the specific form of D 2 in (3.3) we see that D 2 f = -∆ x f (f ∈ D(D 2 ) ∩ R(D))
and hence that

P D = -∆ -1 x D 2 holds on the dense subspace D(D 2 ) of L 2 . Now, -∆ -1
x D 2 can also be viewed as a Fourier multiplier with symbol

1 C m 0 0 (|ξ| -2 ξ ⊗ ξ) ⊗ 1 C m , (8.13)
where ξ ∈ R n is the Fourier variable and we think of C mn ≃ (C m ) n as n-vectors of elements in C m just as in the definition of vector-valued gradient and divergence. This symbol is homogeneous of degree zero and smooth outside of 0 and hence falls in the scope of the Mihlin multiplier theorem [92, Thm. 5.2.2]. Therefore -∆ x D 2 extends boundedly to Ẋs,p , where X ∈ {B, H}, for all s ∈ R and p ∈ (0, ∞). The extension to L 2 is precisely P D and we keep on denoting the extensions to other spaces by the same symbol. From (8.13) we also obtain the block structure

P D =: 1 0 0 P curlx . (8.14)
Since R(D) coincides with the space H in the ellipticity condition (1.2), we get that P curlx is the projection onto the curl-free L 2 vector fields. By [3, Thm. 5.3] we have for s ∈ R and p ∈ (0, ∞) that X s,p D = P D ( Ẋs,p ∩ L 2 ) with equivalence of p-quasinorms. In particular, P D ( Ẋs,p ) equipped with the norm of Ẋs,p is a completion of X s,p D in Z ′ . Let now ψ ∈ H ∞ for the sectorial functional calculus and put ϕ(z) := ψ(z 2 ). Then (3.14) with B = 1 yields for all t > 0 that

X s,p -∆x ⊕ X s,p -∇x divx = X s,p D = Ẋs,p ∩ L 2 ⊕ P curl x ( Ẋs,p ∩ L 2 ).
ϕ(tD) = ψ(-t 2 ∆ x ) 0 0 ψ(-t 2 ∇ x div x ) ,
that is to say

Q ϕ,D = Q ψ,-∆x 0 0 Q ψ,-∇x divx . (8.15)
On taking ψ with sufficient decay at 0 and ∞, we conclude X s,p D = X s,p -∆x ⊕X s,p -∇x divx . Along with (8.14) we can characterize the D-adapted spaces as in Figure 6.

As a matter of fact, Theorem 8.17 for D comprises a molecular decomposition for Ḣ0,p ∩ L 2 = H p ∩ L 2 when p ∈ (0, 1]. In order to illustrate how operator-adapted and standard theory interact for a specific differential operator, we recover an atomic decomposition for H p from the molecular decomposition of H p D . Proposition 8. [START_REF] Barton | Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces[END_REF].

Let p ∈ (1 * , 1]. Every f ∈ H p D can be written as f = ∞ i=0 λ i a i with unconditional convergence in L 2
, where each a i is an L 2 -atom for H p . Moreover, f H p ≃ inf (λ i ) ℓ p , where the infimum is taken over all such representations.

Proof. Let C be such that a H p ≤ C for all L 2 -atoms a for H p . By the same argument as in (8.9) we get for any

L 2 -convergent atomic representation f := ∞ i=0 λ i a i that f p H p ≃ f p H p D ≤ C p (λ) i p ℓ p . Conversely, let f ∈ H p D . Due to Theorem 8.17 we have f = ∞ i=0 λ i m i , where each m i is an (H p D , 1, 1)-molecule and (λ i ) i ℓ p ≤ 2 f H p .
Consequently, it suffices to find atomic decompositions for each m i .

Let Q i be the associated cube and write m i = Db i as in Definition 8.14. Let (χ j i ) ∞ j=1 be a smooth partition of unity on R n such that

0 ≤ χ j i ≤ 1 C j (Q i ) , ∇ x χ j i ∞ ≤ c(n)(2 j ℓ(Q i )) -1 . (8.16) Then b i = ∞ j=1 χ j i b i unconditionally in L 2 . Since D is a first-order differential operator, each D(χ j i b i ) is supported in 2 j+1 Q i ,

has mean value zero and satisfies

D(χ j i b i ) 2 ≤ m i L 2 (C j (Q i )) + 2 -j c ℓ(Q i ) -1 b i L 2 (C j (Q i )) ≤ c(2 j ℓ(Q i )) n 2 -n p 2 -j ,
where c only depends on dimensions. This means that a j i := c -1 2 j D(χ j i b i ) is an H p -atom. Since D is closed, we obtain the atomic decomposition

m i = Db i = ∞ j=1 D(χ j i b i ) = ∞ j=1 c2 -j a j i .
The proof above showed more.

Corollary 8.29. Let p ∈ (1 * , 1]. There is a constant C that depend on dimensions and p such that every

(H p D , 1, 1)-molecule m satisfies m H p ≤ C.
Note that Lemma 8.21 gives the same result provided that n /p < 1 + n /2. We have used the specific structure for D to get the conclusion without this restriction.

We shall also need atomic decomposition of Ḣ1,p ∩W 1,2 as in [START_REF] Frazier | A discrete transform and decompositions of distribution spaces[END_REF], but with Ẇ1,2 -convergence rather than convergence in Ḣ1,p . While this can certainly be inferred from inspection of the proof in [START_REF] Frazier | A discrete transform and decompositions of distribution spaces[END_REF], we prefer to give a direct and more transparent argument that relies on the lifting property from Corollary 8.11.

Definition 8.30. Let p ∈ (1 * , 1]. An L 2 -atom for Ḣ1,p is a function a supported in a cube Q ⊆ R n such that ∇ x a 2 ≤ ℓ(Q) n 2 -n p . Proposition 8.31. Let p ∈ (1 * , 1]. Every f ∈ Ḣ1,p ∩W 1,2 can be written as f = ∞ i=0 λ i a i with unconditional convergence in Ẇ1,2
, where each a i is an L 2 -atom for Ḣ1,p . Moreover, f Ḣ1,p ≃ inf (λ i ) i ℓ p , where the infimum is taken over all such representations. Proof. Corollary 8.11 and Figure 6 tell us that

D : H 1,p D ∩ D(D) → H p D ∩ R(D) is bijective and satisfies Dg H p ≃ g Ḣ1,p and Dg L 2 ≃ g Ḣ1,2 for all g. Also, if f is an L 2 -atom for Ḣ1,p , then D([f, 0] ⊤ ) = [0, -∇ x f ] is an L 2 -atom for H p . If f = ∞ i=0 λ i a i is a Ḣ1,p atomic decomposition as above, then D f 0 = ∞ i=0 λ i 0 -∇ x a i is a H p atomic decomposition and f Ḣ1,p (λ i ) i ℓ p follows. Con- versely, let f ∈ Ḣ1,p ∩ W 1,2 . Then D([f, 0] ⊤ ) ∈ H p
D and the atomic decomposition obtained in the proof of Proposition 8.28 takes the form

D f 0 = 0 -∇ x f = ∞ i=0 ∞ j=1 cλ i 2 -j a j i , a j i = c -1 2 j D(χ j i b i ),
where each a j i is an L 2 -atom for H p and the χ j i are smooth functions satisfying (8. [START_REF] Auscher | The square root problem of Kato in one dimension, and first order elliptic systems[END_REF]). The function

(c -1 2 j χ j i b i ) ⊥ has support in 2 j+1 Q i and satisfies -∇ x (c -1 2 j χ j i b i ) ⊥ = (a j i )
. Hence, it is an L 2 -atom for Ḣ1,p and the decomposition we are looking for is

f = ∞ i=0 ∞ j=1 cλ i 2 -j (c -1 2 j χ j i b i ) ⊥ .
8.6. Spaces adapted to perturbed Dirac operators. Now, we apply the abstract theory with first-order scaling to the bisectorial operators BD and DB and relate the operator-adapted spaces to those obtained for the sectorial operators L, M, L, M with second-order scaling. Thanks to the different orders of scaling, the meaning of s as a smoothness parameter is the same for all adapted spaces. In analogy with (8.15) we have that whenever ψ is an admissible auxiliary function on a sector for the definition of X s,p L and X s,p M , then ϕ(z) := ψ(z 2 ) is admissible for X s,p BD and

Q ϕ,BD = Q ψ,L 0 0 Q ψ,M . (8.17)
This is again a consequence of (3.14). The same kind of relation holds with DB on the left and L, M on the right and follows from (3.4). Merely by definition we obtain

X s,p BD = X s,p L ⊕ X s,p M , X s,p DB = X s,p L ⊕ X s,p M .
(8. [START_REF] Auscher | Heat kernels of second order complex elliptic operators and applications[END_REF] In this sense the theory for the perturbed Dirac operators encompasses the theory of all four second-order operators. Figure 7 summarizes their various relations.

As for the mapping between the second and third row in Figure 7, we first cite the following regularity shift from [3, Prop. 5.6]: we have that [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF] is bijective and bounded from below and above for the X-quasinorms. In particular,

D : X s+1,p BD ∩ D(D) → X s,p DB ∩ R(D) (8.
Df X s,p DB ≃ f X s+1,p BD (f ∈ X s+1,p BD ∩ D(D)). X s,p BD ∩ R([BD]) = X s,p L ∩ R(L 1/2 ) ⊕ X s,p M ∩ R(M 1/2 ) X s+1,p BD ∩ D(D) = X s+1,p L ∩ D(L 1/2 ) ⊕ X s+1,p M ∩ D(M 1/2 ) X s,p DB ∩ R(D) = X s,p L ∩ R(div x ) ⊕ X s,p M ∩ R(∇ x ) X s,p BD ∩ R(BD) = X s,p L ∩ R(a -1 div x ) ⊕ X s,p M ∩ R(d∇ x ) [BD] D L 1/2 -∇x divx M 1/2 B a -1 d Figure 7
. Splittings and identifications of pre-Hardy-Sobolev and pre-Besov spaces. Each arrow indicates a bijection that is bounded from below and above for the respective X-quasinorms. Domains and ranges are taken for the corresponding operators on L 2 with maximal domain. Each appearing space is the intersection of an adapted space X s,p T with one of its dense subsets, where density is with respect to the norm

• X s,p T + • 2 , see Lemma 8.7.
This takes care of the left-hand side. The two ingredients for the proof in [3] 

|BDu| 2 + t -2 B(x,2t) |u| 2 .
Remark 8. [START_REF] Chen | Conical square functions for degenerate elliptic operators[END_REF]. In Lemma 8.32 we understand Du = [div x u , -∇ x u ⊥ ] ⊤ in the sense of distributions. In particular, we can take u ∈ D(D).

On recalling

D(D) = D(BD) = D([BD]
) from Section 3.6 and R(D) = R(DB) from (3.8), we can split the regularity shift (8. [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF]) in the spirit of (8.18) and obtain the right-hand side between the second and third row.

Similarly, the mappings between the first and second row in Finally, the mapping from the third to the fourth line follows from the block diagonal structure of B and the following Lemma 8.34. Let s ∈ R and p ∈ (0, ∞). The map

B : X s,p DB ∩ R(D) → X s,p BD ∩ R(BD)
is bijective and bounded from below and above for the respective X s,pquasinorms.

Proof. Let f ∈ X s,p DB ∩R(D). We have Bf ∈ R(BD) and for any ψ

∈ Ψ + + we obtain Q ψ,BD Bf = BQ ψ,DB f from (3.15). Since B is a bounded multiplication operator, we conclude Bf X s,p BD ≤ B ∞ f X s,p DB . Conversely, let g ∈ X s,p
BD ∩ R(BD) and write g = Bf with f ∈ R(D). In order to bound f in X s,p DB , we take an auxiliary function ψ ∈ Ψ ∞ ∞ and define ϕ ∈ Ψ ∞ ∞ by ϕ(z) = zψ(z). For fixed t > 0 we have again the intertwining relation Dψ(tBD)g = DBψ(tDB)f . The local coercivity inequality applied to u := tψ(tBD)g can therefore be rewritten as

B(x,t) |ϕ(tDB)f | 2 B(x,2t) |ϕ(tBD)g| 2 + B(x,2t) |ψ(tBD)g| 2 . Consequently, Q ϕ,DB f Y s,p Q ϕ,BD g Y s,p + Q ψ,BD g Y s,p
, where in the case (X, Y) = (H, T) we also used a change of angle in the tent space norms. The left-hand side compares to f X s,p DB whereas both terms on the right compare to g X s,p BD . We could also write down a 'completed' version of Figure 7 in which all pre-Hardy-Sobolev and pre-Besov spaces are replaced by their canonical completions and all intersections vanish. While conceptually this might seem more satisfactory, the possibility of working with invertible maps in L 2 will have significant advantages for many of our proofs.

Identification of adapted Hardy spaces

This section is concerned with identifying three pre-Hardy spaces, H p L , H 1,p L and H p DB , that play a crucial role for Dirichlet and regularity problems with classical smoothness spaces. To this end it will be convenient to have a version of Figure 7 around these particular spaces at hand:

As for the second and third row 'identifying' means determining whether the spaces remain the same as sets and with equivalent pquasinorms when B is replaced by the identity matrix. In the fourth row for H p L , we can then expect it is the image of H p ∩ L 2 under multiplication with a -1 . If p > 1, then multiplication by a -1 is invertible on H p = L p and hence the image the same as

L p ∩ L 2 . H p BD ∩ R([BD]) = H p L ∩ R(L 1/2 ) ⊕ H p M ∩ R(M 1/2 ) H 1,p BD ∩ D(D) = H 1,p L ∩ D(L 1/2 ) ⊕ H 1,p M ∩ D(M 1/2 ) H p DB ∩ R(D) = H p L ∩ R(div x ) ⊕ H p M ∩ R(∇ x ) H p BD ∩ R(BD) = H p L ∩ R(a -1 div x ) ⊕ H p M ∩ R(d∇ x ) [BD] D L 1/2 -∇x divx M 1/2 B a -1 d Figure 8
. Figure 7 for s = 0 and X = H. Each appearing space is the intersection of an adapted space with one of its dense subsets. 9.1. Identification regions. We introduce three such sets of exponents:

H(DB) := p ∈ (1 * , ∞) : f H p DB ≃ f H p D for all f ∈ R(D) (9.1)
and

H(L) := p ∈ (1 * , ∞) : f H p L ≃ af H p for all f ∈ L 2 , H 1 (L) := p ∈ (1 * , ∞) : f H 1,p L ≃ f Ḣ1,p for all f ∈ L 2 .
The identification region for DB turns out to be the intersection of the two regions associated with L. This has nothing to do with the particular Hardy spaces above and follows from Figure 8 for all sorts of adapted spaces. Identification regions for other DB-and L-adapted spaces will appear much later in the text in Section 19.

Lemma 9.1. Let s ∈ R and p ∈ (0, ∞). The following are equivalent :

(i) X s,p DB = X s,p D with equivalent p-quasinorms. (ii) X s,p L = a -1 ( Ẋs,p ∩ L 2 ) and X s+1 L = Ẋs+1,p ∩ L 2
, both with equivalent p-quasinorms.

Specializing to X = H and s = 0 in Lemma 9.1, we obtain Corollary 9.2. It follows that H(DB) = H(L) ∩ H 1 (L). In particular (by (8.4)) all three sets contain p = 2.

Proof of Lemma 9.1. Throughout, equalities of spaces are up to comparable pre-Hardy quasinorms and spaces that arise from multiplication with a -1 carry the image topology.

We start by noting that (i) is equivalent to X s,p DB ∩R(D) = X s,p D ∩R(D) since R(D) = R(DB) is dense in both adapted spaces. The third row of Figure 7 yields equivalence to

X s,p L ∩ R(div x ) = X s,p -∆x ∩ R(div x ), X s,p M ∩ R(∇ x ) = X s,p -∇x divx ∩ R(∇ x )
. By moving to the second and fourth row, this is the same as having

X s,p L ∩ R(a -1 div x ) = a -1 (X p -∆x ∩ R(div x )), X s+1,p L ∩ D(∇ x ) = X s+1,p -∆x ∩ D(∇ x ), which, by density, is equivalent to having X s,p L = a -1 X s,p -∆x X s+1,p L = X s+1,p -∆x .
The spaces associated with the Laplacian have been identified in Figure 6 and equivalence to (ii) follows.

Remark 9.3. The argument above proves slightly more: it says that we have, all in the sense of continuous inclusions, X s,p DB ⊆ X s,p D if and only if we have both X s,p L ⊆ a -1 ( Ẋs,p ∩ L 2 ) and X s+1,p L ⊆ Ẋs+1,p ∩ L 2 , and that the same result holds upon reversing all inclusions.

In order to show that the identification regions are intervals, we borrow an interpolation argument from [3,Thm. 4.32] that uses the canonical completions of adapted Hardy spaces. In fact, for H(DB) and H 1 (L) the result in [3] would apply 'off-the-shelf' but a slight variant is needed for H(L) because of the multiplication by a.

Lemma 9.4. The sets H(DB), H(L) and H 1 (L) are intervals.

Proof. We begin with the proof for H(L). By definition, we have p ∈ H(L) if and only if the multiplication operators a :

H p L → H p ∩ L 2 and b := a -1 : H p ∩ L 2 → H p
L are well-defined and bounded for the p-quasinorms. This is equivalent to saying that these operators have bounded extensions â : ψH p L → H p and b : H p → ψH p L to canonical completions in the sense that the following diagrams commute:

ψH p L H p H p L H p ∩ L 2 â a H p ψH p L H p ∩ L 2 H p L b b
Let now p 0 , p 1 ∈ H(L). Since the spaces H p and ψH p L have universal approximation techniques, the extensions in the respective diagrams for p 0 and p 1 are compatible and we can use complex interpolation (Section 2.6 and Proposition 8.8) to obtain the same diagrams for all p between p 0 and p 1 . Hence, these exponents are all in H(L).

The arguments for H 1 (L) is identical except that we extend the identity operator. The same for H(DB) but instead of H p we use a canonical completion ψH p D . Definition 9.5.

(i) The upper and lower endpoints of H(DB) are denoted by h -(DB) and h + (DB).

(ii) The upper and lower endpoints of H(L) are denoted by h -(L)

and h + (L). Likewise h 1 ± (L) are the endpoints of H 1 (L). 9.2. The identification theorem. We come to the characterization of the identification region's endpoints through the critical numbers p -(L) and q ± (L).

Theorem 9.6 (Identification Theorem). The endpoints of H(L) and H 1 (L) can be characterized and controlled as follows:

h ± (L) = p ± (L), h 1 -(L) ≤ (p -(L) * ∨ 1 * ), h 1 + (L) = q + (L). As a consequence, the endpoints of H(DB) are h -(DB) = p -(L) and h + (DB) = q + (L).
The relations for L imply those for DB since H(DB) = H(L)∩H 1 (L) and q + (L) ≤ p + (L) by Theorem 6.2. We later precise this result by showing that these intervals are open at their ends except may be at the lower endpoint of H 1 (L) for which we cannot even say whether the bound is sharp.

The proof of Theorem 9.6 is spread over 10 parts, using different methods for different regimes of parameters. Upper bounds on the size of H(L) are easy to obtain (Part 1), whereas lower bounds require establishing two continuous inclusions. Parts 2 -5 focus on different inclusions of classical and L-adapted spaces. Parts 6 -10 contain the synthesis of these preparatory steps.

Many arguments are known when a = 1. However, there are still some new difficulties when a = 1 that need to be taken care of and for some other parts we can simplify known arguments through the full strength of Figure 8 even when a = 1.

Part 1: p -(L) ≤ h -(L) and p + (L) ≥ h + (L).
Being slightly more precise, we show the inclusion H(L) ⊆ J (L). Given p ∈ (1 * , ∞), Proposition 8.10 yields

(1 + t 2 L) -1 f H p L f H p L uniformly for all f ∈ H p L and all t > 0. If now p ∈ H(L), then H p L = a -1 (H p ∩ L 2
) holds with equivalent Hardy norms and p ∈ J (L) follows.

Part 2: L p ∩ L 2 ⊆ H p L for 2 ≤ p < ∞.
We are going to prove the continuous inclusion L q ∩ L2 ⊆ H q L for q ∈ [2, ∞). We define H q L via the auxiliary function ψ(z) := z α (1 + z) -2α with an integer α > n /4, so that this choice is admissible for all q, see Section 8.2. We have to establish the bound

Q ψ,L f T q f q (f ∈ L q ∩ L 2 ).
For a later purpose, we prove a more general statement. This uses the standard assumptions from Section 8.2. For T = L the bound required here follows by simply taking the auxiliary parameters θ = 1 and p = 2.

The further interest in the lemma lies in picking p as large and θ as small as possible in order to allow for weaker decay assumption of ψ at the origin.

Lemma 9.7. Let T be a sectorial operator that satisfies the standard assumptions (8.5). Fix µ ∈ (0, (π-ω) /2) and σ, τ > 0. Let ψ ∈ Ψ τ σ (S + π-2µ ) and consider the square function bound

Q ψ,T f T q ψ σ,τ,µ f q (f ∈ L q ∩ L 2 ),
where the implicit constant does not depend on ψ. Then this bound is valid for every q ≥ 2 provided that one can find p ∈ [2, ∞) and θ ∈ (0, 1]

such that ((1 + t 2 T ) -1 ) t>0 is L p -bounded and µ ∈ 0, θ(π -ω) 2 & σ > n 2[p, 2] θ .
Proof. In the following implicit constants are allowed to depend on the fixed parameters but not on ψ itself. Via McIntosh's theorem the boundedness for q = 2 is equivalent to the bounded H ∞ -calculus on R(T ). Hence, we can state

Q ψ,T f T 2 ψ L ∞ (S + π-2µ ) f 2 (f ∈ R(T )
). Cauchy's theorem yields ψ(t 2 T )f = 0 for all t > 0 if f ∈ N(T ). Hence, we can state same bound for all f ∈ L 2 . By complex interpolation it remains to treat the case q = ∞, that is to say, to prove for all balls

B ⊆ R n of radius r > 0 and all f ∈ L ∞ ∩ L 2 that 1 |B| r 0 B |ψ(t 2 T )f | 2 dxdt t 1/2 ψ τ,σ,µ f ∞ . (9.2)
Having fixed B, we write f = j≥1 f j with f j := 1 C j (B) f . For j = 1 we use that T 2 = L 2 (R 1+n + ; dtdx t ) and again the L 2 -bound to give

1 |B| r 0 B |ψ(t 2 T )f 1 (x)| 2 dxdt t 1 |B| Q ψ,L f 1 1 |B| ψ 2 L ∞ (S + π-2µ ) f 1 2 2 ≤ 4 n ψ 2 L ∞ (S + π-2µ ) f 2 ∞ .
Next, we let ̺ := [p, 2] θ and obtain from Lemma 4.16.(i) the off-diagonal estimate

ψ(t 2 L)f j L ̺ (B) ψ τ,σ,µ 1 + 2 j r t -2σ f L ̺ (C j (B)) ≤ ψ τ,σ,µ t 2σ r 2σ 2 -j(2σ-n ̺ ) |B| 1/̺ f ∞ .
Since ̺ ≥ 2, we obtain from Hölder's inequality that

ψ(t 2 L)f j L 2 (B) ψ τ,σ,µ t 2σ r 2σ 2 -j(2σ-n ̺ ) |B| 1/2 f ∞
and taking L 2 -norms with respect to dt /t, we are led to

1 |B| r 0 B |ψ(t 2 L)f j (x)| 2 dxdt t 1/2 ψ τ,σ,µ 2 -j(2σ-n ̺ ) f ∞ r 0 t 4σ r 4σ dt t 1/2 = 2 -j(2σ-n ̺ ) ψ τ,σ,µ (4σ) -1 2 f ∞ .
By assumption, we have 2σ > n /̺. Summing up in j yields (9.2). Remark 9.8. It becomes clear from the proof above that Lemma 9.7 has very little to do with sectorial operators and could be extended to more general extensions

(Q ψ f )(t, x) := (ψ(t)f )(x)
where ψ : (0, ∞) → L(L 2 ) is a strongly measurable family of operators. For example, with p = 2 and θ = 1 the only properties of (ψ(t)) t>0 that we have used to get for every q ≥ 2 a bound

Q ψ f T q f q (f ∈ L q ∩ L 2 )
is the corresponding L 2 -bound and L 2 off-diagonal estimates of order γ > n /2.

Part 3: Injection of classical spaces into L-adapted spaces for p ∈ (1, 2). For this part we work with the auxiliary function ψ defined by

ψ α (z) := z α-1/2 (1 + z) -3α , (9.3)
where α ∈ N will be chosen sufficiently large depending on exponents and dimensions. Throughout this part it will be convenient to write

S ψα,L f (x) := |x-y|<t |ψ α (t 2 L)f (y)| 2 dtdy t 1+n
1/2 , (9.4) so that S ψ,L • p becomes an equivalent norm on H p L provided that α > n /(2p)n /4, compare with Section 8.2.

Our main objective is to establish the following extrapolation result for square functions. Lemma 9.9. Suppose for some q ∈ (p -(L) ∨ 1, 2] and all sufficiently large α (depending on q, p -(L), n) that

S ψα,L (L 1/2 u) q ∇ x u q (u ∈ Ẇ1,q ∩ W 1,2 ). (9.5)
Then for all p ∈ (q * ∨ 1, q) and all sufficiently large α (depending on p, q, p -(L), n) it follows that

S ψα,L (L 1/2 u) p ∇ x u p (u ∈ Ẇ1,p ∩ W 1,2 ).
Remark 9.10. Assumption (9.5) holds for q = 2 and any α ∈ N. Indeed, this follows from H 2 L = R(L) = L 2 and the solution of the Kato problem. Starting from there, we can iterate Lemma 9.9 in order to conclude that for every q ∈ (p -(L) * ∨ 1, 2] the bound (9.5) holds for all sufficiently large α.

Before giving the proof of Lemma 9.9, let us state the more important consequences of this lemma for the identification of L-adapted Hardy spaces.

Proposition 9.11. If p ∈ (p -(L) ∨ 1, 2], then L p ∩ L 2 ⊆ H p
L with continuous inclusion for the p-norms.

Proof. First let us assume f ∈ L p ∩ R(L 1/2 ). By Lemma 7.2 this is a dense subspace of L p ∩ L 2 . We put u := L -1/2 f . Since the Riesz transform is L p -bounded (Theorem 7.3), we have u ∈ Ẇ1,p ∩ W 

H p L f p with an implicit constant independent of f . A general f ∈ L p ∩ L 2 can be approximated by (f j ) ⊆ L p ∩ R(L 1/2 ) in L p ∩ L 2 . By L 2 -convergence B(x,t) |ψ α (t 2 L)f (y)| 2 dy = lim j→∞ B(x,t) |ψ α (t 2 L)f j (y)| 2 dy
holds for all (t, x) ∈ R 1+n and we invoke Fatou's lemma to give

f p H p L ≤ lim inf j→∞ R n |x-y|<t |ψ α (t 2 L)f j (y)| 2 dtdy t 1+n p/2 dx = lim inf j→∞ f j p H p L .
On the right-hand side f j p H p L is under control by f j p thanks to the first part of the proof and L p -convergence of (f j ) gives the required bound by f p . Proposition 9.12.

If p ∈ (p -(L) * ∨ 1, 2], then Ẇ1,p ∩ L 2 ⊆ H 1,p
L with continuous inclusion for the p-norms.

Proof. By the universal approximation technique even Z is dense in Ẇ1,p ∩ L 2 . Hence, the same approximation argument as in the previous proof shows that it suffices to check

u H 1,p L ∇ x u p (u ∈ Ẇ1,p ∩ W 1,2 ).
We take α large enough so that (9.5) holds at exponent q = p and α > n /(2p)n /4 to make sure that H 1,p L can be defined through the auxiliary function ϕ α (z) := √ zψ α (z). We have

ψ α (t 2 L)L 1/2 u = t -1 ϕ α (t 2 L)u for t > 0 and therefore u H 1,p L = Q ϕα,L u T 1,p = Q ψα,L (L 1/2 u) T 0,p = S ψα,L (L 1/2 u) p ∇ x u p .
We come to the proof of Lemma 9.9. We modify the strategy of [22, pp.42-45]. Henceforth we fix p, q as in the statement and we write ψ = ψ α , where α will be chosen larger from step to step in dependence of p, q, p -(L), n.

Let u ∈ Ẇ1,p ∩ W 1,2 and λ > 0. It will be enough to obtain the weak-type estimate

x ∈ R n : S ψ,L (L 1/2 u)(x) > 3λ 1 λ p ∇ x u p p (9.6)
with implicit constant independent of u and λ. Indeed, consider the positive sublinear operator

T : Z → L 2 , T u := S ψ,L (L 1/2 (-∆ x ) -1/2 u)
and recall that Z is dense in all (intersections of) L r -spaces with r > 1. Now, T is of strong type (q, q) by (9.5) and of weak type (p, p) by (9.6). Hence, it is of strong type (r, r) for every r ∈ (p, q] by the Marcinkiewicz interpolation theorem. As (-∆ x ) -1/2 is invertible on Z, this means that we have

S ψ,L (L 1/2 u) r ∇ x u r (u ∈ Z).
This bound extends to u ∈ Ẇ1,r ∩ W 1,2 by density as before. Since p ∈ (q * ∨ 1, q) and r ∈ (p, q] were arbitrary, the claim follows.

The proof of (9.6) itself comes in 8 steps.

Step 1: Calderón-Zygmund decomposition. We use the decomposition for Sobolev functions that was introduced in [6, Lem. 4.12], see [START_REF] Auscher | On the calderón-zygmund lemma for sobolev functions[END_REF] for the correction of an inaccuracy in the original proof.

Since u ∈ Ẇ1,p , according to this decomposition, there is a countable collection of cubes (Q j ) j∈J , measurable functions g and b j and constants C and N that depend only on dimensions and p, such that (i) u = g + j∈J b j pointwise almost everywhere,

(ii) ∇ x g ∞ ≤ Cλ, (iii) b j has support in Q j and ∇ x b j p p dx ≤ Cλ p |Q j |, (iv) j∈J |Q j | ≤ Cλ -p ∇ x u p p , (v) j∈J 1 Q j ≤ N.
More precisely, setting

Ω := {M(|∇ x u| p ) > λ p } ⊆ R n , the b j take the form b j = (u -u(x j ))χ j with x j ∈ 2Q j ∩ c Ω and χ j ∈ C ∞ 0 (Q j ) such that χ j ∞ + ℓ(Q j ) ∇ x χ j ∞ ≤ C. The function u has a representative on c Ω that satisfies |u(x) -(u) Q | ≤ Cλℓ(Q) whenever Q is a cube centered at x ∈ c Ω
and this is how we understand u(x j ).

We recall these details on the construction because we need two additional properties in the proof of (9.6):

(i') If u ∈ Ẇ1,r for some r ∈ (1, ∞), then b j ∈ W 1,r for all j and j∈J b j converges unconditionally in Ẇ1,r , (ii') If r ∈ (p, p * ), then ∇ x g r r ≤ C ′ λ r-p ∇ x g p p and b j r r ≤ C ′ λ r |Q j | 1+ r
n for all j, where C ′ also depends on r. To see property (i'), we let Q ′ j be the cube centered at x j with sidelength 3ℓ(Q j ) and write

b j = (u -(u) Q j )χ j + ((u) Q j -(u) Q ′ j )χ j + ((u) Q ′ j -u(x j ))χ j . (9.7)
The special property of u on c Ω yields |((u)

Q ′ j -u(x j ))∇ x χ j | ≤ Cλ on R n . Next, since Q j ⊆ Q ′ j , we obtain from Poincaré's inequality that |(u) Q j -(u) Q ′ j | - Q ′ j |u -(u) Q ′ j | dx ℓ(Q j ) - Q ′ j |∇ x u| dx.
The right-hand side is bounded by λ since x j ∈ c Ω and we obtain

|((u) Q j -(u) Q ′ j )∇ x χ j | ≤ Cλ on R n .
Once again by Poincaré's inequality we have

R n |∇ x ((u -(u) Q j )χ j )| r dx Q j |∇ x u| r dx,
so that altogether we obtain from (9.7) the estimate

R n |∇ x b j | r dx λ r |Q j | + Q j |∇ x u| r dx. (9.8)
Since b j has compact support, we have b j ∈ W 1,r qualitatively. For any partial sum of j's we obtain from (v) and Hölder's inequality that

R n ∇ x j b j r dx ≤ N r-1 R n j |∇ x b j | r dx. (9.9)
Properties (iv) and (v) justify using the dominated convergence theorem to conclude that j∈J ∇ x b j converges in L r . The limit is independent of the order of summation since the sum contains at most N non-zero terms at each x ∈ R n .

As for (ii'), the L r -bound for b j immediately follows from the Sobolev-Poincaré inequality [94, Cor. 4.2.3] and (iii). From (9.8) and (9.9) with r = p and then (iv), we obtain ∇ x j∈J b j p ≤ C ∇ x u p . We conclude ∇ x g p ≤ C ∇ x u p from (i) and the required L r -bound follows from (ii).

Step 2: Decomposition of the level set. For the same α as is the definition of ψ = ψ α in (9.3) we introduce a function ϕ ∈ H ∞ through ϕ(z) := z α (1 + z) -α (9.10) and we decompose u = g + g + b, using the series

g := j∈J (1 -ϕ(ℓ 2 j L))b j , b := j∈J ϕ(ℓ 2 j L)b j .
In Step 4 we shall check that the series g converges in Ẇ1,q , so that by (i') with r = q the same is true for b.

Anticipating the convergence of g, we obtain that the set on the left-hand side of (9.6) is contained in the union of

A 1 := x ∈ R n : S ψ,L (L 1/2 g)(x) > λ , A 2 := x ∈ R n : S ψ,L (L 1/2 g)(x) > λ , A 3 := x ∈ R n : S ψ,L (L 1/2 b)(x) > λ ,
where we do not make a notational distinction between v → S ψ,L (L 1/2 v) and its bounded extension from Ẇ1,q into L q . It suffices to bound the measure of each of the three sets by a generic multiple of λ -p ∇ x u p .

Step 3: Bound of A 1 . We use the Markov inequality, the assumption and (ii') to give

|A 1 | ≤ λ -q S ψ,L (L 1/2 g) q q λ -q ∇ x g q q λ -p ∇ x u p p .
Step 4: Convergence and estimate of g. For the time being, let j run only through a finite set of J. Consider the partial sum of g given by

j (1 -ϕ(ℓ 2 j L))b j = α β=1 α β (-1) β-1 j (1 + ℓ 2 j L) -β b j , (9.11)
where we have expanded ϕ from (9.10). We fix β and introduce

f β := j (1 + ℓ 2 j L) -β b j . (9.12)
Since we have b j ∈ W 1,2 = D(L 1/2 ) by (i'), the same is true for f β . We calculate its norm in Ẇ1,q by dualizing ∇ x f against h ∈ C ∞ 0 , normalized to h q ′ = 1:

∇ x f β , h = j ∞ k=1 ∇ x (1 + ℓ 2 j L) -β b j , h j,k , where h j,k := 1 C k (Q j ) h.
We take adjoints, use the support of b j and then Hölder's inequality to give

| ∇ x f β , h | ≤ j k=1 b j L q (Q j ) (∇ x (1 + ℓ 2 j L) -β ) * h k,j L q ′ (Q j ) .
By (ii') we get

| ∇ x f β , h | ≤ j ∞ k=1 λ|Q j | 1 q (ℓ j ∇ x (1 + ℓ 2 j L) -β ) * h k,j L q ′ (Q j ) .
(9.13)

For t > 0 the families ((1 + t 2 L) -1 ) and (t∇ x (1 + t 2 L) -1 ) satisfy L 2 offdiagonal estimates of arbitrarily large order. Now q is an inner point of the interval of resolvent bounds (p -(L) ∨ 1, 2), which by Theorem 6.2 is the same as (q -(L) ∨ 1, 2) for gradient bounds. By interpolation (Lemma 4.14) both families have L q off-diagonal bounds of arbitrarily large order. Composition and duality yield L q ′ off-diagonal bounds of arbitrarily large order γ > 0 for ((t∇ x (1 + t 2 L) -β ) * ). Consequently, we have

(ℓ j ∇ x (1 + ℓ 2 j L) -β ) * h k,j L q ′ (Q j ) 2 -kγ h L q ′ (C k (Q j )) 2 -kγ |2 k Q j | 1 q ′ (M(|h| q ′ )(x)) 1 q ′ ,
where x ∈ Q j is arbitrary. We take γ > n /q ′ so that when substituting this estimate back into (9.13), we obtain a finite sum in k:

| ∇ x f β , h | λ j |Q j |(M(|h| q ′ )(x)) 1 q ′ .
We average in x ∈ Q j , take into account the finite overlap of the Q j and apply Kolmogorov's Lemma, in order to conclude that

| ∇ x f β , h | λ j Q j (M(|h| q ′ )(x)) 1 q ′ dx λ ∪ j Q j (M(|h| q ′ )(x)) 1 q ′ dx λ j Q j 1 q h 1 q ′ q ′ . (9.14)
We recall the definition of f β from (9.12) and that h was normalized in L q ′ . Hence we have shown the estimate

∇ x j (1 + ℓ 2 j L) -β b j q λ j |Q j | 1 q
, where j runs over a finite subset of J. Property (iv) of the Calderón-Zygmund decomposition implies that j∈J (1 + ℓ 2 j L) -β b j converges in Ẇ1,q and that its norm is under control by λ 1-p/q ∇ x u p/q p . By definition in (9.11), the series g is a finite sum in β over series of this type. Hence, it converges in Ẇ1,q as required and is bounded by

∇ x g q λ 1-p q ∇ x u p q
p . (9.15)

Step 5: Bound of A 2 . We argue as in Step 3 and use (9.15) instead of (ii') to give

|A 2 | λ -q ∇ x g q q λ -p ∇ x u p p .
Step 6: Preparation of the bound for A 3 . By Markov's inequality and the boundedness of v → S ψ,L (L 1/2 v) from Ẇ1,q into L q , we have

x ∈ R n : S ψ,L (L 1/2 v)(x) > λ λ -q ∇ x v q (v ∈ Ẇ1,q ).
In particular, the measure of the set on the left tends to 0 as v tends to 0 in Ẇ1,q . Since the series b converges in Ẇ1,q , this argument shows that it suffices to derive the desirable bound λ -p ∇ x u p for the measure of

A 3 := x ∈ R n : S ψ,L (L 1/2 b)(x) > λ 2 ,
where b := j ϕ(ℓ 2 j L)b j and j runs over a finite subset of J. Again, this reduction bears the advantage that b is contained in W 1,2 = D(L 1/2 ) and hence we can properly work with the functional calculus of L. In fact, such type of reduction is necessary since p may lie outside of J (L) and therefore there is no hope for reasonable functional calculus bounds for L on L p . First, we can split off E := j∈J 6Q j since its measure is under control by property (iii) of the Calderón-Zygmund decomposition. Next, by Markov's inequality and the definition of S ψ,L , the measure of the remaining set is at most

| A 3 \ E| ≤ 4λ -2 A 3 \E |(S ψ,L (L 1/2 b))(x)| 2 dx ≤ 4λ -2 R 1+n + |(ψ(t 2 L)L 1/2 b)(y)| 2 |B(y, t) \ E| t n dtdy t .
The set B(y, t) \ E has of course measure controlled by t n but if y is contained in the cube 4Q j , then this set is empty for all t < ℓ j . Hence, introducing the 'local' and 'global' parts

f loc (t, y) := j 1 4Q j (y)1 (ℓ j ,∞) (t) ψ(t 2 L)L 1/2 ϕ(ℓ 2 j L)b j (y), f glob (t, y) := j 1c (4Q j ) (y) ψ(t 2 L)L 1/2 ϕ(ℓ 2 j L)b j (y), (9.16) 
we obtain

| A 3 \ E| λ -2 R 1+n |f loc (t, y)| 2 + |f glob (t, y)| 2 dtdy t .
and we are left with bounding the two integrals on the right by generic multiples of λ 2-p ∇ x u p p .

Step 7: The local part. Let h ∈ L 2 (R 1+n + , dtdx t ) and let • , • be the duality pairing on that space. By the Cauchy-Schwarz inequality we first find

| f loc , h | ≤ I j 4Q j ∞ ℓ j |h(t, y)| 2 dtdy t 1/2
and then, generously bounding the second integral by a maximal function in x, that

| f loc , h | ≤ j I j |4Q j | 1/2 inf x∈Q j (M(H 2 )(x)) 1/2 , (9.17)
where

I j := ∞ ℓ j 4Q j |L 1/2 ψ(t 2 L)ϕ(ℓ 2 j L)b j (y)| 2 dydt t 1/2 , H(y) := ∞ 0 |h(t, y)| 2 dt t 1/2 . (9.18)
At this stage of the proof we introduce a fixed exponent ̺ ∈ (p -(L)∨ 1, q) and take the parameter α in (9.3) large enough to grant that

(tL 1/2 ψ(t 2 L)) t>0 is L ̺ -L 2 -
bounded. This is possible by Lemma 7.4,(ii) since ̺ is not the lower endpoint of J (L) and we can expand

tL 1/2 ψ(t 2 L) = ((1 + t 2 L) -2 -(1 + t 2 L) -3 ) α
in terms of resolvents of power at least 2α. By interpolation with the L 2 -bound we then have of course L r -L 2 -boundedness for all r ∈ [̺, 2]. Since ϕ from (9.10) is bounded, we obtain from the functional calculus on L 2 that

L 1/2 ψ(t 2 L)ϕ(ℓ 2 j L)f 2 t -1 t n 2 -n r f r (f ∈ L r ∩ L 2 ). (9.19)
In this step we use the above estimate with r = q and f = b j to bound I j . As we have n -2n /q ≤ 0, integration in t leads us to

I j b j q ∞ ℓ j t n-2n q -2 dt t 1 2 ℓ n 2 -n q -1 j b j q λ|Q j | 1 2 ,
where the final step uses (ii'). Going back to (9.17), we have established the bound

| f loc , h | λ j |Q j | inf x∈Q j (M(H 2 )(x)) 1 2 , (9.20) 
so that we can bring into play Kolmogorov's lemma as in (9.14) and then use property (iv) to conclude

| f loc , h | ≤ λ j Q j 1 2 H 2 1 2 1 λ 1-p 2 ∇ x u 1 2 p h L 2 ( dtdx t ) .
Since h was arbitrary, we have proved the bound that was required at the end of Step 6:

R 1+n + |f loc (t, y)| 2 dtdy t λ 2-p ∇ x u p .
Step 8: The global part. We use the same duality argument as in Step 7 except that for f glob we will have to work on the c (4Q j ), which we split into annuli

C k (Q j ), k ≥ 2.
In this manner, our substitute for (9.17) becomes

| f glob , h | ≤ j k≥2 I j,k |2 k+1 Q j | 1 2 inf x∈Q j (M(H 2 )(x)) 1 2 , (9.21)
where H is still as in (9.18) and

I j,k := ∞ 0 C k (Q j ) |L 1/2 ψ(t 2 L)ϕ(ℓ 2 j L)b j (y)| 2 dydt t 1 2
.

From the definitions in (9.3) and (9.10) we see that z → √ zψ(z) and ϕ are of class Ψ 2α α and Ψ 0 α , respectively. Lemma 4.16.(i) yields for all

f ∈ L 2 with support in Q j that L 1/2 ψ(t 2 L)ϕ(ℓ 2 j L)f L 2 (C k (Q j )) t -1 2 k ℓ j t -2α f L 2 (Q j ) .
For fixed j, k, t, we interpolate this bound with (9.19) for r = ̺ by means of the Riesz-Thorin theorem. This results in

L 1/2 ψ(t 2 L)ϕ(ℓ 2 j L)f L 2 (C k (Q j )) t -1+ n 2 -n q 2 k ℓ j t -2θα f L q (Q j ) , (9.22) 
where θ ∈ (0, 1) is such that q = [̺, 2] θ . In exactly the same manner we can interpolate the assertion of Lemma 4.16.(ii) with (9.19) in order to obtain

L 1/2 ψ(t 2 L)ϕ(ℓ 2 j L)f L 2 (C k (Q j )) t -1+ n 2 -n q 2 -2θαk f L q (Q j ) , (9.23) provided that t ≥ ℓ j .
Now we come back to I j,k , split the outer integral at t = ℓ j and use (9.22) and (9.23) with f = b j to give

I 2 j,k 2 -4θαk ℓ -4θα j b j 2 q ℓ j 0 t -2+n-2n q +4θα dt t + 2 -4θαk b j 2 q ∞ ℓ j t -2+n-2n q dt t .
There is no issue with convergence of the second integral since we have q ≤ 2. We pick α large in dependence of n, q, θ, in order to grant convergence of the first integral and get

I 2 j,k ≤ 2 -4θαk ℓ -2+n-2n q j b j 2 q λ 2 2 -4θαk |Q j |,
where the final step follows from (ii'). We pick α ≥ n /(4θ) so that when finally going back to (9.21), we find a convergent geometric series in k and obtain

| f glob , h | ≤ λ j |Q j | 1 2 inf x∈Q j (M(H 2 )(x)) 1 2 
.

At this point, the right-hand side is the same as in the treatment of the local part. We obtain the required bound for the global part by repeating the argument following (9.20). This concludes the proof of Lemma 9.9.

Part 4: Injection of L-adapted spaces into classical spaces for p ≤ 2. In this section we establish the continuous inclusions

H p L ⊆ a -1 (H p ∩ L 2 ) (9.24) H 1,p L ⊆ Ḣ1,p ∩ L 2 (9.25) in the range 1 * < p ≤ 2.
The main observation is the following inclusion for DB-adapted spaces. The result appears already in [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]Sec. 4.4] but for convenience we include a proof. Lemma 9.13. If p ∈ (1 * , 2], then H p DB ⊆ H p ∩ L 2 and the inclusion is continuous for the p-quasinorms.

Proof. The claim holds for p = 2, see (8.4), and the interpolation theorem for inclusions of adapted Hardy spaces [3,Thm. 4.32] yields that the set of exponents for which the claim holds is an interval. Hence, we only have to treat the case p ≤ 1.

We use the molecular decomposition for H p DB (Theorem 8.17 

f ∈ H p L ∩ R(a -1 div x ) that af H p af 0 H p DB f H p L .
The bound extends to f ∈ H p L by density, which gives (9.24). Likewise, moving from the third to the second row, we get

f Ḣ1,p = ∇ x f H p 0 ∇ x f H p DB f H 1,p L , first for f ∈ H 1,p L ∩D(L 1/2
) and then for all f ∈ H 1,p L , which gives (9.25). Going one step further to the first row gives an additional Riesz transform bound , which is of independent interest. It extends [START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF]Prop. 5.6] beyond semigroup generators.

Proposition 9.14. If p ∈ (1 * , 2], then ∇ x L -1/2 f H p f H p L (f ∈ H p L ∩ R(L 1/2
)). Part 5: Injection of classical spaces into L-adapted spaces for p ≤ 1. We complement the previous section by proving the reverse continuous inclusions

a -1 (H p ∩ L 2 ) ⊆ H p L (p -(L) < p ≤ 1) (9.26) and Ḣ1,p ∩ L 2 ⊆ H 1,p L ((p -(L) * ∨ 1 * ) < p ≤ 1), (9.27)
if these intervals of exponents are non-empty.

The strategy is the same for both inclusions and relies on the atomic decompositions. We use the auxiliary function ψ(z) := z α (1 + z) -2α , where α ∈ N will be chosen large later on, and introduce the square functions 

S (0) ψ,L f (x) := |x-y|<t |ψ(t 2 L)f (y)| 2 dtdy t 1+n 1/2 , (9.28) S (1) ψ,L f (x) := |x-y|<t |t -1 ψ(t 2 L)f (y)| 2 dtdy
S (0) ψ,L (a -1 m) p 1.
Let us take these estimates for granted and complete the objective of this part first. Given f ∈ L 2 such that af ∈ H p , we write the latter as an L 2 -convergent atomic decomposition af = i λ i m i with (λ i ) ℓ p af H p . We use Fatou's lemma as in the proof of Proposition 9.11 to obtain

S (0) ψ,L (f )(x) ≤ i |λ i |S (0) ψ,L (a -1 m i )(x) (x ∈ R n )
and we conclude by Lemma 9.16 and as p ≤ 1,

S (0) ψ,L (f ) p p ≤ i |λ i | p S (0) ψ,L (a -1 m i ) p p i |λ i | p af p H p .
The left-hand side is equivalent to f H p L and (9.26) follows. As for (9.27), it suffices to prove u H 1,p L ∇ x u p for all u ∈ Ḣ1,p ∩ W 1,2 . Indeed, since Z is dense in Ḣ1,p ∩ L 2 , this is yet another application of the Fatou argument above. Now, we can take a Ẇ1,2convergent atomic decomposition u = i λ i m i as in Proposition 8. [START_REF] Boas | Integral inequalities of Hardy and Poincaré type[END_REF]. By the solution of the Kato problem we have L 2 -convergence of

ψ(t 2 T )u = i λ i L -1/2 ψ(t 2 L)L 1/2 m i
and the same argument as before applies.

Proof of Lemma 9.15. Let m be an L 2 -atom for Ḣ1,p associated with a cube Q of sidelength ℓ as in Definition 8.30.

We begin with a local bound. By the solution of the Kato problem we have m ∈ D(L 1/2 ). It follows that

S (1) ψ,L m(x) = |x-y|<t |ϕ(t 2 L)L 1/2 m(y)| 2 dtdy t 1+n 1/2 =: S ϕ,L (L 1/2 m)(x) (x ∈ R n ),
where ϕ(z) := z α-1/2 (1 + z) -2α . Hölder's inequality and the L 2 -bound for the square function with ϕ (McIntosh's theorem) yield

S (1) ψ,L (m) L p (4Q) ≤ |4Q| 1 p -1 2 S (1) ψ,L (m) L 2 (4Q) |Q| 1 p -1 2 L 1/2 m 2 ≃ |Q| 1 p -1 2 ∇ x m = 1. (9.30)
In preparation of the global bound, we pick some q ∈ (p -(L), p * ) ∩ [START_REF] Amenta | Tent spaces over metric measure spaces under doubling and related assumptions[END_REF][START_REF] Amenta | Interpolation and embeddings of weighted tent spaces[END_REF]. This is possible by the assumption on p. We also take α large enough in dependence of q and p -(L) in order to have L q -L 2 offdiagonal estimates of arbitrarily large order for (ψ(t 2 L)) t>0 at our disposal. This is possible due to Lemma 7.4.(ii) since we can expand

ψ(z) = z α (1 + z) -2α = ((1 + z) -1 -(1 + z) -2 ) α (9.31)
Consequently, we have for all x ∈ R n the estimate

ψ(t 2 L)m L 2 (B(x,t)) t n 2 -n q 1 + d(B(x, t), Q) t -γ m q ≃ t n 2 -n q 1 + d(x, Q) t -γ m q , (9.32) 
where γ > 0 is at our disposal and the second step uses d(B(x, t), Q) ≥ d(x,Q) /2 for t ≤ d(x,Q) /2 and 1 ≥ 2d(x,Q) /t for t ≥ d(x,Q) /2. Squaring and integrating this bound with respect to dt /t n+3 gives S

ψ,L m(x) ∞ 0 t -2n q -2 1 + d(x, Q) t -2γ dt t 1/2 m q ≃ d(x, Q) -n q -1 m q , (1) 
where the last step follows by a change of variable s = td(x, Q) and we have taken 2γ > 2n /q -2 in order to have a finite integral in s. Thus,

S (1) ψ,L m L p ( c (4Q)) c (4Q) d(x, Q) -np q -p dx 1 p m q ℓ n p -n
q -1 m q , where we have used np /q + p > n to calculate the integral in x. Since m is supported in Q, we obtain from Hölder's and Poincaré's inequality that

S (1) ψ,L m L p ( c (4Q)) ℓ n p -n 2 -1 m L 2 (Q) ℓ n p -n 2 ∇ x m L 2 (Q) = 1,
which is the required global bound.

Proof of Lemma 9.16. Let m be an L 2 -atom for H p associated with a cube Q of sidelength ℓ, see Definition 2.5.

As before, the local bound

S (0) ψ,L (a -1 m) L p (4Q)
1 follows from Hölder's inequality and the L 2 -bound for the square function.

To prepare the global bound, we pick exponents p -(L) < s < r < q < p. The resolvents of L are a -1 H s -bounded and also L ̺ -L 2 -bounded for some ̺ < 2 thanks to Lemmata 6.3 and 6.4. Keeping in mind the expansion (9.31), we take α large and conclude from Lemma 4.4 that (ψ(t 2 L)) t>0 is a -1 H r -L 2 -bounded. Together with the usual L 2 off-diagonal estimates we obtain for all x ∈ R n that

ψ(t 2 L)(a -1 m) L 2 (B(x,t)) = ψ(t 2 L)(a -1 m) 1-θ L 2 (B(x,t)) ψ(t 2 L)(a -1 m) θ L 2 (B(x,t)) t n 2 -n r m H r 1-θ 1 + d(B(x, t), Q) t -γ m 2 θ ,
where θ ∈ (0, 1) and γ > 0 are still at our disposal. Since |Q| 1/p-1/r m is an L 2 -atom for H r , we have m H r |Q| 1/r-1/p . Picking θ such that (1-θ) /r + θ /2 = 1 /q, we obtain

ψ(t 2 L)(a -1 m) L 2 (B(x,t)) t n 2 -n q 1 + d(B(x, t), Q) t -γθ |Q| 1 q -1 p .
This estimate is of the exact same type as (9.32) and we can repeat the previous proof from thereon. Indeed, we integrate the square with respect to dt /t 1+n to obtain

S (0) ψ,L (a -1 m)(x) d(x, Q) -n q ℓ n q -n p ,
and then the required global bound

S (0) ψ,L (a -1 m) L p ( c (4Q)) ℓ n p -n q ℓ n q -n p = 1,
follows since np /q > n. To this end, we recall from Section 3.5 that L * is an operator in the same class as L and similar to an operator L ♯ in the same class as L under conjugation with a * . By duality and similarity we have

p ′ ∈ (p -(L ♯ ) ∨ 1, 2). Replacing systematically L with L ♯ , the result of Part 6 entails H p ′ L ♯ = L p ′ ∩ L 2
with equivalent p ′ -norms and from Figure 8 we can read off

H p ′ L * = a * H p ′ L ♯ = L p ′ ∩ L 2 . Given f ∈ H p
L , we use Proposition 8.9 for second-order operators to give

| f, g | f H p L g H p ′ L * ≃ f H p L g p ′ (g ∈ L p ′ ∩ L 2 ). We conclude f ∈ L p ∩ L 2 along with f p f H p L as required. Part 9: h 1 + (L) ≥ q + (L).
We have to show that Ẇ1,p ∩ L 2 = H 1,p L with equivalent p-norms for p ∈ (2, q + (L)). In fact, we shall establish continuous inclusions for the p-Hardy norms

Ẇ1,p ∩ L 2 ⊇ H 1,p L (2 < p < q + (L)) (9.33) and Ẇ1,p ∩ L 2 ⊆ H 1,p L (2 < p < p + (L)), (9.34)
which is a more general result since by Theorem 6.2 we have p + (L) ≥ q + (L) * .

In the following let p ∈ (2, p + (L)). Part 8 implies p < h + (L). Hence, we can identify H p L = L p ∩ L 2 and the ubiquitous Figure 8 tells us that

f H 1,p L ≃ L 1/2 f H p L ≃ L 1/2 f p (f ∈ H 1,p L ∩ D(L 1/2 )). (9.35)
Proof of (9.33). If even p < q + (L), then the Riesz transform is L pbounded according to Theorem 7.3 and we obtain from (9.35) that

f H 1,p L ∇ x f p (f ∈ H 1,p L ∩ D(L 1/2 )). A general f ∈ H 1,p
L can be approximated by a sequence

(f j ) ⊆ H 1,p L ∩ D(L 1/2 ) simultaneously in H 1,p L and L 2 , see Section 8.1. Then (∇ x f j )
is a Cauchy sequence in L p whose limit coincides with ∇ x f thanks to L 2 -convergence of (f j ). Hence, the previous estimate extends to f .

Proof of (9.34). It suffices to establish the bound

u H 1,p L ∇ x u p (u ∈ Ẇ1,p ∩ W 1,2 ). (9.36)
Indeed, a general u ∈ Ẇ1,p ∩ L 2 can be approximated in Ẇ1,p ∩ L 2 by a sequence (u j ) ⊆ Z and L 2 -convergence suffices to infer u H 1,p L ≤ lim inf j→∞ u j H 1,p L , see the proof of Proposition 9.11. We rely on a duality argument using the same notation as in Part 8. Again, we have p ′ ∈ (p -(L ♯ ) ∨ 1, 2) and we obtain from Theorem 7.3 that the Riesz transform for

L ♯ is L p ′ -bounded. For any g ∈ R(L * ) ∩ D(L * ) ∩ L p ′ it follows that L 1/2 u, g = u, (L * ) 1/2 g = u, L * (L * ) -1/2 g = ∇ x u, d * ∇ x (a * ) -1 (L * ) -1/2 g = d∇ x u, ∇ x (L ♯ ) -1/2 (a * ) -1 g ,
where the third step is just the definition of L * and the final step uses that the similarity of operators L * = a * L ♯ (a * ) -1 carries over to the functional calculi by construction. Hölder's inequality yields

| L 1/2 u, g | ∇ x u p ∇ x (L ♯ ) -1/2 (a * ) -1 g p ′ ∇ x u p g p ′ .
Since g was taken from a dense subspace of L p ′ (as is granted by Lemma 7.2 applied to L ♯ and similarity), the bound L 1/2 u p ∇ x u p follows. Now, (9.36) is a consequence of (9.35).

Part 10: h 1 + (L) ≤ q + (L). Suppose that the interval H 1 (L) contains some exponent p ≥ q + (L). In particular, q + (L) is finite.

Since we have q + (L) < p + (L) by Theorem 6.2, we can assume p < p + (L) and by the result of Part 8 this implies p ∈ H(L). Therefore, we have a commutative diagram

H p L ∩ R(L 1/2 ) H 1,p L ∩ D(L 1/2 ) Ẇ1,p ∩ D(L 1/2 ) L p ∩ R(L 1/2 ) L p ∩ L 2 , L -1/2 ∇x ∇xL -1/2
where the mapping of L -1/2 follows from Figure 8 and the unlabeled arrows indicate continuous inclusions for the p-norms. Lemma 7.2 guarantees that L p ∩ R(L 1/2 ) is dense in L p ∩ L 2 and we conclude that the Riesz transform is L p -bounded. But then we must have p ≤ q + (L) according to Theorem 7.3 and therefore p = q + (L). This argument has two consequences. First, q + (L) ∈ H 1 (L) is possible only if the Riesz transform is L q + (L) -bounded. We shall see in the next section that this is never the case. Second, H 1 (L) cannot contain exponents p > q + (L) and hence that we have h 1 + (L) ≤ q + (L). At this stage the proof of Theorem 9.6 is complete. 9.3. Consequences for square functions. By definition of H p L , the identification theorem (Theorem 9.6) can be reformulated in terms of L p -bounds for conical square functions of type

S ψ,L f (x) := S(Q ψ,L f )(x) = |x-y|<t |ψ(t 2 L)f (y)| 2 dtdy t 1+n 1/2
.

Here, we collect and improve these bounds with an emphasis on the decay for the auxiliary function ψ ∈ Ψ + + at |z| = 0 and |z| = ∞ within a sector. This will be important for the applications to boundary value problems.

When p ≥ 2, we will use the simple fact that the conical square functions S can be controlled by the vertical square function defined for F ∈ L 2 loc (R 1+n + ) as

V (F )(x) := ∞ 0 |F (t, x)| 2 dt t 1/2
, see for instance [13, Prop. 2.1] for the following lemma.

Lemma 9.17. Let p ∈ [2, ∞). There is a constant c depending on p and n such that for all

F ∈ L 2 loc (R 1+n + ), S(F ) p ≤ c V (F ) p .
Upper bounds for vertical square functions are provided by an abstract theorem due Cowling-Doust-McIntosh-Yagi [START_REF] Cowling | Banach space operators with a bounded H ∞ functional calculus[END_REF]Thm. 6.6]. We state the quantitative version found in the textbook [64], but inspection of the original argument would yield the same dependence of the constants. We continue to write

(Q ψ,T f )(t, x) = (ψ(t 2 T )f )(x)
as in Section 8, even though T need not act on L 2 , and we note that up to a norming factor of 2 the vertical square function

V (Q ψ,T f ) does not change if instead we use first-order scaling (Q ψ,T f )(t, x) = (ψ(tT )f )(x).
Theorem 9.18 ([64, Thm. 10.4.23]). Let p ∈ (1, ∞) and let T be a sectorial operator in L p (R n ; W ), where W is a finite-dimensional Hilbert space. Suppose that T has a bounded H ∞ -calculus of angle ω ∈ (0, π) on R(T ). Let µ ∈ (0, (π-ω) /2) and choose decay parameters σ, τ > 0. Then for all ψ ∈ Ψ τ σ (S + π-2µ ) and all f ∈ R(T ),

V (Q ψ,T f ) p ψ σ,τ,µ f p ,
where the implicit constant depends on T through M T,ν and M ∞ T,ν for some ν ∈ (ω, π -2µ).

Remark 9.19. The numbers M T,ν and M ∞ T,ν correspond to resolvent and functional calculus bounds, see (3.6) and (3.13). The theorem remains true for all f ∈ L p (R n ; W ) since we have ψ(t 2 T )f = 0 if f ∈ N(T ) and t > 0.

With this at hand, we obtain abstract square function bounds. We largely follow the idea for second-order elliptic operatorsdiv x d∇ x in [13], see also [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF][START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF], but with a more direct interpolation argument in tent spaces.

Proposition 9.20. Let T be a sectorial operator that satisfies the standard assumptions (8.5). Let p ∈ [2, ∞) and suppose that

f H p T ≃ f p (f ∈ H p T ).
Let θ ∈ (0, 1], fix an angle µ ∈ (0, θ(π-ω) /2) and let ψ ∈ Ψ τ σ (S + π-2µ ) with σ, τ > 0. Consider the square function bound

Q ψ,T f T q f q (f ∈ L q ∩ L 2 ),
with an implicit constant that depends on T only through (8.5) and the comparison constant for the p-norms in the assumption. Then this bound is valid provided that q ≥ 2 and

1 q > 1 p - [p, 2] θ p 2σ n .
Proof. We organize the proof in five steps.

Step 1: H ∞ -calculus for the L p -realization of T . It follows from Proposition 8.10 and the assumption on p that

η(T )f p η ∞ f p (9.37) for all f ∈ L p ∩R(T ) and all admissible η ∈ H ∞ . Let ν ∈ [0, π-ω 2 ) and ζ ∈ S + ν .
For the special choice η(z) := (1+ζ 2 z) -1 the operator η(T ) acts as the identity on N(T ). Hence, the bound above extends to all f ∈ L p ∩ L 2 , that is to say,

((1 + ζ 2 T ) -1 ) ζ∈S + ν is L p - bounded.
Hence, T has an L p -realization described in Proposition B.1 and this is a sectorial operator in L p of the same angle ω as T .

For η ∈ Ψ + + the bound (9.37) also remains true for general f ∈ L p ∩ L 2 since η(T ) vanishes on N(T ). We have η(T )f = η(T p )f since these operators are given by the same Cauchy integral. Since L p ∩ L 2 is dense in L p it follows that T p has a bounded H ∞ -calculus of angle ω on the closure of its range.

The idea of proof is now to interpolate between two square function bounds that we have seen before: Theorem 9.18 for T p and Lemma 9.7 for T .

Step 2: Definition of an interpolating family. For α ∈ C + := {z ∈ C : Re z > 0} we define

ψ α : S + π-2µ → C, ψ α (z) := z 1 + z α-σ ψ(z). (9.38) As z /(1+z) = (1 + z -1 ) -1 ∈ S +
π-2µ and Re α > 0, we obtain

sup z∈S π-2µ z 1 + z α-σ e (π-2µ)| Im α| (|z| Re α-σ ∧ 1), (9.39)
where the implicit constant is independent of α. Consequently, we have

ψ α ∈ Ψ τ Re α (S + π-2µ
) and ψ α Re α,τ,µ e (π-2µ)| Im α| ψ σ,τ,µ . (9.40) Combining Lemma 9.17 and Theorem 9.18 leads to the following bound for q := p and all f ∈ L q ∩ L 2 :

Q ψα,T f T q = S(Q ψα,Tp f ) q V (Q ψα,Tp f ) q e (π-2µ)| Im α| ψ σ,τ,µ f q .
The implicit constant is independent of ψ and α. By McIntosh's theorem the same holds for q = 2 and hence for all q ∈ [2, p] by interpolation. If, however, Re α > n 2[p,2] θ , then Lemma 9.7 provides the same bound for all q ∈ [2, ∞), so that in total we obtain

Q ψα,T f T q e (π-2µ)| Im α| ψ σ,τ,µ f L q (f ∈ L q ∩ L 2 ) (9.41)
if (Re α, 1 /q) belongs to the interior of the gray shaded region in Figure 9.

Step 3: Abstract Stein interpolation. For technical reasons it will be more convenient to work with the 'truncated' operators

Q (k) ψα,T f = e α 2 1 K k (Q ψα,T f ) (k ∈ N), where K k := (k -1 , k) ×B(0, k) ⊆ R 1+n + .
For fixed z the map α → ψ α (z) is holomorphic in the half plane C + . Writing out the Cauchy integral for ψ α (t 2 T ) and applying the dominated convergence theorem (justified by (9.40)), we obtain that

C + → L 2 (K k ), α → Q (k)
ψα,T f is holomorphic, whenever f ∈ L 2 . Moreover, thanks to the factor e α 2 this mapping is qualitatively bounded on any strip {α ∈ C : c 0 ≤ Re α ≤ c 1 } ⊆ C + with a bound depending on all parameters at stake. By the choice of K k , the square function S(Q

(k) ψα,L f )(x) vanishes for x ∈ c B(0, 2k). Hence we get for any p ∈ (1, ∞) that Q (k) ψα,L f T p ≤ |B(0, 2k)| 1 p k 1+n 2 Q (k) ψα,T f L 2 (K k ) , Re α 1 q 1 2 0 1 p 0 n 2[p,2] θ Figure 9.
Visualization of the interpolation in Proposition 9.20. For (Re α, 1 /q) in the interior of the grey shaded region, Q ψα,T is bounded L q → T q with a bound Ce (π-2µ) Im α , where C is independent of α. Stein interpolation in Step 3 provides boundedness L q → T q in the interior of the red triangular region, the lower boundary of which is given by

1 q = 1 p -[p,2] θ p 2 Re α n .
which shows that the qualitative mapping properties remain valid if we replace the target space L 2 (K k ) by T p . If in addition (Re α, 1 /q) belongs to the interior of the gray shaded region in Figure 9 and f ∈ L q ∩ L 2 , then we obtain the quantitative bound

Q (k) ψ α,T f T q ≤ |e α 2 | Q ψ α,T f T q e (Re α) 2 ψ σ,τ,µ f L q ,
where in the second step we have used (9.41) and the implicit constant is independent of ψ, α, k. Now, let (Re α j , 1 /q j ), j = 0, 1, belong to the interior of the gray shaded region in Figure 9. We intend to use to Proposition 4.11 for

T (z) := Q (k) ψ γ(z),L , γ(z) := (Re α 0 )(1 -z) + (Re α 1 )z,
and the interpolation couples X j := L q j and Y j := T q j . The dense subspace is Z := L 2 ∩ L q 0 ∩ L q 1 . The qualitative bounds above yield (i) and the continuity part of (ii) in Proposition 4.11. The quantitative bounds determine the constants M j in (ii). Hence, we get for any (Re α, 1 /q) on the segment connecting the (Re α j , 1 /q j ) a bound

Q (k) ψ α,T f T q ψ σ,τ,µ f L q (f ∈ L q ∩ L 2 ),
where the implicit constant is independent of ψ and k. Finally, we can pass to the limit as k → ∞ via Fatou's lemma to obtain the same type of bound with Q ψα,T f on the left-hand side. We have now completed Figure 9 by adding the triangular region.

Step 4: Conclusion. We specialize to α = σ, so that ψ α = ψ. The corresponding boundedness properties for Q ψ,T are dictated by Figure 9. 2] θ , then every q ∈ [2, ∞) is admissible and this coincides with the range obtained in the first case.

If σ ≤ n 2[p,2] θ , then 1 q > 1 p -[p,2] θ p 2σ n is needed. If σ > n 2[p,
We single out the conclusion for the operator L and the most common auxiliary functions ψ. Note that we can allow any ψ ∈ Ψ + + when p ≥ 2, which is a significant improvement compared to what is predicted by the abstract theory in Section 8.2.

Theorem 9.21. Let p -(L) < p < p + (L) and let σ, τ > 0. Let ψ be of class Ψ τ σ on any sector. Then

S ψ,L f p ≃ af H p (f ∈ a -1 (H p ∩ L 2 )), provided that • τ > | n /4 -n /(2p)| and σ > 0 if p ≤ 2, • τ > 0 and σ > 0 if p ≥ 2.
Moreover, the upper square function bound ' ' remains to hold for p + (L) ≤ p < np + (L) /(n-2σp + (L)), where the upper exponent bound is interpreted as

∞ if 2σp + (L) > n.
Proof of Theorem 9.21. If p ≤ 2, then the assumption means that ψ is an admissible auxiliary function for H p L , see Section 8.2. Hence,

S ψ,L f p = Q ψ,L f T p ≃ f H p L ≃ af H p ,
where the final step is due to Theorem 9.6.

If 2 < p < p + (L), then our assumptions on ψ are less restrictive than the ones predicted by the abstract theory.

We begin with the upper bounds. By Theorem 9.6 we have H p L = L p ∩ L 2 with equivalent p-norms. Hence, we can apply Proposition 9.20 for any p ∈ (2, p + (L)) and by assumption on ψ we may do so for any θ ∈ (0, 1). This leads to

S ψ,L f q f q (f ∈ L q ∩ L 2 )
for any q ≥ 2 that satisfies 1 /q > 1 /p + (L) -2σ /n, which is the range stated in the theorem.

For the lower bound we let f ∈ L p ∩ L 2 and take ϕ ∈ Ψ ∞ ∞ as in Remark 3.3 so that we have the reproducing formula

f = ∞ 0 ϕ(t 2 L)ψ(t 2 L)f dt t .
Now, we refine the duality argument of Part 8 in the proof of Theorem 9.6. We write again L * = a * L ♯ (a * ) -1 , with L ♯ an operator in the same class as L and

p ′ ∈ (p -(L ♯ ) ∨ 1, 2). For all g ∈ L p ′ ∩ L 2 we get f, g = ∞ 0 ψ(t 2 L)f, a * ϕ * (t 2 L ♯ )(a * ) -1 g dt t = ∞ 0 R n Q ψ,L f • a * Q ϕ * ,L ♯ (a * ) -1 g dxdt t ,
where • , • denotes the L 2 inner product. Thus,

| f, g | ≤ Q ψ,L f T p a * Q ϕ * ,L ♯ (a * ) -1 g T p ′ S ψ,L f p S ϕ * ,L ♯ (a * ) -1 g p ′ S ψ,L f p g p ′ ,
where the first step is by the T p -T p ′ duality and the third step uses the upper square function bound with ϕ * ∈ Ψ ∞ ∞ for L ♯ on L p ′ . Since g ∈ L p ′ ∩ L 2 was arbitrary, the lower bound S ψ,L f p f p follows.

A digression: H ∞ -calculus and analyticity

In this short section we present two consequences of the identification theorem for operator-adapted Hardy spaces that are of independent interest. One concerns analyticity, the other one concerns the H ∞calculus for L.

Recall that the standard assumptions (8.5) that we use to build the L-adapted spaces depend only on the configuration on L 2 : sectoriality, H ∞ -calculus and off-diagonal estimates for the resolvents (1 + t 2 L) -1 with real t. By the sectorial version of Proposition 8.10 discussed in Section 8.2, all L-adapted spaces inherit the H ∞ -calculus with the same angle as on L 2 .

It follows from Theorem 9.6 that we obtain H ∞ -calculi for L on classical H p and Ḣ1,q -spaces with the best possible angle. In the range p ∈ (1, ∞), such results on L p could in principle be obtained from Blunck and Kunstmann's theorem [START_REF] Blunck | Calderón-Zygmund theory for nonintegral operators and the H ∞ functional calculus[END_REF]. This is the road taken in [6, Sec. 5] when a = 1. We are not aware of an analog of the Blunck-Kunstmann result on Hardy-Sobolev spaces. In fact, we are not even aware of any general results for p ≤ 1 or q ≤ 1 or even of functional calculus away from the Banach space range.

We summarize this discussion in the following result.

Theorem 10.1. Let p -(L) < p < p + (L) and (p -(L) * ∨ 1 * ) < q < q + (L). For every ν ∈ (ω, π) the functional calculus bounds

aη(L)a -1 f H p η ∞ f H p η(L)g Ḣ1,q η ∞ g Ḣ1,q
hold for all η ∈ H ∞ (S + ν ) and all f ∈ H p ∩ L 2 , g ∈ Ḣ1,q ∩ L 2 . The open p-interval in Theorem 10.1 is the largest possible one since η(ζ) = (1 + t 2 ζ) -1 with real t is admissible. An example that illustrates the less familiar second inequality is ∇ x (1 + t 2 L) -1 g H q ∇ x g H q , which is of a different nature than the bounds defining N (L) and is valid for q in a bigger set.

This also leads us to analyticity, that is, resolvent bounds for parameters in a sector in the complex plane. According to Section 3.2, L is sectorial in L 2 with angle ω L not exceeding 2ω DB < π. We obtain that for X being any one of the spaces in the statement above and every µ ∈ (ω L , π) extensions by density with operator norm bounds

sup z∈C\S + µ z(z -L) -1 || X→X < ∞.
This means that H p -boundedness of resolvents (1 + t 2 L) -1 with real t alone self-improves to the same properties for the resolvents (1+z 2 L) -1 for z ∈ S + µ and µ ∈ (0, (π-ω L ) /2). A similar discussion applies to L p off-diagonal estimates for T (z) := (1 + z 2 L) -1 , z ∈ S + µ , when (p -(L) ∨ 1) < p < p + (L). For a small and pdependent angle they can be obtained from the Stein interpolation theorem for analytic families of operators, see Lemma 4.13. Having the L pboundedness and the L 2 off-diagonal estimates for the (p-independent) optimal angle implies by complex interpolation applied to each single operator T (z) the L p off-diagonal estimates for T (z), see Lemma 4.14. If p -(L) < 1 (resp. p -(L ♯ ) < 1), we shall see in Section 14 that we may also include L 1 (resp. L ∞ ) off-diagonal estimates here.

In the same manner, we could obtain self-improvements for other families. Of particular interest is the analytic Poisson semigroup generated by -L 1/2 , which has angle π /2ω L /2, and when ω L < π /2 -that is, for instance when a = 1 -the analytic heat semigroup e -zL with angle π /2ω L .

Riesz transform estimates: Part II

We come back to the Riesz transform interval

I(L) := p ∈ (1 * , ∞) : R L is a -1 H p -H p -
bounded , defined in (7.1), the endpoints of which we have denoted by r ± (L). In Section 7 we have characterized the endpoints of the part of I(L) in (1, ∞). The identification theorem for adapted Hardy spaces allows us to complete the discussion through the following theorem.

Theorem 11.1. It follows that

I(L) = (p -(L), q + (L)).
Moreover, the following hold true:

(i) The map aL 1/2 : Ḣ1,p ∩ Ẇ1,2 → H p ∩ L 2 is well-defined and bounded for the p-quasinorms if p -(L) * ∨ 1 * < p < p + (L). (ii) An exponent p ∈ (1 * , ∞) belongs to I(L) if and only if the map in (i) extends by density to an isomorphism Ḣ1,p → H p whose inverse agrees with L -1/2 a -1 on H p ∩ L 2 . In particular, if p ∈ I(L), then

R L f H p ≃ af H p (f ∈ a -1 (H p ∩ L 2 )).
The reader may wonder if the separate discussion in Section 7 could have been avoided. The answer is that it can not, since Theorem 7.3 was used in proving Theorem 9.6.

Proof. The Hardy space theory yields for p -(L) * ∨ 1 * < p < p + (L) continuous inclusions for the p-quasinorms,

Ḣ1,p ∩ L 2 ⊆ H 1,p L , H p L ⊆ a -1 (H p ∩ L 2 ). (11.1) 
More precisely, by Theorem 9.6 the first inclusion is an equality up to equivalent norms if p < q + (L) and the second one is an equality if p > p -(L). The first inclusion for q + (L) ≤ p < p + (L) is due to (9.34) and the second inclusion for p -(L) * ∨ 1 * < p ≤ p -(L) is due to (9.24).

Step 1: Proof of (i). As Figure 8 tells us that L 1/2 : H 1,p L ∩W 1,2 → H p L is bounded for the p-quasinorms, we conclude from the inclusions above that aL 1/2 : Ḣ1,p ∩ W 1,2 → H p ∩ L 2 is well-defined and bounded for the respective p-quasinorms. The extension to Ḣ1,p ∩ Ẇ1,2 follows by density.

Step 2: Bounds for R L . Let p -(L) < p < q + (L). Then the inclusions in (11.1) become equalities and Figure 8 tells us that

∇ x L -1/2 f H p ≃ af H p (f ∈ H p L ∩ R(L 1/2 )). Since H p L ∩ R(L 1/2 ) is dense in H p L for the norm • H p L + • 2
, we obtain by approximation and the various quasinorm equivalences that

R L f H p ≃ af H p (f ∈ a -1 (H p ∩ L 2 )). In particular, R L is a -1 H p -H p -bounded.
Step 3: Identification of the endpoints of I(L). In view of Theorem 7.3 it remains to show p -(L) = r -(L) in the case that one of these exponents is smaller than 1. In Step 2 we have already shown r -(L) ≤ p -(L) without any such restrictions. The only task remaining is to prove that r -(L) < ̺ < 1 implies (̺, 1] ⊆ J (L).

We may assume ̺ < 2 * since otherwise the claim already follows from Proposition 6.7. Since r -(L) ∨ 1 < ̺ * < 2, Theorem 7.3 yields p -(L) ∨ 1 < ̺ * < 2 and hence (tL

1/2 (1 + t 2 L) -1 ) t>0 is L ̺ * -bounded, see Lemma 4.16.(i). Now, let f ∈ H ̺ ∩ L 2 . Then f ∈ R(aL 1/2
) thanks to Lemma 7.7, so that we can estimate

(1 + t 2 L) -1 a -1 f ̺ * t -1 L -1/2 a -1 f ̺ * t -1 ∇ x L -1/2 a -1 f H ̺ t -1 f H ̺ ,
where we used the assumption r -(L) < ̺ in the last line. This means that the resolvents are a -1 H ̺ -L ̺ * -bounded. According to Lemma 4.15 they satisfy L ̺ * off-diagonal estimates of arbitrarily large order and for compactly supported f ∈ L 2 with mean value zero we recall from Corollary 5.4 that R n a(1+t 2 L) -1 (a -1 f )dx = 0. With these properties at hand, the required H p -boundedness of the resolvents for p ∈ (̺, 1] follows from Lemma 4.9.

Step 4: Proof of (ii). If aL 1/2 extends to an isomorphism with the given property, then

R L f H p = L -1/2 a -1 (af ) Ḣ1,p ≃ af H p (f ∈ a -1 (H p ∩ L 2 ))
as required.

Conversely, suppose that p ∈ I(L). This means that R L = ∇ x L -1/2 is a -1 H p -H p -bounded and hence L -1/2 a -1 : H p ∩ L 2 → Ḣ1,p ∩ Ẇ1,2 is well-defined and bounded for the p-quasinorms. According to Step 3 the exponent p must be contained in [p -(L), q + (L)] ∩ (1 * , ∞), which, in view of Theorem 6.2, is a subset of the interval considered in (i). Therefore aL 1/2 : Ḣ1,p ∩ Ẇ1,2 → H p ∩ L 2 is also bounded for the pquasinorms and hence it extends to an isomorphism with the required properties.

Step 5: Conclusion. We already know the endpoints of I(L) and it remains to show that this interval is open. The map in (i) is defined and continuous for p in an open interval I that contains I(L) and the isomorphism property in (ii) characterizes I(L) as a subset of I. Since the scales of spaces ( Ḣ1,p ) p∈(1 * ,∞) and (H p ) p∈(1 * ,∞) interpolate by the complex method, the openness of I(L) is a consequence of Šne ȋberg's stability theorem [START_REF] Kalton | Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations[END_REF]Thm. 8.1]. See also [START_REF] Kalton | Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations[END_REF]Thm. 8.1] for the fact that compatibility of the inverses is preserved.

In Part 10 of the proof of Theorem 9.6 we have seen that q + (L) ∈ H 1 (L) is possible only if the Riesz transform is L q + (L) -bounded. Hence, we can note:

Corollary 11.2. The interval H 1 (L) is open at the upper endpoint, that is, q + (L) / ∈ H 1 (L).
The statement (ii) in Theorem 11.1 can be strengthened to a Riesz transform characterization of abstract and concrete Hardy spaces. For operators of typediv x d∇ x such results first appeared in [START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF]Sec. 5]. Interestingly, this observation allows us to strengthen the identification theorem for H p L itself in that H(L) is open and hence identification fails at the endpoints.

Theorem 11.3. Let p ∈ (p -(L) * ∨ 1 * , q + (L)). Then H p L = {f ∈ L 2 : R L f ∈ H p } with equivalent quasinorms • H p L ≃ R L • H p .
In particular, it follows that

H(L) = (p -(L), p + (L)). Proof. Let p ∈ (p -(L) * ∨ 1 * , q + (L)).
We first prove the quasinorm equivalence for f ∈ H p L . To this end, we argue as in Step 2 of the proof of Theorem 11.1, except that in the given range of exponents only the first inclusion in (11.1) is an equality but we cannot identify H p L unless p > p -(L). This yields

R L f H p ≃ f H p L (f ∈ H p L ) and we can replace H p L with a -1 (H p ∩ L 2 ) if in addition p > p -(L). Conversely, let f ∈ L 2 satisfy R L f ∈ H p .

Arguing as in

Step 1 of the proof of Theorem 11.1, we find that L 1/2 : Ḣ1,p ∩ W 1,2 → H p L is bounded for the p-quasinorms. The only difference is again that we cannot identify H p L . By assumption we have L -1/2 f ∈ Ḣ1,p ∩ Ẇ1,2 . Let (u k ) ⊆ Z be a sequence with u k → L -1/2 f in Ḣ1,p ∩ Ẇ1,2 as k → ∞ and set f k := L 1/2 u k . Then (f k ) is a Cauchy sequence in (the possibly non-complete space) H p L that converges to f in L 2 . Let H p L be defined by the auxiliary function ψ. By L 2 convergence

B(x,t) |ψ(t 2 L)f (y)| 2 dy = lim k→∞ B(x,t) |ψ(t 2 L)f k (y)| 2 dy
holds for all (t, x) ∈ R 1+n and Fatou's lemma yields

f p H p L ≤ lim inf k→∞ R n |x-y|<t |ψ(t 2 L)f k (y)| 2 dydt t 1+n p/2 dx = lim inf k→∞ f k p H p L .
The final expression is finite by the Cauchy property in H p L , which means that f ∈ H p L . Concerning the final statement, we recall from Theorem 9.6 that p ± (L) are the endpoints of H(L). For the sake of a contradiction, suppose p := p -(L) ∈ H(L). The first part yields R L f H p ≃ af H p for all f ∈ a -1 (H p ∩ L 2 ), which contradicts Theorem 11.1. Likewise, suppose p + (L) ∈ H(L). Since H(L) ⊆ (1 * , ∞), we must have p + (L) < ∞ and therefore p -(L ♯ ) = p + (L) ′ > 1 by duality and similarity. Proposition 8.9 implies with p = p -(L ♯ ) that H p L ♯ = L p ∩ L 2 with equivalent p-norms, that is p ∈ H(L ♯ ), which is impossible as we have already seen.

Critical numbers for Poisson and heat semigroups

For the applications to boundary value problems we are mainly interested in estimates for the Poisson semigroup (e -tL 1/2 ) t>0 . It would have been equally natural to try building the theory in Section 6 from the intervals

J Pois (L) := p ∈ (1 * , ∞) : (e -tL 1/2 ) t>0 is a -1 H p -bounded , N Pois (L) := p ∈ (1 * , ∞) : (t∇ x e -tL 1/2 ) t>0 is a -1 H p -H p -bounded .
Note that both intervals contain p = 2. Indeed, 2 ∈ J Pois (L) follows from the functional calculus on L 2 and to prove 2 ∈ N Pois (L) we additionally use ellipticity to obtain

t∇ x e -tL 1/2 f 2 2 Re at 2 Le -tL 1/2 f, e -tL 1/2 f f 2 2
for all t > 0 and all f ∈ L 2 . This gives rise to a definition of critical 'Poisson' numbers.

Definition 12.1. The lower and upper endpoints of J Pois (L) are denoted by p Pois -(L) and p Pois + (L), respectively. Likewise, q Pois ± (L) denote the endpoints of N Pois (L).

The reason why we use J (L) and N (L) is that Poisson semigroups offer very limited off-diagonal decay (think of the Poisson kernel for the Laplacian), whereas the resolvents offer exponential decay. One main result in this section is that while the decay properties are strikingly different, the associated critical numbers are the same. Theorem 12.2. p Pois ± (L) = p ± (L) and q Pois ± (L) = q ± (L). Aiming in a similar direction, we note that the unperturbed operator L 0 =div x d∇ x is sectorial of angle ω L 0 ∈ (0, π /2) and hence it generates a holomorphic semigroup (e -t 2 L 0 ) t>0 on L 2 , called heat semigroup. The associated intervals

J heat (L 0 ) := p ∈ (1 * , ∞) : (e -t 2 L 0 ) t>0 is H p -bounded , N heat (L 0 ) := p ∈ (1 * , ∞) : (t∇ x e -t 2 L 0 ) t>0 is H p -bounded contain p = 2
by the same argument as for the Poisson semigroup and their endpoint are the critical 'heat' numbers.

Definition 12.3. The lower and upper endpoints of J heat (L 0 ) are denoted by p heat -(L 0 ) and p heat + (L 0 ), respectively. Likewise q heat ± (L 0 ) denote the endpoints of N heat (L 0 ). We refer to [3] for a systematic treatise of critical heat numbers in the range p ∈ (1, ∞) and their relation to Riesz transforms, H ∞ -calculus and square function estimates.

The second main result in this section shows that critical numbers and critical heat numbers are the same in the full interval of exponents. Since also the critical numbers for L 0 and L are the same (Theorem 6.9), this provides a means of characterizing all intervals of exponents in the monograph through properties of a heat semigroup, even though L itself need not be a generator.

Theorem 12.4. p heat ± (L 0 ) = p ± (L 0 ) and q heat ± (L 0 ) = q ± (L 0 ). This second result tells us that the theory in [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF] relying on the critical heat numbers is in coherence with the one here when restricted to the range p ∈ (1, ∞).

The proofs of both theorems follow the same pattern. If we assume resolvent bounds, then semigroup bounds follow immediately from the functional calculus bound in Theorem 10.1, whereas in the opposite direction we can represent resolvents via Laplace transforms of the semigroup. For the Poisson semigroup these formulae become more technical since we want to estimate the resolvents of the square of the semigroup generator L 1/2 . It is for this reason that we shall showcase the strategy for the heat semigroup first although the Poisson semigroup is of greater importance to us.

For both proofs we need part (i) of the following proposition. The extensions in (ii) and (iii) will be needed much later in Section 20.

Proposition 12.5. Let p -(L) < p ≤ q < p + (L) and consider the families (ae -tL 1/2 a -1 ) t>0 and (e -t 2 L 0 ) t>0 .

(i) If p ≤ q < p + (L), then they are H p -H q -bounded.

(ii) If p -(L ♯ ) < 1 and 0 < α < n( 1 /p -(L ♯ ) -1)
, then the first one is H p -a Λα -bounded and the second one is

H p -Λα -bounded (iii) If p -(L ♯ ) < 1, then they are H p -L ∞ -bounded.
Proof. We prove the three statements in order.

Proof of (i). We recall from Theorem 6.9 that p ± (L) = p ± (L 0 ). Hence, H p -boundedness follows directly from Theorem 10.1.

As we have p -(L) < 2 * (Proposition 6.7), we can use a Sobolev embedding followed by Theorem 11.1.(ii) and Theorem 10.1 with exponent p = 2 * in order to obtain for all t > 0 and all f ∈ H

2 * ∩ L 2 that ae -tL 1/2 a -1 f 2 ∇ x e -tL 1/2 a -1 f H 2 * ≃ aL 1/2 e -tL 1/2 a -1 f H 2 * t -1 f H 2 * . (12.1)
Hence, (ae -tL 1/2 a -1 ) t>0 is H 2 * -L 2 -bounded. By the first part and Lemma 4.4 we obtain for each p ∈ (p -(L), 2) an integer β such that (ae -tβL 1/2 a -1 ) t>0 is H p -L 2 -bounded. Interpolation with the first part yields H p -H q -boundedness for all exponents p -(L) < p ≤ q ≤ 2.

Applying this result to L ♯ and using L * = a * L ♯ (a * ) -1 yields in particular L q ′ -L p ′ -boundedness for (e -t(L * ) 1/2 ) t>0 if (p -(L ♯ ) ∨ 1) < q ′ ≤ p ′ ≤ 2. Hence, L p -L q boundedness of (ae -tL 1/2 a -1 ) t>0 follows for 2 ≤ p ≤ q < p + (L) by duality and ellipticity of a * . In the remaining case that p and q are on opposite side of 2 we can use the semigroup property and combine H p -L 2 and L 2 -L q -boundedness.

The proof for the heat semigroup is mutadis mutandis the same since the second-order scaling guarantees that the third step in (12.1) remains valid.

Proof of (ii). Let

α = n( 1 /̺ -1) with p -(L ♯ ) < ̺ < 1. Part (i) yields that (a * e -t(L ♯ ) 1/2 (a * ) -1 ) t>0 is H ̺ -L p ′ -bounded if p -(L) ∨ 1 < p < p + (L)
. By similarity and duality (e -tL 1/2 ) t>0 is L p -Λα -bounded. This is the claim under the additional assumption p > 1. The full result follows from (i) by the semigroup property.

The same argument applies to the heat semigroup.

Proof of (iii). By the semigroup property and (i) it suffices to treat the case p > 1. The claim has nothing to do with semigroups and simply follows from (i), (ii) and the following interpolation inequality.

Lemma 12.6. Let 1 ≤ p < ∞ and 0 < α < 1.

If g ∈ L p ∩ Λα , then g ∈ L ∞ and g ∞ ≤ 2|B(0, 1)| θ g θ p g 1-θ Λα , θ = α α + n /p . Proof. For x, y ∈ R n we have |g(x)| ≤ |g(y)| + |x -y| α g Λα .
We take the average in y over some ball B(x, r) and use Hölder's inequality to give

|g(x)| ≤ (|B(0, 1)|r n ) -1/p g p + r α g Λα .
We conclude by picking r such that the terms on the right are equal.

12.1. Identification of the critical heat numbers. We turn to the proof of the second principal results of this section.

Proof of Theorem 12.4. We break the argument into three steps.

Step 1: From the resolvent to the semigroup. Proposition 12.5.(i) implies (p -(L 0 ), p + (L 0 )) ⊆ J heat (L 0 ).

Next, we let p ∈ (q -(L 0 ), q + (L 0 )). Then p ∈ (p -(L 0 ), p + (L 0 )) by Theorem 6.2. Combining Theorem 11.1.(ii) and Theorem 10.1, we get

t∇ x e -t 2 L 0 f H p ≃ tL 1/2 0 e -t 2 L 0 f H p f H p ,
which proves p ∈ N heat (L 0 ). We conclude that (q -(L 0 ), q + (L 0 )) ⊆ N heat (L 0 ).

Step 2: From J heat (L 0 ) to J (L 0 ). For every t > 0 the operator

T := 1 + t 2 L 0
is invertible and sectorial of angle ω L 0 < π /2. By the Calderón reproducing formula we have for f ∈ L 2 as an improper Riemann integral,

f = ∞ 0 T e -sT f ds.
Applying T -1 on both sides gives the classical formula

(1 + t 2 L 0 ) -1 f = ∞ 0 e -s e -st 2 L 0 f ds (12.2)
and the integral converges absolutely in L 2 since the heat semigroup is uniformly bounded.

Let now r ∈ J heat (L 0 ) and take any p between r and 2. We shall show that ((1 + t 2 L 0 ) -1 ) t>0 is H p -bounded, that is, p ∈ J (L 0 ). Then, together with Step 1, p heat ± (L 0 ) = p ± (L 0 ) follows.

Step 2a: The Lebesgue case p > 1. Since the heat semigroup is L pbounded, the integral in (12.2) converges absolutely in L p for all t > 0 and all f ∈ L p ∩ L 2 and we obtain

(1 + t 2 L 0 ) -1 f p f p as required.
Step 2b: The Hardy case p ≤ 1. We appeal to Lemma 4.9 in order to show that the resolvents are H p -bounded. For f ∈ L 2 with compact support and mean value zero we have

R n (1+t 2 L 0 ) -1 f dx = 0 by Corollary 5.4.
For the other two assumptions in Lemma 4.9 we use exponents ̺ ∈ (r, p) and q ∈ (1, 2) with n /̺n /q < 1. In particular, ̺, q are interior points of J heat (L 0 ).

From Step 2a we obtain q ∈ (p -(L 0 ), 2). Hence, ((1 + t 2 L 0 ) -1 ) t>0 satisfies L q off-diagonal estimates of arbitrarily large order by interpolation with the L 2 off-diagonal decay.

It remains to show that ((1 + t 2 L 0 ) -1 ) t>0 is H ̺ -L q -bounded. The following boundedness properties hold for the heat semigroup: first H r and H ̺ (by assumption), second L q -L 2 (by Proposition 12.5), third H ̺ -L 2 (by Lemma 4.4 and the semigroup law), fourth H ̺ -L q (by interpolation). This allows us to take L q -norms in (12.4) and obtain for all t > 0 and all f ∈ H ̺ ∩ L 2 ,

(1 + t 2 L 0 ) -1 f q ∞ 0 e -s (s 1 2 t) n q -n ̺ f H ̺ ds t n q -n ̺ f H ̺ , (12.3)
where the integral in s is finite by the choice of our exponents. This completes Step 2b.

Step 3: From N heat (L 0 ) to N (L 0 ). Let r ∈ N heat (L 0 ) and take any p between r and 2. We shall show that (t∇ x (1 + t 2 L 0 ) -1 ) t>0 is H pbounded, that is, p ∈ N (L 0 ). Then, together with Step 1, q heat ± (L 0 ) = q ± (L 0 ) follows.

Step 3a: The Lebesgue case p > 1. We apply t∇ x on both sides of (12.2) and take L p -norms in order to get

t∇ x (1 + t 2 L 0 ) -1 f p ∞ 0 s -1 2 e -s f p ds f p
as required for all t > 0 and all f ∈ L p ∩ L 2 .

Step 3b: The Hardy case p ≤ 1. By Theorem 6.2 the intervals J (L 0 ) and N (L 0 ) have the same lower endpoint. Hence, it suffices to prove p ∈ J (L 0 ), that is, H p -boundedness of ((1 + t 2 L 0 ) -1 ) t>0 . Once again we appeal to Lemma 4.9. We fix any ̺ ∈ (r, p) and let q := r * ∈ (1, 2).

In particular, n /̺n /q < 1 and ̺, q are interior points of N heat (L 0 ). For f ∈ L 2 with compact support and mean value zero we have R n (1 + t 2 L 0 ) -1 f dx = 0 by Corollary 5.4. From Step 3a we obtain that q is an interior point of N (L 0 ), hence of J (L 0 ). By interpolation with the L 2 off-diagonal decay we find that ((1 + t 2 L 0 ) -1 ) t>0 satisfies L q off-diagonal estimates of arbitrarily large order.

Finally, we obtain by a Sobolev embedding for all t > 0 and all

f ∈ H r ∩ L 2 , e -t 2 L 0 f L q ∇ x e -t 2 L 0 f H r t -1 f H r ,
which is H r -L q -boundedness of the heat semigroup. Since q is an interior point of J (L 0 ), we also have L q -boundedness of the heat semigroup from Step 1 and hence we obtain H ρ -L q -boundedness by interpolation. This being said, we can take again L q -norms in (12.2) and conclude the missing H ρ -L q -boundedness of ((1 + t 2 L 0 ) -1 ) t>0 as in (12.3).

12.2. Identification of the critical Poisson numbers. We present the proof for the Poisson semigroup vis-à-vis and focus on where the argument gets technically more involved.

Proof of Theorem 12.2. We break the argument again in three steps.

Step 1: From the resolvent to the semigroup. We get (p -(L), p + (L)) ⊆ J Pois (L) and (q -(L), q + (L)) ⊆ N Pois (L) by repeating the argument for the heat semigroup mutadis mutandis.

Step 2: From J Pois (L) to J (L). We shall always get from Poisson semigroup bounds to resolvents of L 1/2 on the imaginary axis and then to resolvents of L via the decomposition

(1 + t 2 L) -1 = (1 -itL 1/2 ) -1 (1 + itL 1/2 ) -1 (t > 0)
. As a substitute for (12.2) we need Laplace transform formulae on the imaginary axis that we are going to derive next.

Let ε ∈ (0, (π-ω L ) /4) and t > 0. Since L 1/2 is sectorial of angle ω L /2, the operator

T := e i(ε-π 2 ) + te iε L 1/2 = -ie iε (1 + itL 1/2
) is invertible and sectorial of angle π /2ε. By the Calderón reproducing formula we have for f ∈ L 2 as an improper Riemann integral,

f = ∞ 0 T e -sT f ds.
Applying T -1 on both sides gives the formula

(1 + itL 1/2 ) -1 f = -ie iε ∞ 0 e ise iε e -ste iε L 1/2 f ds. (12.4)
The latter integral converges absolutely in L 2 since by the functional calculus on L 2 the Poisson semigroup is uniformly bounded on e iε R + and Re(ie iε ) =sin(ε) < 0. A similar formula holds for (1 -itL 1/2 ) -1 f upon replacing i by -i at each occurrence.

Let now r ∈ J Pois (L) and take any p between r and 2. We shall show that ((1 + t 2 L) -1 ) t>0 is a -1 H p -bounded, that is, p ∈ J (L). Then, together with Step 1, p Pois ± (L) = p ± (L) follows.

Step 2a: The Lebesgue case p > 1. Interpolation (Lemma 4.13) of the L r -bound for (0, ∞) and the L 2 -bound on some sector provides us with a smaller ε > 0 such that e -zL 1/2 is L p -bounded for z ∈ S + ε . Hence, the integral on the right-hand side in (12.4) converges absolutely in L p for all t > 0 and all f ∈ L p ∩ L 2 and we obtain

(1 + itL 1/2 ) -1 f p f p .
The same argument applies to (1 -itL 1/2 ) -1 and L p -boundedness of (1 + t 2 L) -1 follows by composition.

Step 2b: The Hardy case p ≤ 1. As in the case of the heat semigroup we appeal to Lemma 4.9 and use exponents ̺ ∈ (r, p) and q ∈ (1, 2) with n /̺n /q < 1. In particular, ̺, q are interior points of J Pois (L).

The vanishing moments condition and the L q off-diagonal estimates of arbitrarily large order for ((1 + t 2 L) -1 ) t>0 follow exactly as for the heat semigroup and it remains to show a -1 H ̺ -L q -boundedness. As before, we arrive at a -1 H ̺ -L q -boundedness for (e -tL 1/2 ) t>0 but we need to extend the property to some small sector in order to use (12.4).

Again by Step 2a, we know that there exists a smaller ε > 0 such that the Poisson semigroup e -zL 1/2 is L q -bounded for z ∈ S + 2ε . Now, let z ∈ S + ε and decompose

z = t + z ′ with t > 0, z ′ ∈ S + 2ε , |z| ≃ |z ′ | ≃ t. By composition, e -zL 1/2 = e -z ′ L 1/2 e -tL 1/2 is a -1 H ̺ -L q -bounded for z ∈ S + ε .
Taking L q -norms in (12.4), obtain for all t > 0 and all f ∈

H ̺ ∩ L 2 , (1 + itL 1/2 ) -1 a -1 f q ∞ 0 e -s sin(ε) (st) n /q-n /̺ f H ̺ ds t n /q-n /̺ f H ̺ ,
where the integral in s is finite by the choice of our exponents. Hence, ((1+itL 1/2 ) -1 ) t>0 is a -1 H ̺ -L q -bounded. In Step 2a we have seen that ((1-itL 1/2 ) -1 ) t>0 is L q -bounded. Thus, ((1+t 2 L) -1 ) t>0 is a -1 H ̺ -L qbounded. This completes Step 2b.

Step 3: From N Pois(L) to N (L). We cannot work with the representation (12.4): once the gradient is inside the integral, we would have to deal with a function that behaves like s -1 in L 2 -norm near s = 0. For ε ∈ (0, (π-ω L ) /4), t > 0, and T := -ie iε (1 + itL 1/2 ) as before, we use instead the reproducing formula f = ∞ 0 sT 2 e -sT f ds for f ∈ L 2 . Applying T -2 on both sides, we find the absolutely convergent representation

(1 + itL 1/2 ) -2 f = -e 2iε
∞ 0 e ise iε s e -ste iε L 1/2 f ds (12.5) with an additional factor of s. Again, an analogous representation is available for (1 -itL 1/2 ) -2 f . Let now r ∈ N Pois (L) and take any p between r and 2. We shall show that (t∇

x (1 + t 2 L) -1 ) t>0 is a -1 H p -H p -bounded, that is, p ∈ N (L).
Then, together with Step 1, q Pois ± (L) = q ± (L) follows. In constrast to the proof for the heat semigroup we also need to distinguish the case p > 2 from the rest.

Step 3a: The case 1 < p ≤ 2. We can further assume p < 2 * (and hence n ≥ 3), since otherwise we can directly conclude by Proposition 6.7.

We claim that for every q ∈ [p, 2] there exists a smaller ε > 0 such that the following boundedness properties hold for all z ∈ S + ε : L q -L q for z∇ x e -zL 1/2 (12.6) L q -L q * for e -zL 1/2 . (12.7) For (12.6) we use interpolation between the L r -result on (0, ∞) and the L 2 -result on some sector. As for (12.7), we use the assumption and a Sobolev embedding to give e -zL 1/2 f r * ≤ ∇ x e -zL 1/2 f r |z| -1 f r for all z ∈ (0, ∞) and all f ∈ L r ∩ L 2 . This means L r -L r * -boundedness. The same argument works for z in a sector if we replace the exponent r by 2 and we can conclude by interpolation as before.

We use (12.6) for q = p * . This choice is admissible since we assume p < 2 * . Applying t∇ x to (12.5) and taking L p * -norms, we obtain for all t > 0 and all f ∈ L p * ∩ L 2 ,

t∇ x (1 + itL 1/2 ) -2 f p * ∞ 0 e -s sin(ε) f p * ds.
Hence, (t∇ x (1 + itL 1/2 ) -2 ) t>0 is L p * -bounded. In the same manner, (12.7) for q = p implies that ((1

-itL 1/2 ) -2 ) t>0 is L p -L p * -bounded. By composition, (t∇ x (1 + t 2 L) -2 ) t>0 is L p -L p * -bounded.
Since this works for all p ∈ (r, 2 * ), we get L p -boundedness of (t∇ x (1+ t 2 L) -2 ) t>0 . Indeed, it suffices to interpolate with the L 2 off-diagonal estimates and then use Lemma 4.7. But then we can apply Lemma 6.5 in order to get L p -boundedness of (t∇ x (1 + t 2 L) -1 ) t>0 as required.

Step 3b: The case 1 * < p ≤ 1. As in Step 3b for the heat semigroup we see that it suffices to prove H p -boundedness of ((1 + t 2 L) -1 ) t>0 . As usual, we rely on Lemma 4.9. We fix any ̺ ∈ (r, p) and let q := r * ∈ (1, 2). In particular, n /̺n /q < 1 and ̺, q are interior points of N Pois (L 0 ).

Repeating the argument from Step 3b for the heat semigroup mutadis mutandis, we get the vanishing moments condition and the L q offdiagonal estimates of arbitrarily large order for ((1 + t 2 L) -1 ) t>0 and we get a -1 H ̺ -L q -boundedness of the Poisson semigroup (e -tL 1/2 ) t>0 . From Step 3a we know that q is an interior point of N (L), hence of J (L). Theorem 10.1 yields L q -boundedness of (e -zL 1/2 ) z∈S + ε for any admissible ε > 0. Consequently, we are back in the Situation of Step 2b of the ongoing proof and obtain the missing a -1 H ̺ -L q -boundedness of ((1 + t 2 L) -1 ) t>0 .

Step 3c: The case 2 < p < ∞. We claim that there exists a smaller ε > 0 and an exponent q ∈ (1, p] with n /qn /p < 1 such that the following boundedness properties hold for z ∈ S + ε : L p -L p for z∇ x e -zL 1/2 (12.8) L q -L p for e -zL 1/2 . (12.9)

The first part follows by interpolation between the L r and the L 2result. For the second part we first note that 2 * ≤ p + (L) ≤ p Pois + (L) and q Pois -(L) ≤ q -(L) < 2 * by Step 1 and Proposition 6.7. In dimensions n ≤ 2 we have 2 * = ∞, hence 2 < p < r < p Pois + (L). We take q := p and obtain the claim by interpolation between the L r -result on (0, ∞) and the L 2 -result on a sector. In dimension n ≥ 3, we have r * ∈ (2 * , r) ⊆ N Pois (L) and we obtain L r * -L r -boundedness on (0, ∞) by the Sobolev embedding as in Step 3a. Now, (12.9) follows by interpolation with the L 2 -boundedness on a sector for the choice q := [2, r * ] θ given that p = [2, r] θ . Note that n /qn /p = θ < 1.

Equipped with (12.8) and (12.9), we can take L p -norms in (12.5) after having applied the gradient as well as in the analogous formula for (1 -itL 1/2 ) -1 . We obtain L p -boundedness of (t∇ x (1 + itL 1/2 ) -2 ) t>0 and L q -L p -boundedness of ((1 -itL 1/2 ) -2 ) t>0 . In the second case the restriction on q guarantees again that the integral in s converges. Hence, (t∇

x (1 + t 2 L) -2 ) t>0 is L q -L p -bounded.
At this point we can repeat the argument in the last paragraph of Step 3a to conclude L p -boundedness.

12.3. More on off-diagonal decay for the Poisson semigroup. We include an exemplary result to illustrate the poor off-diagonal decay of the Poisson semigroup. In general, and in stark contrast to the resolvents, there is not enough decay to bridge between L q -L 2estimates and L q -L q -estimates via Lemma 4.7.

Proposition 12.7. If (p -(L) ∨ 1) < q ≤ 2, then (tL 1/2 e -tL 1/2 ) t>0 satisfies L q -L 2 off-diagonal estimates of order n /qn /2 + 1.

Proof. We pick p ∈ (p -(L) ∨ 1, q) and let θ ∈ (0, 1) be such that q = [p, 2] θ . For a parameter α > 1, to be chosen later on, we consider the family

t α L α/2 e -tL 1/2 = t α L α/2 e -t 2 L 1/2 e -t 2 L 1/2 (t > 0).
From the left-hand side and Lemma 4.16.(i) we obtain L 2 off-diagonal estimates of order α, whereas from the right-hand side and Proposition 12.5 we obtain L p -L 2 -boundedness. This implies L q -L 2 offdiagonal estimates of order θα, see Lemma 4.14. Now, let E, F ⊆ R n be measurable, f ∈ L q ∩ L 2 and t > 0. We use the Calderón reproducing formula

f = c α ∞ 0 s α-1 e -sL 1/2 ds s in order to give 1 F tL 1/2 e -tL 1/2 1 E f = c α ∞ 0 ts α-1 (s + t) α 1 F (s + t) α L α/2 e -(s+t)L 1/2 1 E f ds s .
Thus, setting γ := n /qn /2 ≥ 0, we get

1 F (tL 1/2 e -tL 1/2 )1 E f 2 f q ∞ 0 ts α-1 (s + t) α+γ 1 + d(E, F ) s + t -θα ds s = f q t -γ ∞ 0 σ α-1 (1 + σ) α+γ 1 + d(E, F )/t 1 + σ -θα dσ σ .
We let X := d(E,F ) /t. It remains to show that we can choose α > 1 in such a way that with an implicit constant independent of X,

∞ 0 σ α-1 (1 + σ) α+γ 1 + X 1 + σ -θα dσ σ (1 + X) -γ-1 .
In the case X ≤ 1, we simply bound the left-hand side by

∞ 0 σ α-1 (1 + σ) α+γ dσ σ 1 (1 + X) -γ-1 .
In the case X > 1, we split the integral into three pieces and obtain a bound (up to a multiplicative constant depending on α, γ, θ) by

1 0 σ α-1 X -θα dσ σ + X 1 σ α-1 σ α+γ X σ -θα dσ σ + ∞ X σ α-1 σ α+γ dσ σ X -θα + X -θα (X θα-γ-1 + 1) + X -γ-1 (1 + X) -γ-1 ,
provided that we pick α > (γ+1) /θ ∨ 1.

L p boundedness of the Hodge projector

Let p ∈ (1, ∞). The well-known Leray-Helmholtz decomposition states that every vector field f ∈ L p (R n ; C mn ) can be decomposed into a divergence-free part and a gradient field. In order to set the stage for studying operator-adapted counterparts, it will be convenient to reproduce the simple proof.

Definition 13.1.

For p ∈ (1, ∞) let N p (div x ) := {g ∈ L p (R n ; C nm ) : div x g = 0}, R p (∇ x ) := {∇ x h : h ∈ W 1,p (R n ; C m )}.
Lemma 13.2 (Leray-Helmholtz decomposition). Let p ∈ (1, ∞). There is a topological decomposition

L p (R n ; C nm ) = N p (div x ) ⊕ R p (∇ x )
and the projection onto R p (∇ x ) is given by the L p -bounded Fourier multiplication operator -∇ x (-∆ -1 x ) div x .

Proof. The Fourier symbol ξ → |ξ| -2 ξ ⊗ξ of -∇ x (-∆ -1 x ) div x is homogeneous of degree 0 and hence fits into the scope of the Mihlin multiplier theorem. Hence, this operator is defined on Z ′ and restricts to bounded map on L p that we call P p . As P p is a projection on L p , it induces the topological decomposition L p = R(1 -P p ) ⊕ R(P p ). By construction, we have R(1 -P p ) ⊆ N p (div x ) and R(P p ) ⊆ R p (∇ x ). Equality in both inclusions follows provided that N p (div x ) ∩ R p (∇ x ) = {0}. But if f belongs to this intersection, then f = ∇ x h, where h ∈ Ẇ1,p satisfies ∆ x h = 0 in Z ′ . Therefore h = 0 in Z ′ , so h must be a polynomial and hence a constant, which in turn means that f = 0.

In view of the explicit formula for the projection in Lemma 13.2, the Leray-Helmholtz decomposition is also called Hodge decomposition associated with -∆ x . Following [6, Sec. 4.5], we look for similar decompositions adapted to divergence form operatorsdiv x d∇ x . These operators are defined in the sense of distributions modulo constants as bounded operators

-div x d∇ x : Ẇ1,p (R n ; C m ) → Ẇ-1,p (R n ; C m ) (13.1)
for every p ∈ (1, ∞). Their action is consistent for different values of p and for p = 2 we find the operator Λ defined in (3.5). The adjoint to (13.1) is given by

-div x d * ∇ x : Ẇ1,p ′ (R n ; C m ) → Ẇ-1,p ′ (R n ; C m ).
When p = 2, it corresponds to the operator L ♯ 0 = L * 0 in the same way thatdiv x d∇ x corresponds to L 0 .

The interval that we are mainly interested in this section concerns the bounded extension to L p of the L 2 -bounded Hodge projector ∇ x Λ -1 div x .

Definition 13.3. Introduce the interval

P(L 0 ) := p ∈ (1, ∞) : ∇ x Λ -1 div x is L p -bounded .
A priori, there are two possibilities to incorporate the matrix d into the Leray-Helmholtz decomposition:

L p (R n ; C nm ) = N p (div x ) ⊕ d R p (∇ x ), (13.2) and L p (R n ; C nm ) = N p (div x d) ⊕ R p (∇ x ), (13.3)
where closures are taken in L p and N p (div x d) := {f ∈ L p (R n ; C nm ) : div x (df ) = 0}. We shall see that these topological decompositions always hold when p = 2 and that this directly relates to (13.1) being an isomorphism for p = 2. We say that such a topological decomposition compatibly holds if in addition for every f ∈ L p ∩ L 2 the decomposition in L p is the same as in L 2 .

Compatibility with the theory for p = 2 is a key issue here and we take the occasion to clarify some points that had been left unclear in the literature. The central question is whether the set of p ∈ (1, ∞) for whichdiv x d∇ x : Ẇ1,p → Ẇ-1,p is an isomorphism is an open interval. While openness turns out to be true in general, connectedness requires more specific arguments.

As a cautionary tale, let us remark that in general the compatibility of the inverse does not come for free and hence the property of being an isomorphism does not interpolate. To give a simple example, consider the dilation f → (t → f ( t 2 )) on the real line. Its restriction T p to L p (R) is invertible and

T p p→p = 2 1/p = T -1 p -1
p→p . Hence, the spectrum σ(T p ) is contained in the circle of radius 2 1/p . Now, pick λ ∈ σ(T 3 ). Then λ -T is invertible on L 2 (R) and L 4 (R) but not on L 3 (R) and therefore the inverses cannot be compatible.

Concerning the isomorphism property fordiv x d∇ x , the formulation in [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]Cor. 4.24] is ambiguous. As far as Hodge decompositions are concerned, a general statement in [48, Prop. 2.17] asserts (when restricted to our setup) that the set of exponents for which they are valid is an interval, but their proof offers no specific argument. In view of our discussion below, connectedness should still be considered unproved at this stage and compatible invertibility and compatible Hodge decompositions only hold in the connected component that contains p = 2. The fact that this connected component enters the discussion has previously been noticed in [ Proof. We need some preliminary observations on the Leray-Helmholtz decompositions of L p and L 2 in Lemma 13.2. As they are being achieved through projections that coincide on the dense subset L p ∩ L 2 , we also have a direct decomposition

L p ∩ L 2 = N p (div x ) ∩ N 2 (div x ) ⊕ R p (∇ x ) ∩ R 2 (∇ x ) (13.4)
that is topological with respect to L p and L 2 -norms. Moreover, the subspaces on the right are dense in N p (div x ) and R p (∇ x ) for the L pnorm, respectively. Now,

∇ x : Ẇ1,p ∩ Ẇ1,2 → R p (∇ x ) ∩ R 2 (∇ x ) (13.5)
is bijective and bounded from above and below for the respective pnorms. The same is true for

div x : R p (∇ x ) ∩ R 2 (∇ x ) → Ẇ-1,p ∩ Ẇ-1,2 . (13.6)
Indeed, the upper bound follows right away, injectivity is due to (13.4) and surjectivity and the lower bound follow since ∇ x ∆ -1

x is an explicit right inverse.

We turn to the actual proof. Since Λ : Ẇ1,p ∩ Ẇ1,2 → Ẇ-1,p ∩ Ẇ-1,2 is well-defined and bounded for the p-norms, it follows that it extends to an isomorphism as claimed precisely if Λ -1 : Ẇ-1,p ∩ Ẇ-1,2 → Ẇ1,p ∩ Ẇ1,2 is well-defined and bounded for the p-norms. Composition with the maps in (13.5) and (13.6) yields equivalence to well-definedness and boundedness in p-norm for

∇ x Λ -1 div x : R p (∇ x ) ∩ R 2 (∇ x ) → R p (∇ x ) ∩ R 2 (∇ x ).
Due to (13.4) this is the same as saying p ∈ P(L 0 ).

Finally, the set of exponents p ∈ (1, ∞) with the isomorphism property for Λ with compatible inverse is open in (1, ∞) thanks to Šne ȋberg's stability theorem, using that the scales ( Ẇ1,p ) p∈(1,∞) and ( Ẇ-1,p ) p∈(1,∞) interpolate by the complex method. See for instance [START_REF] Auscher | Nonlocal self-improving properties: a functional analytic approach[END_REF][START_REF] Sneiberg | Spectral properties of linear operators in interpolation families of Banach spaces[END_REF] and also [START_REF] Kalton | Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations[END_REF]Thm. 8.1] for the compatibility.

Lemma 13.5. If p ∈ P(L 0 ), then the Hodge decompositions (13.2) and (13.3) compatibly hold. The projections onto d R p (∇ x ) and R p (∇ x ) are the extensions (by density) of -d∇ x Λ -1 div x and -∇ x Λ -1 div x d, respectively.

Proof. On L 2 (R n ; C nm ) we consider the bounded projection operators

P 2 := -d∇ x Λ -1 div x , P 2 := -∇ x Λ -1 div x d.
They are L p -bounded since we assume p ∈ P(L 0 ). We call P p and P p their extensions by density from L p ∩ L 2 to bounded projections on L p , which induce the topological decompositions

L p = R(1 -P p ) ⊕ R(P p ), L p = R(1 -P p ) ⊕ R( P p ). (13.7)
By construction, we have

R(P p ) ⊆ d R p (∇ x ), R( P p ) ⊆ R p (∇ x )
and from div x P p f = div x f and div x (d

P p f ) = div x (df ) for f ∈ L p ∩ L 2 we also conclude R(1 -P p ) ⊆ N p (div x ), R(1 -P p ) ⊆ N p (div x d).
It remains to establish equality in all four inclusions and owing to (13.7) we only have to show that N

p (div x ) ∩ d R p (∇ x ) and N p (div x d) ∩ R p (∇ x ) are trivial. Let f ∈ N p (div x ) ∩ d R p (∇ x )
. By density, we find h j ∈ W 1,p ∩ W 1,2 such that d∇ x h j → f in L p as j → ∞. Then div x (d∇ x h j ) → 0 in Ẇ-1,p , whereupon Lemma 13.4 yields h j → 0 in Ẇ1,p . Consequently, we have f = 0.

Likewise, if f ∈ N p (div x d) ∩ R p (∇ x ), then we pick h j ∈ W 1,p ∩ W 1,2 with ∇ x h j → f in L p as j → ∞ and conclude f = 0 as before.

We shall see momentarily that p ∈ P(L 0 ) also entails the following property.

Definition 13.6. Let p ∈ (1, ∞). Then d is said to satisfy p-lower bounds if

df p f p (f ∈ R p (∇ x )).
While this is trivially fulfilled for a strictly elliptic matrix (and probably for that reason has not even been mentioned in [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]48]), in the realm of elliptic systems it imposes a structural condition on d.

Lemma 13.7. If p ∈ P(L 0 ), then d satisfies p-lower bounds.

Proof. By density it suffices to verify the p-lower bound for

f = ∇ x h with h ∈ W 1,p ∩ W 1,2 . Then df ∈ L p ∩ L 2 and f = ∇ x (-div x d∇ x ) -1 div x d∇ x h = (∇ x Λ -1 div x )df.
The assumption p ∈ P(L 0 ) implies f p df p . Altogether, we arrive at the following characterization.

Proposition 13.8. Let p ∈ (1, ∞). The followings are equivalent:

(i) p ∈ P(L 0 ).

(ii)div x d∇ x : Ẇ1,p → Ẇ-1,p is an isomorphism whose inverse agrees with Λ -1 on Ẇ-1,p ∩ Ẇ-1,2 . (iii) d satisfies p-lower bounds and (13.2) compatibly holds. (iv) d * satisfies p ′ -lower bounds and (13.3) compatibly holds.

Proof. We show the following implications.

(i) ⇐⇒ (ii). This is Lemma 13.4.

(i) =⇒ (iii), (iv). The compatible Hodge decompositions are due to Lemma 13.5 and the p-lower bound for d is due to Lemma 13.7. Moreover, we have p ′ ∈ P(L * 0 ) by duality and Lemma 13.7 yields the p ′ -lower bound for d * .

(iii) =⇒ (i). We have 2 ∈ P(L 0 ) and according to Lemma 13.5 the decomposition holds for p = 2 in virtue of the projection -d∇ x Λ -1 div x . The compatibility of the Hodge decomposition implies that this operator is L p -bounded. Using the p-lower bounds, we obtain for all

f ∈ L p ∩ L 2 , ∇ x Λ -1 div x f p d∇ x Λ -1 div x f p f p .
(iv) =⇒ (i). As in the previous step, we get that -∇ x Λ -1 div x d is L p -bounded. By duality, -d * ∇ x (Λ * ) -1 div x is L p ′ -bounded and the p ′lower bound implies p ′ ∈ P(L * 0 ). Again by duality, p ∈ P(L 0 ) follows.

13.2. Adapted Hodge decompositions. We drop the compatibility assumption and ask under which conditions the d-adapted Hodge decompositions hold.

Proposition 13.9. Let p ∈ (1, ∞). The followings are equivalent: (i)div x d∇ x : Ẇ1,p → Ẇ-1,p is an isomorphism.

(ii) d satisfies p-lower bounds and (13.2) holds.

(iii) d * satisfies p ′ -lower bounds and (13.3) holds.

Remark 13.10. As (i) is equivalent to the adjoint statement that div x d * ∇ x : Ẇ1,p ′ → Ẇ-1,p ′ is an isomorphism, we could add to the list three more items.

Proof. We establish the following implications.

(i) =⇒ (ii), (iii). Set Λ p the operator in (i). The Hodge decomposition follows by a verbatim repetition of the proof of Lemma 13.5. In fact, it is even easier using the operator Λ -1 p : Ẇ-1,p → Ẇ1,p provided by assuming (i). We can directly define the bounded projections

P p := -d∇ x Λ -1 p div x , P p := -∇ x Λ -1
p div x d. on L p and use (i) in place of Lemma 13.4 in the proof. Likewise, for the p-lower bound for d we can repeat the proof of Lemma 13.7 with Λ -1 p in place of Λ -1 and working with f = ∇ x h ∈ W 1,p . By duality, (i) also implies that Λ * p : Ẇ1,p ′ → Ẇ-1,p ′ is an isomorphism and hence the p ′ -lower bound for d * follows as well.

(ii) =⇒ (i). The p-lower bound implies d R p (∇ x ) = dR p (∇ x ). Hence, N p ′ (div x d * ) annihilates d R p (∇ x ) in the L p -L p ′ -duality. In the same duality, R p ′ (∇ x ) annihilates N p (div x ). The Hodge decomposition (13.2) implies N p ′ (div

x d * ) ∩ R p ′ (∇ x ) = {0}. As we have R p ′ (∇ x ) = {∇ x h : h ∈ Ẇ1,p ′ }, injectivity of Λ * p = -div x d * ∇ x : Ẇ1,p ′ → Ẇ-1,p ′ (13.8) follows. From d R p (∇ x ) = dR p (∇ x
) and (13.2) we also obtain directly the injectivity of Λ p =div x d∇ x : Ẇ1,p → Ẇ-1,p . (13.9) Hence, both maps have dense range and they become isomorphisms once we have shown that the first map has closed range. To this end, let h ′ ∈ Ẇ1,p ′ and F ∈ L p . We decompose F = G + d∇ x f according to (13.2) and obtain

| ∇ x h ′ , F | = | ∇ x h ′ , d∇ x f | = | d * ∇ x h ′ , ∇ x f | div x d * ∇ x h ′ Ẇ-1,p ′ ∇ x f p div x d * ∇ x h ′ Ẇ-1,p ′ d∇ x f p div x d * ∇ x h ′ Ẇ-1,p ′ F p ,
where the third line is just the identification of Ẇ-1,p ′ with the dual space of Ẇ1,p , the fourth is by the d-lower bounds on L p in (ii) and the fifth uses that the splitting (13.2) is topological in (ii). Taking the supremum over all F yields h ′ Ẇ1,p ′ div x d∇ x h ′ Ẇ-1,p ′ , which implies closed range in (13.8).

(iii) =⇒ (i).

The argument is almost identical to the previous step. This time we get

d * R p ′ (∇ x ) = d * R p ′ (∇ x ), which annihilates N p (div x d). By (13.3) we find N p ′ (div x ) ∩ d * R p ′ (∇ x ) = {0}
and therefore the map in (13.8) is injective. Injectivity in (13.9) follows directly from (13.3). In order to see that we have closed range in (13.8), we let h ′ and F as before and decompose F = G + ∇ x f according to (13.3). Then

| d * ∇ x h ′ , F | = | d * ∇ x h ′ , ∇ x f | div x d * ∇ x h ′ Ẇ-1,p ′ ∇ x f p div x d * ∇ x h ′ Ẇ-1,p ′ F p , which yields d * ∇ x h ′ p ′ div x d * ∇ x h ′ Ẇ-1,p ′ . Using the p ′ -lower bounds for d * leads to h Ẇ1,p ′ = ∇ x h ′ p ′ d * ∇ x h ′ p ′ div x d * ∇ x h ′ Ẇ-1,p ′ .
A comparison between Proposition 13.9 and Proposition 13.8 shows that compatibility in one of the Hodge decompositions directly relates to compatibility of the inverse ofdiv x d∇ x on Ẇ-1,p with the inverse found by the Lax-Milgram lemma on Ẇ-1,2 . To the best of our knowledge, the question whether incompatibility of the inverses is possible for the operatorsdiv x d∇ x is still open. A more illuminating comparison between the two results is as follows.

Lemma 13.11. Let P(L 0 ) ⊆ (1, ∞) be the set of exponents p such that Λ p =div x d∇ x : Ẇ1,p → Ẇ-1,p is an isomorphism. Then P(L 0 ) is open and P(L 0 ) is its connected component that contains 2.

Proof. All relies on the fact that ( Ẇ1,p ) p∈(1,∞) and ( Ẇ-1,p ) p∈(1,∞) interpolate by the complex method and have a universal approximation technique. Šne ȋberg's stability theorem yields that P(L 0 ) is open. If p 0 , p 1 ∈ P(L 0 ) are such that the inverses agree with the one on Ẇ-1,2 , then by interpolation of the mapping property for the inverses the same is true for all p ∈ (p 0 , p 1 ). Hence, the subset of exponents with this property is the connected component that contains 2. In Lemma 13.4 we have identified it to P(L 0 ). 13.3. Characterizations of P(L 0 ). For equations (m = 1) it has been asserted in [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]Cor. 4.24] that P(L 0 ) coincides with the interval ((q heat + (L * 0 )) ′ , q heat + (L 0 )), albeit being implicit on questions of compatibility. Given Theorem 12.4, this is the same interval as ((q + (L * 0 )) ′ , q + (L 0 )). We take the opportunity to give the full argument and make compatibilities explicit.

Theorem 13.12. P(L 0 ) = ((q + (L * 0 )) ′ , q + (L 0 )). For the proof, we need a particular Sobolev-type inequality and a factorization of Λ -1 via Riesz transforms.

Lemma 13.13. If q ∈ P(L 0 ) ∩ (1 * , n), then

Λ -1 g q * g q * (g ∈ L q * ∩ Ẇ-1,2 )
Proof. We use that Z is dense in L q * ∩ Ẇ-1,2 , see Section 2.5. Since Λ -1 : Ẇ-1,2 → Ẇ1,2 is bounded, we may assume g ∈ Z. Hence, f := ∇ x (∆ x ) -1 g is defined in Z and we have g = div x f . From the assumption and Sobolev embeddings, we get

Λ -1 g q * ∇ x Λ -1 div x f q f q ∇ 2 x (∆ x ) -1 g q * g q * ,
where the final step is due to the Mihlin multiplier theorem.

Lemma 13.14. Let R L 0 = ∇ x L -1/2 0 and R L * 0 = ∇ x (L * 0 ) -1/2 be the bounded Riesz transforms on L 2 associated with L 0 and L * 0 , respectively. Then

-R L 0 (R L * 0 ) * = ∇ x Λ -1 div x (13.10)
as bounded operators on L 2 .

Proof. The factorization formally follows but some (tedious) density arguments are necessary to make this precise.

Let f ∈ L 2 . The decomposition (13.2) with p = 2 allows us to write f = f 0 + df 1 , where f 0 ∈ N(div x ) and f 1 ∈ R(∇ x ). As usual, our notation indicates kernels and ranges of the operators in L 2 with maximal domain. Since R(R L * 0 ) ⊆ R(∇ x ) = N(div x ) ⊥ by construction, the left-hand side of (13.10) sends f 0 to 0. Obviously the same is true for the right-hand side. As for the action on df 1 , we may assume f 1 = ∇ x u for u ∈ D(L). Indeed, the general case follows by density since D(L 0 ) is dense in D(L 1/2 0 ) = W 1,2 . We obtain div x (df 1 ) = -Λu, so that

∇ x Λ -1 div x (df 1 ) = -∇ x u. Moreover, for g ∈ R(L * 0 ) we get (R L * 0 ) * (df 1 ), g = df 1 , ∇ x (L * 0 ) -1/2 g = L 0 u, (L * 0 ) -1/2 g = L 1/2 0 u, g .
Since this holds for all g in a dense subspace of L 2 , we first obtain

(R L * 0 ) * (df 1 ) = L 1/2 0 u and then -R L 0 (R L * 0 ) * (df 1 ) = -∇ x u.
Altogether, we have justified (13.10).

Proof of Theorem 13.12. Recall that in the case of L 0 the duality relations (6.1) yield

(1 ∨ p -(L * 0 )) = p + (L 0 ) ′ and (1 ∨ p -(L 0 )) ′ = p + (L * 0
). The proof of the theorem is organized in 4 Steps.

Step 1: Sufficient condition for P(L 0 ). Let (q + (L * 0 )) ′ < p < q + (L 0 ). We demonstrate that p ∈ P(L 0 ). Theorem 6.2 yields q + (L 0 ) ≤ p + (L 0 ) and q + (L * 0 ) ≤ p + (L * 0 ). Hence, we obtain from (6.1) that p -(L 0 ) < p < q + (L 0 ) and p -(L * 0 ) < p ′ < q + (L * 0 ). Theorem 7.3 yields that R L 0 is L p -bounded and that R L * 0 is L p ′ -bounded. By composition and duality R L 0 (R L * 0 ) * is L p -bounded and the previous lemma yields the claim.

Step 2: Necessary condition for P(L 0 ) ∩ (2, ∞). We let p ∈ P(L 0 ) ∩ (2, ∞) and prove that p ≤ q + (L 0 ).

To begin with, we claim that [2 * , p) ⊆ J (L 0 ). (13.11) Thanks to Proposition 6.7 there is nothing to do if p ≤ 2 * . Hence, we may assume p > 2 * (and therefore n ≥ 3 implicitly). We set p 0 := p, define iteratively p k := (p k-1 ) * * := ((p k-1 ) * ) * and stop at the first exponent k -≥ 0 with p k -∈ [2 * , 2 * ). Again by Proposition 6.7 we have

[2 * , p k -) ⊆ J (L). Now, suppose [2 * , p k ) ⊆ J (L 0 ) and pick any ̺ ∈ (p k ∨ 2 * , p k-1 ). Let f ∈ L ̺ * * ∩ L 2 . The function g := Λ(1 + t 2 L 0 ) -1 f = L 0 (1 + t 2 L 0 ) -1 f = t -2 (1 -(1 + t 2 L 0 ) -1 )f belongs to Ẇ-1,2 since it
is contained in the range of Λ and it belongs to L ̺ * * since we have ̺ * * ∈ (2 * , p k ) ⊆ J (L 0 ) by assumption. We also have ̺ * ∈ (2, p ∧ n) ⊆ P(L 0 ) ∩ (1 * , n), so we can apply Lemma 13.13 with q = ̺ * in order to obtain

(1 + t 2 L 0 ) -1 f ̺ = Λ -1 g ̺ g ̺ * * t -2 f ̺ * * .
This means that the resolvents of L 0 are L ̺ * * -L ̺ -bounded. Since ̺ ∈ (p k ∨ 2 * , p k-1 ) was arbitrary, interpolation with the L 2 off-diagonal estimates leads to L ̺ * * -L ̺ off-diagonal estimates of arbitrarily large order and L ̺ -boundedness follows, see Lemma 4.14 and Lemma 4.7. Hence, we have (p k ∨ 2 * , p k-1 ) ⊆ J (L 0 ) and since the latter is an interval, we also have [2 * , p k-1 ) ⊆ J (L 0 ). Now, (13.11) follows by backward induction. So far, we know that 2 < p ≤ p + (L 0 ) but as P(L 0 ) is open (see Lemma 13.4) we have in fact 2 < p < p + (L 0 ). By (6.1) we get (p -(L * 0 )∨ 1) < p ′ < 2, so that Theorem 11.3 applied to L * 0 yields the two-sided estimate

R L * 0 g p ′ ≃ g p ′ (g ∈ L 2
), where one (and hence both) sides can be infinite. On the other hand, p ∈ P(L 0 ) implies p ′ ∈ P(L * 0 ) by duality, that is to say,

R L * 0 (R L 0 ) * = -∇ x (Λ * ) -1 div x is L p ′ -bounded.
Here, we used Lemma 13.14 with the roles of L 0 and L * 0 reversed. Altogether, we find for all

f ∈ L p ′ ∩ L 2 that (R L 0 ) * f p ′ ≃ R L * 0 (R L 0 ) * f p ′ f p ′ .
This means that (R L 0 ) * is L p ′ -bounded. By duality, R L 0 is L p -bounded and according to Theorem 7.3 this can only happen if p ≤ q + (L 0 ).

Step 3: Necessary condition for

P(L 0 ) ∩ (1, 2). Let p ∈ P(L 0 ) ∩ (1, 2).
By duality we get p ′ ∈ P(L * 0 ) and Step 2 applied to L * 0 gives p ′ ≤ q + (L * 0 ). Hence, we have (q + (L * 0 )) ′ ≤ p.

Step 4: Conclusion. Steps 1-3 show that (q + (L * 0 )) ′ and q + (L 0 ) are the endpoints of P(L 0 ). The latter being an open set by Lemma 13.4, we can conclude.

Critical numbers and kernel bounds

In this section, we work out a precise relation between kernel bounds and critical numbers p -(L) strictly below 1. Except for Section 14.5 this is an intermezzo not needed for the application to boundary value problems. However, it nicely illustrates the usefulness of our choice for the interval J (L) compared to [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF] and connects with the theory of Gaussian estimates in the first chapter of [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]. In particular, we obtain resolvent kernels from those of high powers of the resolvent without using heat semigroups (which exist only if ω L < π /2).

It will be convenient to introduce the following notation.

Definition 14.1. Given 1 * < p < 1 and 0 < η < 1, write η p := n /pn and conversely p η := η n+η . 14.1. Consequences of p -(L) < 1. The following result is the core of this section.

Theorem 14.2. The following assertions are equivalent:

(i) There exists p ∈ (1 * , 1) such that (a(1 + t 2 L) -1 a -1 ) t>0 is H pbounded.

(ii) There exist η ∈ (0, 1) and β(n, η) ≥ 1 such that for all integers β ≥ β(n, η) the family ((1 + t 2 L ♯ ) -β ) t>0 satisfies L 2 -L ∞ offdiagonal estimates of exponential order and is L 2 -Λη -bounded. Moreover, p -(L) = p η(L ♯ ) , where η(L ♯ ) is the supremum of those η for which the second property holds.

For the proof we need an auxiliary result. Lemma 14.3. Let (T (t)) t>0 be a family of operators that satisfies L 2 off-diagonal estimates of arbitrarily large (resp. exponential) order and that is L 2 -Λη -bounded for some η ∈ (0, 1). Then (T (t)) t>0 satisfies L 2 -L ∞ off-diagonal estimates of arbitrarily large (resp. exponential) order.

Proof. Lemma 12.6 yields L 2 -L ∞ -boundedness. Hence, it suffices to check the off-diagonal estimates when E, F ⊆ R n are measurable sets with d := d(E, F ) ≥ t.

We let f ∈ L 2 with support in E and

f 2 = 1, set G := {x ∈ R n : d(x, F ) ≤ d /2}, and pick a Lipschitz function ϕ with 1 F ≤ ϕ ≤ 1 G and ∇ϕ ∞ ≤ 4 /d. Lemma 12.6 yields 1 F T (t)f ∞ ϕT (t)f θ 2 ϕT (t)f 1-θ Λη , where θ ∈ (0, 1) is such that (1 -θ)( n /2 + η) = n /2.
On the right, the first term is bounded by 1 G T (t)f θ 2 and as d(G, E) ≥ d /2, this gives the required off-diagonal decay. The second term is controlled by

ϕ ∞ T (t)f Λη + ϕ Λη T (t)f ∞ 1-θ t -η-n 2 + d -η t -n 2 1-θ ≤ t -n/2 , using the L 2 -Λη -bound, the L 2 -L ∞ -bound and d ≥ t.
Proof of Thm 14.2. Let us recall from Corollary 3.12 that the resolvents of L (and hence of L ♯ ) satisfy L 2 off-diagonal estimates of exponential order.

(i) =⇒ (ii). The family (a(1 + t 2 L) -1 a -1 ) t>0 is also H ̺ -L 2 -bounded for some ̺ < 2 depending on the dimension n, see Lemmata 6.3 and 6.4. Thus, Lemma 4.4 implies that for any p < q ≤ 1 there exists β(n, q) such that for all β ≥ β(n, q) the family (a(1 + t 2 L) -β a -1 ) t>0 is H q -L 2bounded. By duality (Lemma 4.3) and the fact that

L ♯ = (a * ) -1 L * a * , it follows that ((1 + t 2 L ♯ ) -β ) t>0 is L 2 -Λη -bounded with η := η q .
It remains to apply Lemma 14.3.

(ii) =⇒ (i). Let p := p η . By duality, (a(1 + t 2 L) -β a -1 ) t>0 is H p -L 2bounded. This family satisfies L 2 off-diagonal estimates of exponential order and R n a(1 + t 2 L) -β (a -1 f ) dx = 0 holds for all f ∈ L 2 with compact support and mean value 0, see Corollary 5.4. Lemma 4.9 yields H q -boundedness for any p < q ≤ 1, hence for any p < q ≤ 2 by interpolation with the L 2 -boundedness.

Let p < q ≤ 1. By interpolation with the original H p -L 2 -boundedness we obtain H q -L r -boundedness for some r > 1 with 0 ≤ n /qn /r < 1. Now we apply the formula

(1 + t 2 L) -1 (a -1 f ) = (β -1) ∞ 0 (1 + u + t 2 uL) -β (a -1 f ) du, (14.1)
which follows for f ∈ H q ∩ L 2 by applying (1 + t 2 L) -1 to both sides of (6.2) and conclude

(1 + t 2 L) -1 (a -1 f ) r ∞ 0 (1 + u) -β 1 + u t 2 u n 2q -n 2r f H q du t n r -n
q f H q , where 0 ≤ n /qn /r < 1 has guaranteed that the integral in u is finite. This proves that (a(1 + t 2 L) -1 a -1 ) t>0 is H q -L r -bounded.

In the same manner we can start with L r -boundedness for the higherorder resolvents when 1 < r ≤ 2 and obtain first L r -boundedness of (a(1 + t 2 L) -1 a -1 ) t>0 and then L r off-diagonal estimates of exponential order by interpolation with the L 2 -result. Now, we apply again Lemma 4.9 to conclude H q -boundedness of (a(1 + t 2 L) -1 a -1 ) t>0 whenever p < q ≤ 1.

Re-examination of the proof shows that the stated relation holds for p -(L).

The following corollary is interesting because L 1 and L ∞ are not part of our J (L)-theory.

Corollary 14.4. If p -(L) < 1, then ((1 + t 2 L) -1 ) t>0 satisfies L 1 offdiagonal estimates of exponential order and ((1 + t 2 L ♯ ) -1 ) t>0 satisfies L ∞ off-diagonal estimates of exponential order. In particular, these families are L 1 -bounded and L ∞ -bounded, respectively.

Proof. It directly follows from Theorem 14.2 and Remark 4.8 that for β ≥ 2 large enough ((1 + t 2 L ♯ ) -β ) t>0 satisfies L ∞ off-diagonal estimates of exponential order. Hence, ((1 + t 2 L) -β ) t>0 satisfies L 1 off-diagonal estimates of exponential order.

By the formula (14.1) applied to f ∈ L 1 ∩ L 2 and using that a is bounded and invertible in L ∞ , we see that (1 + t 2 L) -1 has the desired property. Indeed, if f has support in E and F is another measurable set, then with the change of variable v = ( 1+u u ) 1/2 in the integral we obtain

(1+t 2 L) -1 f L 1 (F ) ≤ (β -1) ∞ 0 (1 + u) -β 1 + t 2 u 1 + u L -β f L 1 (F ) du = 2(β -1) ∞ 1 (v 2 -1) β-2 v 1-2β 1 + t 2 v 2 L -β f L 1 (F ) dv ∞ 1 v -3 e -c d(E,F )v t f 1 dv e -c d(E,F ) t f 1 ,
where we used β ≥ 2 in the third step. Finally, the claim for ((1 + t 2 L ♯ ) -1 ) t>0 follows by duality and similarity.

14.2. Equivalence with kernel estimates. Going one step further, we shall now incorporate pointwise kernel estimates into the machinery. The convention on the variables for integral kernels is that we always look for representations in the form

(T f )(x) = R n K(x, y)f (y) dy.
We rely on the following lemma. Lemma 14.5. Let (T (t)) t>0 be a family of bounded operators on L 2 and denote by K t (x, y) their distribution kernels. For every η ∈ (0, 1) the following assertions are equivalent:

(i) (T (t)) t>0 satisfies L 2 -L ∞ off-diagonal estimates of exponential order and is L 2 -Λη -bounded. (ii) For each t > 0, K t (x, y) agrees with a measurable function and there are constants C, c > 0 that do not depend on t such that for all x, h ∈ R n and all measurable sets E,

E |K t (x, y)| 2 dy ≤ Ct -n e -c d(x,E) t (14.2) R n |K t (x + h, y) -K t (x, y)| 2 dy ≤ C|h| 2η t -n-2η . (14.3)
Proof. The implication (ii) =⇒ (i) is a direct consequence of the Cauchy-Schwarz inequality.

Next, assume that (i) holds. Fix t > 0. As pointed out in [4, Thm. 1.3], any linear operator T (t) that is bounded from L 2 to L ∞ has an integral representation

T (t)f (x) = R n K t (x, y)f (y) dy (f ∈ L 2 , a.e. x ∈ R n )
with a measurable kernel that belongs to L ∞ (L 2 ) with norm equal to the operator norm. Hence, K t (x, y) can indeed be identified to a measurable function that satisfies (14.2). For h ∈ R n let τ h be the translation operator f → f ( • + h). Since T (t)f is also Hölder continuous of exponent η, the family

(( t /|h|) η (1 -τ h )T (t)) t>0 is L 2 -L ∞ -bounded,
uniformly in h, and we may apply the above result again to obtain (14.3).

We introduce two auxiliary functions that naturally appear in kernel estimates for the resolvents. Definition 14.6. Define functions ω n , ω n : (0, ∞) → (0, ∞) by

ω n (s) :=      1 if n = 1 | ln s | + 1 if n = 2 s 2-n if n ≥ 3 and ω n (s) := 1 if n = 1, 2 s 2-n if n ≥ 3 .
Combining Theorem 14.2 with Lemma 14.5 allows us to characterize the property p -(L) < 1 through L 2 kernel bounds of a large power of the resolvent. What is missing to get to pointwise kernel bounds is dual information on L ♯ . Theorem 14.7. The following assertions are equivalent:

(i) There exists p ∈ (1 * , 1) such that (a(1 + t 2 L) -1 a -1 ) t>0 and (a * (1 + t 2 L ♯ ) -1 (a * ) -1 ) t>0 are H p -bounded. (ii) There exists η ∈ (0, 1) such that for all t > 0 the operator (1 + t 2 L) -1 a -1 is given by a measurable kernel G t (x, y) that satisfies, for some constants C, c > 0, the following bounds: 

|G t (x, y)| ≤ Ct -n ω n |x -y| t e -c |x-y| t , (14.4) |G t (x, y + h)-G t (x, y)| ≤ Ct -n |h| |x -y| η ω n |x -y| t e -c
p -(L) = p η(L ♯ ) & p -(L ♯ ) = p η(L) ,
where η(L ♯ ) and η(L) are the suprema of those η for which (14.5) and (14.6) hold, respectively.

Proof. We argue in three steps.

Step 1: (i) =⇒ (ii). We apply Theorem 14.2 and Lemma 14.5 to both L and L ♯ . Hence, there is an even integer β such that (1 + t 2 L) -β/2 and (1 + t 2 L ♯ ) -β/2 a -1 are given by measurable kernels K (L) t (x, y) and K (L ♯ ) t (x, y), respectively, and both kernels satisfy (14.2) and (14.3). By duality and composition, we see that (1 + t 2 L) -β a -1 is an integral operator given by the kernel

G β t (x, y) := R n K (L) t (x, z)K (L ♯ ) t (y, z) dz.
We claim that there are constants C, c ∈ (0, ∞), η ∈ (0, 1) such that for all x, y, h,

|G β t (x, y)| ≤ Ct -n e -c |x-y| t , (14.7) |G β t (x, y + h) -G β t (x, y)| ≤ Ct -n |h| t η , (14.8) |G β t (x + h, y) -G β t (x, y)| ≤ Ct -n |h| t η . (14.9)
Indeed, (14.8) and (14.9) follow directly from (14.2), ( 14.3) and the Cauchy-Schwarz inequality. The same argument yields the first estimate if we split integration in z into the parts where |x -z| ≥ |x-y| /2 and |y -z| ≥ |x-y| /2 beforehand. Note that η in (14.8) and (14.9) can be any exponent such that p η > p -(L) and p η > p -(L ♯ ), respectively.

Taking logarithmic convex combinations of (14.7) with (14.8) and (14.9), we obtain in the same ranges of η but with different constants C, c > 0 the following Hölder estimates with exponential decay when 2|h| ≤ |x -y|:

|G β t (x, y + h) -G β t (x, y)| ≤ Ct -n |h| t η e -c |x-y| t , (14.10) |G β t (x + h, y) -G β t (x, y)| ≤ Ct -n |h| t η e -c |x-y| t . (14.11)
From there, it suffices to use again the formula (14.1) for all f ∈ L 1 ∩ L 2 and (14.7) to see that (1 + t 2 L) -1 a -1 is given by a kernel with bound

|G t (x, y)| ≤ Ct -n ∞ 0 (1 + u) -β (1 + 1 u ) n 2 e -c |x-y| t (1+ 1 u ) 1 /2 du = 2Ct -n ∞ 1 v n-2β+1 (v 2 -1) β-2 e -c |x-y| t v dv ≤ 2Ct -n ∞ 1 v n-3 e -c |x-y| t v dv,
where we used the change of variable v = (1 + 1 u ) 1 /2 and β ≥ 2. The latter integral is controlled by ω n ( |x-y| /t)e -c |x-y| /2t and (14.4) follows.

Next, we use the same strategy starting from (14.11). In that case, we assume 2|h| ≤ |x -y| and we obtain

|G t (x + h, y) -G t (x, y)| ≤ 2C|h| η t -n-η ∞ 1 v n+η-3 e -c |x-y| t v dv
and conclude readily for (14.6). The argument to obtain (14.5) from (14.10) is the same.

Step 2: (ii) =⇒ (i). For the converse, let η be given in the estimates and let 1 > p > p η . It is enough to show that (a(1 + t 2 L) -1 a -1 ) t>0 is H p -bounded. The argument for the adjoint is the same.

To this end, it suffices to establish for some C, ε > 0 the molecular bounds (14.12) whenever t > 0 and m is an L 2 -atom for H p associated with a ball B. Indeed, since a(1 + t 2 L) -1 a -1 m has integral zero by Corollary 5.4, we can first use Lemma 4.10 to get a uniform H p -bound and then conclude by the (L 2 -convergent) atomic decomposition for functions in H p ∩ L 2 .

a(1 + t 2 L) -1 a -1 m L 2 (C j (B)) ≤ C(2 j r(B)) n 2 -n p 2 -εj (j ≥ 1),
For j = 1 we have as required

a(1 + t 2 L) -1 a -1 m L 2 (C 1 (B)) ≤ C m 2 ≤ Cr(B) n 2 -n p .
For j ≥ 2 we use the mean value property of m to write

a(1 + t 2 L) -1 a -1 m(x) = B a(x)(G t (x, y) -G t (x, y B ))m(y) dy
with y B the center of B and obtain for x ∈ C j (B) that

|a(1 + t 2 L 0 ) -1 a -1 m(x)| ≤ Ct -n 2 -jη ω n 2 j-1 r(B) t e -c 2 j-1 r(B) t m 1 ≤ CC ′ (2 j-1 r(B)) -n 2 -jη r(B) n-n p
, where C ′ := sup s>0 s n ω n (s)e -cs . Integrating the square of this inequality on C j (B) and sorting powers of 2 j and r(B) gives us (14.12) with ε := n /pnη. Now ε > 0 is equivalent to p > p η , which we have assumed.

Step 3: The formulae for the critical numbers. In Step 1 we have obtained (14.5) if p η > p -(L), whereas in Step 2 we have obtained H pboundedness if p > p η(L ♯ ) . Thus, we have p -(L) = p η(L ♯ ) . We have also seen the same conclusions with the roles of L and L ♯ interchanged. Remark 14.8. In dimension n = 1 it is shown in [START_REF] Auscher | Calcul fontionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux)[END_REF] that the firstorder derivatives of G t (x, y) in x and y exist and have an exponentially decaying pointwise bound in |x-y|. In particular, η(L) = 1 is attained. Remark 14.9. Under one of the conditions of Theorem 14.7 one can also obtain pointwise and Hölder bounds for the kernel G(x, y) of

L -1 a -1 when n ≥ 2. Since L -1 a -1 = L -1
0 , this kernel G is just the Green kernel of L 0 and does not depend on a. To see the estimates, it suffices to replace the formula (14.1) by the Calderón reproducing formula L -1

0 f = (β -1) ∞ 0 (1 + uL 0 ) -β f du that is valid for f ∈ R(L 0
) and to plug in the estimates (14.7), (14.10) and (14.11). This does not work for n = 1.

Dirichlet property, stability and examples.

Having made the link between critical numbers strictly below one and kernel estimates for the resolvent, opens the door to further characterizations of either property in terms of regularity theory for the corresponding elliptic system in R n .

We shall use the notion of weak solutions and Caccioppoli's inequality. A reader who is not familiar with these tools will find all necessary background material (written for systems in R 1+n ) in Section 16 below. The Dirichlet property for L 0 =div x d∇ x is the following quantitative regularity property. Definition 14.10. The operator L 0 satisfies the Dirichlet property if there are µ ∈ (0, 1) and C 0 ∈ (0, ∞) such that for all R > 0 and all x 0 ∈ R n it follows that any weak solution v ∈ W 1,2 (B(x 0 , R)) to div x d∇ x u = 0 in B(x 0 , R) satisfies

B(x 0 ,ρ) |∇v| 2 dx ≤ C 0 ρ R n-2+2µ B(x 0 ,R)
|∇v| 2 dx, (14.13) when 0 < ρ ≤ R. The supremum of those µ for which this property holds is denoted by µ(L 0 ). Remark 14.11. The Dirichlet property has been discussed in detail in [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]Sec. 1] for elliptic equations (m = 1). Amongst others, it was shown that it is stable under small L ∞ -perturbations of the coefficients d and that it holds when n = 1 with µ(L 0 ) = 1, when n = 2 with µ(L 0 ) > 0 and when n ≥ 3 for real-valued d with µ(L 0 ) > 0 or with µ(L 0 ) = 1 when d has small enough BMO-norm. The latter example includes in particular the case of constant coefficients. More exotic examples are given by coefficients d that depend only on one coordinate. In this case µ(L 0 ) = 1, see [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]App. B]. For systems (m ≥ 2) all examples but the case of real-valued coefficients can be adapted.

Let us prove that hat critical numbers below 1 are also characterized through the Dirichlet property for the adjoint. Theorem 14.12. p -(L 0 ) < 1 if and only if L * 0 satisfies the Dirichlet property. Moreover, p -(L 0 ) = p µ(L * 0 ) . By Theorem 14.12 the critical numbers for L and L 0 are the same. Hence, we immediately obtain Corollary 14.13. The condition p -(L) < 1 is satisfied exactly when L * 0 has the Dirichlet property. Proof of Theorem 14.12. By Theorem 14.2 we can replace the assertion p -(L 0 ) < 1 by the existence of 0 < η < 1 andβ(n, η) ≥ 1 such that for all integers β ≥ β(n, η) the family

((1 + t 2 L * 0 ) -β ) t>0 is L 2 -Λη -bounded and satisfies L 2 -L ∞ off-diagonal estimates of exponential order.
We shall prove that under this assumption the Dirichlet property for L * 0 holds for any µ ∈ (0, η) and that conversely the Dirichlet property for L * 0 with exponent µ implies the above for any η ∈ (0, µ). Once this is done, also p -(L 0 ) = p µ(L * 0 ) follows from Theorem 14.2.

Step 1: From p -(L) < 1 to property (H). Let 0 < µ < η. We prove that L * 0 has the property (H) with exponent µ: There is a constant C depending on L * 0 such that for any ball B of radius R > 0 and any u ∈ W 1,2 (B) with div x d * ∇ x u = 0 on B in the weak sense it follows that

sup 1 4 B |u| + R µ sup (x,y)∈ 1 4 B, x =y |u(x) -u(y)| |x -y| µ ≤ C - B |u| 2 dx 1/2 .
The proof is a modification of an argument in [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]Sec. 1.4.2]. Let u ∈ W 1,2 (B) be a weak solution to div

x d * ∇ x u = 0 in B. Let χ ∈ C ∞ 0 (R n ) be supported in 8 9 B with χ = 1 on 7 8 B and ∇χ ∞ ≤ cR -1 for a dimensional constant c. Let v := uχ. Since v = u on 7
8 B, it suffices to show that for any ϕ ∈ C ∞ 0 ( 1 4 B) and any h ∈ 1 2 B we have

R n v(x)ϕ(x) dx ≤ CR -n 2 ϕ 1 u L 2 (B) (14.14) and R n (v(x + h) -v(x))ϕ(x) dx ≤ C|h| µ R -µ-n 2 ϕ 1 u L 2 (B) . (14.15) We abbreviate inner products in L 2 (R n ) by v, ϕ := R n vϕ dx and set T (t) := (1 + t 2 L 0 ) -1 . Since T (t) β ϕ ∈ W 1,2 (R n ) and v ∈ W 1,2 (R n ), we can write v, ϕ = uχ, T (R) β ϕ - R 0 uχ, d dt T (t) β ϕ dt = uχ, T (R) β ϕ -2β R 0 ∇ x (uχ), d∇ x T (t) β+1 ϕ tdt.
(14.16)

By duality the family (T (t) β ) t>0 satisfies L 1 -L 2 off-diagonal estimates of exponential order. In particular, it is L 1 -L 2 -bounded and we obtain

| uχ, T (R) β ϕ | ≤ uχ 2 T (R) β ϕ 2 u L 2 (B) R -n 2 ϕ 1 . (14.17)
Next, we rewrite the inner product inside the integral in (14.16) as

d * ∇ x u, ∇ x (χT (t) β+1 ϕ) + d * (∇ x χ ⊗ u), ∇ x T (t) β+1 ϕ -d * ∇ x u, ∇ x χ ⊗ T (t) β+1 ϕ =: I + II -III ,
where ∇ x χ ⊗ u is short for the vector in (C m ) n that comes from the product rule when calculating ∇ x (χu).

The term I vanishes thanks to the equation for u.

For the term II we note that (t∇ x T (t) β+1 ) t>0 satisfies L 1 -L 2 offdiagonal estimates of exponential order by composing the L 1 -L 2estimates for (T (t) β ) t>0 and the L 2 -estimates for (t∇ x T (t)) t>0 from Corollary 3.12. As the supports of ϕ and ∇ x χ have distance at least 5 8 R, we obtain for some α > 0 that

|t II | R -1 t -n 2 e -αR t u L 2 (B) ϕ 1
Similarly, we get

|t III | R -1 ∇u L 2 ( 8 9 B) t 1-n 2 e -αR t ϕ 1
and hence by the Caccioppoli inequality

|t III | R -2 t 1-n 2 e -αR t u L 2 (B) ϕ 1 .
Going back to (14.16), we obtain by integration that

R 0 d∇ x (uχ), ∇ x T (t) β+1 ϕ tdt R -n 2 u L 2 (B) ϕ 1
as desired. Together with (14.17) this proves (14.14).

The integral in (14.15) can be interpreted as v, ϕ h , where ϕ h := (1τ -h )ϕ and τ h is the translation operator f → f ( • + h) as before. We replace T (t) β ϕ by T (t) β ϕ h and run the same argument since we still have the necessary bounds, namely:

• By duality (( t /|h|) µ T (t) β (1 -τ -h )) t>0 is L 1 -L 2 -bounded, uni- formly in h. • When |h| ≤ R /2 and S(t) is one of T (t) β+1 or t∇ x T (t) β+1 , then ( t /|h|) µ S(t)(1 -τ -h ) is bounded from L 1 ( 1 4 B) into L 2 ( 8 9 B \ 7 8 B
) with norm controlled by t -n/2 e -cR/t . This completes the proof of property (H).

Step 2: From property (H) to the Dirichlet property. Condition (H) for L * 0 implies the Dirichlet property for L * 0 with the same µ. This argument is done in [24, p.45].

Step 3: From the Dirichlet property to resolvent kernel bounds. Assuming the Dirichlet property for L * 0 with exponent µ, it suffices to follow line by line the argument in [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]Sec. 1.4.3] up until the intermediate result of formula [START_REF] Dahlberg | Estimates of harmonic measure[END_REF] which, in particular, states that for large enough integer k 0 the family ((1 + t 2 L * 0 ) -k 0 ) t>0 is L 2 -Λη -bounded for any η < µ. Then we conclude using Lemma 14.3.

14.4. Remarks on multiplicative perturbations. It is instructive to put our results in perspective with Theorem 6.9, which states that the numbers p -(L) are a-independent, that is p -(L) = p -(L 0 ) if we write L as a multiplicative perturbation L = a -1 L 0 . There is no other conditions on a than the standing ellipticity condition from Section 3.1. This implies that the set of estimates on the kernel for (1 + t 2 L 0 ) -1 in Theorem 14.7 is equivalent to the similar ones for the kernel of

(1 + t 2 L) -1 a -1 .
Prior to that there were works on multiplicative perturbations involving semigroups. Duong and Ouhabaz [START_REF] Duong | Complex multiplicative perturbations of elliptic operators: heat kernel bounds and holomorphic functional calculus[END_REF][START_REF] Ouhabaz | Analysis of heat equations on domains[END_REF] proved that semigroup kernel estimates for e -tL 0 imply semigroup kernel estimates for e -ta -1 L 0 a -1 if d is a n×n matrix with real valued coefficients (so m = 1) under the additional assumption that d is symmetric or, more generally, that the sectoriality angle of a -1 L 0 does not exceed π /2. This condition is of course necessary to define a holomorphic semigroup and allows one to use contour integrals.

Before that, work of McIntosh-Nahmod dealt with the specific case of L = -a -1 ∆ x , see [START_REF] Mcintosh | Heat kernel estimates and functional calculi of -b∆[END_REF]. It was shown in [START_REF] Auscher | Equivalence between regularity theorems and heat kernel estimates for higher order elliptic operators and systems under divergence form[END_REF] that the only restriction to transfer a set of estimates called condition (G) on the semigroup kernel of e -tL 0 to the corresponding ones for e -tL a -1 is the sectoriality of L.

The conclusion is that if estimates on the resolvent kernels or their high powers suffice for an application, then the existence of the semigroup generated by -L can be removed. Besides, the arguments are somewhat less involved than those passing through semigroups. 14.5. Kernel estimates for L = -a -1 ∆ x . We close this section with kernel estimates in the special case of L = -a -1 ∆ x that are used later in this monograph. Some of them are due to [START_REF] Mcintosh | Heat kernel estimates and functional calculi of -b∆[END_REF]. Interestingly, we use a much simpler method than the original proof and we obtain further estimates, notably those on mixed second-order derivatives. Corollary 6.10 yields p -(L) = 1 * and so we could try to apply the previous theory. However, we wish to give a complete argument with the minimal tools. Proposition 14.14. For all integers β > n /2 + 2 the following properties hold for the kernel H β t (x, y) of the higher-order resolvents (1 -

t 2 a -1 ∆ x ) -β a -1 .
(i) There are C, c > 0, depending on ellipticity, dimensions and β, such that one has for for all t > 0 and x, y ∈ R n ,

|H β t (x, y)| + |t∇ x H β t (x, y)| + |t∇ y H β t (x, y)| +|t 2 ∇ x ∇ y H β t (x, y)| ≤ Ct -n e -c|x-y| t .
(ii) For all η ∈ (0, 1), the kernels ,y) are Hölder continuous in both variables with exponent η and norms in this space of the order of t -η-n . In particular, H β t ∈ C 1,η (R n × R n ), the space of C 1 -functions having Hölder continuous first order derivatives of exponent η.

t∇ x H β t (x, y), t∇ y H β t (x, y), t 2 ∇ x ∇ y H β t (x
Proof. We set L := -a -1 ∆ x and L 0 := -∆ x is acting componentwise on C m -valued functions. It suffices to prove the properties of H β t for t = 1 with implicit constants that depend on dimensions and ellipticity. Indeed, a change of variables yields that H β t (x, y) = t -n H β 1 ( x /t, y /t), where H β 1 corresponds to the coefficients a t (x) := a(tx), which has the same ellipticity constant as a. We split the proof into four steps.

Step 1: Pointwise estimates for H β . Let s > 0. When m = 1, (1 -s∆ x ) -1 is given by convolution with a classical Bessel potential, that is, a positive function with integral 1 that is in L r whenever 1 /r > 1 -2 /n, see for instance [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF]Sec.V.3]. When m ≥ 2, (1 + sL 0 ) -1 is given by componentwise convolution with the same potential.

By positivity, we get for f ∈ L 2 and s > 0 the pointwise bound

|(1 + sL 0 ) -1 f | ≤ (1 -s∆ x ) -1 |f |, (14.18)
where | • | is the C m -norm and the resolvent on the right-hand side is scalar-valued. In particular, (1

+ sL 0 ) -1 is a contraction on L 2 .
We can write

a = τ (1 -b) (14.19) for some τ > 0 and b ∈ L ∞ (R n ; L(C m )) with b ∞ < 1.
We shall give the well-known argument in the final step of the proof.

Using the above decomposition of a, we find

(a + L 0 ) -1 = 1 τ (1 -(1 + 1 τ L 0 ) -1 b) -1 (1 + 1 τ L 0 ) -1
as operators on L 2 , and the first term on the right can be computed by a Neumann series. Expanding this series explicitly and applying (14.18) inductively with s = 1 /τ, we have

|(a + L 0 ) -1 f | ≤ 1 τ ∞ k=0 ((1 -1 τ ∆ x ) -1 b ∞ ) k (1 -1 τ ∆ x ) -1 |f |,
so that summing backward, we obtain the pointwise bound

|(a + L 0 ) -1 f | ≤ (α -∆ x ) -1 |f |, where α = τ (1 -b ∞ ).
Applying this estimate to af in place of f , we get

|(1 + L) -1 f | ≤ a ∞ (α -∆ x ) -1 |f | (14.20)
and obtain extensions by density with (possibly infinite) operator-norm bounds

(1 + L) -1 L p →L q ≤ a ∞ (α -∆ x ) -1 L p →L q , (14.21) whenever 1 ≤ p ≤ q ≤ ∞. By Young's inequality for convolutions, the latter controlled if 1 /p -1 /q < 2 /n. This gives L 1 -L ∞ -boundedness of (1 + L) -β a -1 provided that β > n /2.
By the Dunford-Pettis theorem [START_REF] Arendt | Integral representations of resolvents and semigroups[END_REF]Thm. 1.3] we obtain that (1 + L) -β a -1 is given by a bounded kernel H β (x, y) and the bound depends only on dimensions and ellipticity. Iterating (14.20), we see that |H β (x, y)| is dominated by the kernel of (α -∆ x ) -β up to a factor a β ∞ a -1 ∞ . The latter operator is given by convolution with a higher-order Bessel potential. Since β > n /2, we get exponential decay and no singularity at x = y as stated, see [88, Sec.V.3].

Step 2: Proof of (ii) and the other bounds in (i) with c = 0. Write

∆ x (1 + L) -1 a -1 = -1 + a(1 + L) -1 a -1
, the Laplacian acting componentwise, so that

∆ x (1 + L) -1 a -1 L p →L p ≤ 1 + a ∞ (α -∆ x ) -1 L p →L p . (14.22)
The operator norm in the line above is controlled for all p ∈ [1, ∞]. If 1 < p < ∞, then by the Mihlin multiplier theorem (14.21) and (14.22) imply that (1 + L) -1 a -1 and ∇ x (1 + L) -1 a -1 are bounded from L p to W 1,p . In particular, for p > n, we have the inhomogeneous Sobolev embedding W 1,p ⊆ Λη ∩ L ∞ , η = 1n /p. The same applies with a * in place of a and by duality (1 + L) -1 a -1 div x is bounded from L 1 to L p ′ . By composition, we obtain that for β > n /2 + 2 the operators

∇ x (1 + L) -β a -1 , -(1 + L) -β a -1 div x , -∇ x (1 + L) -β a -1 div x are bounded from L 1 into Λη ∩L ∞ .
In particular they are bounded from L 1 into L ∞ and, invoking again the Dunford-Pettis theorem, they correspond to the kernels ∇ x H β (x, y), ∇ y H β (x, y), ∇ x ∇ y H β (x, y), which therefore are bounded measurable functions.

We can then use the mapping properties from L 1 into Λη and once more the Dunford-Pettis theorem, in order to obtain first Hölder continuity of the kernels in x (with any exponent η ∈ (0, 1)), uniformly in y, and then by duality the same with the roles of x and y reversed. This proves (ii) and finishes the proof of (i) with c = 0.

Step 3: Exponential decay for the other kernels. We begin with ∂ x i H β , where 1 ≤ i ≤ n. Let e i ∈ R n be the i-th standard unit vector and let h > 0. By the fundamental theorem of calculus we have

1 h (H β (x + he i , y) -H β (x, y)) = - h 0 ∂ x i H β (x + se i , y) ds = ∂ x i H β (x, y) + - h 0 ∂ x i H β (x + se i , y) -∂ x i H β (x, y) ds,
where x, y ∈ R n . If 2|h| ≤ |x -y|, then |x + he i -y| ≥ |x-y| /2 and we get from (i) for H β and (ii) for ∇ x H β that

|∂ x i H β (x, y)| ≤ C h e -c 2 |x-y| + e -c|x-y| + h η ∇ x H β (•, y) Λη .
Since in Step 2 we have already obtained a uniform bound for ∂ x i H β , it suffices to prove the decay for |x -y| large, say |x -y|e

c 4 |x-y| ≥ 2.
This restriction is manufactured such that we can take h := e -c 4 |x-y| , resulting in the desirable estimate

|∂ x i H β (x, y)| ≤ C ′ e -ηc 4 |x-y|
for some new constant C ′ that depends on a only through ellipticity. This completes the proof for ∇ x H β .

The argument above has only used the exponential decay for H β , the uniform boundedness of ∇ x H β and the Λη -estimate for ∇ x H β in the x-variable uniformly in the y-variable, in order to give exponential decay for ∇ x H β . Thus, it can be repeated verbatim for the decay of ∇ y H β . Then, replacing H β by ∇ y H β gives decay of ∇ x ∇ y H β .

Step 4: Proof of (14.19). We let

τ := λ -1 a 2 ∞ and b := 1 -τ -1 a. If ξ ∈ C m is normalized to |ξ| = 1, then |b(x)ξ| 2 = 1 + τ -2 |a(x)ξ| 2 -2τ -1 Re a(x)ξ, ξ ≤ 1 + τ -2 a 2 ∞ -2τ -1 λ = 1 -λ 2 a -2 ∞ < 1.

Comparison with the Auscher-Stahlhut interval

The identification of adapted-Hardy spaces as a key tool to treating boundary value problems has appeared first in [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]. Although we argue independently of this reference concerning this particular issue, we need to make the bridge and the results of this section are explicitly used in Section 22 on Neumann problems.

In [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]Thm. 5.1] an interval of values of p is constructed, where one has the identification H p DB = H p D even for more general operators DB. (The matrix B need not be block-diagonal.) Its upper endpoint is denoted by p + (DB) and the lower endpoint is at most the lower Sobolev conjugate of another exponent p -(DB). To avoid confusion, we denote these exponents by p AS ± (DB) here. They have a precise meaning that we recall next. The following material is all taken from [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]Sec. 3.2].

Let In passing, we point out that the use of I(B * D) instead of its dual set in [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]Rem. 3.5] is a typo that does not appear in the original reference [START_REF] Auscher | Remarks on functional calculus for perturbed first-order Dirac operators[END_REF]Sec. 5].

D p (D) := {f ∈ L p : Df ∈ L p }, where L p = L p (R n ; C m × C mn
Then (p AS -(DB), p AS + (DB)) is the interval of exponents q ∈ I 2 such that for all p between 2 and q there is a topological decomposition

L p = N p (BD) ⊕ R p (BD), (15.1)
see [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]Thm. 3.6]. It is proved in [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]Thm. 5.1] that for (p AS -(DB)) * < p < p AS + (DB) one has H p DB = H p D . It was not proved that this interval is optimal for the identification in the class of DB-operators there and for some examples it was shown that this is not the case, especially for the lower endpoint. Hence, [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF] does not provide the whole identification interval, yet [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF]Prop. 6.4 & 6.5] there describe it as an open interval.

Using the same framework as [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF], it became clear in the classification theorems of [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF] as well as in the uniqueness statements of [START_REF] Auscher | On uniqueness results for Dirichlet problems of elliptic systems without De giorgi-Nash-Moser regularity[END_REF] that the full interval of identification is the object of interest. Both references introduce the set of exponents p ∈ (1 * , p AS + (DB)) for which H p DB = H p D holds with equivalent p-quasinorms. It is called I L in [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF] and H L in [START_REF] Auscher | On uniqueness results for Dirichlet problems of elliptic systems without De giorgi-Nash-Moser regularity[END_REF]. Hence, either of these intervals is of the form (a AS (DB), p AS + (DB)) for some number a AS (DB) ≥ 1 * which could be in particular less than (p AS -(DB)) * .

In the block situation of this monograph, we proceeded differently and introduced the set of identification H(DB) in (9.1) directly as the largest set of exponents p ∈ (1 * , ∞) for which H p DB = H p D holds with equivalent p-quasinorms. Then we proved that it is an open interval and characterized its endpoints as h -(DB) = p -(L) and h + (DB) = q + (L), see Theorems 9.6 and 11.3. Hence, in order to be able to apply the results in [START_REF] Auscher | On uniqueness results for Dirichlet problems of elliptic systems without De giorgi-Nash-Moser regularity[END_REF][START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF] within the interval of identification H(DB), we need to connect both approaches.

The discussion above already shows that a AS (DB) = p -(L) and q + (L) = h + (DB) ≥ p AS + (DB). Identifying the upper endpoints requires a specific argument.

Proposition 15.1. In the block case setting of this monograph the number p + (DB) = p AS + (DB) of [START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF] coincides with h + (DB) = q + (L). Proof. As said, it remains to prove q + (L) ≤ p AS + (DB). Let 2 ≤ p < q + (L). First, we recall that q + (L) = q + (L 0 ) from Theorem 6.9, so that by Theorem 13.12 we have p ∈ P(L 0 ). Hence, Proposition 13.8 implies p-lower bounds for d and p ′ -lower bounds for d * , as well as the topological Hodge decomposition (13.2).

To reinterpret this, we recall that

B = a -1 0 0 d , D = 0 div x -∇ x 0 .
Using the notation of Section 13, we have

N p (D) = {0} × N p (div x ), R p (D) = L p ×R p (∇ x ).
Since a -1 is strictly elliptic, we see that the conditions p ∈ I(BD) and p ∈ I(B * D) ′ are equivalent to p-lower bounds for d and p ′ -lower bounds for d * , respectively. Moreover, using the p-lower bounds to determine the null space, we find

N p (BD) = {0} × N p (div x ), R p (BD) = L p ×d R p (∇ x ).
In turn, this shows that (15.1) is equivalent to the Hodge decomposition (13.2). Altogether, we have shown that p ⊆ I(BD) ∩ I(B * D) ′ as well as the Hodge decomposition (15.1). As we have done this for all p in the interval [2, q + (L)), this proves that q + (L) ≤ p AS + (DB).

Summarizing, we have obtained

Corollary 15.2. In the block case setting of this monograph the open intervals H L from [START_REF] Auscher | On uniqueness results for Dirichlet problems of elliptic systems without De giorgi-Nash-Moser regularity[END_REF] and I L from [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF] both equal (p -(L), q + (L)).

Basic properties of weak solutions

At this point in the monograph we begin to slightly change our perspective from Hardy spaces adapted to L = -a -1 div x d∇ x to weak solutions to the elliptic system

Lu = -div(A∇u) = -∂ t (a∂ t u) -div x d∇ x u = 0 (16.1)
in R 1+n , where as before we write A = a 0 0 d for the coefficient matrix in block form. In this section, we gather wellknown properties of weak solutions that will frequently be used in the further course.

As usual, a weak solution to the equation

Lu = g ∈ L 2 loc (O) in an open set O ⊆ R 1+n is a function u ∈ W 1,2 loc (O; C m ) that satisfies for all φ ∈ C ∞ 0 (O; C m ), O A∇u • ∇φ dtdx = O g • φ dtdx
16.1. Energy solutions. The most common construction of weak solutions is by the Lax-Milgram lemma, using the energy class

Ẇ1,2 (R 1+n + ) := {v ∈ L 2 loc (R 1+n + ) : ∇v ∈ L 2 (R 1+n + )}/C m
This is a Hilbert space for the inner product ∇• , ∇• and it contains the restrictions of C ∞ 0 (R 1+n )-functions to R 1+n + as a dense subspace, see for instance [START_REF] Auscher | On L 2 solvability of BVPs for elliptic systems[END_REF]Lem. 3.1].

We recall the well-known trace and extension results. For convenience and a later use we include elementary proofs in our homogeneous Sobolev setting.

Lemma 16.1. Every equivalence class v ∈ Ẇ1,2 (R 1+n + ) has a represen- tative that is continuous on [0, ∞) with values in L 2 loc . In this sense v ∈ C 0 ([0, ∞); Ḣ1 /2,2 ) and sup t≥0 v(t, •) Ḣ1 /2,2 ∇v 2 . Conversely, every f ∈ Ḣ1 /2,2 can be extended to a function v ∈ Ẇ1,2 (R 1+n + ) with v(0, •) = f and ∇v 2 ≃ f Ḣ1 /2,2 . Proof. That v has a representative that is continuous on [0, ∞) valued in L 2
loc is just the one-dimensional Sobolev embedding in the t-variable. This property is not affected by adding constants to v and amounts to re-defining v a.e. on R 1+n + . By density it suffices to prove the embedding into C 0 ([0, ∞); Ḣ1 /2,2 ) in the case that v is the restriction of a function in C ∞ 0 (R 1+n ). For all t ≥ 0 we have

d dt (-∆ x ) 1/4 v(t, •) 2 2 = 2 Re (-∆ x ) 1/4 v(t, •), (-∆ x ) 1/4 ∂ t v(t, •) ≤ 2 (-∆ x ) 1/2 v(t, •) 2 ∂ t v(t, •) 2 ∇ x v(t, •) 2 2 + ∂ t v(t, •) 2 2 ,
where the final step is by the solution of the Kato problem. Integration in t gives

(-∆ x ) 1/4 v(t, •) 2 2 ∇v 2 2 (t ≥ 0)
and the left-hand side is comparable to v(t, •) 2 Ḣ1/2,2 by Corollary 3.8. Again by density it suffices to prove the extension part for f ∈

Ḣ1 /2,2 ∩ L 2 . We set v(t, •) := e -t(-∆x) 1/2 f . Clearly v is continuous on [0, ∞)
valued in L 2 with v(0, •) = f . Moreover, we have

∇v 2 2 = ∞ 0 ∂ t v(t, •) 2 2 + ∇ x v(t, •) 2 2 dt = ∞ 0 (-∆ x ) 1/2 e -t(-∆x) 1/2 f 2 2 + ∇ x e -t(-∆x) 1/2 f 2 2 dt ≃ ∞ 0 (-∆ x ) 1/2 e -t(-∆x) 1/2 f 2 2 dt = ∞ 0 (-t 2 ∆ x ) 1/4 e -(-t 2 ∆x) 1/2 (-∆ x ) 1/4 f 2 2 dt t ≃ (-∆ x ) 1/4 f 2 2 ≃ f 2 Ḣ1/2,2 , (16.2) 
where the fourth step is by McIntosh's theorem.

We also obtain the usual characterization of the subspace with trace zero at the boundary.

Lemma 16.2. The subspace Ẇ1,2 0 (R 1+n + ) := {u ∈ Ẇ1,2 (R 1+n + ) : u(0, •) = 0 in Ḣ1 /2,2 } coincides with the closure of C ∞ 0 (R 1+n + ) in Ẇ1,2 (R 1+n + ). Proof. Since the restriction R : Ẇ1,2 (R 1+n + ) → Ḣ1 /2,2 to t = 0 is bounded, Ẇ1,2 0 (R 1+n + ) is a closed subspace and it contains C ∞ 0 (R 1+n + ). Conversely, let u ∈ Ẇ1,2 0 (R 1+n + )
. Let E : Ḣ1 /2,2 → Ẇ1,2 (R 1+n + ) be the extension operator from the proof of Lemma 16.1. We pick a sequence

(u k ) ⊆ C ∞ 0 (R 1+n ) with u k → u in Ẇ1,2 (R 1+n + ) as k → ∞ and set v k := (1 -ER)u k . Then Rv k = 0 and v k → u in Ẇ1,2 (R 1+n
+ ). Therefore it suffices to approximate each v k by C ∞ 0 (R 1+n + )-functions. In fact, it suffices to find approximants with compact support in R 1+n + since then we can conclude via convolution with smooth kernels.

To this end, we note that Ru k ∈ L 2 together with the explicit construction of

E implies v k ∈ C 0 ([0, ∞); L 2 ) with v k (0, •) = 0. Extend- ing v k to R 1+n
by 0 and using the L 2 -continuity of the translation in the t-direction, we obtain approximants w k with the same properties that have their support in R 1+n + . Now, we take η ∈ C ∞ 0 (R 1+n ) with η(0, 0) = 1 and set η ε (t, x) := η(εt, εx). We can bound

∇(η ε w k ) -∇w k 2 (1 -η ε )∇w k 2 + ε 1 2 w k L ∞ ((0,∞);L 2
) . In the limit as ε → 0 the first term on the right vanishes by dominated convergence, whereas the second one vanishes thanks to the additional information w k ∈ L ∞ ((0, ∞); L 2 ).

We can now use the Lax-Milgram lemma to prove the following wellposedness result. Neither the block structure of A nor its t-independence are needed in the argument. We call u the energy solution to Lu = 0 in R 1+n + with Dirichlet data f . Proposition 16.3. For all f ∈ Ḣ1 /2,2 there exists a unique solution u (modulo constants) to the problem

     Lu = 0 (in R 1+n + ), ∇u ∈ L 2 (R 1+n + ), u(0, •) = f (in Ḣ1 /2,2 ).
Moreover, ∇u 2 f Ḣ1/2,2 and lim t→∞ u(t,

•) = 0 in Ḣ1 /2,2 .
Proof. If u is any solution, then we obtain by density and Lemma 16.2 that

R 1+n + A∇u • ∇φ dtdx = 0 (φ ∈ W 1,2 0 (R 1+n + )).
Since A is elliptic, u ∈ W 1,2 0 (R 1+n + ) implies ∇u = 0. Hence, solutions are unique modulo constants. In order to construct a solution, let v ∈ Ẇ1,2 (R 1+n + ) be an extension of f as in Lemma 16.1. By the Lax-Milgram lemma, there exists w ∈ W 1,2 0 (R 1+n + ) solving

R 1+n + A∇w • ∇φ dtdx = - R 1+n + A∇v • ∇φ dtdx (φ ∈ W 1,2 0 (R 1+n + )).
Hence, u := v + w is a solution to the given problem and Lemma 16.1 yields the limit at t = ∞ as well as the bound

∇u 2 ≤ ∇v 2 + ∇w 2 ∇v 2 ≃ f Ḣ1/2,2 .
16.2. Semigroup solutions. In the specific situations of coefficients in block form, we can also use the Poisson semigroup for L to construct weak solutions. Here, the natural boundary space is L 2 rather than Ḣ1 /2,2 .

Proposition 16.4. Let f ∈ L 2 . Then u(t, x) := e -tL 1/2 f (x) is a weak solution to Lu = 0 in R 1+n + of class C 0 ([0, ∞); L 2 ) ∩ C ∞ ((0, ∞); L 2 ) with u(0, •) = f .
Proof. The regularity in t follows directly from the functional calculus. In particular, u(t, •) is in the domain of L for every t > 0 and d 2 dt 2 u(t, •) = Lu(t, •). Since a is bounded and independent of t, the function au has the same properties and we have

d 2 dt 2 (au(t, •)) = aLu(t, •). Let now φ ∈ C ∞ 0 (R 1+n + ). For any t > 0, the Lax-Milgram interpretation of aL in (3.5) yields R n d 2 dt 2 (au(t, •)) • φ(t, •) dx = R n d∇ x u(t, •) • ∇ x φ(t, •) dx
and the claim follows by integrating both sides in t and then integrating by parts in t on the left-hand side.

We have the following compatibility between semigroup and energy solutions. This could be deduced from more general results in [START_REF] Auscher | On L 2 solvability of BVPs for elliptic systems[END_REF] but in the block situation there is a particularly simple proof.

Proposition 16.5. If f ∈ Ḣ1 /2,2 ∩ L 2 , then u(t, x) := e -tL 1/2 f (x)
is the energy solution to Lu = 0 in R 1+n + with Dirichlet data f . Proof. We already know that u is a weak solution to Lu = 0 in

R 1+n + with u(0, •) = f in the sense of C 0 ([0, ∞); L 2 ). Furthermore, ∇u ∈ L 2 (R 1+n
+ ) follows by a literal repetition of the argument in (16.2), replacing -∆ x by L at each occurrence. In fact, this is why we have justified (16.2) by abstract arguments instead of using the Fourier transform.

16.3. Interior estimates. We continue with the standard interior estimates. All this is well-known but precise references for systems with our ellipticity assumption are hard to find. One is [START_REF] Barton | Gradient estimates and the fundamental solution for higher-order elliptic systems with rough coefficients[END_REF]Cor. 22], where even systems of higher order are treated, but for the reader's convenience we include the simple arguments in the second-order case. Again the block structure of A and its t-independence are not needed for this part.

We call W ⊆ R 1+n + a cylinder of radius r if W = I × B, where I ⊆ (0, ∞) is an interval of length r and B ⊆ R n ball of radius r (or a cube of sidelength r). As usual, we write αW for the concentrically scaled version of W . Let W ⊆ R 1+n a cylinder of radius r and α > 1 be such that αW ⋐ O. Then there is a constant C depending on dimensions, ellipticity and α, such that

W |∇u| 2 dsdy ≤ C αW r -2 |u| 2 + r 2 |g| 2 dsdy. Proof. Fix η ∈ C ∞ 0 (R 1+n ) with 1 W ≤ η ≤ 1 αW and |∇η| ≤ c n r -1
for a purely dimensional constant c n . We write • , • for the inner product on L 2 (R 1+n ). By ellipticity and multiple applications of the product rule, we have

λ ∇(ηu) 2 2 ≤ | A∇(ηu), ∇(ηu) | ≤ | A∇u, ∇(η 2 u) | + | ηA∇u, u ⊗ ∇η | + | A(u ⊗ ∇η), ∇(ηu) | =: I 1 + I 2 + I 3 ,
where our notation is ∇(ηu) := η∇u+u⊗∇η in the sense prescribed by the product rule. By the equation for u, the Cauchy-Schwarz inequality and the elementary bound xy ≤ ε 2 x 2 + 1 2ε y 2 for positive numbers x, y, ε, we have

| I 1 | = | g, η 2 u | ≤ 1 2r 2 ηu 2 2 + r 2 2 ηg 2 2 .
Similarly, we get

I 2 + I 3 ≤ λ 4 η∇u 2 2 + λ 4 ∇(ηu) 2 2 + C u ⊗ ∇η 2 2 ≤ 3λ 4 ∇(ηu) 2 2 + C + λ 2 u ⊗ ∇η 2 2
, where C depends on dimensions and ellipticity. Rearranging terms leads to

λ 4 ∇(ηu) 2 2 ≤ C + λ 2 u ⊗ ∇η 2 2 + 1 2r 2 ηu 2 2 + r 2 2 ηg 2 2
and by choice of η we are done.

Lemma 16.7 (Reverse Hölder). Let u be a weak solution to Lu = 0 in an open set O ⊆ R 1+n and let α > 1. There is a constant C depending on dimensions, ellipticity and α, such that for all cylinders W with αW ⋐ O it follows that

-- W |∇u| 2 dsdy 1/2 ≤ C -- αW |∇u| dsdy.
Moreover, with q := 2(n+1) n-1 in dimension n ≥ 2 and q ∈ (2, 2(n+1) n-1 ) arbitrary in dimension n = 1, it follows that --

W |u| q dsdy 1/q ≤ C -- αW |u| dsdy,
where C also depends on q.

Proof. We begin with the first inequality. Let c := --αW u and p := 2(n+1) n+3 , the lower Sobolev conjugate of 2 in dimension n + 1. We apply the Caccioppoli inequality to uc and bound the right-hand side by the Sobolev-Poincaré inequality in order to give:

-- W |∇u| 2 dsdy 1/2 ≤ C -- αW |∇u| p dsdy 1/p .
As we have p < 2, this is a reverse Hölder inequality for ∇u. It remains to lower the exponent to p = 1 but this is always possible by a general feature of such inequalities, see [START_REF] Iwaniec | Hardy-Littlewood inequality for quasiregular mappings in certain domains in R n[END_REF]Thm. 2]. Strictly speaking, this reference is for W = I × B with B a cube and the case of a ball then follows by a straightforward covering argument.

For the second inequality we let c := --W u and note that 2(n+1) n-1 is the upper Sobolev conjugate of 2 in dimension n + 1. It follows that

-- W |u| q dsdy 1/q ≤ -- W |u -c| q dsdy 1/q + -- W |u| dsdy ≤ C -- αW |u| 2 dsdy 1/2
, where the second step follows again by combining the Sobolev-Poincaré inequality with the Caccioppoli inequality. The exponent on the righthand side can be lowered as before.

We close with a simple but important approximation result for weak solutions.

Lemma 16.8. Let (u k ) be a sequence of weak solutions to

Lu k = 0 in an open set O ⊆ R 1+n that converges to u in L 1 loc (O).
Then u is a weak solution to (16.1) in O and (u k ) tends to u in W 1,2 loc (O). Proof. The Cauchy property in W 1,2 loc (R 1+n + ) follows by applying the reverse Hölder and the Caccioppoli inequality to u ku j on arbitrary admissible cylinders. Hence, we can pass to the limit in k in the weak formulation of the equation for u k .

Corollary 16.9. If u is a weak solution to Lu = 0 in R 1+n + , then so is

∂ t u. In particular, u is of class C ∞ ((0, ∞); L 2 loc ). Proof. For ε > 0 and h ∈ (-ε, ε) define v h (t, x) := 1 h (u(t+h, x)-u(t, x)) in R n+1 +,ε := {(s, y) ∈ R 1+n : s > ε}. All v h are weak solutions in R n+1 +,ε
since the coefficients of L are independent of t and we have v h → ∂ t u in L 2 loc (R n+1 +,ε ) as h → 0. By the preceding lemma, ∂ t u is a weak solution in R 1+n + , so that in particular ∂ 2 t u ∈ L 2 loc ((0, ∞); L 2 loc ). By iteration the same applies to ∂ k t u for any k ∈ N and the claimed regularity follows by (one-dimensional) Sobolev embeddings.

Existence in H p Dirichlet and Regularity problems

In this section we establish the existence part in our main results on the Dirichlet and Regularity problems with H p -data, Theorems 1.1 and 1.2. When the data f additionally belongs to L 2 , the (eventually unique) solution is given by the Poisson semigroup. Hence, we proceed in two steps: First, we establish the required semigroup estimates for data f ∈ a -1 (H p ∩ L 2 ) and f ∈ Ḣ1,p ∩ W 1,2 , respectively. Second, we obtain existence of a solution by a density argument for the full class of data. 17.1. Estimates towards the Dirichlet problem. We begin with the square function bound.

Proposition 17.1. Let p -(L) < p < p + (L) * . If f ∈ a -1 (H p ∩ L 2 ), then u(t, x) := e -tL 1/2 f (x) satisfies S(t∇u) p ≃ af H p .
Proof. We organize the argument in three steps. For p ≤ 2 we will be able to use Hardy space theory 'off-the-shelf' but for p > 2 different arguments on the level of the second-order equation for u are needed since p might lie outside of H(L).

Step 1: The case p -(L) < p ≤ 2. We have t∂ t u = -tL 1/2 e -tL 1/2 f =: ψ(t 2 L)f, and, recalling (3.2) -(3.4),

t∇ x u = t∇ x a -1 e -t L 1/2 (af ) = (-tDBe -t[DB] g) =: (ϕ(tDB)g)
where g = [af, 0] ⊤ . We recall from Proposition 8.2 and the corresponding result for sectorial operators in Section 8.2 that ψ ∈ Ψ ∞ 1/2 and ϕ ∈ Ψ ∞ 1 are admissible auxiliary functions for H p L and H p DB , respectively. By Theorem 9.6 we have p ∈ H(L) ∩ H(DB) and hence we get as required

af H p ≃ f H p L ≃ S(t∂ t u) p ≤ S(t∇u) p f H p L + g H p DB ≃ af H p + g H p af H p .
Step 2: Upper bound for 2 < p < p + (L) * . Consider the auxiliary function φ(z) := e -√ z -(1 + z) -2 . Then φ ∈ Ψ 2 1/2 on any sector. Differentiating the resolvent twice, we find that v := φ(t 2 L)f solves the following equation in R 1+n + in the weak sense:

(a∂ 2 t + div x d∇ x )v = 4aL(1 + t 2 L) -3 f -24at 2 L 2 (1 + t 2 L) -4 f -aL(1 + t 2 L) -2 f =: t -2 aψ(t 2 L)f,
where ψ ∈ Ψ 1 1 on any sector. For x ∈ R n and t > 0 consider Whitney boxes W (t, x) := (t, 2t) × B(x, 2t) and W (t, x) := ( t /2, 4t) × B(x, 4t). The Caccioppoli inequality yields --

W (t,x) |s∇v| 2 dsdy -- W (t,x) |v| 2 + |ψ(s 2 L)f | 2 dsdy. (17.1) Summing up these estimates for t = 2 -k , k ∈ Z, leads to |x-y|<s |s∇v| 2 dsdy s 1+n |x-y|<8s |v| 2 + |ψ(s 2 L)f | 2 dsdy s 1+n ,
where we have used that at most 3 of the enlarged boxes W (2 -k , x) overlap in order to get the term on the right. By definition of v we conclude

S(t∇u) p S φ,L f p + S ψ,L f p + S(t∇(1 + t 2 L) -2 f ) p , (17.2) 
where as usual S φ,L f denotes the square function of φ(t 2 L)f (x).

Since φ ∈ Ψ 2 1/2 and ψ ∈ Ψ 1 1 , Theorem 9.21 applies in our range of exponents and yields

S φ,L f p + S ψ,L f p f p .
The analogous bound for the third square function in (17.2) is a consequence of Remark 9.8. Indeed, the family

t∇(1 + t 2 L) -2 = -2t 2 L(1 + t 2 L) -3 t∇ x (1 + t 2 L) -2 = 2((1 + t 2 L) -3 -(1 + t 2 L) -2 ) t∇ x (1 + t 2 L) -2
satisfies L 2 off diagonal estimates of arbitrary large order by composition and we have for all t > 0

t∇(1 + t 2 L) -2 f 2 2 ≃ t 2 L(1 + t 2 L) -3 f 2 2 + tL 1/2 (1 + t 2 L) -2 f 2 2
by the solution of the Kato problem, so that the theorems of Fubini and McIntosh yield the L 2 -bound

S(t∇(1 + t 2 L) -2 f ) 2 2 ≃ ∞ 0 t∇(1 + t 2 L) -2 f 2 2 dt t ≃ f 2 2 .
Step 3: Lower bound for 2 < p < p + (L) * . Introduce the adapted Laplacian H := -(a * ) -1 ∆ x and for f ∈ L p ∩ L 2 and g ∈ L p ′ ∩ L 2 set Φ : (0, ∞) → C, Φ(t) := ae -tL 1/2 f, e -tH 1/2 g , where • , • is the L 2 inner product. By the functional calculus on L 2 , this is a smooth function and we have

Φ ′ (t) = -aL 1/2 e -tL 1/2 f, e -tH 1/2 g -ae -tL 1/2 f, H 1/2 e -tH 1/2 g Φ ′′ (t) = aLe -tL 1/2 f, e -tH 1/2 g + 2 aL 1/2 e -tL 1/2 f, H 1/2 e -tH 1/2 g + ae -tL 1/2 f, He -tH 1/2 g = d∇ x e -tL 1/2 f, ∇ x e -tH 1/2 g + 2 aL 1/2 e -tL 1/2 f, H 1/2 e -tH 1/2 g + ∇ x e -tL 1/2 f, ∇ x e -tH 1/2 g ,
as well as

lim t→∞ Φ(t) = lim t→∞ tΦ ′ (t) = lim t→0 tΦ ′ (t) = 0, lim t→0 Φ(t) = af, g .
Putting all together and integrating by parts twice in t, we obtain

af, g = ∞ 0 t 2 Φ ′′ (t) dt t = ∞ 0 dt∇ x e -tL 1/2 f, t∇ x e -tH 1/2 g dt t + 2 ∞ 0 atL 1/2 e -tL 1/2 f, tH 1/2 e -tH 1/2 g dt t + ∞ 0 t∇ x e -tL 1/2 f, t∇ x e -tH 1/2 g dt t .
We regard the right-hand side as T p -T p ′ duality pairings in order to give

| af, g | S(t∇ x e -tL 1/2 f ) p S(t∇ x e -tH 1/2 g) p ′ + S(tL 1/2 e -tL 1/2 f ) p S(tH 1/2 e -tH 1/2 g) p ′ ≤ 2 S(t∇e -tL 1/2 f ) p S(t∇e -tH 1/2 g) p ′ .
We know that p -(H) = 1 * from Corollary 6.10. Hence, Step 1 for H on L p ′ yields S(t∇e -tH 1/2 g) p ′ g p ′ and since g ∈ L p ′ ∩ L 2 was arbitrary, we conclude

af p S(t∇e -tL 1/2 f ) p .
We turn to bounds for the non-tangential maximal function and begin by recalling the respective L 2 -bound for our perturbed Dirac operators.

Theorem 17.2 ([22, Thm. 9.9]). Let T be one of DB or BD. Then

N * (e -t[T ] f ) 2 ≃ f 2 (f ∈ R(T ))
and for every f ∈ L 2 the Whitney averages converge in the L 2 -sense lim t→0 --

W (t,x) |e -t[T ] f -f (x)| 2 dsdy = 0 (a.e. x ∈ R n ).
We remark that the result above for T = BD is originally due to Rosén [START_REF] Rosén | Layer potentials beyond singular integral operators[END_REF]Thm. 5.1].

Proposition 17.3. Let p -(L) < p < p + (L) * . If f ∈ a -1 (H p ∩ L 2 ), then u(t, x) := e -tL 1/2 f (x) satisfies N * (u) p ≃ af H p and lim t→0 -- W (t,x) |u(s, y) -f (x)| 2 dsdy = 0 (a.e. x ∈ R n ).
Proof. We recall from (3.3) that L is incorporated in the matrix operator (BD) 2 . Hence, we have e -t[BD] f 0 = u 0 and the claim for p = 2 as well as the convergence of averages follows from Theorem 17.2.

Step 1: Upper bound. If p ∈ (p -(L), 2), then according to Proposition 8.27 and Theorem 9.6 we have

N * (u) p f H p L ≃ af H p . If p ∈ (2, p + (L) * ), we first introduce ψ(z) := e -√ z -(1 + z) -1 and split u = v + w := ψ(t 2 L)f + (1 + t 2 L) -1 f.
We have ψ ∈ Ψ 1 1/2 on any sector. Combining Lemma 8.26 and Theorem 9.21, we find that

N * (v) p S ψ,L f p f p .
As for w, we use that the resolvents satisfy off-diagonal estimates of arbitrarily large order. Consequently, Lemma 8.23 and the L p/2 -bound for the Hardy-Littlewood maximal operator yield

N * (w) p ≤ (M(|f | 2 )) 1/2 p f p .
Step 2: Lower bound for p > 1. The convergence of Whitney averages implies N * (u) ≥ f a.e. on R n and N * (u) p ≥ f p follows.

Step 3: Lower bound for p -(L) < p ≤ 1. We calculate the H p -norm of af using the Fefferman-Stein characterization of H p . This argument works for all p ∈ ( n /(n+1), 1], not only p

∈ (p -(L), 1]. Fix φ ∈ C ∞ 0 (R n ; R)
with support in B(0, 1) and R n φ = 1 and let φ t (y) := t -n φ( y /t). Then a function h ∈ L 2 belongs to H p if and only if the maximal function

(M φ h)(x) := sup t>0 |h * φ t |(x) (x ∈ R n )
is in L p and in this case h H p ≃ M φ h p , see e.g. [START_REF] Grafakos | Classical Fourier analysis[END_REF]Thm. 6.4.4] Temporarily fix t > 0 and [START_REF] Amenta | Interpolation and embeddings of weighted tent spaces[END_REF] , set χ t (s) := χ( s /t) and introduce Φ(s, y) := φ t (xy)χ t (s). The functional calculus on L 2 and the compact support of Φ justify writing

x ∈ R n . Let χ : [0, ∞) → [0, 1] be smooth with 1 [0, 1 /2] ≤ χ ≤ 1 [0,
(af * φ t )(x) = R n (af )(y)φ t (x -y) dy = lim ε→0 R n - ∞ ε ∂ s (Φau) ds dy.
For ε < t /2 we expand, integrate by parts and use a∂ 2 s u = Lu, to give

R n ∞ ε ∂ s (Φau) dsdy = R n ∞ ε (∂ s Φ)au + Φa∂ s u dsdy = R n ∞ ε (∂ s Φ)au -(∂ s Φ)sa∂ s u -Φsa∂ 2 s u dsdy + R n Φ(ε, y)εa(y)∂ s u(ε, y) dy = R n ∞ ε (∂ s Φ)au -(∂ s Φ)as∂ s u + ∇ y Φ • sd∇ y u dsdy + R n φ t (x -y)εa(y)∂ s u(ε, y) dy.
By the functional calculus for L we have as a limit in L 2 ,

lim ε→0 εa∂ s u(ε, •) = -lim ε→0 εaL 1/2 e -εL 1/2 f = 0.
By Young's convolution inequality we get φ t * (εa∂ s u(ε, •)) → 0 uniformly on R n as ε → 0. Altogether,

|(af * φ t )(x)| ≤ R 1+n + |(∂ s Φ)au| dsdy + R 1+n + |(∂ s Φ)as∂ s u| dsdy + R 1+n + |∇ y Φ • sd∇ y u| dsdy =: I + II + III . (17.3) 
Since ∂ s Φ is bounded by t -1-n and supported in W (t, x), we get

| I | + | II | N * (u)(x) + N * (t∂ t u)(x).
As for III , we get

| III | t -1-n R 1+n + |1 ( 
0,2t)×B(x,t) s∇ x u| dsdy, so that Lemma A.3 applied to F := |1 (0,2t)×B(x,t) s∇ x u| with r = 1 and p = n /(n+1) yields

| III | t -1-n N * (F ) n n+1 . If a Whitney ball W (r, z) intersects the support of F at some (s, y) ∈ R 1+n + , then |x -z| ≤ |x -y| + |y -z| ≤ t + r ≤ t + 2s ≤ 5t,
which means that N * (F ) has support in B(x, 5t). Thus, we have

| III | t -n B(x,5t) | N * (F )| n n+1 n+1 n M(| N * (t∇ x u)| n n+1 )
n+1 n (x). Going back to (17.3) and taking the supremum in t, leads us to

M φ (af ) N * (u) + N * (t∂ t u) + M(| N * (t∇ x u)| n n+1 ) n+1 n .
By assumption we have p > n /(n+1). Hence, M is bounded on L p(n+1)/n and it follows that

af H p ≃ M φ (af ) p N * (u) p + N * (t∇u) p N * (u) p ,
where the final step is due to Caccioppoli's inequality.

Finally, we establish uniform bounds and strong continuity at t = 0.

Proposition 17.4. Let p -(L) < p < p + (L). If f ∈ a -1 (H p ∩ L 2 ) and u(t, x) := e -tL 1/2 f (x), then au is of class C 0 ([0, ∞); H p ) ∩ C ∞ ((0, ∞); H p )
and satisfies

sup t>0 au(t, •) H p ≃ af H p
and for all k ∈ N,

sup t>0 t k 2 ∂ k t (au(t, •)) H p ( k 2 ) k 2 e -k af H p .
Proof. According to Theorem 9.6 we have a

-1 (H p ∩ L 2 ) = H p L with equivalent p-quasinorms f H p L ≃ af H p .
The upper bounds for u and ∂ k t u now follow immediately from the bounded H ∞ -calculus on H p L , see Section 8.2. Likewise, Proposition 8.13 provides the limits au(t, •) → af as t → 0 and au(t, •) → 0 as t → ∞ in H p and the limit at t = 0 implies lower bound for u.

For exponents p ≥ p + (L), the space H p L does not equal a -1 (H p ∩ L 2 ) and the previous argument breaks down, see Theorem 11.3. However, using off-diagonal estimates, we can still obtain the continuity at the boundary t = 0 with values in

L 2 loc if p + (L) ≤ p < p + (L) * . Lemma 17.5. If p + (L) ≤ p < p + (L) * , then for all f ∈ L p ∩ L 2 , all balls B ⊆ R n and all t > 0, e -tL 1/2 f -f L 2 (B) r(B) n 2 -n p -1 (r(B) + t) f p .
Proof. We can pick q such that 2 ≤ q < p + (L) and 1 /q -1 /p < 1 /n. We split f = j≥1 f j , where f j := 1 C j (B) f , and obtain from Hölder's inequality that

e -tL 1/2 f -f L 2 (B) ≤ e -tL 1/2 f 1 -f 1 L 2 (B) + r(B) n 2 -n q j≥2 e -tL 1/2 f j L q (B) ≤ r(B) n 2 -n p f p + r(B) n 2 -n q j≥2 e -tL 1/2 f j L q (B) .
Since the Poisson semigroup satisfies L q off-diagonal estimates of order 1, see Corollary 4.17, we can bound the sum in j by j≥2 t2 -j r(B) -1 f j L q (B) tr(B)

n q -n p -1 j≥2 2 j( n q -n p -1) f p ,
where the right-hand side is finite by choice of q. The claim follows. 17.2. Estimates towards the Regularity problem. We begin again with the square function bounds.

Proposition 17.6.

Let (p -(L) * ∨ 1 * ) < p < q + (L). If f ∈ Ḣ1,p ∩ W 1,2 , then u(t, x) := e -tL 1/2 f (x) satisfies S(t∇∂ t u) p ≃ ∇ x f H p .
Proof. Let us first interpret the exponents. The identification Theorem 9.6 tells us that we have H 1,p L = Ḣ1,p ∩ L 2 with equivalent pquasinorms and then g H p M ≃ g H p for all g ∈ H p M follows from Figure 8. The square function we have to control contains

t∇ x ∂ t u = -t∇ x L 1/2 e -tL 1/2 f = -t M 1/2 e -t M 1/2 ∇ x f =: ψ(t 2 M)∇ x f, where ψ ∈ Ψ ∞
1/2 on any sector and we used an intertwining relation for the functional calculus on L 2 , as well as

t∂ 2 t u = -ψ(t 2 L)L 1/2 f = t -1 (t 2 Le -tL 1/2 )f =: t -1 φ(t 2 L)f, where φ ∈ Ψ ∞
1 on any sector. If p ≤ 2, then φ and ψ are admissible auxiliary functions for defining H 1,p L and H p M , respectively. Thus, we get

S(t∇∂ t u) p ≃ S(t -1 φ(t 2 L)f ) p + S(ψ(t 2 M )∇ x f ) p ≃ f H 1,p L + ∇ x f H p M ≃ ∇ x f H p
right away. If p ≥ 2, then Proposition 9.20 applies to M with auxiliary function ψ and q = p. The same holds for L since from Theorem 9.6 and the general bound q + (L) < p + (L) in Theorem 6.2 we obtain H p L = L p ∩ L 2 with equivalent p-norms. Consequently, we have

S(t∇∂ t u) p ≃ S(ψ(t 2 L)L 1/2 f ) p + S(ψ(t 2 M )∇ x f ) p L 1/2 f p + ∇ x f p ≃ ∇ x f p ,
where the final equivalence is due to Theorem 11.1. As for the lower bound, we note that t∂ 2 t u = -t∂ t v with v := e -tL 1/2 (L 1/2 f ) and L 1/2 f ∈ L p ∩ L 2 . Hence, we can apply Proposition 17.1 in order to get

S(t∇∂ t u) p ≥ S(t∂ t v) p ≃ L 1/2 f p ≃ ∇ x f p as required.
We continue with the non-tangential maximal function bounds.

Proposition 17.7. Let (p -(L) * ∨ 1 * ) < p < q + (L). If f ∈ Ḣ1,p ∩ W 1,2 , then u(t, x) := e -tL 1/2 f (x) satisfies N * (∇u) p ≃ ∇ x f H p and lim t→0 -- W (t,x) a∂ t u ∇ x u - -aL 1/2 f (x) ∇ x f (x) 2 dsdy = 0 (a.e. x ∈ R n ).
Proof. We use the intertwining property to write ∇ x u = e -t M 1/2 ∇ x f . Moreover, we have ∂ t u = e -tL 1/2 (-L 1/2 f ), so that by similarity a∂ t u = e -t L 1/2 (-aL 1/2 f ). We recall from (3.4) that M and L are incorporated in the matrix operator (DB) 2 . Hence, we have

e -t[DB] -aL 1/2 f ∇ x f = a∂ t u ∇ x u .
The claim for p = 2 as well as the convergence of averages now follows from Theorem 17.2 and the comparison aL

1/2 f 2 ≃ ∇ x f 2 .
Step 1: Upper bound for p = 2. As in the proof of Proposition 17. [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF] we have

H 1,p L = Ḣ1,p ∩ L 2 with equivalent p-quasinorms. If p ∈ (p -(L) * ∨ 1 * , 2]
, then Proposition 8.27 applied to M and L directly yields

N * (∇u) p ≤ N * (∇ x u) p + N * (∂ t u) p ∇ x f H p M + L 1/2 f H p L
and the ubiquitous Figure 8 allows us to compare with

≃ f H 1,p L ≃ ∇ x f H p as required. If p ∈ (2, q + (L)), we first introduce ψ(z) := e -√ z -(1+z) -1 and split ∇u = v + w := -ψ(t 2 L)L 1/2 f ψ(t 2 M )∇ x f + -(1 + t 2 L) -1 L 1/2 f (1 + t 2 M ) -1 ∇ x f .
We have ψ ∈ Ψ 1 1/2 on any sector. As in the preceding proof, Proposition 9.20 with q = p and auxiliary function ψ applies to both M and L in our range of exponents. Along with Lemma 8.26, we find that

N * (v) p ≤ N * (Q ψ, M ∇ x f ) p + N * (Q ψ,L L 1/2 f ) p S ψ, M (∇ x f ) p + S ψ,L (L 1/2 f ) p ∇ x f p + L 1/2 f p ≃ ∇ x f p ,
where the final equivalence is due to Theorem 11.1. As for w, we use that the resolvents of L and M satisfy off-diagonal estimates of arbitrarily large order. Consequently, Lemma 8.23 and the L p/2 -bound for the Hardy-Littlewood maximal operator yield

N * (w) p ≤ (M(|∇ x f | 2 ) 1/2 p + (M(|L 1/2 f | 2 ) 1/2 p ∇ x f p + L 1/2
f p and we conclude as before. Combining these estimates gives the required upper bound for N * (∇u).

Step 2: Lower bound for p > 1. Since f ∈ L 2 , we obtain from the convergence of Whitney averages that N * (∇u) ≥ |∇ x f | a.e. on R n and N * (∇u) p ≥ ∇ x f p follows.

Step 3: Lower bound for p ≤ 1. As in Step 3 of the proof of Proposition 17.3 we calculate the H p -norm of ∇ x f through the Fefferman-Stein characterization of H p . The argument works again for all p ∈

( n n+1 , 1]. Fix φ ∈ C ∞ 0 (R n ; R)
with support in B(0, 1) and R n φ = 1 and let φ t (y) := t -n φ( y /t). We need to control the L p -norm of [START_REF] Amenta | Interpolation and embeddings of weighted tent spaces[END_REF] , set χ t (s) := χ( s /t) and introduce Φ(s, y) := φ t (xy)χ t (s). As ∇ x u(s, y) = e -t M 1/2 ∇ x f (y), the functional calculus on L 2 and the compact support of Φ justify writing

M φ (∇ x f )(x) := sup t>0 |∇ x f * φ t |(x) (x ∈ R n ). Temporarily fix t > 0 and x ∈ R n . Let χ : [0, ∞) → [0, 1] be smooth with 1 [0, 1 /2] ≤ χ ≤ 1 [0,
(∇ x f * φ t )(x) = R n ∇ x f (y)φ t (x -y) dy = lim ε→0 R n - ∞ ε ∂ s (Φ∇ x u) ds dy = lim ε→0 ∞ ε R n -∂ s Φ∇ x u -Φ∂ s ∇ x u dyds, so that |(∇ x f * φ t )(x)| ≤ R 1+n + |∂ s Φ∇ x u| dsdy + R 1+n + |∇ x Φ ⊗ ∂ s u| dsdy =: I + II ,
where ∇ x Φ ⊗ ∂ s u is the vector in (C m ) n coming from integration by parts in x. Now, we can literally repeat the arguments in Step 3 of the proof of Proposition 17.3 and arrive at

I N * (∇ x u)(x) and II M(| N * (∂ t u)| n n+1 ) n+1 n (x)
for all x ∈ R n . Consequently, we have a pointwise bound

M φ (∇ x f ) N * (∇ x u) + M(| N * (∂ t u)| n n+1 ) n+1 n
and since M is bounded on L p(n+1)/n we get ∇ x f H p N * (∇u) p as required.

Uniform boundedness and strong continuity follow again by abstract semigroup theory.

Proposition 17.8. Let (p -(L) * ∨ 1 * ) < p < q + (L). If f ∈ Ḣ1,p ∩ W 1,2 , then u(t, x) := e -tL 1/2 f (x) satisfies (i) ∇ x u ∈ C 0 ([0, ∞); H p ) ∩ C ∞ ((0, ∞); H p ) with sup t>0 ∇ x u(t, •) H p ≃ ∇ x f H p
and, for every k ∈ N,

sup t>0 t k 2 ∂ k t ∇ x u(t, •) H p ( k 2 ) k 2 e -k ∇ x f H p . (ii) If p < n, then u ∈ C 0 ([0, ∞); L p * ) ∩ C ∞ ((0, ∞); L p * ) with f p * ≤ sup t>0 u(t, •) p * ∇ x f H p + f p * .
Proof. From the proofs of Propositions 17.7 and 17.6 we know ∇ x u = e -t M 1/2 ∇ x f and that in the given range of exponents g H p M ≃ g H p holds for all g ∈ H p M . Hence, (i) follows verbatim as for the Dirichlet problem in Proposition 17.4 by appealing to the abstract theory for M instead of L.

For p < n we have the Sobolev embedding Ḣ1,p ⊆ L p * /C m but since L p * + L 2 does not contain any constants but 0 we also have Ḣ1,p ∩ L 2 ⊆ L p * . This yields the regularity statement in (ii) and the upper bound, whereas the lower bound follows again from the continuity at t = 0. 17.3. Conclusion of the existence part. We now guide the reader through collecting and extending by density the respective estimates in order to obtain the existence part in our main results. The non-tangential convergence with L 2 -averages in (ii) is stronger than what is asked for in (D) L p . Hence, u solves (D) L p with data f . Now, consider general data

Existence of a solution with the properties in

Theorem 1.1. First, let f ∈ L p ∩ L 2 if p > 1 and f ∈ a -1 (H 1 ∩ L 2 ) if p = 1. Then u(t, x) := e -tL 1/2 f (x) is a weak solution to Lu = 0 in R 1+n + ,
f ∈ L p if p > 1 and f ∈ a -1 H 1 if p = 1.
Take any sequence of data (f k ) ⊆ L 2 that approximates f in the data space as k → ∞. Here, a -1 H 1 is considered as a subspace of L 1 with natural norm a • H 1 . Denote the corresponding solutions by u k .

By (i), we have that (u k ) is a Cauchy sequence in T 0,p ∞ and that (t∇u k ) is a Cauchy sequence in T p . Both topologies are stronger than L 2 loc (R 1+n + ). Hence, (u k ) has a limit u in L 2 loc (R 1+n + ) that satisfies (i) and it follows from Lemma 16.8 that u is a weak solution to Lu = 0. Note that this construction is independent of the choice of the (f k ). In the same way we obtain (iii) and (iv) for u since we can identify limits for the respective topologies in L 1 loc (R 1+n + ). Property (ii) for u can be obtained by a well-known argument for maximal functions. More precisely, we obtain from (ii) for the u k that for a.e. x ∈ R n , lim sup t→0 --

W (t,x) |u -f (x)| 2 dsdy 1 2 ≤ N * (u -u k )(x) + |f (x) -f k (x)|. (17.4)
If the left-hand side exceeds a fixed threshold ε > 0, then at least one of the terms on the right exceeds ε /2. By (i) applied to uu k and Markov's inequality, this can only happen on a set of measure

Cε -p ( a(f -f k ) H p + f -f k L p ),
which tends to 0 as k → ∞ since p ≥ 1. Hence, the left-hand side of (17.4) vanishes for a.e. x ∈ R n .

Finally, suppose that f is also an admissible datum for energy solutions. In the case p > 1 this means that we assume f ∈ L p ∩ Ḣ1 /2,2 and by the universal approximation technique in Hardy-Sobolev spaces we can take the f k above in such a way that f k → f also in Ḣ1 /2,2 . We know from Proposition 16.5 that u k is the energy solution with Dirichlet data f k and it follows from Proposition 16.3 that u is the energy solution with Dirichlet data f .

In the case p = 1 we assume f ∈ (a -1 H 1 ) ∩ Ḣ1 /2,2 . We claim that this is a subspace of L 2 . Taking the claim for granted, no approximation is necessary to construct the solution u(t, x) = e -tL 1/2 f (x) and by Proposition 16.5 this is the energy solution with data f . The easiest way to see the claim is to note that f ∈ L 1 ∩ Ḣ1 /2,2 and hence its Fourier transform satisfies

R n |F f (ξ)| 2 dξ ≤ B(0,1) f 2 1 dξ + c B(0,1) |ξ||F f (ξ)| 2 dξ ≤ C f 2 1 + f 2 Ḣ1/2,2 .
Existence of a solution with the properties in Theorem 1.2. First, recall from Theorem 6. 

2 that p -(L) = q -(L). Let f ∈ Ḣ1,p ∩ W 1,2 . As before, u(t, x) := e -tL
∂ t u = -e -tL 1/2 (L 1/2 f ) with L 1/2 f ∈ a -1 (H p ∩ L 2 )
As for the extension to a general data f ∈ Ḣ1,p , we first treat the case p < n. We can assume f ∈ L p * since the general case follows by modifying data and solution by the same additive constant.

Take any sequence

(f k ) ⊆ Ḣ1,p ∩ W 1,2 with f k → f as k → ∞ in Ḣ1,p ∩ L p * . It follows from (iv) that (u k ) is a Cauchy sequence in C([0, ∞); L p * ), hence in L 1 loc . Lemma 16.8 asserts that (u k ) converges in W 1,2
loc to a weak solution to Lu = 0. The properties (i), (iv), (v) for u follow by identifying limits as before and for (iii) we rely on the same type of density argument as in (17.4). In particular, (iv) implies lim t→0 u(t, •) = f in D ′ as claimed in (ii). This being said, the nontangential limit in (ii) follows from the Kenig-Pipher trace theorem (Proposition A.5).

In the case p ≥ n we can only take a sequence

(f k ) ⊆ Ḣ1,p ∩ W 1,2 with f k → f in Ḣ1,p as k → ∞ . We use (i) to infer that for the corresponding solutions (∇u k ) converges in T 0,p ∞ , hence in L 2 loc . Define the averages c k := (u k ) W with W ⊆ R 1+n + a fixed cube. By Poincaré's inequality (u k -c k ) is bounded in W 1,2
loc . By compactness, we can define, up to passing to a subsequence,

u := lim k→∞ u k -c k (in L 2 loc
). Lemma 16.8 asserts again that u is a weak solution to Lu = 0 and modulo constants the construction of u is independent of the particular choice of the (f k ). With this definition all properties but (ii) follow as before. For the latter we fix the representative for f . Since n > p -(L), see Proposition 6.7, we obtain from (v) that ∂ t u ∈ C 0 ([0, ∞); L p ). Hence, u(t, •) has a limit in D ′ as t → 0. By (iv) we can fix the free constant for u such that this limit is f and the non-tangential convergence follows again from Proposition A.5.

Finally, if f ∈ Ḣ1,p ∩ Ḣ1 /2,2 , then the same argument as for the Dirichlet problem yields that modulo constants u is the energy solution with Dirichlet datum f .

Existence in the Dirichlet problems with Λα -data

Here, we establish the existence part of Theorem 1.3, our main result on the Dirichlet problems (D) L Λα and ( D) L Λα with boundary data in Λα . Let us stress that in accordance with the formulation of these problems the data space is not considered modulo constants.

Since Λα ∩ L 2 is not dense in Λα for the strong topology, we cannot proceed in two well-separated steps as in the previous section. Instead, given f ∈ Λα , we directly define

u(t, •) := ∞ j=1 e -tL 1/2 (1 C j (Q) f ) (t > 0), (18.1) 
where Q ⊆ R n is any cube, and check that this is a solution with all required properties for both Dirichlet problems. More concisely, we can write

u(t, •) = lim j→∞ e -tL 1/2 (1 2 j+1 Q f ) (t > 0),
but the representation as a series will be advantageous for most considerations. In fact, the assumptions of Theorem 1.3 are already required to prove convergence in L 2 loc via off-diagonal estimates. More precisely, we work with the following exponents for most of the section:

• p + (L) > n and 0 ≤ α < 1 -n /p + (L). • When α is fixed, p denotes a fixed exponent with 2 ≤ p < p + (L) and α < 1 -n /p. (18.2) 
We break the argument into six parts.

Part 1: Well-definedness of the solution. We begin with an elementary oscillation estimate.

Lemma 18.1. Let α ∈ [0, 1) and p ∈ [1, ∞). For all f ∈ Λα , all cubes Q ⊆ R n and all j ≥ 1, it follows that -

2 j Q |f -(f ) Q | p dy 1 p γ j ℓ(Q) α f Λα ,
where γ j := ln(j) + 1 if α = 0 and γ j := 2 αj if α > 0.

Proof. If α = 0, then Λα = BMO and hence for all cubes

Q ⊆ R n , - 2Q |f -(f ) Q | p dy 1 p f Λ0 .
A telescopic sum of the estimates for Q, 2Q, . . . , 2 j-1 Q yields the claim. If α > 0, then |f (x)f (y)| (2 j ℓ(Q)) α for x ∈ Q and y ∈ 2 j Q and the claim follows immediately.

The oscillation estimate allows us to prove convergence of the righthand side in (18.1) and obtain further useful representations of u.

Lemma 18.2. Assume (18.2). Then the following hold true.

(i) The sum defining u converges absolutely in L p loc (R n ), locally uniformly in t. In particular, u is a weak solution to

Lu = 0 in R 1+n + . (ii) If a family (η j ) ⊆ L ∞ (R n ; C) satisfies (5.2), then u(t, •) = ∞ j=1 e -tL 1/2 (η j f ) with absolute convergence in L p loc (R n ), locally uniformly in t. In particular, u is independent of Q. (iii) If f = c is constant, then u = c almost everywhere.
Proof. By Corollary 4.17 the Poisson semigroup satisfies L p off-diagonal estimates of order 1. Let K ⊆ R n be any compact set and set ℓ := ℓ(Q). For j large enough we have d(K, C j (Q)) ≥ 2 j-1 ℓ and hence

e -tL 1/2 (1 C j (Q) f ) L p (K) t(2 j ℓ) -1 f L p (C j (Q)) t(2 j ℓ) -1 f -(f ) Q L p (2 j+1 Q) + (2 j ℓ) n p |(f ) Q | t(2 j ℓ) n p -1 ℓ α γ j f Λα + |(f ) Q | , (18.3) 
where we have used Lemma 18.1 in the final step. The right-hand side is summable in j since α < 1n /p, which proves convergence of the series in (18.1) in L p loc , locally uniformly in t. Since all partial sums are weak solutions to the equation for L in R 1+n + , the same is true for u, see Proposition 16.5 and Lemma 16.8. This completes the proof of (i). Now, (ii) follows by repeating the proof of Proposition 5.1 word by word up to incorporating the off-diagonal estimate above. Finally, (iii) is due to the conservation property for Poisson semigroups (Proposition 5.6).

Part 2: Proof of (ii). We start by proving continuity and convergence towards the boundary data in L 2 loc . Lemma 18.3. The solution u is of class C([0, T ]; L 2 loc ) with u(0, •) = f for every T > 0.

Proof. Continuity on (0, T ] is a general property of weak solutions, see Corollary 16.9. We fix an arbitrary cube Q of sidelength ℓ and prove the limit at t = 0 in L 2 (Q).

Set

f j := (f -(f ) Q )1 C j (Q)
. By Lemma 18.2 we have, whenever y ∈ Q and s > 0,

u(s, y) -f (y) = ∞ j=1 e -sL 1/2 f j (y) + (f ) Q -f (y) = ∞ j=2 e -sL 1/2 f j (y) + (e -sL 1/2 f 1 (y) -f 1 (y)). (18.4)
For the error terms with j ≥ 2 we use again that the Poisson semigroup satisfies L p off-diagonal estimates of order 1, see Corollary 4.17. Here, p is as in (18.2). Together with Lemma 18.1, we obtain

∞ j=2 e -sL 1/2 f j L p (Q) ≤ ∞ j=2 e -s 1/2 f j L p (Q) ∞ j=2 s 2 j ℓ f j L p (Q) s ℓ 1-n p -α ∞ j=2 2 j( n p -1) γ j f Λα , (18.5) 
where the sum in j is finite by the choice of p. In particular, we have by Hölder's inequality that

∞ j=2 e -sL 1/2 f j L 2 (Q) s ℓ 1-n 2 -α f Λα ,
which in combination with (18.4) leads us to

u(s, •) -f L 2 (Q) s ℓ 1-n 2 -α f Λα + e -sL 1/2 f 1 -f 1 2
. The right-hand side tends to 0 in the limit as s → 0 since we have f ∈ Λα and

f 1 ∈ L 2 .
We turn to non-tangential convergence towards the boundary data and control of the corresponding sharp functional on Whitney averages. In the case α > 0 this would come for free from Proposition A.8 once we have established the upper bound for the Carleson functional as stated in (i) but the following direct argument also works for α = 0. 

W (t,x) |u(s, y) -f (x)| 2 dsdy = 0 (a.e. x ∈ R n ) and N ♯,α (u -f ) ∞ f Λα .
Proof. We only need a slight refinement of the previous argument. To this end let x ∈ R n , 2ℓ ≥ 2t ≥ s and let Q be the axis-parallel cube of sidelength ℓ centered at x. For any (s, y) ∈ W (t, x) = ( t /2, 2t) × B(x, t) we can use (18.4) and (18.5) with this choice of Q and the same definition of f j , j ≥ 1, in order to obtain

u(s, •) -f L 2 (B(x,t)) t n 2 -n p ∞ j=2 e -sL 1/2 f j L p (Q) + e -sL 1/2 f 1 -f 1 L 2 (B(x,t)) st n 2 -n p ℓ 1-n p -α f Λα + e -sL 1/2 f 1 -f 1 L 2 (B(x,t))
. Thus, we get our key estimate --

W (t,x) |u(s, •) -f | 2 dsdy 1/2 t 1-n p ℓ 1-n p -α f Λα + -- W (t,x) |e -sL 1/2 f 1 -f 1 | 2 dsdy 1/2 . (18.6) 
For the first claim it suffices (by the Lebesgue differentiation theorem) to prove that the left-hand side in (18.6) vanishes in the limit as t → 0 for a.e. x ∈ R n . But passing to the limit on the right-hand side, the first term vanishes since we have p > n by (18.2) and the second term vanishes for a.e. x ∈ R n thanks to the Lebesgue differentiation theorem and Proposition 17.3 applied to f 1 ∈ L 2 .

In order to bound the sharp functional, we use (18.6) with t = ℓ. This yields for all t > 0 and all x ∈ R n the required uniform bound

1 t α -- W (t,x) |u(s, •) -f | 2 dsdy 1/2 f Λα + 1 t α -- W (t,x) |e -sL 1/2 f 1 -f 1 | 2 dsdy 1/2 f Λα + 1 t α+ n 2 sup s>0 e -sL 1/2 f 1 -f 1 2 f Λα + 1 t α+ n 2 f 1 2 f Λα ,
where the final step is due to Lemma 18.1, keeping in mind that by definition f 1 = (f -(f ) Q )1 4Q and that t is the sidelength of Q.

Part 3: The upper bound for the Carleson functional. In this part we prove the upper bound C α (t∇u) ∞ f Λα . It will be convenient to use cubes instead of balls for the Carleson functional and to show that for all cubes Q ⊆ R n of sidelength ℓ we have

ℓ 0 - Q |s∇u| 2 dyds s 1/2 ℓ α f Λα . (18.7)
From now on Q is fixed. Since both sides stay the same under adding constants to u and f , we can assume (f ) Q = 0. For j ≥ 1 we introduce

f j := 1 C j (Q) f, u j (t, •) := e -tL 1/2 f j .
Step 1: The local bound. By Lemma 18.1 we have f 1 2 2

|Q| -1 ℓ 2α f Λα . Hence, the local term u 1 can be handled via the L 2 -bound for the square function in Proposition 17.1:

ℓ 0 - Q |s∇u 1 | 2 dyds s ≤ |Q| -1 R 1+n + |s∇e -tL 1/2 f 1 | 2 dsdy s ℓ 2α f 2 Λα . Step 2: Decomposition of the non-local terms. Set W (t, x) := (t, 2t) × Q(x, t) and W (t, x) := ( t /2, 4t) × Q(x, 2t). Let φ(z) := e -√ z -(1 + z) -2
and recall from (17.1) the Caccioppoli estimate

W (t,x) |s∇φ(s 2 L)f j | 2 dsdy s W (t,x) |φ(s 2 L)f j | 2 + |ψ(s 2 L)f j | 2 dsdy s , (18.8) 
where ψ ∈ Ψ 1 1 on any sector. Let the regions (W (t k , x k )) k cover (0, ℓ) × Q modulo a set of measure zero such that the ( W (t k , x k )) k are contained in (0, 2ℓ)×2Q and at most 2 n+1 of them overlap at each point. Summing up in k yields

ℓ 0 Q |s∇φ(s 2 L)f j | 2 dyds s 2ℓ 0 2Q |φ(s 2 L)f j | 2 + |ψ(s 2 L)f j | 2 dyds s , so that in total ℓ 0 - Q |s∇u j | 2 dyds s 1 2 2ℓ 0 - 2Q |φ(s 2 L)f j | 2 + |ψ(s 2 L)f j | 2 + |s∇(1 + s 2 L) -2 f j | 2 dyds s 1 2
.

From Lemma 18.2 and Caccioppoli's inequality we obtain that u = ∞ j=1 u j converges in W 1,2 loc (R 1+n + ). We can use Fatou's lemma to conclude

ℓ 0 - Q |s∇u| 2 dyds s 1 2 ℓ α f Λα + ∞ j=2 I j + II j + III j , (18.9) 
where

I j := 2ℓ 0 - 2Q |φ(s 2 L)f j | 2 dyds s 1 2
,

II j := 2ℓ 0 - 2Q |ψ(s 2 L)f j | 2 dyds s 1 2
,

III j := 2ℓ 0 - 2Q |s∇(1 + s 2 L) -2 f j | 2 dyds s 1 2
.

Step 3: Bounds for the off-diagonal pieces. We begin with the bound for I j . The family (φ(t 2 L)) t>0 satisfies L p off-diagonal estimates of order 1. This is due to Lemma 4.16 since φ ∈ Ψ 2 1/2 on any sector. Hence,

- 2Q |φ(s 2 L)f j | 2 dy 1 2 ≤ - 2Q |φ(s 2 L)f j | p dy 1 p 2 j ℓ s -1 2 j n p - 2 j Q |f | p dy 1 p sℓ α-1 γ j 2 j( n p -1) f Λα ,
where the final step is again due to Lemma 18.1. We take L 2 -norms with respect to ds s on both sides to give ≤ ℓ α f Λα γ j 2 j( n p -1) . (18.10) Summing these estimates in j leads to a desirable bound in (18.9).

In estimating I j we have only used φ ∈ Ψ τ 1/2 on any sector for some τ > 0. Hence, we can use the same strategy for II j and the first component of

s∇(1 + s 2 L) -2 f j = -4s 2 L(1 + s 2 L) -3 f j s∇ x (1 + s 2 L) -2 f j in III j .
As for the second component, we have L 2 off-diagonal estimates of arbitrarily large order γ > 0 for (t∇ x (1 + t 2 L) -2 ) t>0 by composition. Therefore, we can run the same argument as before but with p = 2 in Lemma 18.1 and obtain 2ℓ 0

- 2Q |s∇ x (1 + s 2 L) -2 f j | 2 dyds s 1 2 ≤ ℓ α f Λα γ j 2 j( n 2 -γ) .
We take γ := n /2n /p + 1 and conclude a desirable bound for III j in (18.9). This completes the proof of (18.7).

Part 4: Compatibility. In this section we work with Λα as a homogeneous smoothness space modulo constants. In view of Lemma 18.2 this determines u modulo constants.

Our goal is to establish compatibility of u with the energy class, that is, we assume f ∈ Λα ∩ Ḣ1 /2,2 and have to show that modulo constants u is the energy solution with Dirichlet data f . This is a delicate matter since no density argument can help us here. We shall rely on the following two lemmata. Lemma 18.5. Let g 1 ∈ L 2 and g 2 ∈ T -1,∞;α for some α ∈ [0, 1) be such that g 1 -g 2 is constant on R 1+n + . Then g 1 = g 2 almost everywhere. Proof. Let g 1g 2 = c almost everywhere. We obtain for all r > 0 that Proof. We pick ϕ ∈ C ∞ 0 (R n ; R) such that 1 B(0,1) ≤ ϕ ≤ 1 B(0,2) and set

|c| 2 ≃ r -1-n 2r r B(0,2r) |g 1 -g 2 | 2 dxdt r -1-n g 1 2 2 + r 2α-2 g 2 2 T -1,∞;α . As α < 1, sending r → ∞ yields c = 0.
f loc := F -1 (ϕF f ), f glob := F -1 ((1 -ϕ)F f ).
Then obviously f = f loc + f glob and since ϕ and 1ϕ are smooth Fourier multipliers in the scope of the Mihlin multiplier theorem, both f loc and f glob remain in Λα ∩ Ḣ1 /2,2 . Moreover, m loc (ξ) := |ξ| 1/2 ϕ(ξ) and m glob (ξ) := |ξ| -1/2 (1ϕ(ξ)) are Mihlin multipliers and since we have g := F -1 (|ξ| 1/2 F f ) ∈ L 2 by assumption, we obtain that

F -1 (|ξ|F f loc ) = F -1 (m loc F g) ∈ L 2 , f glob = F -1 (m glob F g) ∈ L 2 as required.
As we are dealing with a linear problem, the benefit from Lemma 18.6 is that it suffices to prove compatibility under the additional assumption that either f ∈ L 2 or f ∈ Ẇ1,2 .

If additionally f ∈ L 2 , then ∞ j=1 1 C j (Q) f converges to f in L 2 and from (18.1) we get back u(t, •) = e -tL 1/2 f (t > 0).

According to Proposition 16.5 this is the energy solution with Dirichlet data f . Now, suppose that additionally f ∈ Ẇ1,2 and let u be the energy solution with Dirichlet data f . We claim that it suffices to show that for all g ∈ C ∞ 0 with R n gdx = 0 and all t > 0 we have u(t, •), g = u(t, •), g , (18.11) where the angular brackets denote the (extended) inner product on L 2 . Indeed, the claim implies that uu is independent of the xvariable but looking at the equation L(uu) = 0 in R 1+n + , we also obtain a∂ 2 t (uu) = 0, so ∂ t u -∂ t u is constant. By definition we have ∂ t u ∈ L 2 and by the Carleson bound in Part 3 we have ∂ t u ∈ T -1,∞;α . Lemma 18.5 yields ∂ t u -∂ t u = 0 and the desired compatibility u = u (modulo constants) follows.

In order to prove (18.11), we pick a cube Q that contains the support of g and use Lemma 18.2 to write

u(t, x) = ∞ j=1 e -tL 1/2 (η j f )(x) ((t, x) ∈ R 1+n + ), (18.12) 
with (η j ) j a smooth partition of unity on R n subordinate to the sets

D 1 := 4Q and D j := 2 j+1 Q \ 2 j-1 Q, j ≥ 2, such that η j ∞ + 2 j ℓ(Q) ∇ x η j ∞ ≤ C for a dimensional constant C.
Since g has integral 0, we can write g = div x G with G ∈ C ∞ 0 (Q). Indeed, in dimension n = 1 it suffices to take a suitable primitive of g and in dimension n ≥ 2 this is Bogovski ȋ's lemma [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF]Lemma III.3.1]. By duality and the intertwining relations, we obtain (18.13) where M ♯ := -d * ∇ x (a * ) -1 div x intertwines with L * in the same ways as M intertwines with L. Our notation is ∇ x (η j f ) = η j ∇ x f + ∇ x η j ⊗ f as predicted by the product rule. The assumption ∇ x f ∈ L 2 and the fact that e -t(M ♯ ) 1/2 G ∈ L 2 allow us to sum up

e -tL 1/2 (η j f ), g = η j f, e -t(L * ) 1/2 div x G = η j f, div x e -t(M ♯ ) 1/2 G = -η j ∇ x f, e -t(M ♯ ) 1/2 G -∇ x η j ⊗ f, e -t(M ♯ ) 1/2 G =: -I j -II j ,
∞ j=1 I j = ∇ x f, e -t(M ♯ ) 1/2 G . (18.14)
As for the error terms II j , we shall need the qualitative information e -t(M ♯ ) 1/2 G ∈ L q (for some q < 2). (18.15) In each of the following steps we take q as close to 2 as necessary for the respective result to apply. First, we write G = G 1 + G 2 with G 1 ∈ N(div x ) and G 2 ∈ R(d * ∇ x ) as in the Hodge decomposition (13.2) with d * replacing d. By Proposition 13.8 and Lemma 13.4, this decomposition can be taken topological in L q . The identification Theorem 9.6 tells us that we can have H 1,q L ♯ = Ẇ1,q ∩ L 2 with equivalent q-norms and then H q M ♯ = L q ∩R(d * ∇ x ) follows by moving from the second to the fourth row in Figure 8. Proposition 8.10 yields e -t(M ♯ ) 1/2 G 2 ∈ L q and from G 1 ∈ N(M ♯ ) we obtain by the functional calculus in L 2 that e -t(M ♯ ) 1/2 G 1 = G 1 , which also belongs to L q . Hence, (18.15) follows. Now, we go back to (18.13). We pick exponents r, s ∈ (1, ∞) such that 1 /q + 1 /r + 1 /s = 1 and obtain for all J ≥ 1 that

J j=1 II j J j=1 ∇ x η j r f L s (2 J +1 Q) e -t(M ♯ ) 1/2 G q 2 J( n r -1) f L s (2 J +1 Q) ,
where we have used that J j=1 ∇ x η j has support in 2 J+1 Q and is controlled in L ∞ -norm by 2 -J . The implicit constant depends on all variables but J. The choice of s depends on Sobolev embeddings. In dimension n ≥ 3 we can assume f ∈ L 2 * up to modifying f (and hence u) by a constant. Then we pick s := 2 * and obtain

J j=1 II j 2 J( n r -1) = 2 J( n 2 -n q ) ,
which tends to 0 as J → ∞ since q < 2. In dimension n ≤ 2 we can assume f ∈ Λ1-n/2 and also change f to f -(f ) Q in (18.12), which changes u by a constant. With this modification, we obtain together with Lemma 18.1 that

J j=1 II j 2 J( n r -1) 2 J n s (γ J + 1) = 2 J( 1 2 -1 q ) if n = 1 2 J(1-2 q ) (1 + ln J) if n = 2 ,
which also tends to 0 as J → ∞. Together with (18.12) - (18.14), we arrive at

u(t, •), g = -∇ x f, e -t(M ♯ ) 1/2 G .
Since f ∈ Ẇ1,2 ∩ Ḣ1 /2,2 , the universal approximation technique lets us pick a sequence (f ) k ⊆ Ẇ1,2 ∩ Ḣ1 /2,2 ∩ L 2 with f k → f in both Ẇ1,2 and Ḣ1 /2,2 . We let u k be the energy solution with Dirichlet data f k . Then (u k ) tends to the energy solution u with data f in Ẇ1,2 (R 1+n + ). By Lemma 16.1, this implies u k (t, •) → u(t, •) in the sense of distributions modulo constants. On the other hand, we know from Proposition 16.5 that u k (t, •) = e -tL 1/2 f k and we can undo the duality and intertwining in order to give

u(t, •), g = -lim k→∞ ∇ x f k , e -t(M ♯ ) 1/2 G = lim k→∞ e -tL 1/2 f k , g = lim k→∞ u k (t, •), g = u(t, •), g .
This establishes the remaining claim (18.11) and the proof is complete.

Part 5: The lower bound for the Carleson functional. Our goal is to show that for all g ∈ C ∞ 0 with R n gdx = 0 the solution u in (18.1) satisfies (18.16) where ̺ ∈ (1 * , 1] is such that n( 1 /̺ -1) = α and • , • is the extended L 2 -duality pairing. Indeed, then density and duality yield the lower bound

| f, g | C α (t∇u) ∞ g H ̺ ,
f Λα C α (t∇u) ∞ .
We suggest that the reader recalls the argument of Step 3 of Proposition 17.1 beforehand. The proof here follows the same line of thought but since u(t, •) and f may not be globally in L 2 , we cannot as directly rely on the functional calculus in L 2 as before. This is the major technical challenge.

From now on we fix g and pick a cube Q that contains its support. Since both sides in (18.16) do not change when adding constants to f or u, we can assume (f ) Q = 0 and write u as

u(t, •) = ∞ j=1 e -tL 1/2 f j , f j := 1 C j (Q) f.

Next, we introduce again

H := -(a * ) -1 ∆ x and set v(t, •) := (1 + t 2 H) -β ((a * ) -1 g)
for an integer β > n /2 + 2. Then the kernel estimates in Proposition 14.14 become available and this is why we use the resolvents of H and not the Poisson semigroup as in the proof of Proposition 17.1. The auxiliary function we are working with is This turns out to be the appropriate way of defining u(t, •), a * v(t, •) as we shall see momentarily. We divide the proof of (18.16) into eight steps.

Φ : (0, ∞) → C, Φ(t) := ∞ j=1 e -tL 1/2 f j , a * v(t, •) . (18.
Step 1: Qualitative growth bounds for v. We claim that there are c > 0 and C > 0 depending also on β, g and Q such that

|v(t, x)| + |t∇v(t, x)| ≤ C(1 ∧ t -n-1 )e -c d(x,Q) t ((t, x) ∈ R 1+n + ). (18.18) 
To this end we recall that (1 + t 2 H) -β (a * ) -1 is given by an integral kernel denoted by H β t (x, y) (up to replacing a to a * ) with bounds Since g ∈ C ∞ 0 (Q) has mean value 0, we can also write g = div x F with F ∈ C ∞ 0 (Q), using a suitable primitive in dimension n = 1 and Bogovski ȋ's lemma in higher dimensions. Thus,

|H β t (x, y)| + |t∇ x H β t (x, y)| + |t∇ y H β t (x, y)| +|t 2 ∇ x ∇ y H β t (x, y)| ≤ Ct -n e -c
v(t, x) = - R n ∇ y H β t (x, y) • F (y) dy
and the L ∞ -bound for the kernel yields

|v(t, x)| ≤ Ct -n-1 e -c d(x,Q) t F 1 .
This completes the estimate in (18.18) for v. The bounds for t∇ x v follow mutadis mutandis, using the kernel bounds for t∇ x H β t and t 2 ∇ x ∇ y H β t . Eventually,

t∂ t v(t, •) = -2βt 2 H(1 + t 2 H) -β-1 ((a * ) -1 g) = -2β((1 + t 2 H) -β -(1 + t 2 H) -β-1 )((a * ) -1 g)
is a linear combination of two functions of the same type as v.

Step 2: Φ is well-defined. More precisely, we shall show the qualitative bound

∞ j=2 |e -tL 1/2 f j ||a * v(t, •)| 1 ≤ C(t ∧ t -n p ) < ∞, (18.19)
where C is independent of t > 0 but may depend on all other parameters.

By Hölder's inequality, we have

|e -tL 1/2 f j ||a * v(t, •)| 1 ≤ 1 2 j-1/2 Q e -tL 1/2 f j p a * v(t, •) p ′ + e -tL 1/2 f j p 1c (2 j-1/2 Q) a * v(t, •) p ′ . (18.20)
Since p ∈ [2, p + (L)), the Poisson semigroup satisfies L p off-diagonal estimates of order 1, see Corollary 4.17. From the support of f j and Lemma 18.1 we obtain for j ≥ 2 with implicit constants independent of j and t, 1 2 j-1/2 Q e -tL 1/2 f j p t2 -j f j p tγ j 2 j( n p -1) . (18.21) and e -tL 1/2 f j p f j p γ j 2 j n p . Likewise, integrating the p ′ -th powers of both sides of (18.18) gives

a * v(t, •) p ′ (1 ∧ t -n-1 )(1 + t n p ′ ) 1 ∧ t -1-n
p . and, with a smaller constant c then in (18.18),

1c (2 j-1/2 Q) a * v(t, •) p ′ (1 ∧ t -n-1 )t n p ′ e -c 2 j t (t n+1-n p ∧ t -n p )2 -j
, where in the final step we have used the crude bound e -s s -1 for s > 0 in order to restore the right homogeneity in t. Using these bounds on the right-hand side of (18.20), leads us to

|e -tL 1/2 f j ||a * v(t, •)| 1 (t ∧ t -n p )γ j 2 j n p -1 . (18.22)
Since α < 1n /p, we can sum in j and conclude (18.19).

As a matter of fact, the same estimate holds if in the definition of Φ we replace v(t, •) by t∇v(t, •), which satisfies the same pointwise bounds. We can also replace e -tL 1/2 by (tL 1/2 ) k e -tL 1/2 for an integer k ≥ 1 since the latter satisfies again L p off-diagonal estimates of order 1, see Lemma 4.16. All such sums are called of Φ-type. We also remark that it was only the bound (18.20) that required j ≥ 2. All other estimates in this step also work for j = 1.

Step 3: Integration by parts in t. Since we have left out the term for j = 1 in Step 2, the full estimate for Φ(t) is

|Φ(t) -e -tL 1/2 f 1 , a * v(t, •) | t ∧ t -n p
By the functional calculus on L 2 we have

lim t→0 e -tL 1/2 f 1 , a * v(t, •) = f 1 , g = f, g ,
where in the final step we used the support of f 1 , and likewise

lim t→∞ e -tL 1/2 f 1 , a * v(t, •) = 0.
We conclude lim t→0 Φ(t) = f, g and lim t→∞ Φ(t) = 0. Next,

d dt e -tL 1/2 f j , a * v(t, •) = -L 1/2 e -tL 1/2 f j , a * v(t, •) + e -tL 1/2 f j , a * ∂ t v(t, •)
gives rise to two sums of Φ-type (times a factor of t -1 ), which converge locally uniformly in t by Step 2. Hence, we can differentiate Φ term by term. The upshot is that we can integrate Φ by parts to obtain 1) (t) dt, (18.23) where Φ (1) (t), Ψ (1) (t) : (0, ∞) → C are given by

f, g = ∞ 0 Φ ′ (t) dt := ∞ 0 Φ (1) (t) dt - ∞ 0 Ψ ( 
Φ (1) (t) := ∞ j=1 L 1/2 e -tL 1/2 f j , a * v(t, •) , Ψ (1) (t) := ∞ j=1 e -tL 1/2 f j , a * ∂ t v(t, •)
and tΦ (1) and tΨ (1) are of Φ-type. The idea here is that Φ (1) is the bad term that we have to keep, whereas the part involving Ψ (1) can be treated directly.

Step 4: Integral estimate for Ψ (1) . We introduce

v(t, •) := 2β(1 + t 2 H) -β-1 ((a * ) -1 g),
which is of the same type as v but with a higher resolvent power. The objective in this step is to establish the bound

∞ 0 |Ψ (1) (t)| dt ≤ R 1+n + |t∇ x u| • |t∇ x v| dtdx t . (18.24) Let η ∈ C ∞ 0 (R n ; R) be such that 1 Q ≤ η ≤ 1 2Q and for R > 0 set η R (x) := η( x /R). We note that a * ∂ t v(t, •) = -2βa * tH(1 + t 2 H) -β-1 ((a * ) -1 g) = -2βt∆ x (1 + t 2 H) -β-1 ((a * ) -1 g) =: -t∆ x v(t, •)
and, having split

Ψ (1) (t) = ∞ j=1 η R e -tL 1/2 f j , -t∆ x v(t, •) + (1 -η R )e -tL 1/2 f j , a * ∂ t v(t, •) ,
we can integrate by parts the term with η R to give

Ψ (1) (t) = 1 t η R t∇ x u(t, •), t∇ x v(t, •) + 1 t ∞ j=1 (t∇ x η R ) ⊗ e -tL 1/2 f j , t∇ x v(t, •) + 1 t ∞ j=1 (1 -η R )e -tL 1/2 f j , ta * ∂ t v(t, •) . (18.25)
Our notation is

∇ x (η R e -tL 1/2 f j ) = η R ∇ x e -tL 1/2 f j + (∇ x η R ) ⊗ e -tL 1/2 f j
as predicted by the product rule and for the sum with η R ∇ x e -tL 1/2 f j we have used that the series that defines u(t, •) converges in W 1,2 loc as a consequence of L 2 loc -convergence and the Caccioppoli inequality. So far, (18.25) holds for any t > 0 and any R > 0. We let now k ≥ 2, set R := (1 ∨ t)k and integrate in t to obtain

∞ 0 |Ψ (1) (t)| dt ≤ R 1+n + |t∇ x u| • |t∇ x v| dtdx t + c n ∞ 0 c (2Q) |t∇ x η (1∨t)k | ∞ j=1 |e -tL 1/2 f j ||t∇ x v| dxdt t + c n a * ∞ ∞ 0 c (2Q) |1 -η (1∨t)k | ∞ j=1 |e -tL 1/2 f j ||t∂ t v| dxdt t , (18.26) 
where c n only depends on n. We also used that the terms with η vanish on 2Q and interchanged the sum with the integral in x using the monotone convergence theorem.

The sums in j are of Φ-type and when using the bounds from Step 2 for such sums only on c (2Q), we can allow j = 1 and pick up the same behavior in t. Indeed, on the right-hand side of (18.20) we would only get the second term when j = 1. It follows that

∞ j=1 |e -tL 1/2 f j ||t∇ x v| L 1 ( c (2Q)) t ∧ t -n p
and likewise with ∂ t v replacing t∇ x v. Hence, in (18.26) the sums in j are of class L 1 ((0, ∞) × c (2Q); dxdt t ). Since |t∇ x η (1∨t)k | and |1η (1∨t)k | are bounded by dimensional constants and tend to 0 pointwise as k → ∞, we can use the dominated convergence theorem in (18.26) to conclude (18.24).

Step 5: Completing the treatment of Ψ (1) by duality. We can interpret the right-hand side in (18.24) as a T 0,∞;α -T ̺ duality pairing, where ̺ ∈ (1 * , 1] is such that α = n( 1 /̺ -1), see Section 2.2. Consequently, we have

∞ 0 |Ψ (1) (t)| dt C α (t∇ x u) ∞ S(t∇ x v) ̺ .
In order to bound the square function, let B H := (a * ) -1 0 0 1 be the matrix that corresponds to H in the same way as B corresponds to L. Recalling (3.2) and the intertwining relation (3.15), we write

0 t∇ x v = -2βtD(1 + (tB H D) 2 ) -β-1 B H g 0 =: ψ(tDB H ) g 0 , (18.27) 
where

ψ(z) = -2βz(1 + z 2 ) -β-1 is of class Ψ 2β+1 1
on any sector. As β > n /2+2, this is an admissible auxiliary function for H ̺ DB H . From p -(H) = 1 * (Corollary 6.10) and the identification theorem (Theorem 9.6) we obtain

S(t∇ x v) ̺ ≃ g 0 H ̺ DB H ≃ g H ̺ .
Thus, we have found

∞ 0 |Ψ (1) (t)| dt C α (t∇ x u) ∞ g H ̺ , (18.28) 
which is a desirable bound for the second term in (18.23).

Step 6: Setting up an iteration on Ψ (1) . At this point we are left with proving

∞ 0 Φ (1) (t) dt C α (t∇u) ∞ g H ̺ ,
where

Φ (1) (t) = ∞ j=1 L 1/2 e -tL 1/2 f j , a * v(t, •) .
Since tΦ (1) (t) is of Φ-type, we can repeat Step 3 with this function replacing Φ(t). The only difference is that now lim t→0 tΦ (1) (t) = 0 and we can integrate by parts without boundary terms to give

∞ 0 Φ (1) (t) dt = ∞ 0 tΦ (2) (t) dt - ∞ 0 tΨ (2) (t) dt,
where 2) and t 2 Ψ (2) are of Φ-type and tΨ (2) is of the same structure as Ψ (1) except for an extra t-derivative on the Poisson semigroup. Hence, we can repeat Step 4 and Step 5 mutadis mutandis for Ψ (2) and arrive at

Φ (2) (t) := ∞ j=1 Le -tL 1/2 f j , a * v(t, •) , Ψ (2) (t) := ∞ j=1 L 1/2 e -tL 1/2 f j , a * ∂ t v(t, •) . Now, t 2 Φ (
∞ 0 |tΨ (2) (t)| dt C α (t 2 ∇ x ∂ t u) ∞ g H ̺
as replacement for (18.28). But since ∂ t u is a weak solution to the same equation, we can use Caccioppoli's inequality on Carleson boxes (0, ℓ(Q)) × Q as in Part 3 to bound

C α (t 2 ∇ x ∂ t u) ∞ C α (t∂ t u)
∞ and conclude with a desirable bound.

The upshot is that we can iterate this scheme until for some large N, depending on the dimension, we can control

∞ 0 t N -1 Φ (N ) (t) dt R 1+n + |t N -1 ∇ x ∂ N -2 t u| • |t∇ x v| dtdx t , (18.29) 
where

Φ (N ) (t) := ∞ j=1 L N/2 e -tL 1/2 f j , a * v(t, •) .
Indeed, a desirable bound for the right-hand side of (18.29) follows by T 0,∞;α -T ̺ -duality and Caccioppoli's inequality as before.

Step 7: Reduction to a final estimate of Φ-type. We shall establish (18.29) for the first integer that satisfies N > n /2 + 2. As L N/2 e -tL 1/2 f j , a * v(t, •) =div x d∇ x L N/2-1 e -tL 1/2 f j , v(t, •) , we can integrate by parts as in Step 4 but in the opposite direction. Using the same notation, the replacement for (18.25) is

t N -1 Φ (N ) (t) = (-1) N -2 t dt N -1 ∇ x ∂ N -2 t u(t, •), η R t∇ x v(t, •) + 1 t ∞ j=1 dt∇ x (tL 1/2 ) N -2 e -tL 1/2 f j , (t∇ x η R ) ⊗ v(t, •) + 1 t ∞ j=1 (tL 1/2 ) N e -tL 1/2 f j , (1 -η R )a * v(t, •)
and the replacement for (18.26) is

∞ 0 |t N -1 Φ (N ) (t)| dt ≤ d ∞ R 1+n + |t N -1 ∇ x ∂ N -2 t u| • |t∇ x v| dtdx t + c n ∞ 0 c (2Q) |t∇ x η (1∨t)k | ∞ j=1 |td∇ x (tL 1/2 ) N -2 e -tL 1/2 f j ||v| dxdt t + c n a * ∞ ∞ 0 c (2Q) |1 -η (1∨t)k | ∞ j=1 |(tL 1/2 ) N e -tL 1/2 f j ||v| dxdt t ,
where c n only depends on n. Thus, we have to prove that the second and third term on the right vanish in the limit as k → ∞. The third term contains a sum of Φ-type, so that we can use dominated convergence as in Step 4. The middle term is not of Φ-type since we do not have L p off-diagonal estimates for the gradient of the Poisson semigroup. We claim that nonetheless there are σ, τ > 0 such that (18.30) Taking this estimate for granted, dominated convergence also applies to the middle term and (18.29) follows.

∞ j=1 |t∇ x (tL 1/2 ) N -2 e -tL 1/2 f j ||v| L 1 ( c (2Q)) t σ ∧ t -τ .
Step 8: Conclusion. In order to prove the final missing bound (18.30), we argue as in Step 2 but with p = 2. To simplify notation, let

T (t) := t∇ x (tL 1/2 ) N -2 e -tL 1/2 (t > 0).
This family satisfies L 2 off-diagonal estimates of order N -1 by composition and Lemma 4.16 since we can write

T (t) = t∇ x (1 + t 2 L) -1 (tL 1/2 ) N -2 (1 + t 2 L)e -tL 1/2 .
By Hölder's inequality, we have (18.31) where the first term on the right vanishes for j = 1. From the support of f j and Lemma 18.1 we obtain for j ≥ 2 that

|T (t)f j ||v(t, •)| L 1 ( c (2Q)) ≤ 1 2 j-1/2 Q T (t)f j L 2 ( c (2Q)) v(t, •) L 2 ( c (2Q)) + T (t)f j 2 1c (2 j-1/2 Q) v(t, •) 2 ,
1 2 j-1/2 Q T (t)f j L 2 ( c (2Q)) t γ 2 -jγ f j 2 t γ γ j 2 j( n 2 -γ)
and for j ≥ 1 that

T (t)f j 2 f j 2 γ j 2 j n 2
with γ ∈ (0, N -1] at our disposal and implicit constants independent of j and t. The bounds for v are obtained by squaring both sides of (18.18) and integrating. They take the form

v(t, •) L 2 ( c (2Q)) (1 ∧ t -n-1 )t n 2 = t n 2 ∧ t -1-n 2 and 1c (2 j-1/2 Q) v(t, •) 2 (1 ∧ t -n-1 )t n 2 e -c 2 2 j t (t n 2 +γ ∧ t γ-n 2 -1 )2 -jγ ,
where in the final step we have used the crude bound e -s s -γ for s > 0 to restore the homogeneity in t. Using these bounds on the right-hand side of (18.31), we find

|T (t)f j ||v(t, •)| L 1 ( c (2Q)) (t n 2 +γ ∧ t γ-n 2 -1 )γ j 2 j( n 2 -γ)
. We need γ > n /2 + α to be able to sum in j and γ < n /2 + 1 to pick up decay at t = ∞. Such γ exists since α < 1 and the choice is admissible because we have assumed N > n /2 + 2. It is only at this point where we need the size of N. Now, (18.30) follows from (18.31) and the proof is complete.

Part 6: Proof of (iii). Instead of (18.2) we work with the following exponents in this part:

• p -(L ♯ ) < 1 and 0 ≤ α < n( 1 /p -(L ♯ ) -1). • When α is fixed, p -(L ♯ ) < p ≤ 1 is such that α = n( 1 /p -1). (18.32)
This is a stronger assumption than in the previous parts since p -(L ♯ ) < 1 implies p + (L) = ∞ by duality and similarity.

In particular, (e -t(L ♯ ) 1/2 ) t>0 is (a * ) -1 H p -bounded by Theorem 12.2 and we can define (e -tL 1/2 ) t>0 as a bounded semigroup on Λα via duality and similarity:

e -tL 1/2 f, g := f, a * e -t(L ♯ ) 1/2 (a * ) -1 g (f ∈ Λα , g ∈ H p ∩ L 2 ).
Next, we identify the solution u from (18.1) with such a semigroup extension.

Lemma 18.7. Assume (18.32). If g ∈ C ∞ 0 with R n gdx = 0, then u(t, •), g = f, a * e -t(L ♯ ) 1/2 (a * ) -1 g (t > 0), where the left-hand side is the extended L 2 -L 2 -duality and the righthand side is the Λα -H p -duality.

Proof. We fix t and g and let Q be a cube that contains the support of g. As a * e -t(L ♯ ) 1/2 (a * ) -1 g ∈ H p ∩ L 2 ⊆ H 1 we have in particular that R n a * e -t(L ♯ ) 1/2 (a * ) -1 gdx = 0. Therefore we can assume (f ) Q = 0. In the following, C denotes a constant that may depend on all parameters but on j ≥ 1 used for the annuli C j (Q).

Since p ∈ (1 * , 1), we can fix q ∈ (1, 2) such that ε := n /qn /p + 1 > 0. Then (e -t(L ♯ ) 1/2 ) t>0 is L q -bounded and satisfies L q off-diagonal estimates of order 1, see Corollary 4.17. We conclude that

a * e -t(L ♯ ) 1/2 (a * ) -1 g L q (C j (Q)) ≤ C2 -j = C2 j( n q -n p ) 2 -εj .
Hence, we can use Lemma 4.10 in order to write

a * e -t(L ♯ ) 1/2 (a * ) -1 g = ∞ j=1 C2 -εj a j (in H p ∩ L 1 loc ),
where the a j are L q -atoms for H p with support in C j+1 (Q) ∪ C j (Q). Using Lemma 18.1 with exponent q ′ and the atomic bounds, we obtain

| f, C2 -εj a j | ≤ Cγ j 2 j n
q ′ 2 -εj a j q ≤ Cγ j 2 -αj 2 -εj . (18.33) Now, we use the definition of u, duality for the semigroups on L 2 and absolute convergence of the series following from (18.33) in order to write, setting a 0 := 0,

u(t, •), g = ∞ j=1 e -tL 1/2 1 C j (Q) f, g = ∞ j=1 1 C j (Q) f, a * e -t(L ♯ ) 1/2 (a * ) -1 g = ∞ j=1 C f, 1 C j (Q) (2 -εj a j + 2 -ε(j-1) a j-1 ) = ∞ j=1 C f, (1 C j (Q) + 1 C j+1 (Q) )2 -εj a j = ∞ j=1 f, C2 -εj a j = f, a * e -t(L ♯ ) 1/2 (a * ) -1 g .
Since C ∞ 0 -functions with integral zero are dense in H p , we obtain from the lemma and Proposition 17.4 applied to L ♯ that u is of class ). There is a dimensional constant c such that for all cubes Q ⊆ R n , --

C 0 ([0, ∞); Λα weak * ) ∩ C ∞ ((
T (Q) |v -(v) T (Q) | 2 dsdy ≤ c ℓ(Q) 0 - Q s|∇v| 2 dyds,
where T (Q) := (0, ℓ(Q)) × Q. In particular, v ∈ L 2 loc (R 1+n + ). The same inequality holds with balls instead of cubes.

Together with the upper Carleson bound of Part 3 we now obtain, for all cubes Q ⊆ R n , --

T (Q) |u -(u) T (Q) | 2 dsdy 1 2 ℓ(Q) 0 - Q s|∇u| 2 dyds 1 2 ≤ ℓ(Q) α C α (t∇u) ∞ ℓ(Q) α f Λα .
This is an oscillation estimate at the boundary of R 1+n + . In order to replace T (Q) by an arbitrary cube T (Q) + (t 0 , 0) with t 0 > 0, we use that according to Lemma 18.7 we have the semigroup property u(t + t 0 , •) = e -tL 1/2 f t 0 =: u t 0 (t, •), where f t 0 := u(t 0 , •) ∈ Λα . The previous estimate with u t 0 in place of u becomes --

T (Q)+(t 0 ,0) |u -(u) T (Q)+(t 0 ,0) | 2 dsdy 1 2 ℓ(Q) α f t 0 Λα ℓ(Q) α f Λα ,
where the final step is due to (18.34). By definition of the BMO-norm if α = 0 and by the Morrey-Campanato characterization of Hölder continuity if α ∈ (0, 1), see [START_REF] Meyers | Mean oscillation over cubes and Hölder continuity[END_REF], we conclude

u Λα (R 1+n + ) f Λα .
The proof of (iii) is complete, modulo the Proof of Lemma 18.8. We can assume that Q is the unit cube centered at the origin, as a scaling argument gives the general result. Let T ε (Q) := (ε, 1) × (1ε)Q for ε ∈ (0, 1). We apply first the Hardy-Poincaré inequality of Boas-Straube [START_REF] Boas | Integral inequalities of Hardy and Poincaré type[END_REF]:

Tε(Q) |v -(v) Tε(Q) | 2 dsdy ≤ c ε Tε(Q) d((s, y), ∂T ε (Q))|∇v| 2 dsdy.
A priori, the constant c ε depends on T ε (Q) but scaling and translation to (1, 2) × Q reveals that we can take c ε = (1ε)c, where c is dimensional. We conclude

Tε(Q) |v -(v) Tε(Q) | 2 dsdy ≤ c T (Q)
s|∇v| 2 dsdy, (18.35) where the right-hand side is assumed to be finite. Now, consider a decreasing sequence of values ε ∈ (0, 1 /2) with ε → 0. (18.35) that the numerical sequence ((v) Tε(Q) ) ε is bounded. Let C be one of its accumulation points. Via Fatou's lemma we can pass to the limit in (18.35) along a subsequence of ε to give

Since T 1/2 (Q) ⊆ T ε (Q) and v ∈ L 2 (T 1/2 (Q)), it follows from
T (Q) |v -C| 2 dsdy ≤ c T (Q) s|∇v| 2 dsdy.
This implies that v is (square) integrable on T (Q) and therefore we have C = (v) T (Q) by dominated convergence.

The argument for balls instead of cubes is the same.

Existence in Dirichlet problems with fractional regularity data

In this section we prove the compatible existence on Dirichlet problems with data in homogeneous Hardy-Sobolev and Besov spaces of fractional smoothness that have been announced in Section 1.6. We also compare them to what can be obtained by the general first-order approach [3] when specialized to elliptic systems in block form. We recall the color code for our various exponent regions and segments:

• Gray corresponds to what can be obtained from the theory of DB-adapted spaces in [3] and our identification of the interval from [START_REF] Auscher | On uniqueness results for Dirichlet problems of elliptic systems without De giorgi-Nash-Moser regularity[END_REF][START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF] in Corollary 15.2. • Blue shows extra information obtained from the theory of Ladapted spaces. • Red indicates results outside of the theory of operator-adapted spaces. When we speak of 'colored' points or regions, we always mean points or regions that are displayed in one of these three colors. 

p L = a -1 (H p ∩ L 2 ) = L p ∩ L 2 if ( 1 /p, s)
belongs to the open segments that join ( 1 /q + (L), 1) to ( 1 /(p -(L) * ∨1 * ), 1) and ( 1 /p + (L), 0) to ( 1 /(p -(L)∨1), 0), respectively. Both cases can be summarized as saying H s,p L = H s,p -∆x , see Figure 6. By real and complex interpolation ([3,Thm.4.32] or equivalently the argument in the proof of Lemma 9.4) we conclude X s,p L = X s,p -∆x in the interior of the convex hull of the two segments and the claim follows by using Figure 6 again. Remark 19.2. If p -(L) < 1, then we could also combine Theorem 9.6 with Corollary 6.10 and write H s,p L = H s,p -a -1 ∆x on the top segment, which in this case joins ( 1 /q + (L), 1) to ( 1 /1 * , 1), and the full bottom segment joining ( 1 /p + (L), 0) to ( 1 /p -(L), 0). Extending Figure 10 to the left by the triangle with vertices ( 1 /1 * , 1), (1, 0), ( 1 /p -(L), 0), the same interpolation argument yields identification X s,p L = X s,p -a -1 ∆x in the interior of that extended region. The reason why we do not use this extension is that we do not know whether X s,p -a -1 ∆x = X s,p -∆x and not even whether a completion of X s,p -a -1 ∆x can be realized as a space of distributions, except if a = 1 of course. In the first-order DB-theory this phenomenon does not appear as B is applied first. As a cautionary tale we remark that even when a = 1 not all of our arguments for solvability of Dirichlet problems would go through in the extended gray region, notably the non tangential trace used in Proposition 19.7.

1 2 1 q L + 1 (q L ♯ + ) ′ 1 p L + 1 p L -∨1 1 (p L -) * ∨1 *
Identification in the interior of the gray region in Figure 10 has previously been obtained (implicitly) in [3,Sec. 7.2.4] and we shall next explain why.

Let us first recall that in Theorem 9.6 we have identified H 0,p DB = H 0,p D for p ∈ (p -(L), q + (L)). For p ∈ (1, ∞), the ♥-duality from [3,Cor. 5.14] states that H 0,p ′ DB * = H 0,p ′ D implies H -1,p DB = H -1,p D . Thus, the latter follows for p ∈ (q + (L ♯ ) ′ , p + (L ♯ )) by duality and similarity. As before, interpolation leads to the identification region that is shown in Figure 11. Lemma 9.1 'maps' the gray region in Figure 11 onto the gray region in Figure 10 since X s,p DB = X s,p D implies X s+1,p L = Ẋs+1,p ∩ L 2 .

1 2

1 q L + 1 (q L ♯ + ) ′ 1 p L + 1 p L - n+1 n 1 p 0 s 0 -1 Figure 11.
In the interior of the gray region X s,p DB = X s,p D holds (up to equivalent p-quasinorms). By ♥-duality [3,Cor. 5.14] this is equivalent to

X -s-1,p ′ DB * = X -s-1,p ′ D .
In the particular case p -(L ♯ ) < 1 we have p + (L) = ∞ by duality and similarity and hence the left lower vertex of the identification regions is situated at the origin. However, results can be improved further as follows. We reproduce the argument from [3,Sec. 7.2.1] for the sake of clarity.

Proposition 19.3. If p -(L ♯ ) < 1, then identification X s,p DB = X s,p D and X s,p L = Ẋs,p ∩ L 2 hold in the interior of the extended gray regions of Figure 12 and Figure 13, respectively.

Proof. It suffices to argue for Figure 12 since the extension of Figure 13 follows from Lemma 9.1 as before.

Consider the analog of Figure 11 but for B * . Since we assume p -(L ♯ ) < 1, the right-hand segment of the gray trapezoid described by intersects the vertical line 1 /p = 1 at a point that is called x A * in [3]. Let x ♥ A * be the symmetric point with respect to ( 1 /2, -1 /2). By ♥-duality this is a boundary point of the identification region for X s,p DB = X s,p D . Interpolation with the exponents that have already been obtained in Figure 11 yields the extension that is displayed in Figure 12.

1 p = -s q + (L) ′ + s + 1 p -(L ♯ ) 1 2 1 q L + 1 (q L ♯ + ) ′ 1 p L - n+1 n 1 p 0 = 1 p L + s 0 -1 x ♥ A *
The length of the vertical segment that we have been able to add on the line 1 /p = 0 is given by σ, where

σ 1 p -(L ♯ ) - 1 q + (L) ′ = 1 p -(L ♯ ) -1.
Since Theorem 6.2 for L ♯ yields p -(L ♯ ) ≤ (q + (L) ′ ) * , the left-hand side is bounded from below by σ /n and we obtain

σ ≤ n p -(L ♯ )
n as we have claimed.

Let us illustrate these diagrams in special cases. When m = 1, n ≥ 3 and d is real-valued, we know that p -(L) = q -(L) < 1 and p + (L) = ∞ (Remark 14.11). Thus we are in the case of Figure 13 for the blue and gray identification regions. This is also the generic situation in dimension n = 2 for any L (Proposition 6.7).

In dimension n = 1, Proposition 6.7 yields p -(L) = q -(L) = 1 * (= 1 /2) and p + (L) = q + (L) = ∞. The same holds for L ♯ in place of L

1 2 1 q L + 1 (q L ♯ + ) ′ 1 (p L -) * ∨1 * 1 p L -∨1 n+1 n 1 p 0 = 1 p L + s 1 0 x ♥ A * +[ 0 1 ]
Figure 13. Extension of Figure 10 to the left in the case p -(L ♯ ) < 1. The extension only concerns exponents with p ≥ q + (L) > 2. The length of the vertical segment on the left is at most n /p -(L ♯ )n.

and therefore x ♥ A * = [0, 0] ⊤ . Consequently, we already have the largest possible gray region shown in Figure 14 and there is no additional blue region. In any dimension, the same situation occurs for operators of type -a -1 ∆ x (Corollary 6.10) or more generally when d depends only on one coordinate (Remark 14.11). 19.2. Solvability for fractional regularity data. We turn to solvability of the Dirichlet problems (D) L Ḣs,p and (D) L Ḃs,p when 0 < s < 1 and 0 < p ≤ ∞ satisfy 1 /p < 1 + s /n. The restrictions on s and p guarantee that all distributions in Ḣs,p and Ḃs,p are locally integrable functions. Indeed, for p = ∞ we have H s,∞ ⊆ B s,∞ = Λs , whereas for p < ∞ both are interpolation spaces between Ḣ0,p 0 = L p 0 and Ḣ1,p 1 ⊆ L (p 1 ) * for some exponents p 0 > 1, p 1 > 1 * .

In the formulation of the Dirichlet problems for fractional regularity data we consider the data spaces as classes of measurable functions and do not factor out constants. We use the pair (Y, Ẋ) to denote either (Z, Ḃ) or (T, Ḣ). By definition of tent and Z-spaces, all problems that appear in Section 1.6 can simultaneously be phrased as asking for given f ∈ Ẋs,p to find a solution to

(D) L Ẋs,p      Lu = 0 (in R 1+n + ), ∇u ∈ Y s-1,p , lim t→0 --W (t,x) |u(s, y) -f (x)| dsdy = 0 (a.e. x ∈ R n ).
Let us mention that another way of formulating the boundary condition is [3,[START_REF] Barton | Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces[END_REF]. In all cases, we recover this condition in the construction of our solutions. We do not impose a condition at t = ∞, contrarily to [3].

lim t→0 u(t, •) = f in D ′ (R n )/C m , see
Remark 19.4. For ( 1 /p, s) = ( 1 /2, 1 /2) we obtain Ẋ1 /2,2 = Ḣ1 /2,2 by Fubini's theorem and Y -1 /2,2 = L 2 by the averaging trick, so that (D) L Ẋ1 /2,2 is a Dirichlet problem for the energy class. The energy solution given by Proposition 16.3 is (modulo a constant) a solution to this problem. Indeed, consider f ∈ Ḣ1 /2,2 and let u be the energy solution. It converges to f as t → 0 in Ẋ1 /2,2 . By Proposition A.8, there exists a non-tangential trace u 0 and the Cesàro means of u(t, •) converge in D ′ to u 0 as t → 0. It follows that f = u 0 + c for some c ∈ C m . From now on, we call u + c the energy solution with Dirichlet datum f .

Solvability of (D) L

Ẋs,p means that for any given data there exists a solution. Compatible solvability means that the energy solution is a solution if the data is also in Ḣ1 /2,2 . This notion of (compatible) solvability differs from parts of the literature in that we do not require an a priori estimates for solutions by the data, compare with [START_REF] Barton | Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces[END_REF]Section 2.4]. Such estimate usually holds since a specific method was used to construct solutions. We find it natural to separate these two aspects of solvability theory by using the concept of solution operators. This notion is manufactured in a way that is amenable to interpolation, independently of any uniqueness result. Definition 19.5. Let s ∈ (0, 1) and p ∈ (1 * , ∞] satisfy 1 /p < 1 + s /n. Consider Ẋs,p as a (quasi-)Banach space modulo constants. A solution operator for (D) L Ẋs,p is a linear map sol : Ẋs,p → D ′ (R 1+n + )/C m such that for all f ∈ Ẋs,p the function u := sol f satisfies

     Lu = 0 (in R 1+n + ), ∇u Y s-1,p f Ẋs,p , lim t→0 u(t, •) = f (in D ′ (R n )/C m ), (19.1) 
where the implicit constant in the second line is independent of f . The solution operator is compatible if it agrees on Ẋs,p ∩ Ḣ1 /2,2 with the solution operator for the energy class (Proposition 16.3).

Recall that a weak solution of Lu = 0 in R 1+n + , is in W 1,2 loc by definition and of class C ∞ ((0, ∞); L 2 loc ) by Corolllary 16.9. Hence, all conditions in our definition make sense. The second line implies that sol : Ẋs,p → D ′ (R 1+n + )/C m is continuous. In passing, we note that in the existence parts of both Theorem 1.1 (Section 17.3) and Theorem 1.3 (Section 18) we have already encountered such operators for different classes of data without using the terminology. Proposition 16.3 provides a solution operator for (D) L Ḣ1 /2,2 . Lemma 19.6. Let s ∈ (0, 1) and p ∈ (1 * , ∞] satisfy 1 /p < 1 + s /n. If there is a (compatible) solution operator for (D) L Ẋs,p , then (D) L Ẋs,p is (compatibly) solvable.

Proof. For solvability we do not consider Ẋs,p modulo constants. Given f ∈ Ẋs,p , the assumption yields a solution u to (19.1). Now, u has a non-tangential trace u 0 and the Cesàro means of u(t, •) converge to u 0 in D ′ as t → 0, see Proposition A.8. Thus, f = u 0 + c for some c ∈ C m and u + c is a solution to (D) L Ẋs,p with data f . If the solution operator is compatible and f also belongs to Ḣ1 /2,2 , then u + c is the energy solution, see Remark 19.4. We shall now construct solution operators in a series of results, enlarging the range of boundary spaces step by step.

We begin with exponents in the blue and gray identification regions from the previous section. Note that the H p regularity problem (R) L p does not fit into the scheme of problems (D) L Ẋs,p because of the missing square function control for ∇u. Hence, no interpolation argument between the existence parts of Theorem 1.1 and 1.2 can help us here. Instead, we rely on the first-order theory and adapted Hardy spaces as in Section 17.

Proposition 19.7. Suppose that ( 1 /p, s) is contained in the interior of the colored region described in Figure 10 and Figure 13 in the particular case p -(L ♯ ) < 1. Then (D) L Ẋs,p is solvable. There is a compatible solution operator that assigns to each f ∈ Ẋs,p a solution of class C 0 ([0, ∞); Ẋs,p ) ∩ C ∞ ((0, ∞); Ẋs,p ) with u(0, •) = f and comparability

sup t>0 u(t, •) Ẋs,p ≃ f Ẋs,p ≃ ∇u Y s-1,p .
Proof. In view of Lemma 19.6 it suffices to construct the solution operator. We first consider f ∈ Ẋs,p ∩ W 1,2 . In this case, we set of course u(t, x) := e -tL 1/2 f (x).

Step 1: Regularity and the first comparability. Since we have X s,p L = Ẋs,p ∩L 2 with equivalent p-quasinorms, the regularity for u and the first comparability immediately follow from the bounded H ∞ -calculus and the semigroup properties on X s,p L , see Section 8.2. This argument also yields quantitative bounds for t k/2 ∂ t u(t, •) Ẋs,p that will be needed to carry the C ∞ -property over to general data f ∈ Ẋs,p in Step 4.

Step 2: The second comparability when p ≤ 2. By means of the intertwining property we find

∇u Y s-1,p ≃ L 1/2 e -tL 1/2 f Y s-1,p + ∇ x e -tL 1/2 f Y s-1,p ≃ tL 1/2 e -tL 1/2 f Y s,p + e -t M 1/2 ∇ x f Y s-1,p =: φ(t 2 L)f Y s,p + ψ(t 2 M)∇ x f Y s-1,p
and the auxiliary functions are of class φ ∈ Ψ ∞ 1/2 and ψ ∈ Ψ ∞ 0 . They are admissible for defining X s,p L and X s-1,p M , respectively, since we have p ≤ 2 and s < 1. Hence, we can continue with

≃ f X s,p L + ∇ x f X s-1,p M ≃ f X s,p L ≃ f Ẋs,p ,
where we used Figure 7 in the second step.

Step 3: The second comparability when p > 2. In this case we are in the gray identification region. We know from Figure 11 (or Figure 12) that we can identify X s-1,p DB = X s-1,p D and therefore the Cauchy characterization of adapted spaces in [3,Thm. 5.26] and [3,Rem. 5.28] yields

e -t[DB] 1 C + (DB)g Y s-1,p ≃ g X s-1,p D (g ∈ R(DB)). (19.2)
We pick

g := 0 ∇ x f = DB -af 0 .
As for the right-hand side in (19.2), Figure 6 yields g X s-1,p D ≃ f Ẋs,p . Next, we use the identity 2(1

C + (z)) = 1 + √ z 2
/z to write

2(1 C + (DB)g) = 0 ∇ x f + [DB] -af 0 = -L 1/2 af ∇ x f .
The intertwining relation and the similarity of L and L lead to

2e -t[DB] 1 C + (DB)g = -e -t L 1/2 L 1/2 af e -t M 1/2 ∇ x = -aL 1/2 e -t L 1/2 f ∇ x e -t L 1/2 f = a∂ t u ∇ x u .
Thus, the left-hand side in (19.2) is comparable to ∇u Y s-1,p .

Step 4: Extension to a solution operator. By the same density argument as for the regularity problem in Section 17.3 when p ≥ n, we can construct for general f ∈ Ẋs,p a weak solution to Lu = 0 in R 1+n + that has all the properties stated in the proposition. The construction depends linearly on the data and since u(t, •) → f in Ẋs,p ⊆ D ′ /C m , we see that u solves (19.1). This means that we have constructed a compatible solution operator.

If p + (L) < ∞, then the (existence part of) Theorem 1.1 contains existence of the Dirichlet problem (D) L p in a range of exponents that exceeds the identification region for H 0,p L by up to one Sobolev conjugate. This leads to the following improvement of the previous result in that case.

Proposition 19.8. Suppose that p + (L) < ∞. If ( 1 /p, s) is contained in the interior of the colored region in Figure 15, then there is a compatible solution operator for (D) L Ẋs,p . In particular, the problem is compatibly solvable.

1 2 1 q L + 1 (q L ♯ + ) ′ 1 p L + 1 p L -∨1 1 (p L + ) * 1 (p L -) * ∨1 * n+1 n 1 p 0 s 1 0 Figure 15. Extended region for compatible solvability of (D) L Ẋs,p when p + (L) < ∞. Recall that p + (L) * = ∞ if p + (L) ≥ n.
Proof. The blue and gray regions have been treated in Proposition 19.7. We need to add the red triangle to the picture. It suffices to show for any P 0 := ( 1 /p 0 , 0) with p + (L) ≤ p 0 < p + (L) * (bottom red segment) and any P 1 := ( 1 /p 1 , s 1 ) in the interior of the gray region that a compatible solution operator exists for all points on the open segment P 0 P 1 . Compatible solvability then follows by Lemma 19.6.

We argue by interpolation and consider the data classes as Banach spaces embedded into D ′ /C m . In Section 17.3 we have established existence of a solution with the properties (i) and (iv) of Theorem 1.1. This furnishes a continuous linear solution operator sol 0 : Ḣ0,p 0 → D

′ (R 1+n + )/C m such that u = sol 0 f solves      Lu = 0 (in R 1+n + ), ∇u T -1,p 0 f Ḣ0,p 0 , lim t→0 u(t, •) = f (in D ′ (R n )/C m ), whereas Proposition 19.7 furnishes a continuous linear solution opera- tor sol 1 : Ḣs 1 ,p 1 → D ′ (R 1+n + )/C m such that u = sol 1 f solves      Lu = 0 (in R 1+n + ), ∇u T s 1 -1,p 1 f Ḣs 1 ,p 1 , lim t→0 u(t, •) = f (in D ′ (R n )/C m ).
Since both operators produce compatible solutions, the universal approximation technique implies that they coincide on Ḣ0,p 0 ∩ Ḣs 1 ,p 1 .

Hence, we have a well-defined continuous linear operator

sol : Ḣ0,p 0 + Ḣs 1 ,p 1 → D ′ (R 1+n + )/C m such that u = sol f solves Lu = 0 in R 1+n + and satisfies u(t, •) → f as t → 0 in D ′ /C m .
Pick any point ( 1 /p, s) on the open segment P 0 P 1 . Since the real and complex interpolation spaces of an interpolation couple continuously embed into the sum space, we obtain that sol : Ẋs,p → D ′ (R 1+n + )/C m is continuous. The map sol and the continuous solution map for energy solutions from Proposition 16.3 agree on Ẋs,p ∩ Ḣ1 /2,2 ∩ Ḣs 1 ,p 1 and hence on Ẋs,p ∩ Ḣ1 /2,2 . Since the maps ∇ sol : Ḣ0,p 0 → T -1,p 0 and ∇ sol : Ḣs 1 ,p 1 → T s 1 -1,p 0 are bounded, we obtain by real and complex interpolation that ∇ sol : Ẋs,p → Y s-1,p is bounded. This means that we have constructed a solution operator for (D) L Ẋs,p . In the case p + (L) > n we can go one step further and study endpoint problems (D) L Ẋα,∞ for 0 < α < 1n /p + (L). We have Ḃα,∞ = Λα with equivalent norms, so that (D) L Ḃα,∞ is a third way of posing a Dirichlet problem with Hölder continuous data. The other endpoint problem uses the data space Ḣα,∞ = ḂMO α , which is continuously embedded into Λα and carries the equivalent norm (2.9). The upshot is that, given f ∈ Ẋα,∞ , the existence part of Theorem 1.3 already shows that u defined in (18.1) is a compatible solution that converges to f at the boundary in the non-tangential sense. The following addendum guarantees that this solution also solves the new endpoint problem and that (18.1) defines a compatible solution operator to (D) L Ẋα,∞ . Proposition 19.9. Suppose that p + (L) > n and that 0 < α < 1n /p + (L). Then the Dirichlet problem (D) L Ẋα,∞ is compatibly solvable. More precisely, given f ∈ Ẋα,∞ , the same solution u that was defined in (18.1) and solves (D) L Λα and ( D) L Λα , also solves (D) L Ẋα,∞ and satisfies ∇u

Y α-1,∞ ≃ f Ẋα,∞ .
Remark 19.10. Combining the existence part of Theorem 1.3 with Proposition 19.9 yields comparability

∇u T -1,∞;α = C α (t∇u) ∞ ≃ W (t 1-α ∇u) ∞ = ∇u Z α-1,∞ ,
whenever u is a solution to (D) Λα . A simple comparison of the two functionals shows that estimate ' ' holds for any L 2 loc -function F in place of ∇u. The converse is a special property of weak solutions to Lu = 0. Remark 19.11. If p -(L ♯ ) < 1 and α < n( 1 /p -(L ♯ ) -1), then u is given by a weak * -continuous semigroup on Λα as the dual of H p , α = n( 1 /p -1), see Lemma 18.7. In essence, this followed from the identification

H p L ♯ = (a * ) -1 (H p ∩ L 2
). By interpolation one can obtain a subregion of the red region where the (unique) solution to (D) L Ḃs,p is given by a C 0 -semigroup.

An analogous result for ḂMO α would require boundedness of the Poisson semigroup for L ♯ on (a * ) -1 ( Ḣ-α,1 ∩ L 2 ), which we do not know when α > 0. One can use the first-order approach to obtain the semigroup property of the solution to (D) L Ḣα,∞ for 0 < α < θ, where θ appears in Figure 3 or equivalently as the upper endpoint of the vertical boundary segment of the gray region in Figure 13. The semigroup property for θ ≤ α < n( 1 /p -(L ♯ ) -1) is unclear. These observations will not be needed in the further course, so we do not detail them.

Proof of Proposition 19.9. We fix (a representative for) f ∈ Ẋα,∞ and let u be the solution to both (D) L Λα and ( D) L Λα defined in (18.1). Since we are working within the same or even a smaller class of boundary data, we have at our disposal all properties for u from Section 18 and only at distinguished places we have to intervene in order to obtain the additional features that we claimed above. More precisely, we have to modify Part 3 for the upper bound of ∇u Y α-1,∞ and Part 5 for the converse.

Modification of Part 3: The bound ' '. In the case X = B it suffices to combine the observation from Remark 19.10 and the existence part of Theorem 1.3 in order to obtain

∇u Z α-1,∞ C α (t∇u) ∞ f Λα .
We turn to the case X = H. We have to prove that for all cubes Q ⊆ R n of sidelength ℓ we have

ℓ 0 Q |s 1-α ∇u| 2 dyds s 1/2 |Q| f ḂMO α . (19.3)
From now on Q is fixed. Since both sides stay the same under adding constants to u and f , we can assume (f ) Q = 0.

In contrast to Section 18 we use a smooth resolution for f in order to represent u. We let (η j ) j be a smooth partition of unity on R n subordinate to the sets D 1 := 4Q and D

j := 2 j+1 Q \ 2 j-1 Q, j ≥ 2, such that η j ∞ + 2 j ℓ(Q) ∇ x η j ∞ ≤ C for a dimensional constant C. For j ≥ 1 we introduce f j := η j f, u j (t, •) := e -tL 1/2 f j .
The main difficulty is to handle the local term for j = 1. For the moment, let us take for granted the estimate

f 1 2 Ḣα,2 |Q| f 2 ḂMO α . (19.4)
This is where the smoothness of η 1 is needed and we include the argument at the end. Thus, it suffices to prove the local bound

ℓ 0 Q |s 1-α ∇u 1 | 2 dyds s f 1 2 Ḣα,2 . (19.5)
In doing so, we can work under the qualitative assumption f 1 ∈ W 1,2 which can be removed afterwards via density of W 1,2 in Ḣα,2 ∩ L 2 and Fatou's lemma. We use the intertwining property to write

s 1-α ∇u 1 (s, y) = -s 1-α L 1/2 e -sL 1/2 f 1 s 1-α e -s M 1/2 ∇ x f 1 =: s -α φ(s 2 L)f 1 s 1-α ψ(s 2 M )∇ x f 1 ,
where φ ∈ Ψ ∞ 1/2 and ψ ∈ Ψ ∞ 0 . These auxiliary functions are admissible for H α,2

L and H α-1,2 M , respectively. Hence, we get as required

ℓ 0 Q |s 1-α ∇u 1 | 2 dyds s ≤ R 1+n + s -α φ(s 2 L)f 1 s 1-α ψ(s 2 M )∇ x f 1 2 dyds s ≃ f 1 2 H α,2 L + ∇ x f 1 2 H α-1,2 M ≃ f 1 2 H α,2 L ≃ f 1 2 Ḣα,2 ,
where the third step is due to Figure 7 and the final step uses that ( 1 /2, α) belongs to the identification region of Figure 10.

For the non-local terms with j ≥ 2 we can now follow Steps 2 and 3 verbatim, the only modification being that we multiply the Caccioppoli estimate (18.8) by t -2α before summing. This leads to (18.9) with the local bound ℓ α f Λα replaced by f ḂMO α and additional powers s -2α in each of the off-diagonal pieces, so that the power ℓ α in (18.10) disappears. Thus, we control the sum of the off-diagonal pieces by f Λα f ḂMO α . The proof is complete modulo the argument for (19.4) that we give now. By translation we can assume that Q is centered at the origin. A classical argument using the Fourier transform of

f 1 ∈ L 2 yields f 1 2 Ḣα,2 ≃ R n R n |f 1 (y) -f 1 (z)| 2
|y -z| n+2α dzdy =: I , see for example [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]Prop. 1.3.7]. According to (2.9) it suffices to prove I A, where

A := 4Q 4Q |f (y) -f (z)| 2
|y -z| n+2α dzdy. By symmetry, we have

I = 2 |y|≥|z| |f 1 (y) -f 1 (z)| 2
|y -z| n+2α dzdy.

We write the numerator as η 1 (y)(f (z)-f (y))+f (z)(η 1 (z)-η 1 (y)). The first term vanishes unless y ∈ 4Q and in that case z ∈ 4Q follows from |y| ≥ |z|. Hence, the integral of this part is controlled by A. Likewise, z ∈ c (4Q) implies y ∈ c (4Q) and the second term vanishes. Altogether, we obtain

I ≤ A + R n 4Q |f (z)| 2 |η 1 (z) -η 1 (y)| 2 |y -z| n+2α dzdy,
where we bound |η 1 (z)η 1 (y)| via the mean value theorem if |x -y| ≤ ℓ(Q) and in L ∞ -norm if not, in order to get 

≤ A + C 2 ℓ(Q) 2 4Q |y-z|≤ℓ(Q) |f (z)| 2 |y -z| n+2α-2 dydz + 4C 2 4Q |y-z|≥ℓ(Q) |f (z)| 2 |y -z| n+2α dydz A + 1 ℓ(Q) 2α 4Q |f (z)| 2 dz = A + 1 ℓ(Q) 2α 4Q - Q f (z) -f (y) dy
0 t∇ x v = ψ(tDB H ) g 0 ,
where ψ ∈ Ψ 2β+1 1 with β > n /2 + 2 and DB H correspond to H = -(a * ) -1 ∆ x in the same way as DB corresponds to L. In Section 18 we have interpreted (19.6) as a T 0,∞;α -T ̺ duality pairing, where ̺ ∈ (1 * , 1] is such that α = n( 1 /̺ -1), in order to bring C α (t∇u) into play. Now, we use the Y α,∞ -Y -α,1 pairing, see Sections 2.2 and 2.3, in order to give

R 1+n + |t∇ x u| • |t∇ x v| dtdx t ∇ x u Y α-1,∞ t∇ x v Y -α,1 .
Since β > n /2 + 2, the function ψ is admissible for defining X -α,1 DB H . We have p -(H) = 1 * and q + (H) = ∞ (Corollary 6.10) and consequently the identification region for DB H in Figure 11 contains the full open segment that joins (1, -1) to (1, 0), see also Figure 14. In particular, X -α,1 DB H = X -α,1 D and together with Figure 6 we obtain

t∇ x v Y -α,1 ≃ g 0 X -α,1 DB H ≃ g Ẋ-α,1 .
Thus, we control (19.6) by ∇u Y α-1,∞ g Ẋ-α,1 and we conclude for all

g ∈ C ∞ 0 with R n gdx = 0 that | f, g | ∇u Y α-1,∞ g Ẋ-α,1 .
These g form a dense subclass of Ẋ-α,1 . There are probably many ways to see this -one is to use the smooth atomic decomposition for Ẋ-α,1 in [START_REF] Frazier | Littlewood-Paley theory and the study of function spaces[END_REF]Thm. 5.11 & 5.18]. By duality, we obtain the lower bound

f Ẋα,∞ ∇ x u Y α-1,∞ .
Let us come back to Figure 15 but for p + (L) > n, so that the left lower vertex of the red triangle is situated at the origin. Proposition 19.9 allows us to add a segment on the line 1 /p = 0 and we can try to interpolate again to enlarge the region for compatible solvability as illustrated in Figure 16. This is the content of the final result in this section.

Proposition 19.12. Suppose that p + (L) > n. If ( 1 /p, s) is contained in the interior of the colored region in Figure 16, then there is a compatible solution operator for (D) L Ẋs,p . In particular, the problem is compatibly solvable.

Proof. As before, it suffices to construct the compatible solution operator. In view of Proposition 19.8 it remains to consider points in the interior of the triangle ORX and on the open segment OR. Our starting point is that by Proposition 19.9 there is a compatible solution operator for the problems corresponding to the open segment OX and that the constructed solution has all the properties listed in Theorem 1.3.

Fix any P = (0, α) ∈ OX. At E := ( 1 /2, 1 /2) the corresponding problem is the Dirichlet problem for the energy class and we have the solution operator sol E : Ẋ1 /2,2 → D ′ (R 1+n + )/C m from Proposition 16.3, which is compatible with the solution operator sol P : Ẋα,∞ → D ′ (R 1+n + )/C m at P . Hence, we obtain a well-defined linear operator sol :

Ẋα,∞ + Ẋ1 /2,2 → D ′ (R 1+n + )/C m such that u = sol f solves Lu = 0 in R 1+n + and satisfies u(t, •) → f as t → 0 in D ′ (R n )/C m . This time the compatibility with sol E 1 2 1 q L + 1 (q L ♯ + ) ′ 1 p L + 1 p L -∨1 1 (p L -) * ∨1 * n+1 n 1 p 0 -1 n s 1-n p L + 1 0 O X E R Figure 16
. Extended region for compatible solvability if p + (L) > n via a two-step interpolation argument. The picture is up to scale when p + (L) < ∞. If p + (L) = ∞, then red region becomes the triangle ORX with X = (0, 1). If furthermore p -(L ♯ ) < 1, then parts of the red region also belong to the extended gray identification region of Figure 13. This special situation has already been showcased in Figure 3 in the introduction, where on the bottom line also the exponents 'beyond infinity' corresponding to (D) L Λα appear.

already holds by construction and no density argument is needed. Real and complex interpolation of the mapping properties at the endpoints yields that ∇ sol : Ẋs,p → Y s-1,p is bounded provided ( 1 /p, s) belongs to the open segment P E. This yields the required solution operator for (D) L Ẋs,p and we can add the interior of the triangle OEX in Figure 16 to the region of compatible solvability. Now that we have successfully moved away from the line 1 /p = 0 of infinite exponents, we can repeat the argument in the proof of Proposition 19.8 once more for any P 0 in the interior of OEX and any P 1 in the interior of the gray region. In particular, we reach any point in the interior of ORX and on the open segment OR.

Single layer operators for L and estimates for L -1

This section is needed to prepare the next section on uniqueness. We consider the divergence form operator Lu =div A∇u = -∂ t (a∂ t u)div x d∇ x u on R 1+n . It is of the same class as aL in (3.5) but in one dimension higher. Hence, L is defined on Ẇ1,2 (R 1+n ) via the Lax-Milgram lemma and invertible onto Ẇ-1,2 (R 1+n ). It turns out that the inverse L -1 on particular test functions can explicitly be constructed using abstract single layer operators S L t . All this relies on the fundamental observation of Rosén [START_REF] Rosén | Layer potentials beyond singular integral operators[END_REF] that what is called single layer potential in the classical context of elliptic operators with real coefficients can abstractly be defined using the H ∞ -calculus for the perturbed Dirac operator DB in (3.2). Here, we cite the equivalent formulation from [START_REF] Auscher | On uniqueness results for Dirichlet problems of elliptic systems without De giorgi-Nash-Moser regularity[END_REF], which is somewhat closer to our terminology.

We define the conormal gradient ∇ A := [a∂ t , ∇ x ] ⊤ . For all f ∈ L 2 and t > 0 there is a unique distribution (up to a constant) that we denote by S L t f such that (20.1)

∇ A S L t f :=              +e -tDB 1 C + (DB) f 0 if t > 0, -e -tDB 1 C -(DB) f 0 if t < 0. Note that [f, 0] ⊤ ∈ H = R(D) = R ( 
DB) so that the right-hand side is defined in the same space via the bounded H ∞ -calculus. Then, we have the following result. 

G = div x G ♯ with G ♯ ∈ C ∞ 0 (R 1+n ; C mn ). Let H := L -1 (∂ t G).
Then H is given for all t ∈ R as an L 2 -valued Bochner integral

H(t, •) = R ∂ t S L t-s G(s, •) ds.
The reader may be surprised that the representation by convolution with the single layer is not a singular integral. This is due to a hidden integration by parts because we represent H := L -1 (∂ t G) and not L -1 ( G), see [START_REF] Auscher | On uniqueness results for Dirichlet problems of elliptic systems without De giorgi-Nash-Moser regularity[END_REF]Rem. 4.6]. We also note that ∂ t G ∈ Ẇ-1,2 (R 1+n + ) because it is a test function with integral zero and hence defines a tempered distribution modulo constants.

For our purpose it will be more convenient to write the single layer operators in terms of the second-order operator L. This is the content of the following proposition.

Proposition 20.2. Let t ∈ R, t = 0 and f ∈ L 2 . Then ∂ t S L t f = 1 2 sgn(t)e -|t|L 1/2 (a -1 f ) Proof.
We have [z] = √ z 2 = ±z in the complex half-planes z ∈ C ± . Hence, we can write the ⊥-component of (20.1) as

a∂ t S L t f := sgn(t)              e -|t|[DB] 1 C + (DB) f 0 ⊥ if t > 0, e -|t|[DB] 1 C -(DB) f 0 ⊥ if t < 0. (20.2) If [g ⊥ , g ] ⊤ is in the range of [DB]
, then the functional calculus on R(D) translates the identity of functions

1 C ± (z) = 1 /2(1 ± z / √ z 2 ) into 1 C ± (DB) g ⊥ g = 1 2 g ⊥ g ± 0 div x d -∇ x a -1 0 ( L) -1/2 g ⊥ ( M ) -1/2 g = 1 2 g ⊥ g ± div x d( M) -1/2 g -∇ x L -1/2 a -1 g ⊥ , (20.3) 
compare with the matrix representations in (3.2) and (3.4). We set g = 0 and apply the [DB] semigroup to give

e -|t|[DB] 1 C ± (DB) g ⊥ 0 ⊥ = 1 2 e -|t| L 1/2 g ⊥ = 1 2 ae -|t|L 1/2 a -1 g ⊥ .
This identity extends to general f ∈ L 2 in place of g ⊥ since L has dense range in L 2 and the claim follows from (20.2).

Combining the previous two results gives us the following representation.

Corollary 20.3. Assume G = ∂ t div x G ♯ with G ♯ ∈ C ∞ 0 (R 1+n ; C mn ) and set G = div x G ♯ . Let H := L -1 (G). Then for all t ∈ R, H(t, •) is given as an L 2 -valued Bochner integral by H(t, •) = 1 2 R sgn(t -s)e -|t-s|L 1/2 (a -1 G(s, •)) ds. (20.4)
As the formula for H only uses the Poisson semigroup, we can use the range where the semigroup enjoys L p -estimates. This leads to additional estimates as compared to [START_REF] Auscher | On uniqueness results for Dirichlet problems of elliptic systems without De giorgi-Nash-Moser regularity[END_REF] in the non-block case.

Lemma 20.4. Let G, H be as in the corollary above and suppose in addition that supp

G ♯ ⊆ [ 1 /β, β] × R n for some β > 1. Let h := H(0, •). Then if r ∈ (p -(L) ∨ 1, p + (L))
, there is some γ > 0 such that for all t > 0,

H(t, •) -e -tL 1/2 h r t ∧ t -γ ∂ t (H(t, •) -e -tL 1/2 h) r 1 ∧ t -1-γ . (20.5)
If, in addition, p -(L ♯ ) < 1, then this also holds for r = ∞.

Proof. We remark that a -1 G(s, •) belongs to any L q -space, uniformly in s ∈ [ 1 /β, β]. We will choose q at our convenience.

We treat the case r < ∞ first. For the exponent r we have at hand the estimates for the Poisson semigroup from Proposition 12.5 and the H ∞ -calculus on L r ∩ L 2 , see Theorem 10.1.

Step 1. We begin with the estimate for He -tL 1/2 h using (20.4). For 0 < t ≤ 1 /4β, we have

H(t, •)-e -tL 1/2 h = - 1 2 β 1 /β e -(s-t)L 1/2 -e -(s+t)L 1/2 (a -1 G(s, •)) ds. Writing (20.6) e -(s-t)L 1/2 -e -(s+t)L 1/2 = e -(s-2t)L 1/2 e -tL 1/2 -e -3tL 1/2 ,
the operator on the far right is L r -bounded with bound Ct by the H ∞ -calculus and the operator to its left is L r -bounded, uniformly. For 1 /4β < t < 4β, we see that

H(t, •) -e -tL 1/2 h = 1 2 β 1 /β sgn(t -s)e -|t-s|L 1/2 + e -(s+t)L 1/2 (a -1 G(s, •)) ds, (20.7) 
and we get a uniform L r -bound.

Finally for t ≥ 4β, we have

H(t, •) -e -tL 1/2 h = 1 2 β 1 /β e -(t-s)L 1/2 + e -(s+t)L 1/2 (a -1 G(s, •)) ds, = 1 2 β 1 /β e -(t-2β)L 1/2 e -(2β-s)L 1/2 + e -(2β+s)L 1/2 (a -1 G(s, •)) ds.
(20.8)

We pick any q ∈ (p -(L) ∨ 1, r). In the last line, the operator in brackets is L q -bounded, uniformly, and the operator to its left is L q -L rbounded with norm controlled by t -n/q+n/r . We use then that a -1 G(s, •) belongs to L q , uniformly.

Step 2. We turn to estimates for ∂ t (He -tL 1/2 h) on differentiating (20.4). For t > 4β we have

∂ t (H(t, •) -e -tL 1/2 h) = - 1 2 β 1 /β L 1/2 e -(t-s)L 1/2 + e -(s+t)L 1/2 (a -1 G(s, •)) ds.
We expand the kernel as

L 1/2 e -(t-s)L 1/2 + e -(s+t)L 1/2 = e -( t 2 -β)L 1/2 L 1/2 e -( t 2 -β)L 1/2 e -(2β-s)L 1/2 + e -(2β+s)L 1/2
and pick again any q ∈ (p -(L) ∨ 1, r). On the right-hand side the third operator is uniformly L q -bounded, the second one is L q -bounded with bound controlled by t -1 and the first one is L q -L r -bounded with bound controlled by t -n/q+n/r . We use then that a -1 G(s, •) belongs to L q , uniformly. For 0 < t ≤ 4β we need a uniform L r -bound. We are integrating over the singularity at t = s in the second line of (20.4) but using the convolution structure in the first line of (20.4), we can compute with

G = ∂ s G, ∂ t (H(t, •) -e -tL 1/2 h) = 1 2 β 1 /β sgn(t -s)e -|t-s|L 1/2 (a -1 G(s, •)) ds - 1 2 β 1 /β L 1/2 e -(s+t)L 1/2 (a -1 G(s, •)) ds.
(20.9)

The operators inside the integrals are L r -bounded, uniformly for s, t in the prescribed range.

Finally, we establish the L ∞ -bounds under the additional assumption p -(L ♯ ) < 1. This implies p + (L) = ∞ by duality and similarity.

Step 3. We modify Step 1 as follows.

If t ≤ 1 /4β, then we pick any r ∈ (p -(L) ∨ 1, ∞) and on the left-hand side of (20.6) we use the L r -L ∞ -bound for e -(s-2t)L 1/2 , see Proposition 12.5.(iii), which is uniform in s and t since s

-2t ∈ [ 1 /2β, β].
If 1 /4β < t < 4β, then the operator inside the integral in (20.7) is L q -L ∞ -bounded with norm controlled by |s -t| -n/q . Since p + (L) = ∞, we can pick q > n and this bound becomes integrable on [ 1 /β, β]. Then we use that a -1 G(s, •) belongs to L q , uniformly.

Likewise, if t ≥ 4β, then e -(t-2β)L 1/2 in (20.8) is L q -L ∞ -bounded with norm controlled by t -n/q .

Step 4. We modify Step 2 as follows.

If t > 4β, then thanks to Proposition 12.5.(iii) the same argument as before applies with r = ∞.

If 0 < t ≤ 4β, then the operator inside the first integral in (20.9) is L q -L ∞ -bounded with norm controlled by |s -t| -n/q and choosing q > n gives an integrable singularity. In the second integral we write

L 1/2 e -(s+t)L 1/2 = e -( s 2 + t 2 )L 1/2 L 1/2 e -( s 2 + t 2 )L 1/2 .
The operator on the far right is L q -bounded and the one to its left is L q -L ∞ -bounded, both with uniform bounds since s /2+ t /2 ∈ [ 1 /2β, 5β /2].

Uniqueness in regularity and Dirichlet problems

This section complements Section 17, 18 and 19. We shall prove the uniqueness parts in Theorems 1.1, 1.2, 1.3 and 1.4.

In [START_REF] Auscher | On uniqueness results for Dirichlet problems of elliptic systems without De giorgi-Nash-Moser regularity[END_REF], we developed a strategy to prove uniqueness for elliptic systems without regularity assumptions and with coefficients not necessarily in block form. We streamline the strategy in the case of the block system Lu = 0 to obtain uniqueness of solutions in much greater generality. with boundary data 0 and show that this forces u to vanish almost everywhere.

It begins with the following lemma in order to restrict the class of necessary testing conditions for u. The possible combinations of an interior control with a boundary limit cover all cases that can occur in our BVPs.

Lemma 21.1. Let u be a weak solution to Lu =div A∇u = 0 on R 1+n + . Let α ∈ [0, 1) and p ∈ (0, ∞). Assume one of the interior controls

• N * (u) ∈ L p • N * (∇u) ∈ L p • W (t 1-α ∇u) ∈ L p • S(t 1-α ∇u) ∈ L p • N ♯,α (u) ∈ L ∞ • C α (t∇u) ∈ L ∞ • C 0 (t 1-α ∇u) ∈ L ∞
and one of the boundary limits f (y) dy, where in the limit as t → 0 the left-hand side tends to 0 for a.e. x ∈ R n by assumption and the second term on the right-hand side tends to f (x) by Lebesgue's differentiation theorem. Hence, -2t t/2 g(s)ds has a limit as t → 0 that we call β ∈ C m and we have f (x) = -β almost everywhere. The same conclusion holds under the assumption (21.2) since then

= ∂ t div x G ♯ with G ♯ ∈ C ∞ 0 (R 1+n + ; C mn ), then u = 0 almost everywhere. Proof. We have ∇ x ∂ t u, G ♯ = 0,
- 2t t/2 u(s, •) ds = - 2t t/2 g(s) ds + f (•)
tends to 0 in L 2 loc as t → 0. So far we know that u(t, x) = g(t)β. The equation for u yields a∂ 2 t g = Lu = 0. Consequently, g is a linear function. By definition of β we get g(t) = γt + β for some γ ∈ C m and therefore u(t, x) = γt. If γ = 0, then we get for all x ∈ R n and all t > 0 that

• N * (u)(x) = ∞ • N * (∇u)(x) = |γ| • W (t 1-α ∇u)(t, x) = t 1-α |γ| • S(t 1-α ∇u)(x) = ∞ • N ♯,α (u)(x) = ∞ • C α (t∇u)(x) = ∞ • C 0 (t 1-α ∇u)(x) = ∞
and none of the interior controls is satisfied. Thus, γ = 0. Now, let u be a solution to Lu =div A∇u = 0 on R 1+n + . We take G as above. To compute u, G , we then pick a second function θ, compactly supported in R 1+n + , real-valued, Lipschitz continuous and equal to 1 on the support of G. Finally, we let H := (L * ) -1 G, which is a weak solution to the adjoint equation

L * H = -div A * ∇H = G (on R 1+n ).
As uθ is a test function for this equation, we have u, G = uθ, G = A∇(uθ), ∇H .

Next,

A∇(uθ),∇H

= A(u ⊗ ∇θ), ∇H + A(θ∇u), ∇H = A(u ⊗ ∇θ), ∇H -A∇u, H ⊗ ∇θ + A∇u, ∇(θH) , and the last term vanishes because θH is a test function for Lu = 0. Our notation ∇(uθ) = u ⊗ ∇θ + θ∇u is as predicted by the product rule.

We let h := H(0, •) ∈ L 2 (see Corollary 20.3) and take

H 1 (t, x) := e -t(L ♯ ) 1/2 h(x), (21.3) 
where we recall that L ♯ corresponds to L * in the same way as L corresponds to L. In particular, H 1 a solution to the adjoint problem L * H 1 = 0 on R 1+n + with boundary condition h, see Proposition 16.4. We can apply the same decomposition to A∇(uθ), ∇H 1 and remark that this term vanishes since uθ is a test function for L * H 1 = 0. Hence, we obtain

u, G = A(u ⊗ ∇θ), ∇(H -H 1 ) -A∇u, (H -H 1 ) ⊗ ∇θ . (21.4)
We remark that u and H -H 1 vanish at the boundary. In fact, the reason to introduce H 1 is to help convergence near the boundary.

Lemma 21.1 implies the following reformulation of uniqueness in the four BVPs. + , then u = 0 almost everywhere.

We prepare the limit procedure by picking θ in a more explicit way. For the rest of the section the following parameters will be used:

• G ♯ ∈ C ∞ 0 (R 1+n + ; C mn ) with support in [ 1 /β, β] × B(0, β) ⊆ R 1+n + and G := ∂ t div x G ♯ , • χ ∈ C ∞ 0 (R n ; R) with 1 B(0,1) ≤ χ ≤ 1 B(0,2) ,
• η the continuous piecewise linear function, which is equal to 0 on [0, 2 3 ], equal to 1 on [ 3 2 , ∞), and linear in between,

• M > 8β and 0 < ε < 1 /4β and 8β < R < ∞ to finally set

θ(t, x) := χ x M η t ε 1 -η t R . (21.5) 
We also use the block structure of A to write

A(u ⊗ ∇θ) = au∂ t θ d(u ⊗ ∇ x θ) , A∇u = a∂ t u d∇ x u .
Due to the explicit form of θ, we obtain for the first term on the right hand side of (21.4) that For the second term, we have

| A(u ⊗ ∇θ), ∇(H -H 1 ) | I M,ε,R + J ε,M + J R,M , (21.6) with I M,ε,R := 1 M M ≤|y|≤2M 3R 
(21.9) | A∇u, (H -H 1 ) ⊗ ∇θ | I M,ε,R + J ε,M + J R,M , with (21.10) I M,ε,R := 1 M M ≤|y|≤2M 3R/2 2ε/3 |∇ x u||H -H 1 | dsdy and (21.11) J τ,M := |y|≤2M - 3τ /2 2τ /3 |∂ t u||H -H 1 | dsdy.
Implicit constants depend only on dimensions and ellipticity. The way how the parameters M, R tend to ∞ and ε tend to 0 will be specified to make the terms on the right of (21.6) and (21.9) tend to 0.

Uniqueness for (R) L

p -conclusion of the proof of Theorem 1.2. We shall obtain uniqueness of solutions to (R) L p in the range p -(L) * ∨ 1 * < p < p + (L).

By Theorem 6.2 we have q + (L) ≤ p + (L), so that this is even a larger range than for existence of a solution in Theorem 1.2. We assume the interior control N * (∇u) ∈ L p and the convergence at the boundary (21.1) for almost every x. Then we distinguish two cases: We fix an exponent r such that (p -(L) ∨ 1) < r ≤ 2. Then the assumption p < r in Lemma 21.3 holds automatically and we have 2 ≤ r ′ < p + (L ♯ ) by duality and similarity. Next, we recall that H 1 (t, •) = e -t(L ♯ ) 1/2 h, where h is the trace of H at t = 0. We have at our disposal the estimates of Lemma 20.4 with L ♯ replacing L. In particular, we obtain for some γ > 0 and all t > 0,

• (p -(L) * ∨ 1 * ) < p ≤ (p -(L) ∨ 1), • (p -(L) ∨ 1) < p < p + (L). Case 1: p -(L) * ∨ 1 * < p ≤ (p -(L) ∨ 1).
H(t, •) -H 1 (t, •) r ′ t ∧ t -γ , ∂ t (H(t, •) -H 1 (t, •)) r ′ 1 ∧ t -1-γ . (21.14)
We come to taking limits in (21.6) and (21.9). We shall send M → ∞ for ε, R fixed and then send ε → 0 and R → ∞. We start with the terms on the right hand side of (21.6).

The term I M,ε,R . We can bound MI M,ε,R by a finite number (depending on ε, R) of integrals

K τ,M := |y|≥M 3τ /2 2τ /3 |u||∇ x (H -H 1 )| dsdy (ε ≤ τ ≤ R)
and it suffices to bound each of them uniformly for M large, say M ≥ 10R.

Because we do not have global bounds on ∇ x (H -H 1 ), we argue as follows. We let w(τ, x) := ( 2τ /3, 3τ /2) × B(x, τ /2) denote slightly smaller Whitney boxes and use an averaging trick to give

K τ,M |x|≥M/2 -- w(τ,x) |u||τ ∇ x (H -H 1 )| dx |x|≥M/2 -- w(τ,x) |u| 2 1 2 -- w(τ,x) |τ ∇ x (H -H 1 )| 2 1 2 dx |x|≥M/2 -- W (τ,x) |u| r 1 r -- W (τ,x) |H -H 1 | r ′ 1 r ′ dx,
where for the last line we used reverse Hölder estimates for u and the Caccioppoli estimate followed by Hölder's inequality for H -H 1 , which is a weak solution to L * (H -H 1 ) = 0 in a neighborhood of each W (τ, x). Indeed, L * (H -H 1 ) = G on R 1+n + but as W (τ, x) ⊆ {(t, y) : |y| ≥ 4R}, all Whitney boxes are outside the support of G, see (21.5). By Hölder's inequality in x, we have

K τ,M R n -- W (τ,x) |u| r dydtdx 1 r R n -- W (τ,x) |H -H 1 | r ′ dydtdx 1 r ′ 2τ τ /2 R n |u| r dydt t 1 r - 2τ τ /2 R n |H -H 1 | r ′ dydt 1 r ′ τ 1-n( 1 p -1 r ) N * (∇u) p (τ ∧ τ -γ )
using (21.13) and (21.14). Summing up in τ , we conclude MI M,ε,R N * (∇u) p with an implicit constant that depends on ε, R but not on M. Thus, I M,ε,R → 0 in the limit as M → ∞.

The term J ε,M . When M → ∞, we have to take the dx-integral on all of R n and we can use Hölder's inequality directly to obtain a bound for the limit by

- 3ε/2 2ε/3 R n |u| r dydt 1 r - 3ε/2 2ε/3 R n |∂ t (H -H 1 )| r ′ dydt 1 r ′ ε 1-n( 1 p -1 r ) 3ε/2 2ε/3 R n |u| r t n( r p -1)-r dydt t 1 r (21.15) 
using the estimate (21.14) when ε < 1. At this point we have to discuss the choice of r.

In dimension n ≥ 2 we set r := p * . In order to see that this choice is admissible, we first note that Proposition 6.7 yields (p -(L) ∨ 1) ≤ 2 * and therefore r ≤ 2 follows from the upper bound on p. Likewise, the lower bound on p implies r > (p -(L) ∨ 1). For this choice of r the exponent of ε in (21.15) vanishes and we conclude from (21.13) that the remaining integral converges to 0 as ε → 0.

In dimension n = 1 we have 1 * = ∞ and hence we must argue differently. Proposition 6.7 yield p -(L) = 1 /2 = 1 * . Hence, our assumption on p is 1 /2 < p ≤ 1 and this allows us to pick r > 1 sufficiently close to 1 such that 1 /r ≥ 1 /p -1. Consequently, the exponent for ε in (21.15) is non-negative and we conclude as before.

The term J R,M . Similarly, we have a bound for the limit as M → ∞ by

- 3R/2 2R/3 R n |u| r dydt 1 r - 3R/2 2R/3 R n |∂ t (H -H 1 )| r ′ dydt 1 r ′ R -n( 1 p -1 r )-γ 3R/2 2R/3 R n |u| r t n( r p -1)-r dydt t 1 r , (21.16) 
using (21.14) when R > 1. Since we have r > p in any case, we get a negative power of R in front of the integral and in view of (21.13) this term tends to 0 as R → ∞.

We next consider the terms on the right hand side of (21.9).

The term I M,ε,R . Hölder's inequality yields that M I M,ε,R is bounded by

3R/2 2ε/3 R n |t∇ x u| r dydt 1 r 3R/2 2ε/3 R n H -H 1 t r ′ dydt 1 r ′ .
Using (21.12) and (21.14), we thus obtain M I M,ε,R N * (∇u) p with an implicit constant that depends on ε, R but not on M. Hence, we have I M,ε,R → 0 in the limit as M → ∞.

The term J ε,M . We have again the following bound for the limit as M → ∞ by taking the dx-integral on R n and using Hölder's inequality directly:

- 3ε/2 2ε/3 R n |t∂ t u| r dydt 1 r - 3ε/2 2ε/3 R n H -H 1 t r ′ dydt 1 r ′ ε 1-n( 1 p -1 r ) 3ε/2 2ε/3 R n |∂ t u| r t n( r p -1) dydt t 1 r (21.17)
where the second step is due to (21.14). The exponent for ε is the same as in (21.15) and thus becomes non-negative for the same choice of r as before. It follows from (21.12) that the remaining integral tends to 0 as ε → 0.

The term J R,M . Similarly, for the limit of J R,M as M → ∞, we have the bound

- 3R/2 2R/3 R n |t∂ t u| r dydt 1 r - 3R/2 2R/3 R n H -H 1 t r ′ dydt 1 r ′ R -n( 1 p -1 r )-γ 3R/2 2R/3 R n |t∂ t u| r t n( r p -1) dydt t 1 r , (21.18) 
using (21.14) when R > 1. The exponent for R is negative and in the limit as R → ∞, the right-hand side tends to 0, taking into account (21.12). The argument is complete.

Case 2: (p -(L) ∨ 1) < p < p + (L). For this case we organize the limit procedure differently. We set R = M and first send ε → 0 and then M → ∞ in (21.6) and (21.9). The interior control N * (∇u) ∈ L p and the boundary limit (21.1) enter the calculations in a particularly concise form via the trace estimate --

W (t,x) |u| dsdy t N * (∇u)(x) ((t, x) ∈ R 1+n + )
from Proposition A.5. The non-tangential maximal function N * (∇u) has no further meaning to our argument and we can proceed without any additional effort under the following general assumption: Besides (21.1) we assume that there exists Θ ∈ L p and α ∈ [0, 1] such that

U t (x) := -- W (t,x) |u| dsdy (21.19) is controlled via U t (x) ≤ t α Θ(x) ((t, x) ∈ R 1+n + ). (21.20) 
This generalization will have fruitful implications for some of the other boundary value problems.

We begin with the terms in (21.6).

The term J ε,M . We let w(τ, x) := ( 2τ /3, 3τ /2) × B(x, τ /2) denote slightly smaller Whitney boxes and use an averaging trick to give

J ε,M |x|≤3M -- w(ε,x) |u||∂ t (H -H 1 )| dx |x|≤3M -- w(ε,x) |u| 2 1 2 -- w(ε,x) |∂ t (H -H 1 )| 2 1 2 dx |x|≤3M -- W (ε,x) |u| -- W (ε,x) H -H 1 ε dx = |x|≤3M U ε (x) -- W (ε,x) H -H 1 ε dtdy dx. (21.21)
The third line is the combination of Caccioppoli's estimate and the reverse Hölder inequality for H -H 1 , which solves

L * (H -H 1 ) = G on R 1+n + but W (ε, x) ⊆ {(t, y) : 0 < t < 1 /2β} is outside the support of G, see (21.5).
Next, we bring into play the maximal function M ε restricted to balls with radii not exceeding ε. The averaging trick followed by Hölder's inequality yields

J ε,M |y|≤4M M ε (U ε )(y) - 2ε ε/2 H -H 1 t dtdy |y|≤4M M ε (U ε ) p dy 1 p R n - 2ε ε/2 H -H 1 t dt p ′ dy 1 p ′ |y|≤4M M ε (U ε ) p dy 1 p R n - 2ε ε/2 H -H 1 t p ′ dtdy 1 p ′ |y|≤5M U p ε dy 1 p - 2ε ε/2 R n H -H 1 t p ′ dydt 1 p ′
, where we have used M ε (U ε ) ≤ M(1 B(0,5M ) U ε ) on B(0, 4M) and the maximal theorem in the last line.

The assumption on p implies (p -(L ♯ ) ∨ 1) < p ′ < p + (L ♯ ) by duality and similarity. Thus, we may use Lemma 20.4 for H -H 1 with r = p ′ and obtain for some γ > 0 and all t > 0 the bound

H(t, •) -H 1 (t, •) p ′ t ∧ t -γ . (21.22)
Thus, the second integral on the right in the estimate above is uniformly bounded in ε ≤ 1 and we are left with

J ε,M |y|≤5M U p ε dy 1 p (ε ≤ 1).
According to (21.20) we have U ε ≤ Θ ∈ L p for all ε ≤ 1, so that we can use the dominated convergence theorem when passing to the limit as ε → 0. By assumption (21.1) we have U ε (x) → 0 for a.e. x ∈ R n and J ε,M → 0 follows. This completes the treatment of this term.

The terms I M,ε,M and J M,M . Having sent ε → 0, we have to estimate

lim ε→0 I M,ε,M + J M,M =: I M + J M ,
where

I M := 1 M M ≤|y|≤2M 3M/2 0 |u||∇ x (H -H 1 )| dsdy J M := |y|≤2M - 3M/2 2M/3 |u||∂ t (H -H 1 )| dsdy. (21.23) 
We begin with I M . In the following we use small Whitney regions w(τ, x) = ( 2τ /3, 3τ /2) × B(x, 2τ /9). Let τ j := ( 9 /4) j for j ∈ Z and let j M be the unique integer with τ j M -1 ≤ M < τ j M . Then τ j M ≤ 9M /4 and Applying Caccioppoli and reverse Hölder inequalities as usual, we obtain for τ ≤ 9M /4 that

MI M ≤ j M j=-∞ K τ j ,M ( 
K τ,M M 2 ≤|x|≤ 5M 2 -- w(τ,x) |u||τ ∇ x (H -H 1 )| dx M 2 ≤|x|≤ 5M 2 -- w(τ,x) |u| 2 1 2 -- w(τ,x) |τ ∇ x (H -H 1 )| 2 1 2 dx M 2 ≤|x|≤ 5M 2 -- W (τ,x) |u| -- W (τ,x) |H -H 1 | dx = M 2 ≤|x|≤ 5M 2 U τ (x) -- W (τ,x) |H -H 1 | dx.
To justify the interior estimates for H -H 1 on w(τ, x), we remark that W (τ, x) lies outside the support of G. We continue by

Indeed, if τ ≤ M /4, then |y| ≥ M /4 = R /4 > 2β for all (s, y) ∈ W (τ, x), and if τ ≥ M /4, then s ≥ M /8 > β, see (21.5) 
K τ,M τ α R n M(Θ)(y) p dy 1 p R n - 2τ τ /2 |H -H 1 | dt p ′ dy 1 p ′ τ α R n Θ(y) p dy 1 p - 2τ τ /2 R n |H -H 1 | p ′ dydt 1 p ′ τ α (τ ∧ τ -γ ) Θ p ,
where we have used Hölder's inequality in the first line, the maximal theorem and Jensen's inequality in the second one and (21.22) in the third one. At this point we can go back to (21.24) and sum up the estimates for τ = τ j in order to obtain

MI M (1 + M α-γ ) Θ p .
By assumption we have α ≤ 1 and γ > 0. Hence, M appears with exponent smaller than 1 on the right-hand side and we conclude I M → 0 in the limit as M → ∞.

For J M in (21.23) we can argue just as for K τ,M with τ = M since we have not used the lower bound on |y| to justify the interior estimates in (21.26) when τ ≥ M /4. This leads to 

MJ M |x|≤ 5M 2 U M (x) -- W (M,x) |H -H 1 | dx M α |y|≤5M M(Θ)(y) - 2τ τ /2 |H -H 1 | dt dy
MJ M (1 + M α-γ ) Θ p .
As before, we conclude J M → 0 as M → ∞.

At this point we have handled the terms in (21.6). The argument for the terms in (21.9) is verbatim the same. Indeed, all of our estimates concerning (21.6) have used reverse Hölder estimates on u and H -H 1 and the Caccioppoli inequality to replace ∇(H -H 1 ) by H-H 1 t in the L 2 -averages. Now, we simply use Caccioppoli inequalities to replace t∇u by u and obtain the same bounds. The proof of Theorem 1.2 is complete.

Uniqueness for (D) L

p -conclusion of the proof of Theorem 1.1. We shall implement again the formalism of Section 21.1.

The interval of allowable exponents is p

-(L) < p < p + (L) * if p -(L) ≥ 1 and 1 ≤ p < p + (L) * if p -(L) < 1.
Hence, we assume N * (u) ∈ L p and that (21.1) holds. We distinguish three cases:

• (p -(L) ∨ 1) < p < p + (L), • p = 1 if p -(L) < 1, • p + (L) ≤ p < p + (L) * .
Case 1: (p -(L) ∨ 1) < p < p + (L). This is the range of exponents for the generic argument under the assumptions (21.1) and (21.20). In our concrete setting the latter holds with α = 0 and Θ = N * (u) and there is nothing more to do.

Case 2: p -(L) < 1 = p. We basically follow the generic argument in Case 2 for the regularity problem with α = 0 and Θ = N * (u) ∈ L 1 . In addition, we incorporate the following estimate for H -H 1 that comes from Lemma 20.4 in the case r = ∞: for some γ > 0 and all t > 0,

H(t, •) -H 1 (t, •) ∞ t ∧ t -γ . (21.28)
This uniform bound will allow us to avoid the maximal operator.

The term J ε,M . By (21.21) we have

J ε,M |x|≤3M U ε (x) -- W (ε,x) H -H 1 ε dtdy dx
and thanks to (21.28) we get for ε ≤ 1

J ε,M |x|≤3M U ε (x) dx.
The assumption (21.1) together with the pointwise bound U ε ≤ N * (u) and the dominated convergence theorem yield again J ε,M → 0 as ε → 0.

The terms I M and J M . We have to estimate I M and J M in (21.23).

Once again, we intervene before introducing the maximal operator (21.26) and simply use (21.28). In this way we obtain

K τ,M (τ ∧ τ -γ ) N * (u) 1 .
Since the right-hand side is summable for τ = τ j , j ∈ Z, we conclude MI M N * (u) 1 . Thus, we have I M → 0 in the limit as M → ∞. For MJ M we obtain the same type of bound by arguing as for K τ,M with τ = M.

At this point we have handled the terms in (21.6) and the argument at the end of Case 2 for the regularity problem explains why our proof automatically covers the terms in (21.9). For the Dirichlet problem (D) L p we have Θ = N * (u) and α = 0, so that this is the range that we are aiming at.

The term J ε,M . By (21.21) we have

J ε,M = |x|≤3M U ε (x) -- W (ε,x) H -H 1 ε dtdy dx.
We introduce the maximal function M ε restricted to balls with radii not exceeding ε and use the Cauchy-Schwarz inequality to give

J ε,M |y|≤4M M ε (U ε ) 2 dy 1 2 R n - 2ε ε/2 H -H 1 t dt 2 dy 1 2 |y|≤4M M ε (U ε ) 2 dy 1 2 R n - 2ε ε/2 H -H 1 t 2 dtdy 1 2 |y|≤5M U 2 ε dy 1 2 - 2ε ε/2 R n H -H 1 t 2 dydt 1 2
, where we have used M ε (U ε ) ≤ M(1 B(0,5M ) U ε ) on B(0, 4M) and the maximal theorem in the last line. The second integral on the right is uniformly bounded in ε ≤ 1 by Lemma 20.4 applied with r = 2 and we are left with

J ε,M |y|≤5M U 2 ε dy 1 2 
(ε ≤ 1), (21.30) so far under the mere assumption that u is a weak solution to Lu = 0 in R 1+n + . Hölder's inequality yields

J ε,M M n 2 -n p R n U p ε dy 1 p
, which goes to 0 as ε → 0, using (21.1), the pointwise bound U ε ≤ Θ and the dominated convergence theorem.

The terms I M and J M . We are left with treating the terms I M and J M in (21.23). To this end, we recall the generic decomposition from (21.24) and (21.26):

MI M ≤ j M j=-∞ K τ j ,M
where τ j = ( 9 /4) j , j M is the unique integer with τ j M -1 ≤ M < τ j M and for τ ≤ 9M The assumption (21.29) guarantees that we can pick r such that 1 /r -1 /p < (1-α) /n. In this case M appears with exponent smaller than 1 on the right-hand side and we conclude I M → 0 in the limit as M → ∞.

For J M we have the bound We have handled the terms in (21.6) and once again the discussion at the the end of Case 2 for the regularity problem explains why our proof automatically covers the terms in (21.9). This completes the proof of Theorem 1.1.

MJ M M α |y|≤5M M(Θ)(y) -

Uniqueness for ( D) L

Λα . We turn to the situation when p + (L) > n and prove that solutions to ( D) L Λα are unique in the range of exponents 0 ≤ α < 1n /p + (L). Hence, we assume (21.1) and N ♯,α (u) ∈ L ∞ . The control of the sharp functional means that we have U t (x) ≤ t α N ♯,α (u)(x) ((t, x) ∈ R 1+n + ), (21.31) which is an assumption of the same type as (21.20) but for p = ∞. Fortunately, this only requires a slight modification of the generic argument in the previous section.

The term J ε,M . According to (21.30) we have

J ε,M |x|≤5M U ε (x) 2 dy 1 2
and (21.31) still allows us to use the dominated convergence theorem when passing to the limit as ε → 0. Hence, J ε,M → 0 follows.

The terms I M and J M . For the terms in (21.23) we start out with the usual decomposition from (21.24) and the estimate before (21.26):

MI M ≤ j M j=-∞ K τ j ,M
where τ j = ( 9 /4) j , j M is the unique integer with τ j M -1 ≤ M < τ j M and for τ ≤ 9M /4, K τ,M 

τ α N ♯,α (u) ∞ M n r - 2τ τ /2 R n |H -H 1 | r ′ dy 1 r ′ dt τ α (τ ∧ τ -γ )M n r N ♯,α ( 
u) ∞ , where γ > 0 depends on r. Summing up the estimates for τ = τ j leads to

MI M M n r (1 + M α ) N ♯,α (u) ∞ .
By assumption on p we can pick (p -(L) ∨ 1) < r < p + (L) such that α < 1n /r. Then the exponent for M on the right-hand side becomes smaller than 1 and I M → 0 in the limit as M → ∞ follows.

For J M we recall from (21.27) the bound

MJ M |x|≤ 5M 2 U M (x) -- W (M,x)
|H -H 1 | dx and the previous argument for τ = M yields J M → 0 in the limit as M → ∞.

At this point we have handled the terms in (21.6) and as in the earlier steps the limits for the terms in (21.9) come for free.

Uniqueness for (D) L

Λα -conclusion of the proof of Theorem 1.3. We turn to uniqueness of solutions to the Dirichlet problem (D) L Λα with interior Carleson control. We work under the same assumptions p + (L) > n and 0 ≤ α < 1n /p + (L) as in the previous section.

The case α > 0 is particularly simple. We merely need the following general lemma to compare several functionals that all measure smoothness of order α -1.

Lemma 21.4. Let α ∈ (0, 1). There is dimensional constant ω n such that for all u ∈ W 1,2 loc (R 1+n + ),

W (t 1-α ∇u) ∞ ≤ ω n 2 α C α (t∇u) ∞ ≤ ω n 2 α C 0 (t 1-α ∇u) ∞ .
Moreover, if (21.1) holds, then

N ♯,α (u) ∞ W (t 1-α ∇u) ∞ .
Proof. For the first claim we simply note that for any F ∈ L 2 loc (R 1+n + ), -- By assumption (21.2), this integral tends to 0 as ε → 0. As for the term with H -H 1 in (21.33), we use Lemma 20.4 with r = 2 to deduce a uniform bound in ε ∈ (0, 1).

W (t,x)
The estimate for J ε,M is very similar. Indeed, t∂ t u is handled via the same argument and incorporating the Caccioppoli inequality, whereas for (H-H 1 ) /t we use Lemma 20.4 again.

The terms I M , I M and J M , J M . We estimate the terms in (21.23). Only one change to the corresponding argument for ( D) L Λ0 in Section 21.4 will be necessary. In particular, the estimates for the tilde terms that correspond to (21.9) come again for free.

The argument for I M with α = 0 in the previous section uses the interior control only once, namely to bound U τ (x) in (21.32) uniformly by N ♯,α (u) ∞ . This bound is not available under our current assumption but the following lemma provides a substitute that still suits our purpose. We defer the proof and use Lemma 21.5 to bound U τ (x) in (21.32). This yields an additional factor (1 + | ln(τ )| + ln(M)) compared to the estimates in the previous section and hence we obtain Set w := |v|, which satisfies the same assumptions. Suppose that W j = W (t j , x j ) and W k = W (t k , x k ) are two Whitney regions with non-empty intersection and suppose that t j ≤ t k . Then W j and W k are comparable in measure and the cylinder W := ( t j /2, 8t j ) × B(x k , 8t j ) contains both W j and W k . Hence, we can use Poincaré's inequality in order to give

|(w) W j -(w) W k | -- W |w -(w) W k | dtdx -- W |t∇w| dtdx C 0 (t∇w) ∞
with a implicit constant that depends only on n. If W 1 , . . . , W k is a chain of Whitney regions with the property that each region intersects its successor, then a telescopic sum yields

|(w) W 1 -(w) W k | k C 0 (t∇w) ∞ .
We write W 1 → W k in that case. Now, we fix (t, x) ∈ R n . Since w is locally integrable, it suffices to construct a chain W (t, x) → W (1, 0) of length controlled by 1 + | ln(t)|+ln(1+|x|). One possible construction is as follows. Successively halving or doubling t, we obtain a chain W (t, x) → W (1, x) of length comparable to 1+| ln(t)|. If |x| < 1, then W (1, x) and W (1, 0) intersect and we are done. If |x| ≥ 1, then in the same manner we obtain chains W (1, x) → W (2|x|, x) and W (1, 0) → W (2|x|, 0) of length comparable to ln(1 + |x|). Moreover, W (2|x|, x) and W (2|x|, 0) intersect.

Uniqueness for (D) L

Ẋs,p -conclusion of the proof of Theorem 1.4. The last uniqueness result concerns the problems (D) Ẋs,p with fractional regularity data. As usual, X denotes B or H and Y is the corresponding solution space of type Z or T. Figure 17 and Figure 18 show the regions of exponents that we are aiming at in an ( 1 /p, s)-plane. In the previous sections we have already obtained uniqueness on the bottom and top segments. In any case we assume (21.1) and ∇u Y s-1,p < ∞, which by definition of tent and Z-spaces corresponds to one of the interior controls in Lemma 21.1.

Case 1: The rectangle. According to the trace theorem from Proposition A.8, there exists a function Θ ∈ L p such that U t (x) ≤ t s Θ(x) ((t, x) ∈ R 1+n + ). Hence, (21.20) holds with α = s and the general result from Case 2 for the regularity problem applies directly.

Case 2: The left-hand triangle or trapezoid. Since we still work with finite exponents, assumption (21.20) holds as in Case 1 with exponent α = s. Thus, we can apply the general result from Case 3 for the Dirichlet problem provided that the exponents satisfy the respective assumption (21.29). But this is exactly the restriction that defines this region.

Case 3: p + (L) > n and the vertical segment. Let 0 < α < 1n /p + (L). We assume one of C 0 (t 1-α ∇u) ∈ L ∞ or W (t 1-α ∇u) ∈ L ∞ and in any case that (21.1) holds at the boundary. Lemma 21.4 yields N ♯,α (u) ∈ L ∞ and under this weaker assumption we have already shown u = 0 in Section 21.4.

Case 4: The right-hand triangle. The argument in Case 1 for the regularity problem implicitly contains a more general result that applies here. In view of the technicalities concerning the choice of exponents in that argument we have decided to stick with the version at regularity s = 1 earlier on and here we provide the required generalization.

We begin with the substitute for Lemma 21. Proof. Since p < r, we can use the mixed embedding for tent and Zspaces from [3, Thm. 2.34] to the effect that Y s,p ⊆ Z α,r if αs = n( 1 /r -1 /p). This means that and as before -αr reveals itself as the same exponent than in the claim.

Lemma 21.6 allows us to control ∇u and u in certain Lebesgue norms exactly as it was the case with Lemma 21.3, except that we have different powers of t to compensate: t n( r p -1)+(1-s)r and t n( r p -1)-sr replace t n( r p -1) and t n( r p -1)-r , respectively, that is to say, we have an additional power t (1-s)r . Armed with this observation, we pick again (1 ∨ p -(L)) < r ≤ 2 and follow the proof in Case 1 of Section 21.2 verbatim. We only have to check that the additional power of t still allows us to pass to the limits.

As for I M,ε,R and I M,ε,R , the different power of t only changes the implicit constant that depends on ε, R. Hence, these terms vanish when sending M → ∞ as before.

The estimates for J ε,M and J ε,M are more delicate since now we obtain ε s-n( 1 p -1 r ) as factor in (21.15) and (21.17) if we want to control the respective integral on the right via Lemma 21.6. We need to pick an admissible r such that the exponent is non-negative.

In dimension n ≥ 2 we pick r := np n-ps since then the exponent of ε vanishes. In particular, using also the restriction on p, we have

1 p - 1 r = s n > 1 p - 1 p -(L) ∨ 1 ,
which in turn implies that r > (p -(L) ∨ 1). On the other hand, s ≤ 1 implies r ≤ p * and at the same time we have p ≤ (p -(L) ∨ 1) ≤ 2 * by Proposition 6.7. Thus, r ≤ 2 and we conclude that r is admissible.

In dimension n = 1, Proposition 6.7 yields p -(L) = 1 /2 = 1 * . Hence, our assumption on p is 1 /(s+1) < p ≤ 1 and this allows us to pick r > 1 sufficiently close to 1 such that 1 /r ≥ 1 /ps. Consequently, the exponent for ε in (21.15) is non-negative and we conclude as before.

Likewise, we obtain for J R,M and J R,M the new factor R (s-1)-γ-n( 1 p -1 r )

in (21.16) and (21.18). The exponent is negative since we have s < 1, γ > 0 and r > p. This completes the proof.

The Neumann problem

We begin by recalling the construction of energy solutions to the Neumann problem. We use again the energy space Ẇ1,2 (R 1+n + ) from Section 16.1.

If u ∈ Ẇ1,2 (R 1+n + ) is a weak solution to Lu = 0 in R 1+n + , then there exists a unique element ∂ ν A u(0, •) ∈ Ḣ-1 /2,2 such that

R 1+n + A∇u • ∇φ dtdx = -∂ ν A u(0, •), φ(0, •) (φ ∈ Ẇ1,2 (R 1+n + )),
where on the right-hand side we use the duality pairing between Ḣ-1 /2,2 and Ḣ1 /2,2 . Indeed, by assumption on u and Lemma 16.2, the left-hand side is a bounded anti-linear functional on Ẇ1,2 (R 1+n + ) that vanishes whenever φ(0, •) = 0 and therefore it defines a bounded anti-linear functional on the trace space Ḣ1 /2,2 . We call ∂ ν A u(0, •) the (inward pointing) conormal derivative of u at the boundary. Moreover, ∇u 2 f Ḣ-1/2,2 and lim t→∞ u(t, •) = 0 in Ḣ1 /2,2 .

Proof. This is just the Lax-Milgram lemma applied in Ẇ1,2 (R 1+n + ). The limit at t = ∞ follows from Lemma 16.1.

In the situation above we call u the energy solution to Lu = 0 in R 1+n + with Neumann data f . Much alike to Section 16.1 the energy solution coincides with the Poisson semigroup extension for suitable data. Throughout, we use the (extension to an) isomorphism L 1/2 : Ẇ1,2 → L 2 with inverse L -1/2 . By duality and similarity we also obtain an (extension to an) isomorphism aL 1/2 : L 2 → Ẇ-1,2 . Proposition 22.2. If f ∈ L 2 ∩ Ẇ-1,2 , then the energy solution with Neumann data f is given by u(t, x) = -e -tL 1/2 (aL 1/2 ) -1 f (x).

Proof. Set g := -(aL 1/2 ) -1 f . Then g ∈ Ẇ1,2 ∩L 2 and, by interpolation, g ∈ Ḣ1 /2,2 . It follows from Proposition 16.5 that u(t, x) := e -tL 1/2 g(x) is an energy solution to Lu = 0 in R 1+n + . In order to determine its Neumann datum, we let φ ∈ C ∞ 0 (R 1+n ). By the functional calculus on L 2 we have au ∈ C 1 ([0, ∞); L 2 ) with a∂ t u(0, •) = f . Hence, we can integrate by parts in t and use the definition of L to give

R 1+n + A∇u • ∇φ dtdx = - R n f • φ(0, •) dx.
The L 2 -pairing on the right-hand side can also be viewed as the Ḣ-1 /2,2 -Ḣ1 /2,2 -duality. Then the identity can be extended to all φ ∈ Ẇ1,2 (R 1+n + ) and we conclude ∂ ν A u(0, •) = f .

The semigroup construction provides solutions to the Neumann problem (N) L p in an appropriate range of exponents.

Proposition 22.3. Let q -(L) < p < q + (L). If f ∈ H p ∩ L 2 ∩ Ẇ-1,2 , then the energy solution u with Neumann data f satisfies N * (∇u) p ≃ f p .

Proof. We have q -(L) = p -(L) and q + (L) < p + (L), see Theorem 6.2.

Letting g := -(aL 1/2 ) -1 f ∈ W 1,2 as before, we obtain from Proposition 17.7 and Theorem 11.1 that

N * (∇u) p ≃ ∇ x g H p ≃ aL 1/2 g H p = f H p .
Proof of Theorem 1.5. Let q -(L) < p < q + (L). According to Corollary 15.2 this range is the same as what is called I L in [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF]. We have seen in the introduction (Section 1.7) that it suffices to prove the bound N * (∇u) p f H p , whenever f ∈ H p ∩ Ḣ-1 /2,2 and u is the energy solution with Neumann data f .

By the universal approximation technique we an pick for any given f a sequence (f k ) ⊆ H p ∩ L 2 ∩ Ẇ-1,2 with f k → f as k → ∞ in both H p and Ḣ-1 /2,2 . It follows from Proposition 22.1 that the corresponding energy solutions u k tend to u in Ẇ1,2 (R 1+n + ), whereas Proposition 22.3 implies that (∇u k ) k is a Cauchy sequence in T 0,p ∞ . The limits can be identified in L 2 loc (R 1+n + ) and the conclusion follows. Let us conclude with an additional uniqueness result for the Neumann problem. We remark that in our formulation of the Neumann problem the convergence of the conormal derivative to its trace is in the sense of distributions. By [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF]Cor. 1.2], the Whitney averages convergence of the conormal derivative of the unique solution to its trace comes as a bonus if p ≥ 1 with q -(L) < p < q + (L). In the case of block systems, one can reverse these interpretations of the boundary behavior and still obtain uniqueness, hence compatible well-posedness.

We turn our attention to non-tangential trace theorems. u(s, y) dsdy = u 0 (x).

As a pointwise limit of measurable functions, such a trace is necessarily measurable. The following is a variation of Kenig-Pipher's trace theorem [START_REF] Kenig | The Neumann problem for elliptic equations with nonsmooth coefficients[END_REF]Thm. 3.2] that covers exponents p ≤ 1 and applies to averaged non-tangential maximal functions. This has appeared (without proof) in many earlier works and we take the opportunity to close the gap.

Proposition A.5. Let p ∈ ( n /(n+1), ∞) and q ∈ [1, ∞). Let u ∈ W 1,q loc (R 1+n + ) satisfy N * ,q (∇u) p < ∞. Then there exists a non-tangential trace u 0 with the following properties.

(i) Let r ∈ (0, ∞) and assume r ≤ (n+1)q n+1-q if q < n + 1. For almost every x ∈ R n and all t > 0, --

W (t,x)
|u(s, y)u 0 (x)| r dsdy 1 r ≤ Ct N * ,q (∇u)(x).

In particular, the left-hand side tends to 0 as t → 0 and u 0 does not depend (in the almost everywhere sense) on the choice of the Whitney parameters. (ii) u 0 of class Ḣ1,p (R n ) with ∇ x u 0 H p ≤ C N * ,q (∇u) p . (iii) Let r be as in (i) and suppose in addition that r < np n-p if p < n. Then, N * ,r uu 0 t p ≤ C N * ,q (∇u) p .

(iv) Suppose that either p ≥ 1 or that p < 1 and that there exists ε > 0 such that sup 0<t<ε u(t, •) np n-p < ∞. Then, Remark A.6. In applications we usually have q = 2 and r ∈ [0, 2], which is admissible in (i). Also r ∈ (0, 1] is always admissible in (iii). Identification of the non-tangential trace with a distributional limit seems to be far from obvious in the case p < 1. We got the idea to impose the additional condition on u from [61, Lem. 5.2]. In our applications to the regularity problem (R) L p it follows from Sobolev embeddings and strong continuity of the Poisson semigroup.

For the proof we need a simple lemma on real functions. Lemma A.7. Let h : (0, ∞) → R be a function for which there are constants θ > 1, α > 0 and C ≥ 0 such that |h(t)h(τ )| ≤ Ct α , whenever τ ∈ [θ -1 t, t]. Then h(0) = lim s→0 h(s) exists and satisfies |h(t)h(0)| ≤ Ct α 1θ -α (t > 0).

Proof. Given 0 < τ ≤ t, let k be the smallest integer with τ ≤ θ -k t. By a telescopic sum we find

|h(t) -h(τ )| ≤ |h(θ -k t) -h(τ )| + k j=1 |h(θ -j+1 t) -h(θ -j t)| ≤ k+1 j=1 Cθ α(-j+1) t α ≤ Ct α 1 -θ -α .
This proves the Cauchy property for h at 0. Hence, h(0) is defined and the estimate follows by sending s → 0.

Proof of Proposition A.5. Throughout the proof we write N large * ,q for a non-tangential maximal function with Whitney parameters c large 0 > c 0 and c large 1 ≥ c 1 that will be further specified if needed. We denote the associated Whitney regions by W large (t, x). |u -(u) W (t,x) | q dsdy 1 q t --W large (t,x) |∇u| q dsdy 1 q ≤ t N large * ,q (∇u)(x),

Proof of (i)

(A.2)
where the third step is due to the (Sobolev-)Poincaré inequality on cylinders. From the assumption on u and Lemma A.1 we obtain that N large * ,q (∇u)(x) is finite for a.e. x ∈ R n . In this case Lemma A.7 yields the existence of a non-tangential trace u 0 (x) with control |(u) W (t,x)u 0 (x)| ≤ Ct N large * ,q (∇u)(x). (A.3) This argument works for any choice of Whitney parameters. In order to see that u 0 is always the same, it suffices (by transitivity) to verify

The additional restriction on r makes sure that we can find some ̺ ∈ (1, p ∧ n) such that n̺ /(n-̺) ≥ r. Hence, by Hölder's inequality followed by the Sobolev-Poincaré inequality, we have for a.e. x ∈ R n and all t > 0. The right-hand side is admissible for (A.5) by assumption on u, the L p/̺ -boundedness of the maximal function and the result of (ii).

We turn to the case p ≤ 1. Since p > n /(n+1), we can pick ̺ ∈ ( n /(n+1), p) with n̺ /(n-̺) ≥ (r ∨ 1). Since the function g in (A.4) is locally ̺-integrable, we have Hajlasz's Sobolev-Poincaré inequality , see [START_REF] Hajłasz | Sobolev spaces on metric-measure spaces[END_REF]Thm. 8.7]. Hence, except for replacing ∇ x u 0 by g, the argument stays the same.

Proof of (iv). Let B ⊆ R n be a ball and let φ ∈ C ∞ 0 (B). We use the averaging trick to write (A.8)

We have to show that the right-hand side tends to 0 as t → 0. From now on, we require t < r(B) /c 1 , so that all functions F φ t have support in 2B.

If p ≥ 1, then (A.5) for the admissible choice r = 1 gives us |F φ t (x)| ≤ φ ∞ th(x) and h is locally integrable, so we are done.

In the case p < 1 we need a different argument and this is where the additional assumption C := sup 0<t<ε u(t, •) np/(n-p) < ∞ comes into play. We abbreviate p * := np /(n-p) > 1. We can restrict ourselves to t < (ε∧r(B)) /c 1 and x ∈ 2B. In this case, B(x, c 1 t) ⊆ 3B and by Hölder's inequality we can crudely bound --

W (t,x) |u -u 0 | dsdy t 1-n p - c 0 t c -1 0 t
u(s, •)u 0 L p * (3B) ds ≤ 2Ct 1-n p , as u 0 ∈ L p * loc from the Hardy-Sobolev embedding or by the following direct argument. We have, for t small enough, using Hölder's inequality and averaging, Thus by Fatou's lemma, we obtain 3B |u 0 | p * dx ≤ C p * . Now, we use the p-th power of (A.5) (with r = 1) and the (1p)-th power of the crude bound in order to get for a.e. x ∈ 2B that

|F φ t (x)| ≤ φ ∞ -- W (t,x)
|uu 0 | dsdy ≤ φ ∞ (2C) 1-p t 1+n-n p h(x) p .

On the right the power of t is positive since p > n /(n+1) and we have h p ∈ L 1 . Thus, we get the desired convergence in (A.8) when passing to the limit as t → 0.

Next, we present variants of the non-tangential trace theorem for tent and Z-spaces. In our application we shall only encounter functionals based on L 2 -averages such as S and W that used to define tent and Zspaces, respectively. For simplicity we stick to that case. The following result have a appeared in [START_REF] Barton | Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces[END_REF]Thm. 6.3] (p = ∞) and [3, Sec. 6.6] (p < ∞). For the sake of self-containedness we include a proof that follows the same pattern as before. The lower bound on p, notably to identify the non-tangential trace with a distributional limit, is now related to fractional Sobolev embeddings and the argument turns out to be conceptually simpler than in Proposition A.5.

As usual, we treat both scales of spaces simultaneously and let Y denote one of T or Z.

Proposition A.8. Let α ∈ (0, 1) and n /(n+α) < p < ∞. Let u ∈ W 1,2 loc (R 1+n + ) satisfy ∇u Y α-1,p < ∞. Then there exists a non-tangential trace u 0 with the following properties.

(i) Let r ∈ (0, ∞) and assume r ≤ 2(n+1) n-1 if n > 1. For all x ∈ R n and all t > 0, --

W (t,x) |u(s, y) -u 0 (x)| r dsdy 1 r ≤ Ct α Θ(x)
with Θ p ≤ C ∇u Y α-1,p . In particular, the left-hand side tends to 0 almost everywhere as t → 0 and u 0 does not depend on the choice of the Whitney parameters. (ii) There is convergence (iii) The results above continue to hold for p = ∞ and ∇u ∈ Z α-1,∞ .

In that case Θ(x) = ∇u Z α-1,∞ and u 0 is of class Λα with u 0 Λα ≤ C ∇u Z α-1,∞ .

The following lemma contains the construction of the function Θ in part (i) for finite p.

Lemma A.9. Let α ∈ R, p ∈ (0, ∞) and F ∈ Y α-1,p . There exists a measurable function Θ : R n → [0, ∞) with Θ p ≤ C F Y α-1,p such that -- since W (t, x) is contained in the cone appearing in the integral. By a change of aperture in tent space norms we conclude that Θ p ≃ ∇u T α-1,p .

W (t,x) |s 1-α F | 2 dsdy
Proof of Proposition A.8. We use the same notation as in the proof of Proposition A.5 and follow the same line of thoughts.

Proof of (i). Let c large 0 := 2c 0 . If τ ∈ [ t /2, t], then both W (τ, x) and W (t, x) are contained in W large (t, x) and using the Poincaré inequality with q = 2 as in (A.2), we obtain The case µ = π with the convention that C \ S + π := (-∞, 0) is also permitted. Then there is a (unique) sectorial operator T p in L p of angle smaller than µ that satisfies

|(u) W (τ,x) -(u) W (t,x) | t -- W large (t,x)
(z -T p ) -1 f = (z -T ) -1 f (f ∈ L p ∩ L 2 , z ∈ C \ S + µ ). (B.2)
Moreover, T p f = T f for f ∈ D(T p ) ∩ D(T ) and if T is injective then so is T p . The corresponding statement for bisectorial operators also holds.

Remark B.2.

The assumption with µ = π simply means that T satisfies (1 + t 2 T ) -1 f p f p for all f ∈ L p ∩ L 2 and all t > 0.

The operator T p is usually called L p -realization of T . We have tried to avoid passing to an L p -realization whenever possible, but knowing that we always can turns out helpful when dealing with abstract results that do not need a distinguished space such as L 2 to start with. One such example is Theorem 9.18.

Condition (B.1) is obviously necessary for the existence of a L prealization with consistent resolvents as in (B.2) and the latter uniquely determines T . We also obtain consistency of T p and T , whereas consistency of general invertible operators does not imply consistency of their inverses, compare with the discussion in Section 13. By (B.3), R(-1)f = 0 implies R(z)f = 0 for all z. Then f = 0 follows from (B.4), so R(-1) is injective. We show that T p := -R(-1) -1 -1 has the required properties.

For f ∈ D(T p ) we have R(z)(z -T p )f = R(z)((z + 1)R(-1) + 1)R(-1) -1 f = f, where the final step uses (B.3). Likewise, for g ∈ L p we have R(z)g = R(-1)(g -(z + 1)R(z)g) ∈ D(T p ) and (z -T p )R(z)g = (z + 1 + R(-1) -1 )R(z)g = g. 
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Figure 1 .

 1 Figure 1. Compatible well-posedness region for Besov and Hardy-Sobolev data when p + (L) ≤ n.

Figure 2 .

 2 Figure 2. Compatible well-posedness region for Besov and Hardy-Sobolev data when p + (L) > n but p -(L ♯ ) ≥ 1.

  in the sense of distributions. Again, there are local versions denoted by W 1,p loc (O). 2.2. Tent spaces. Tent spaces have been introduced by Coifman-Meyer-Stein in [35]. Good sources for detailed proofs are [1, 2]. For x ∈ R n we introduce the cone with vertex x, Γ(x) := {(s, y) ∈ R 1+n + : |x -y| < s}, and define the corresponding (conical) square function for measurable functions F : R 1+n + → C N by

Γ

  α (x) := {(s, y) ∈ R 1+n + : |x -y| < αs} for any fixed α > 0. This change of angle yields equivalent tent space norms [35, Prop. 4].

Theorem 3 . 4 (

 34 Axelsson-Keith-McIntosh). The operators BD and DB have bounded H ∞ -calculi on the closure of their ranges. Let now µ ∈ (2ω BD , π) and ψ ∈ Ψ + + (S + µ ). Then ϕ defined by ϕ(z) := ψ(z 2 ) belongs to Ψ + + (S µ/2 ). From (3.3) we obtain ψ(L) 0 0 ψ(M) = ψ((BD) 2 ) = ϕ(BD). (3.14) The same argument works for L, M by referring to DB instead. McIntosh's theorem implies the following Corollary 3.5. The operators L and L have bounded H ∞ -calculi on L 2 . Likewise, M and M have bounded H ∞ -calculi on the closure of their ranges. Since B is accretive on H = R(DB) and maps this space onto BH = R(BD), it follows that B| H : R(DB) → R(BD) is invertible and that the restrictions of BD and DB to the closure of their ranges are similar under conjugation with B| H . Therefore ϕ(BD)B = Bϕ(DB) (3.15)

3. 5 .

 5 Adjoints. We note that the adjoint of a (bi)sectorial operator in a Hilbert space is again bisectorial of the same angle [53, Prop. 2.1.1] and that B * has the same properties as B. Since B is bounded, we have (BD) * = DB * and likewise (B * D) * = DB, which yields (DB) * = B * D because B * D is closed. Since all these operators are bisectorial, we obtain ((BD) 2 ) * = (DB * ) 2 , which in matrix form reads

  for some dimensional constant C. Let η := e (αd/|t|)ϕ -1 and observe that η = 0 (on E) and η = e αd |t| -

Figure 4 .

 4 Figure 4. Visualization of the proof of Lemma 4.4.

Figure 5 .

 5 Figure 5. Canonical completion: ϕ, ψ ∈ Ψ ∞∞ are siblings and P is the unique bounded linear map for which the diagram commutes. It follows that P is a projection from Y s,p onto ψX s,p . By the universal approximation technique for Y-spaces, projections for different choices of admissible spaces are compatible. The bottom part of the diagram also identifies ψX s,p ∩ Q ψ (X 0,2 T ) = Q ψ (X s,p T ).

  and a function b ∈ D(T M ) that satisfies T M b = m and the following estimates for j = 1, 2, . . . and k = 0, 1, . . . , M:

  and we have used Tonelli's theorem to bound the integrals in x. By the molecular properties, we can write m = T M b. Since ψ ∈ Ψ 2M 2M , we have a uniform L 2 -bound for (tT ) M ψ(tT ), which together with Remark 8.15 leads us to

Figure 6 .

 6 Figure 6. Identification of Hardy-Sobolev and Besov spaces up to equivalent quasinorms in the unperturbed case B = 1.

  Figure 7 are due to (8.18) and Corollary 8.11.

  ) for some admissible M and ε = 1. It suffices to check that there is a constant c such that m H p ≤ c for every (H p DB , 1, M)-molecule. Writing m = D(B(DB) -1 m), we see that m is a generic multiple of an (H p D , 1, 1)-molecule. The required bound follows from Corollary 8.29. Now, we can use Figure 8 as follows to complete Part 4. Moving from the third to the fourth row, we obtain for

Part 6 :

 6 h -(L) ≤ p -(L). Let p ∈ (p -(L), 2]. We have to prove that a -1 (H p ∩ L 2 ) = H p L with equivalent Hardy norms. The inclusion '⊆' was obtained in Part 5 for p ∈ (p -(L), 1] and in Proposition 9.11 for p ∈ (p -(L) ∨ 1, 2]. The converse was obtained in Part 4 in the range p ∈ (1 * , 2]. Part 7: h 1 -(L) ≤ (p -(L) * ∨ 1 * ). Let p ∈ (p -(L) * ∨ 1 * , 2]. We have to prove Ḣ1,p ∩ L 2 = H 1,p L with equivalent Hardy norms. We have obtained '⊆' in Part 5 for p ∈ (p -(L) * ∨ 1 * , 1] and in Proposition 9.12 for p ∈ (p -(L) * ∨ 1, 2]. The converse follows again from Part 4. Part 8: h + (L) ≥ p + (L). Let p ∈ (2, p + (L)). In Part 2 we have obtained L p ∩ L 2 ⊆ H p L with continuous inclusion for the p-norms. It remains to establish the opposite inclusion and this will follow by duality.

21 , 1 .

 211 Section 3]. 13.Compatible adapted Hodge decompositions. The following discussion extends and streamlines the presentation in [6, Sec. 4.5]. Lemma 13.4. Let p ∈ (1, ∞). Then p ∈ P(L 0 ) if and only if Λ extends by density from Ẇ1,p ∩ Ẇ1,2 to an isomorphism Ẇ1,p → Ẇ-1,p whose inverse agrees with Λ -1 on Ẇ-1,p ∩ Ẇ-1,2 . In particular, P(L 0 ) is an open set.

  ) and the action of D is in the sense of distributions. Then BD is defined as an unbounded operator in L p with domain D p (BD) = D p (D), null space N p (BD) and range R p (BD). Similar to Definition 13.6, one introduces the set of exponents with plower bounds I(BD) := {p ∈ (1, ∞) : Bf p f p for all f ∈ R p (D)} and the analogous set with B * replacing B. They are open but possibly non-connected and I 2 denotes the connected component of I(BD) ∩ I(B * D) ′ that contains p = 2. Here, I ′ = {p ′ : p ∈ I} is the dual set of a given I ⊆ (1, ∞).

Lemma 16 . 6 (

 166 Caccioppoli). Let O ⊆ R 1+n be open, g ∈ L 2 loc (O) and u a weak solution to Lu = g in O.

Lemma 18 . 4 .

 184 The solution u satisfies lim t→0 --

Lemma 18 . 6 .

 186 Let α ∈ [0, 1). Each f ∈ Λα ∩ Ḣ1 /2,2 can be decomposed in Λα ∩ Ḣ1 /2,2 as f = f loc + f glob , where f loc ∈ Ẇ1,2 and f glob ∈ L 2 .

  17

  )

19. 1 .

 1 Fractional identification regions. As in Section 8 we treat adapted Hardy-Sobolev and Besov spaces simultaneously by letting X denote one of B or H. As before, 'identification' means 'equality of sets with equivalent p-quasinorms'.Proposition 19.1. Identification X s,p L = Ẋs,p ∩ L 2 holds for all exponents corresponding to the interior of the colored trapezoidal region in Figure10.Proof. Theorem 9.6 yields H 1,p L = Ḣ1,p ∩ L 2 and H

Figure 10 .

 10 Figure 10. Identification X s,p L = Ẋs,p ∩ L 2 up to equivalent p-quasinorms holds for all exponents corresponding to the interior of the colored trapezoidal region. The picture is up to scale when p -(L) ≥ 1. When p -(L) < 1, the top blue point is situated at ( 1 /p -(L), 1).

Figure 12 .

 12 Figure 12. Extension of Figure 11 to the left in the case p -(L ♯ ) < 1. The extension only concerns exponents with p ≥ q + (L) > 2. The length of the vertical segment on the left is at most n /p -(L ♯ )n.

Figure 14 .

 14 Figure 14. Figure 13 in dimension n = 1 and in any dimension for the special case L = -a -1 ∆ x or more generally when d depends only on one coordinate.

  We used (f ) Q = 0 in the second to last step and Jensen's inequality and |y -z| ℓ(Q) in the final step. Modification of Part 5: The bound ' '. We fix g ∈ C ∞ 0 with R n gdx = 0 and consider the extended L 2 -duality pairing f, g . We use the same notation as in Part 5 of Section 18. The only difference in the argument appears in Step 5, where we have to handle R 1+n + |t∇ x u| • |t∇ x v| dtdx t (19.6) by a duality. The argument is repeated twice in Step 6 for t-derivatives of u. The control of these integrals determines the bound for | f, g |. We recall from (18.27) the notation

Proposition 20 . 1 (

 201 [START_REF] Auscher | On uniqueness results for Dirichlet problems of elliptic systems without De giorgi-Nash-Moser regularity[END_REF] Prop. 4.5]). Assume

21. 1 .

 1 Review of the strategy of proof of uniqueness. Throughout, we denote by •, • the sesquilinear duality pairing between distributions and test functions in R 1+n + . Since we are dealing with a linear equation, it suffices to assume that u solves one of (R) L p , (D) L p , (D) L Λα , ( D) L Λα , (D) L Ẋs,p

  lim

W 2 )

 2 (t,x) |u(s, y)| dsdy = 0 (a.e. x ∈ R n ), (21.1) If u, G = 0 for all test functions of the form G

Proposition 21 . 2 .

 212 Suppose that u solves one of the problems (R) L p , (D) L p , (D) L Λα , ( D) L Λα , (D) L Ẋs,p with boundary data f = 0. If the right hand side of (21.4) converges to 0 as θ → 1 everywhere on R 1+n

  x (H -H 1 )| dsdy.(21.25) 

/ 2 |H -H 1 |

 21 . Now, we bring again the maximal functions into play and use the averaging trick and (21.20) to give K τ,M τ α |y|≤5M M(Θ)(y) -2τ τ dt dy. (21.26)

( 21 . 27 )

 2127 and repeating the argument from (21.26) onward yields the same bound

Case 3 :

 3 p + (L) ≤ p < p + (L) * . We fine-tune the strategy in Case 2 for the regularity problem. Once again, working under the general assumptions (21.1) and(21.20) does not pose any additional difficulty. However, the range of admissible exponents now changes with the parameter α in (21.20) and we need to assume

2 |H -H 1 ||H -H 1 |

 211 dt dy.With a choice of (p -(L) ∨ 1) < r < p + (L) that will specified later on, we obtainK τ,M τ α r ′ dydt 1 r ′ τ α (τ ∧ τ -γ )M n p ′ -n r ′ Θ p = τ α (τ ∧ τ -γ )M n r -n p Θ p .We have used Hölder's inequality in the first line, the maximal theorem and again Hölder's inequality in the second one, Jensen's inequality in the third one and Lemma 20.4 with exponent r ′ in the fourth one. The exponent γ is positive and depends on r. Summing up the estimates for τ = τ j yieldsMI M M n r -n p (1 + M α-γ ) Θ p .

2τ τ / 2 |H -H 1

 21 | dt dy see(21.27). The steps above with τ = M yield the same boundMJ M M n r -n p (1 + M α-γ ) Θ p from which we conclude J M → 0 as M → ∞.

M 2 ≤|x|≤ 5M 2 U 2 |H -H 1

 221 τ (x) --W (τ,x) |H -H 1 | dx. (21.32) We use (21.31), Hölder's inequality and Lemma 20.4 with an exponent (p -(L ♯ ) ∨ 1) < r ′ < p + (L ♯ ) to be specified yet in order to give K τ,M τ α N ♯,α (u) | dt dy

|s 1 - 2 ≤ ω n 2 α t α 2t 0 - 2 ≤ ω n 2 α 2t 0 -B 2 - 3 |∂ 2 .( 21 . 33 )

 120202322133 α F (s, y)| 2 dsdy 1 (x,2t) |s 1-α F (s, y)| 2 dyds s 1 and taking suprema in t and x on both sides yields the claim. Under assumption (21.1) the second claim follows from the trace theorem in Proposition A.8.(iii).To prove uniqueness of solutions to (D) L Λα , we assume C α (t∇u) ∈ L ∞ and that (21.1) holds. Lemma 21.4 yields N ♯,α (u) ∈ L ∞ and under this weaker assumption we have already shown u = 0 in the previous section.It remains to treat the BMO Dirichlet problem (D) L Λ0 . We assume therefore C 0 (t∇u) ∈ L ∞ and for the first time (21.2). We implement the strategy of Section 21.1 with R = M and first send ε → 0 and then M → ∞ in (21.6) and (21.9).The terms J ε,M and J ε,M . The Cauchy-Schwarz inequality yieldsJ ε,M |x|≤2M t (H -H 1 )| 2 dtdx 1By covering B(0, 2M) up to a set of measure zero by pairwise disjoint cubes Q k of sidelength ε with 2Q k ⊆ B(0, 2M + 1) and using reverse Hölder inequalities for u, we obtain

Lemma 21 . 5 .

 215 If v ∈ W 1,2 loc (R 1+n + ) is such that C 0 (t∇v) ∈ L ∞ (R n ), then --W (t,x) |v| dsdy 1 + | ln(t)| + ln(1 + |x|) ((t, x) ∈ R 1+n + ).

K

  τ,M (1 + | ln(τ )| + ln(M))M n r (τ ∧ τ -γ ) with r > n and γ > 0. Summing up the estimates for τ = τ j yields MI M ≤ j M j=-∞ K τ j ,M ln(M)M n r , which still implies that I M tends to 0 as M → ∞. Likewise, using Lemma 21.5 to control U M (x) in (21.27) leads to MJ M ln(M)M n r and we conclude as before. The proof of Theorem 1.3 is complete modulo the Proof of Lemma 21.5.

Figure 17 .

 17 Figure 17. Exponents for uniqueness in Dirichlet and regularity problems in the case p + (L) ≤ n. Uniqueness holds on the open bottom and top segments (Sections 21.3 and 21.2) and the interior of the trapezoidal region (Section 21.6).

Figure 18 .• 1

 181 Figure 18. Exponents for uniqueness in Dirichlet and regularity problems in the case p + (L) > n. Uniqueness holds on the open bottom and top segments (Sections 21.3, 21.2 and 21.5), the open vertical segment at 1 /p = 0 and the interior of the trapezoidal region (Section 21.6). Exponents with 1 /p < 0 correspond to the spaces Λα with α = 1n /p as usual.We distinguish four cases.• The rectangle(p -(L) ∨ 1) < p < p + (L) & s ∈ (0, 1), • the left-hand triangle (p + (L) ≤ n) or trapezoid (p + (L) > n) p + (L) ≤ p < p + (L) * & 1 p + (L) -1 p < 1s n ,• p + (L) > n and the vertical segmentp = ∞ & 0 < s < 1 -n p + (L) ,• the right-hand triangle(p -(L) * ∨ 1 * ) < p ≤ (p -(L) ∨ 1) & 1 p -1 p -(L) ∨ 1 < s n .

3 . 21 . 6 .+ |u| r t n( r p - 1 )-sr dtdx t 1 r

 321611 Lemma If s ∈ (0, 1) and 0 < p < r ≤ 2, then for any weak solution u to Lu = 0 on R 1+n + , (21.34)R 1+n + |∇u| r t n( r p -1)+(1-s)r dtdx t 1 r ∇u Y s-1,p . Moreover, if (21.1) holds, then (21.35) R 1+n ∇u Y s-1,p .

W 1 rF 1 rF

 11 (t -α F )(τ, y) r dτ dy τ Y s,p .As r ≤ 2, Hölder's inequality implies --W (τ,y) |t -α F (t, x)| r dtdx ≤ W (t -α F )(τ, y) r (21.36)and applying the averaging trick backwards yieldsR 1+n + |t -α F (t, x)| r dtdx t Y s,p .If F := |t∇u|, then F Y s,p = ∇u Y s-1,p and sorting out the exponent for t on the left-hand side yields(21.34). Again since r ≤ 2 we can use part (i) of the trace theorem in Proposition A.8 for ∇u ∈ Z α-1,r with the same exponent r. Owing to (21.1), we obtain--W (τ,y) |t -α u(t, x)| r dtdx Θ(y) rfor some function Θ with Θ r ∇u Z α-1,r . Integrating in y and applying the averaging trick backwards yieldsR 1+n + |t -α u(t, x)| r dtdx t 1 r ∇u Z α-1,r ∇u Y s-1,p

Proposition 22 . 1 .

 221 For all f ∈ Ḣ-1 /2,2 there exists a unique solution u (modulo constants) to the problem ∇u ∈ L 2 (R 1+n + ), ∂ ν A u(0, •) = f (in Ḣ-1 /2,2 ).

  lim

W

  (t,x) a∂ t u dsdy = g(x) (a.e. x ∈ R n )

Definition A. 4 .

 4 A locally integrable function u on R 1+n + is said to have a non-tangential trace (in the sense of Whitney averages) if there exists a function u 0 on R n such that for almost every x ∈ R n ,

  , •) ds = u 0 (in D ′ (R n )).

=

  Let θ > 1 be such that c large 0 θc 0 . If τ ∈ [θ -1 t, t], then both W (τ, x) and W (t, x) are contained in W large (t, x) and we can estimate|(u) W (τ,x) -(u) W (t,x) | ≤ --W (s,x) |u -(u) W (t,x) | dsdy --W large (t,x)

- 6 )

 6 B(x,c 1 t) |u 0 -(u 0 ) B(x,c 1 t) | r dy 1 r ≤ -B(x,c 1 t) |u 0 -(u 0 ) B(x,c 1 t)Since n̺ /(n-̺) ≥ 1, we can also argue as in (A.2), using the Sobolev-Poincaré inequality in the second step, to get whenever τ ∈ [ t /2, t],|(u 0 ) B(x,c 1 t) -(u 0 ) B(x,c 1 τ ) | t M(|∇ x u 0 | ̺ )(x) 1 ̺ . Lemma A.7 yields |(u 0 ) B(x,c 1 t)u 0 (x)| t M(|∇ x u 0 | ̺ )(x) 1 ̺ (A.7) for a.e. x ∈ R n . Using the decomposition u(s, y)-u 0 (y) = u(s, y)-u 0 (x)+u 0 (x)-(u 0 ) B(x,c 1 t) +(u 0 ) B(x,c 1 t) -u 0 (y) and combining (i), (A.6) and (A.7), we arrive at --W (t,x) |u(s, y)-u 0 (y)| r dsdy 1 r t N * ,q (∇u)(x) + M(|∇ x u 0 | ̺ )(x) 1 ̺

-

  B(x,c 1 t) |u 0 -(u 0 ) B(x,c 1 t)

  ) -1 t u(s, y) dsu 0 (y) φ(y) dy =

3B|

  (u) W (t,x) | p * dx ≤ -c 0 t c -1 0 t 4B |u(s, y)| p * dyds ≤ C p * .

  ) -1 t u(s, •) ds = u 0 (in D ′ (R n )).

1 2 ≤, 2 tW

 122 CΘ(x) ((t, x) ∈ R 1+n + ).Proof. We begin with the case Y = Z and set where W large (t, x) are Whitney regions with Whitney parameter c large 0:= 2c 0 . Since W (t, x) ⊆ W large (τ, x) (τ ∈ [ t /2, t]), we can infer that --W (t,x) |s 1-α F | 2 dsdy p large (τ,x) |s 1-α F | 2 dsdy p 2 dττ and the right-hand side is bounded by Θ(x) p . Moreover, a change of Whitney parameters for Z-space norms yields Θ p ≃ F Z α-1,p .In the case Y = T we can simply setΘ(x) := |x-y|<2c 1 s |s 1-α F | 2 dsdy s n+1

|∇u| 2 dsdy 1 2 t 2 .

 22 α --W large (t,x) |s 1-α ∇u| 2 dsdy 1 Lemma A.9 applied to the 'large' Whitney regions yields a function Θ with Θ p ∇u Y α-1,p such that|(u) W (τ,x) -(u) W (t,x) | t α Θ(x).Now, we can apply Lemma A.7 to obtain a non-tangential trace u 0 (x) with control|(u) W (t,x)u 0 (x)| t α Θ(x), (A.9)whenever Θ(x) < ∞, that is, almost everywhere. That u 0 is independent of the choice of Whitney parameters follows as in the proof of Proposition A.5 and the restriction on r allows us to use the Sobolev-Poincaré inequality again in order to conclude --W (t,x) |uu 0 (x)| r dsdy 1 r --W (t,x) |u -(u) W (t,x) | r dsdy 1 r + |(u) W (t,x)u 0 (x)| t α --W (t,x) |s 1-α ∇u| 2 dsdy

1 2 +

 12 |(u) W (t,x)u 0 (x)| t α Θ(x).

2 .

 2 Proof. By (B.1) we can define R(z) as the extension by density of (z -T ) -1 to L p . Then (zR(z)) z∈C\S + µ is a uniformly bounded family in L p with the propertyR(z) -R(z ′ ) = (z ′z)R(z)R(z ′ ) (z, z ′ ∈ C \ S + µ ). (B.3)We claim that for f ∈ L p we havelim z∈(-∞,0),z→-∞ zR(z)f = f (weakly in L p ) (B.4)and if in addition T is injective, also thatlim z→0 zR(z)f = 0 (weakly in L p ). (B.5) Indeed, since T is sectorial in L 2 , the limits exist strongly in L 2 if f ∈ L p ∩ L 2 ,see [53, Prop. 2.1.1(a)]. The extension then follows by uniform boundedness and density.

  1/t dt t . Coming back to concrete operators, quadratic estimates (and hence bounded functional calculi) for BD and DB is a deep result due to Axelsson-Keith-McIntosh [25]. For a condensed proof, see also [8, Thm. 1.1]

  21. Taking the infimum over all representations yields f H p T ≤ C f H T,mol,ε,M . Conversely, let f ∈ H p T and let ψ be the auxiliary function from Lemma 8.22. According to Proposition 8.4, we can write

  are the intertwining property from Lemma 3.6 and the following Lemma 8.32 (Local coercivity inequality,[START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF] Lem. 5.14]). For any u ∈ L 2

	B(x,t)	|Du| 2	B(x,2t)

loc with Du ∈ L 2 loc and any ball B(x, t) ∈ R n it follows that

  1,2 with ∇ x u p f

p . Remark 9.10 yields S ψα,L f p f p if α is sufficiently large. If in addition α > n /(2p)n /4, then ψ α is admissible as auxiliary function for H p L and we obtain f

  Lemma 9.16. Let p ∈ (p -(L), 1] and α sufficiently large depending on n, p, p -(L). For all L 2 -atoms m for H p it follows that

		1/2	
	(9.29)	t 1+n	.
	Then S provided that we take at least α > n /(2p) -n /4. (0) ψ,L (•) p and S (1) ψ,L (•) p are equivalent norms on H p L and H 1,p L We shall establish the following bounds.

Lemma 9.15. Let p ∈ (p -(L) * ∨ 1 * , 1] and α sufficiently large depending on n, p, p -(L). For all L 2 -atoms m for Ḣ1,p it follows that S (1) ψ,L (m) p 1.

  1/2 f (x) is a weak solution to Lu = 0 in R 1+n

	+ from Proposition 16.4 and (i) as well as (iii) -(v) are contained in the previous sections. Part (ii) will mostly follow from a general trace theorem that we comment on below:
	Part	Obtained in
	(i)	Propositions 17.7 & 17.6 & Theorem 11.1.(i)
	(iii)	Proposition 17.7
	(iv)	Proposition 17.8
	(v) Proposition 17.3 & Proposition 17.4 & Theorem 11.1 since

  0, ∞); Λα weak * ), where the subscript indicates that Λα carries the weak * topology as the dual of H p , with bound Λα g H p and f Λα ≤ sup t>0 u(t, •) Λα follows. Hence, we have

		sup t>0	u(t, •) Λα	f Λα .
	In the opposite direction, Part 2 implies for all g ∈ C ∞ 0 with integral zero that
	(18.34)	| f, g | = lim t→0 u(t, •) sup | u(t, •), g | ≤ sup t>0 t>0 u(t, •) Λα ≃ f Λα .
	For the global Λα (R 1+n + ) upper bound we need a variant of the Poincaré inequality that we prove at the end of the section.
	Lemma 18.8. Let v ∈ L 2 loc (R 1+n + ) with t 1/2 ∇v ∈ L 2 loc (R 1+n +

  where G ♯ is an arbitrary test function in R 1+n + . Hence, ∂ t u ∈ L 2 loc is independent of x and we obtain u(t, x) = g(t) + f (x)

	with f ∈ L 2 loc and g : (0, ∞) → C m smooth (Corollary 16.9). If (21.1) holds, then we write
		2t	
	--W (t,x)	u(s, y) dsdy = -t/2	g(s) ds + -B(x,t)

  To implement the strategy in Section 21.1, we begin with the following lemma. The first inequality is due to Lemma A.3 applied to F := |∇u|. For the second inequality, Proposition A.5.(iii) yields N * ,1 ( u /t) p N * (∇u) p , where N * ,1 is a non-tangential maximal function that uses L 1 -averages instead of L 2 -averages. But as u is a weak solution to Lu = 0, it satisfies reverse Hölder inequalities. Hence, N * ( u /t) p N * (∇u) p , where we also used a change of parameters in non-tangential maximal functions (Lemma A.1). Applying Lemma A.3 to F := u /t concludes the proof.

	Lemma 21.3. If 0 < p < r ≤ 2, then for any weak solution u to Lu = 0 on R 1+n + , (21.12) R 1+n + |∇u| r t n( r p -1) dtdx t 1 r N Moreover, if (21.1) holds, then (21.13) R 1+n + |u| r t n( r 1 r p -1)-r dtdx t N

* (∇u) p . * (∇u) p .

Proof.

  [z] (holomorphic function), 32 C ψ,T (contraction operator), 72 Q ψ,T (extension operator), 72, 76Ψ τ σ , Ψ + + , H ∞ (classes of holomorphic functions), 32 η p , p η (conversion of p -(L) and kernel estimates), 141 γ j (oscillation estimate), 175 • σ,τ,µ (norm on Ψ τ σ (S + π-2µ ), 47 µ(L 0 ) Λα , 39 L p -L q , 38 a 1 H p -a 2 H q , 38 Λα -data, 13 main result with L p /a -1 H 1 -data, 9 solvability for Ḣs,p / Ḃs,p -data, 203 solvability for Λα / ḂMO α -data, 205 with Ḃs,p -data, 15 with BMO-data, 13 with ḂMO s -data, 15 with H s,p -data, 15 with L p -data, 9 with Λα -data, 12 with a -1 H 1 -data, 9 X) (either (T, H) or (Z, B)), 72 Z-space, 25

	of B, 31 with non-tangential trace, 238 for homogeneous smoothness	identification Theorem, 95 single layer operator, 211
	strict, 6 non-degenerate function, 32 spaces, 27	implicit constant, 22 representation by, 212
	Dirichlet property, 148 ⊥-notation, 30 ω n , ω n (kernel estimates), 145 ψ * (holomorphic conjugate z → ψ(z), 35 admissible auxiliary function, 73, 77 atom for H p , 26 for Ḣ1,p , 90 for T p , 78 atomic decomposition for H p , 26 for H p D , 89 for T p , 78 averaging trick, 25 Besov space Ḃs,p , 27 adapted to a bisectorial operator, 72 bisector (S µ ), 32 block form system in, 3 Bogovski ȋ's lemma, 182 bounded mean oscillation (BMO), 28 boundedness H p -C 0 ([0, ∞)), 10 Calderón-Zygmund decomposition for Sobolev functions, 100 Calderón reproducing formula, 34 canonical completion (ψX s,p T ), 73 Carleson functional, 23 change of angle/aperture, 24 change of Whitney parameters for N * , 25, 238 for Z-spaces, 25, 239 energy class non-tangential maximal function, 25 for tent spaces, 24 Ẇ1,2 (R 1+n + ), 157 trace, 157 with trace zero ( Ẇ1,2 0 (R 1+n + )), 158 energy solution with Dirichlet datum, 201 F (Fourier transform), 23 Fefferman-Stein characterization (of H p ), 166 Gårding inequality, 6 H (closure of R(D)), 5, 30 H(DB), 94 endpoints of, 95 H(L), 94 endpoints of, 95 characterization of, 122 H 1 (L), 94 endpoints of, 95 Hölder conjugate, 22 Hölder space ( Λα ), 28 Hardy space, 26 Riesz transform characterization via L, 122 Hardy-Sobolev space Ḣs,p , 27 adapted to a bisectorial operator, 72 for DB, BD, L, M , 91 H ∞ -calculus, 33 on H p and Ḣ1,p , 119 on X s,p T , 75 Hodge decomposition, 133 d-adapted, 133, 137 compatible, 134, 136 Hodge projector L p -boundedness, 139 adapted to Λ, 133 I(L), 62 characterization of, 120 identification of abstract and concrete spaces, 93, 195 for H p L , H 1,p L , H p DB , 94 for X s,p L , 195 for X s,p DB , 197 L 0 , 31 sector (S + µ ), 31 sibling of an auxiliary function, 73 identification region R (range), 30 Regularity problem, 10 for X s,p H p -boundedness, 120 L ♯ , 35 L, L, M, M , 31 second-order operator truncated, 63 singular integral representation, 63 L p -boundedness, 63 L -H p -bound, 108 H p Riesz transform, 36 BD , 92 regularity shift main result, 11 quantitative estimates, 22 for D, 89 for L, 123 characterization of, 139 p-lower bounds Poisson semigroup for d, 136 for B, 155 P(L 0 ), 133 P(L) R(D)), 87 P D (orthogonal projection onto q-adapted, 238 non-tangential trace, 240 off-diagonal estimates L 2 of exponential order, 36 L 2 of order γ, 36 L p -L q of exponential order, 40 well-posedness compatible, 9 Whitney average functional sharp ( N ♯,α ), 12 Whitney average functional (W ), 25 Whitney box, 25 L p -L q of order γ, 40 composition, 41 X (one of B, H), 27 for DB, BD, 36 for L, L, M, M , 38 interpolation, 45, 46 sectorial, 31 bisectorial, 32 operator relation with kernel bounds, 144 operator extensions by, 49 for the functional calculus, 47 (Y,	compatibility of the inverse, 134 conormal derivative, 236 conormal gradient, 4, 20, 211 conservation property, 49 for BD, 50 for resolvents of L, 51 for the Poisson semigroup, 53 convergence lemma, 33 critical numbers, 6, 53 a-independence, 60 for multiplicative perturbations of the Laplacian, 62 general bounds, 59 inner relationship, 54 relation to Dirichlet property, 148 relation to kernel bounds, 145 via the heat semigroup, 124 via the Poisson semigroup, 123 D (domain), 30 dimension m (number of equations), 5 n (boundary dimension), 3 Dirac operator, 30 perturbed, 31 Dirichlet problem main result with Dirichlet property, 148 duality ♥-duality, 196 for X s,p T , 75 for T s,p , 24 for Ẋs,p , 28 for Z s,p , 26 duality principle (for p -q-boundedness), 39 ellipticity constant, 5 inequality Sobolev conjugate N (L), 53 N (null space), 30 Neumann problem, 19 main result, 20 universal approximation technique T , 74 for Z-spaces, 25 T , 73 for X s,p for X s,p L -1/2 (extension by density), 36 lifting property for H s,p T , 75, 77 for Ẋs,p , 29 Littlewood-Paley operator, 27 local coercivity inequality (for B), 92 L p -realization (of an operator), 247 maximal operator (M), 21 molecular decomposition for H p T , 78 molecule (H p T , ε, M ), 77 for H p , 43 Stein interpolation, 44 Rosén's, 211 Paley-Wiener-Schwartz, 27 Mihlin multiplier, 29, 88 McIntosh-Nahmod's, 62, 151 McIntosh's, 33 Kenig-Pipher trace, 240 113 Cowling-Doust-McIntosh-Yagi's, Blunck-Kunstmann's, 64 Axelsson-Keith-McIntosh's, 34 non-tangential trace (Y α-1,p ), 245 Šne ȋberg's, 58, 122, 135 Theorem Leray-Helmholtz decomposition, 133 for uniqueness proofs, 217 test functions Caccioppoli on a cone, 163 Caccioppoli, 160 Caccioppoli (on Carleson box), 179 Hajlasz's Sobolev-Poincaré, 243 Poincaré on Carleson box, 193 reverse Hölder, 161 Sobolev-Poincaré, 101 interpolating index, 22 interpolation of Z-spaces, 30 of Besov spaces, 30 of Hardy-Sobolev spaces, 30 of tent spaces, 30 complex, 29 of operator-adapted spaces ψX s,p T , 74 real, 29 intertwining relations, 34 of Auscher-Mourgoglou, 155, 156 of Auscher-Stahlhut, 155, 156 J (L), 53 Kato problem/conjecture, 35 kernel bounds for perturbations of the Laplacian, 151 tent space, 24, 25 Kolmogorov's lemma, 83 sum of Φ-type, 186 Strichartz' BMO Sobolev spaces, 29 standard assumptions for operator-adapted spaces, 71, 76 conical (S ψ,L ), 113 vertical (V ), 113 bounds for sectorial operators, 114 bounds for L, 117 S, 23 interval lower, 22 upper, 22 Sobolev embedding theorem, 29 for Ẋs,p , 29 Sobolev space, 23 BMO, 29 homogeneous, 29 solution compatible, 160, 236 square function compatible, 201 solvability, 201 weak, 156 semigroup, 159, 236 operator for (D) L operator for the energy class, 159 Ẋs,p , 201 energy with Dirichlet datum, 159 energy with Neumann datum, 236

The reader can refer to Kenig's excellent survey[71] for background on these topics. They lie beyond the scope of our monograph.

We identify the boundary of the upper half-space with R n .

References for these techniques are[13,[START_REF] Chen | The regularity problem for uniformly elliptic operators in weighted spaces[END_REF][START_REF] Chen | Conical square functions for degenerate elliptic operators[END_REF][START_REF] Mayboroda | The connections between Dirichlet, regularity and Neumann problems for second order elliptic operators with complex bounded measurable coefficients[END_REF].

In this context the idea is pioneered in[START_REF] Auscher | Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I[END_REF][START_REF] Auscher | Solvability of elliptic systems with square integrable boundary data[END_REF].

Notation in the case m > 1 looks exactly the same and is explained in Section 1.9.

References are[START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF][START_REF] Auscher | Functional calculus for first order systems of Dirac type and boundary value problems[END_REF] 61].

Let us mention that the diagrams are up to scale when p -(L) ≥ 1 but not when p -(L) < 1. In this latter case, the top blue point is always situated at ( 1 /p-(L), 1), while the bottom point would be (1, 0).

See Proposition 19.9.

In fact this case never occurs as we shall see later on.
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Theorem 22.4. If p ≥ 1 with q -(L) < p < q + (L), then the following Neumann problem with non-tangential boundary trace is compatibly well-posed (modulo constants). Given g ∈ H p (R n ; C m ), solve

(in R 1+n + ), N * (∇u) ∈ L p (R n ), lim t→0 --W (t,x) a∂ t u dsdy = g(x) (a.e. x ∈ R n ).

Proof. In view of the preceding discussion we only need to establish uniqueness.

According to [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF]Thm. 1.1] and our identification of I L , the condition N * (∇u) ∈ L p (R n ) implies (is equivalent to, in fact) the representation of the conormal gradient of u via the [DB]-semigroup:

where

for some g ∈ H p . Assume now that the Whitney averages of a∂ t u converge to 0 almost everywhere at the boundary. By [START_REF] Auscher | Representation and uniqueness for boundary value elliptic problems via first order systems[END_REF]Cor. 1.2], we know that this limit agrees with g almost everywhere. Thus, g = 0. We conclude that F 0 vanishes identically and it follows that u is constant in R 1+n + .

Appendix A. Non-tangential maximal functions and traces

In this section we collect some technical results involving non-tangential maximal functions with a focus on non-tangential trace theorems. Throughout, we consider the Whitney parameters c 0 > 1 and c 1 > 0 fixed, write W (t, x) := (c -1 0 t, c 0 t) × B(x, c 1 t) for (t, x) ∈ R 1+n + and for q > 0 we use the q-adapted non-tangential maximal functions

defined for measurable functions on R 1+n + . In the case q = 2 we simply write N * as before. Implicit constants always depend only on the Whitney parameters, dimensions and the exponents at stake. We shall not mention this at each occurrence.

It is common knowledge that different choices of Whitney parameters yield maximal functions with comparable L p -norms. For the reader's convenience we include a proof.

Lemma A.1 (Change of Whitney parameters). Let 0 < p, q < ∞. Let c 0 , c 1 and d 0 , d 1 be two pairs of Whitney parameters and let N (c) * ,q and N (d) * ,q be the corresponding maximal functions. Then, N (d) * ,q (F ) p ≃ N (c) * ,q (F ) p for all measurable functions F : R 1+n + → R.

Proof. By symmetry it suffices to prove the estimate ' '. We write

By compactness, we find points

Using the affine transformation (s, y) → (ts, x + ty), we obtain

for an admissible constant. For measurable H : R 1+n

:= sup |x-y|<ηt |H(t, y)| be the pointwise non-tangential maximal function with aperture η. With H(t, y) := ( --W c 0 ,c 1 /2 (t,y) |F | q ) 1/q the previous bound yields

On the other hand, |y -x| < tc 1 /2 implies B(y, tc 1 /2) ⊆ B(x, c 1 t), so that

For the classical pointwise non-tangential maximal functions we can change the aperture [89, II.2.5.1]: There is

The claim follows from the previous three bounds and the layer cake formula.

Remark A.2. The covering argument in (A.1) implies as well that different choices of Whitney parameters for the Whitney average functionals yield equivalent Z-space norms.

We continue with a useful non-tangential embedding.

then there is a constant C such that for all measurable functions F :

that the trace u large 0 corresponding to the regions W large (t, x) agrees with u 0 . By the argument in (A.2) we have

* ,q (∇u)(x) and hence the limits as t → 0 are the same almost everywhere.

As for the estimate in (i) we pick some smaller Whitney parameters with associated regions w(t, x) such that W (t, x) = w large (t, x). In this scenario (A.3) becomes

and the restriction on r allows us to use the Sobolev-Poincaré inequality in order to give --

Proof of (ii). We use the following result: If there is g ∈ L p (R n ) such that for almost every x, y ∈ R n , |u 0 (x)u 0 (y)| ≤ |x -y|(g(x) + g(y)), (A.4) then u 0 ∈ Ḣ1,p with ∇ x u 0 H p g p . For p > 1 this is Hajlasz's Sobolev space characterization [54, Thm. 1] and the result for exponents n /(n+1) < p ≤ 1 has been obtained in [73, Thm. 1 & Prop. 5]. Now, let x, y ∈ R n and set t := |x -y|. We take c large 1 ≥ 1 + c 1 . Since B(y, c 1 t) ⊆ B(x, (1 + c 1 )t), we have W (t, y) ⊆ W large (t, x) and Poincaré's inequality yields again

* ,q (∇u)(x). Together with (A.3), we see that we can take g := 3C N large * ,q (∇u). Note that g p ≃ N * ,q (∇u) p by Lemma A.1.

Proof of (iii). It suffices to find a function h with h p ≤ C N * ,q (∇u) p such that for a.e. x ∈ R n and all t > 0, --

Indeed, since we are integrating s on (c -1 0 t, c 0 t) on the left-hand side, the bound required in (iii) follows immediately. The argument slightly differs depending on whether or not we have p > 1. Let us first assume that this is the case.

Proof of (ii). We begin with the case p > 1. With the notation of the proof of Proposition A.5.(iv) we have to show that R n |F φ t (x)| dx converges to 0 as t → 0. Recall that the expression F φ t defined in (A.8) is supported in 2B if the support of φ is contained in B and t ≤ 1.

We record two elementary observations.

• If y belongs to a ball B(x, c 1 t), then

Indeed, we take c large 1 ≥ 1+c 1 . Since B(y, c 1 t) ⊆ B(x, (1+c 1 )t), we have W (t, y) ⊆ W large (t, x) and Poincaré's inequality yields this inequality as before.

• For almost every y ∈ B(x, c 1 t) the first observation together with (A.9) yields

and taking into account (i) with r = 1, we are left with

The maximal theorem ensures that M(Θ) ∈ L p and since F φ t is supported in 2B we conclude R n |F φ t (x)| dx → 0 in the limit as t → 0. In the case p ≤ 1 we use the embedding Y α-1,p ⊆ Y β-1,q for 0 < p < q < ∞ and αβ = n( 1 /p -1 /q), see [3,Thm. 2.34]. We have α > n( 1 /p -1) by assumption, which allows us to pick q > 1 and 0 < β < α. Hence, we are back in the case of integrability above 1.

Proof of (iii). If p = ∞ and ∇u ∈ Z α-1,∞ , then the constant function Θ(x) := C ∇u Z α-1,∞ has the properties stated in Lemma A.9 by definition of the Z α-1,∞ -norm. Hence, we can repeat the first two steps and the second observation in the proof of (ii) yields

The following result is folklore but we could not find a precise statement in the literature.

Proposition B.1. Let T be a sectorial operator in L 2 and let p ∈ (1, ∞). Suppose that there exists µ ∈ (ω T , π) such that

This proves (z-T p ) -1 = R(z), so (B.2) holds. By a Neumann series, the uniform boundedness of the family (zR(z)) implies that T p is a sectorial operator of angle smaller than µ. Now, suppose that f ∈ D(T p ) ∩ D(T ). Then

since both terms can be expanded in terms of R(z). When z ∈ (-∞, 0) tends to -∞, the left-hand side tends to T p f weakly in L p and the righthand side tends to T f strongly in L 2 , see (B.4). This proves T p f = T f . Finally, if f ∈ N(T p ), then f = zR(z)f for all z and if T is injective, then f = 0 follows from (B.5).

The argument for a bisectorial operator is exactly the same, using z ∈ i(0, ∞) instead of z ∈ (-∞, 0) for the limits. In this case we can allow µ = π /2 with the convention that C \ S π/2 := iR.
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