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Abstract. Quantum systems with many constituents give rise to a range of
conceptual, analytical and computational challenges, hence, the label “complex
systems”. In the first place, one can think of interactions, described by a many-
body Hamiltonian, as the source of such complexity. However, it has gradually
become clear that, even in absence of interactions, many-body systems are more
than just the sum of their parts. This feature is due to many-body interference.

One of the most well-known interference phenomena is the Hong-Ou-Mandel
effect, where total destructive interference is observed for a pair of (non-
interacting) identical photons. This two-photon interference effect can be
generalised to systems of many particles which can be either fermionic or bosonic.
The resulting many-particle interference goes beyond quantum statistical effects
that are contained in the Bose-Einstein or Fermi-Dirac distributions, and is
dynamical in nature.

This Tutorial will introduce the mathematical framework for describing
systems of identical particles, and explain the notion of indistinguishability.
We will then focus our attention on dynamical systems of free particles and
formally introduce the concept of many-particle interference. Its impact on many-
particle transition probabilities is computationally challenging to evaluate, and it
becomes rapidly intractable for systems with large numbers of identical particles.
Hence, this Tutorial will build up towards alternative, more efficient methods
for observing signatures of many-particle interference. A first type of signatures
relies on the detection of a highly sensitive -but also highly fragile- processes of
total destructive interference that occurs in interferometers with a high degree
of symmetry. A second class of signatures is based on the statistical features
that arise when we study the typical behaviour of correlations between a small
number of the interferometer’s output ports. We will ultimately show how these
statistical signatures of many-particle interference lead us to a statistical version
of the Hong-Ou-Mandel effect.

The work presented in this Tutorial was one of the four shortlisted finalists
of the 2018 DPG SAMOP dissertation prize.
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1. From Interference to Boson Sampling

Interference has been a corner stone of quantum physics since its very beginning, as
can be read in Dirac’s The Principles of Quantum Mechanics [1] from 1930, where
an entire section is devoted to interference of photons. In this book, Dirac writes
that “Interference between two different photons never occurs.”, a claim which would
prove to be controversial. Several decades later, we find that Dirac’s claim is invoked
as a motivation for a series of works [2, 3, 4, 5] to show the interference between
independent laser beams.

The advent of parametric downconversion [6, 7] enabled the first interference
experiments with actual photon pairs [8, 9, 10]. In the light of this Tutorial, the most
notable of these experiments is the one by Hong, Ou, and Mandel, where a pair of
photons, entering a balanced beamsplitter from different input ports, are shown to
bunch together in one of the two output ports. In the ideal case, this interference
effect occurs with an interferometric visibility of 100%, which greatly surpasses the
50% limit [11] that is attainable with classical light (i.e. coherent states). However, it
should be noted that this 50% limit has recently been disputed [12].

The observation of the Hong-Ou-Mandel effect sparked an interest in multi-
photon interferometry [13, 14, 15, 16, 17], which ultimately led to interference
experiments with multiple photons [18, 19, 20, 21, 22, 23]. The destructive Hong-Ou-
Mandel interference has been generalised to arbitrarily many particles in multiport
interferometers by the derivation of suppression laws [24, 25, 26, 27, 28, 29, 30, 31],
and by the identification of more general principles of bunching [32, 33, 34]. As such,
many-particle interference has become a prominent branch of research in quantum
optics.

From the point of view of quantum computation, many-particle interference has
attracted growing attention due to two milestone protocols: First, the Knill-Laflamme-
Milburn scheme [35] was developed in 2001, which uses a controllable number of
photons, passive linear optics, and post-selection to construct a universal quantum
computer. Due to the limited number of photons that can be generated with modern-
day technology, the experimental realisation has remained limited to modestly sized
quantum computation with only a few qubits [36]. A second spike of interest came
with the proposal of Boson Sampling by Aaronson and Arkhipov in 2010 [37], and
the associated line of research towards quantum supremacy. In this case, the goal is
not to perform an actual computation, but rather to implement a task that cannot be
simulated by a classical computer (in polynomial time). It turns out that gathering
detector clicks from the output ports of a randomly chosen multiport interferometer
is such a task, once we inject sufficiently many photons. This work has then sprouted
a wide range of proof-of-principle experiments [38, 39, 40, 41, 42].

Developments in photonics, as described above, are highly promising in the
sense that photons are easy to manipulate while keeping decoherence effects at bay.
However, this platform currently suffers from a significant limitation: it is extremely
difficult to generate quantum states with a high number of photons. This issue
has sparked interest in other directions, such as using Gaussian quantum states of
light instead of single photons at the input of the interferometer [43, 44, 45]. Other
approaches to achieve many-particle quantum interference have diverted away from
light all together. As will be discussed throughout this Tutorial, the true nature of
many-boson interference lies within the bosonic commutation relations, which can just
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as well be achieved with bosonic atoms [46, 47, 48, 49].
Since many-particle interference is tied to the inherent indistinguishable of

photons and atoms, it should come as no surprise that many-particle interference
effects can also be unveiled for fermionic particles [27, 28, 29, 30, 31]. The most
natural candidates for implementing such interference effects are fermionic atoms
[50, 51, 52, 53, 54], but recent developments in electron quantum optics also bring
electrons into the picture [55, 56]. Finally, one may also manipulate the internal
degrees of freedom (DOF) in photons to mimic fermionic interference effects [57]. We
will see that many-boson and many-fermion interference are actually similar in many
ways, even though the latter is in fact much more tractable to simulate on a classical
computer [37].

Using matter rather than light is often unpractical due to the unavoidable de-
coherence effects, but there is also a more fundamental difference: matter interacts.
Much as interactions between cold atoms can be tuned, or electrons can be manipu-
lated, one cannot get around the fact that these particles can interact with each other.
This possibility opens many new questions about the interplay between interactions
and many-particle interference, which are currently just beginning to be explored in
a systematic way [58, 59].

In this Tutorial, we focus on a specific question related to all the above many-
particle interference effects: how can they be observed? Given that bosonic many-
particle interference is hard to simulate, it is also hard to know what exactly it should
look like in a laboratory. How can we, for example, distinguish genuine 50-particle
quantum interference from partial interference between 25 pairs of particles upon in-
jection in an arbitrary interferometer? These and related questions have formalised
as the so-called validation problem for Boson Sampling [60, 61, 62, 63, 64, 65, 22]. It
was recently proven that an absolute certification of a sampling problem such as Bo-
son Sampling is generally impossible [66], which implies that reasonable experimental
assumptions are important. In particular, it is feasible to identify certain signatures
of many-particle interference and to compare them to other sampling models, such
as for example fully distinguishable particles, which serve to model possible errors
in experiments. Such a comparison provides a way to falsify potential Boson Sam-
plers. This Tutorial will build towards explaining two specific types of signatures of
many-particle interference: general suppression laws [30, 31], and statistical signatures
[67, 21]. These signatures provide accessible benchmarks that can be used to validate
Boson Sampling, in the sense that they can exclude a range of possible alternative
models (such models can either be experimental errors or known ways of fabricat-
ing sampling data that mimic certain features of bosonic interference). The crucial
difference with certification is that validation does not guarantee that the data were
generated by a genuine Boson Sampler, but it attests that the data are more likely to
be generated by a boson sampler than by a certain set of alternatives.

The Tutorial aims to provide the broader theoretical framework of many-particle
systems, and many-particle interference in particular. The goal is to provide a detailed
look under the hood of this field of research, and elucidate the mathematical framework
that underpins these developments. In Section 2, we start out by introducing the
mathematical frameworks of first and second quantisation with the ultimate goal of
introducing multimode Fock spaces. Near the end of this mathematical journey, we
arrive at the concept of distinguishability in Section 2.3, one of the most crucial notions
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in this Tutorial. The appearance of distinguishability in a universe built up out of
identical particles is often considered confusing. In this section, we aim to clarify it
by introducing the notions of internal and external DOF, and by emphasising the
importance of the measurements that are performed on particles. In Section 3, we
use the developed mathematical framework to introduce the concept of many-particle
interference. We show how this phenomenon arises from the indistinguishability of
particles, and how it degrades when particles gradually become more distinguishable.
Internal DOF can provide and implicit type of “which-particle information”, the effect
of which is similar to that of “which-way information” in single-particle interference
experiments. We then devote Section 4 to exploring observable signatures of many-
particle interference, which ultimately lead to a statistical analog for the Hong-Ou-
Mandel distinguishability transition for many particles in multimode interferometers.

2. Many-particle systems

Any quantum particle –be it a boson or a fermion– can be described by its wave
function |ψ〉, which is an element of the Hilbert space H. This Hilbert space
encompasses all the DOF of the particle, which can range from the position in space
to its internal DOF such as spin or polarisation. H allows to define the algebra of
observables B(H), i.e. the set of bounded operators on H. For any physical observable
O ∈ B(H), we demand that O† = O to ensure that the measurement statistics
is real. With these definition, we can connect the theory to measurements of the
observable O, because the kth statistical moment mk of these measurements is given
by mk = 〈ψ|Ok|ψ〉.

The Hilbert space H provides us with a sufficient mathematical framework to
describe a single particle. When a second particle is added to the game, one could
naively be tempted to combine the DOF of both particles by forming the tensor
product H ⊗ H. This approach is valid when the particles are distinct (e.g. when
we are considering a photon and an electron), but it fails to take into account a
particularity of quantum physics: quantum particles can be identical. Indeed, nature
has made sure that two electrons with the same internal DOF are really the same
in every possible sense. We will now describe the mathematical framework that was
developed to deal with systems that comprise many of such identical particles.

This section combines elements from various textbooks in mathematical physics
[68, 69, 70, 71, 72].

2.1. Towards Fock space

In this Tutorial, we will mainly restrict ourselves to systems which can effectively
be described by a finite number of DOF. This avoids the need to dwell in the more
complicated mathematical frameworks of C∗-algebras and their representations, which
is commonly used in quantum statistical mechanics [70, 71, 72]. The mathematical
framework is based on the structure of Fock space, which we gradually introduce here.
In Section 2.1.1, we review the well-known two-particle case, which serves as a basis
for the generalisation to and arbitrary number of particles in Section 2.1.2. These
results can then, in turn, be generalised in Section 2.1.3 to spaces where the number
of particles is not fixed.
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2.1.1. Two identical particles Let us start by considering two identical particles with
wave functions |ψ1〉, |ψ2〉 ∈ H. Note that H describes the DOF of each individual
particle, and, thus, we will refer to is as the single-particle Hilbert space. Because
both particles are identical, we cannot simply combine both wave functions in a
normal tensor product (see Appendix A for more on tensor products). Physically,
any measurement of the system should remain completely unchanged when all the
DOF of each particle are swapped. In mathematical terms, this implies that the
system is invariant under the permutation of particles. Such a permutation can be
implemented by the unitary permutation operator P , which acts as

P |ψ1〉 ⊗ |ψ2〉 = |ψ2〉 ⊗ |ψ1〉. (1)

The required invariance of experimental measurements under such transformations
must be encrypted in the two-particle quantum state. Hence, the two-particle wave
function |Ψ〉 ∈ H ⊗H must fulfil the following property:

P |Ψ〉 = eiθ|Ψ〉, (2)

where θ ∈ R is a global phase (note that global phases of the quantum state have no
impact on quantum measurements). What we get from (2) is actually an eigenvalue
equation. Indeed, the two-particle wave functions are actually the eigenvectors of the
permutation operator P .

The eigenvalue (2) may remind some physicists of reflection symmetries, where
P is a type of parity operator. Indeed, we can simply observe that P 2 = 1, which
directly leads to the condition that e2iθ = 1. In other words, we find that, either
θ = 0, or θ = π. This leads us to two big classes of two-particle states:

P |ΨB〉 = |ΨB〉, and P |ΨF 〉 = −|ΨF 〉, (3)

where |ΨB〉 are the bosons, and |ΨF 〉 are the fermions. One can then use (1) to obtain
state vectors that satisfy (3) to describe a state of two identical particles with wave
functions |ψ1〉, |ψ2〉 ∈ H

|ΨB〉 = |ψ1〉 ∨ |ψ2〉 ≡
1√
2

(
|ψ1〉 ⊗ |ψ2〉+ |ψ2〉 ⊗ |ψ1〉

)
, (4)

|ΨF 〉 = |ψ1〉 ∧ |ψ2〉 ≡
1√
2

(
|ψ1〉 ⊗ |ψ2〉 − |ψ2〉 ⊗ |ψ1〉,

)
. (5)

where (4) holds when the particles are identical bosons, and (5) when they are
identical fermions. A direct consequence of the anti-symmertrisation for fermions
is Pauli’s exclusion principle: two fermions cannot occupy the same single-particle
wave function, since |ψ〉 ∧ |ψ〉 = 0.

This also implies that the actual Hilbert space of a two-boson or a two-fermion
system is smaller than H⊗H. All the relevant physics for such systems can actually
be described with the Hilbert spaces

H(2)
B ≡ span{|ψ1〉 ∨ |ψ2〉 | ψ1, ψ2 ∈ H}, (6)

H(2)
F ≡ span{|ψ1〉 ∧ |ψ2〉 | ψ1, ψ2 ∈ H}, (7)

for bosons and fermions, respectively. The “span” refers to the space generated by all
linear combinations of elements within the set. Let us remark that

H(2)
B ⊕H

(2)
F
∼= H⊗H, , (8)
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where “∼=” indicates an isomorphism, meaning that both spaces have essentially the
same structure. This particular isomorphism implies that we can obtain the full space
H⊗H by combining the fermionic and bosonic subspaces.

Note, finally, that when we consider an arbitrary observable O on such a two-
particle space, we can implement the permutation of the particles in the Heisenberg
picture: O 7→ P †OP . The demand that the physics be independent under such
permutations is verified by evaluating the kth moment

〈ΨB |(P †OP )k|ΨB〉 = 〈ΨB |P †OkP |ΨB〉 = 〈ΨB |Ok|ΨB〉, (9)

〈ΨF |(P †OP )k|ΨF 〉 = 〈ΨF |P †OkP |ΨF 〉 = (−1)2〈ΨF |Ok|ΨF 〉 = 〈ΨF |Ok|ΨF 〉. (10)

Because this holds for every k ∈ N, we can, indeed, conclude that the measurement
statistics is independent under the permutation of paricles.

2.1.2. n-particle space When we consider n identical particles with wave functions
ψ1, . . . , ψn ∈ H, the situation becomes considerably more complicated. At the root of
this complication lies the fact that there are many different ways to permute n > 2
particles, whereas for the case n = 2 there is only one non-trivial permutation – given
by (1).

In the n-particle scenario, we have to consider all possible permutations, and,
hence, cover all possible σ ∈ Sn (where Sn represents the symmetry group). We
define the permutation operator Pσ, which implements the permutation σ as

Pσ|ψ1〉 ⊗ · · · ⊗ |ψn〉 =
∣∣ψσ(1)

〉
⊗ · · · ⊗

∣∣ψσ(n)

〉
. (11)

The fundamental demand is the same as in Section 2.1.1: the statistics of
measurements must remain the same upon the permutation of particles. In analogy
with the two-particle case, this suggests that the n-particle state Ψ ∈ H⊗n must fulfil
the criterion

Pσ|Ψ〉 = eiθσ |Ψ〉, (12)

where the phase θσ can vary with σ. However, equation (12) must hold for all possible
choices of σ ∈ Sn. Therefore, the n-particle wave function |Ψ〉 is now an eigenvector
of all possible permutation operators Pσ.

To proceed, some insight in the eigenvectors of the permutation operators of
the type (11) is required. The study of such operators is narrowly related to the
representation theory of groups. The interested reader is invited to delve into the
literature [73, 74] on the Schur-Weyl duality and Young tableaux to explore the rich
features of these mathematical objects. In the present Tutorial, we simply distill the
important result: |Ψ〉 must either be fully symmetrised or fully anti-symmetrised,
which is deduced from the framework of Young stabilisers.

Hence, the state of n identical particles with wave functions ψ1, . . . , ψn ∈ H can
be described by

|ΨB〉 = |ψ1〉 ∨ · · · ∨ |ψn〉 ≡
1√
n!

∑
σ∈Sn

∣∣ψσ(1)

〉
⊗ · · · ⊗

∣∣ψσ(n)

〉
, (13)

|ΨF 〉 = |ψ1〉 ∧ · · · ∧ |ψn〉 ≡
1√
n!

∑
σ∈Sn

sign(σ)
∣∣ψσ(1)

〉
⊗ · · · ⊗

∣∣ψσ(n)

〉
, (14)
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for bosons and fermions, respectively. In literature, one often refers to many-fermion
wave functions of this type as Slater determinants. These vectors can be used to
construct the Hilbert spaces

H(n)
B ≡ span{|ψ1〉 ∨ · · · ∨ |ψn〉 | ψ1, ψ2 ∈ H}, (15)

H(n)
F ≡ span{|ψ1〉 ∧ · · · ∧ |ψn〉 | ψ1, ψ2 ∈ H}, (16)

which describe systems of n identical bosons (15) or fermions (16). These spaces

have the special property that any wave function Ψ ∈ H(n)
B/F fulfils the identity (12).

However, there is no generalisation of (8) to systems with more than two particles, as

H(n)
B ⊕H(n)

F is of much lower dimension than H⊗n.
Finally, we note that the identities (9, 10) still hold in the n-particle scenario,

which implies that the measurements of physical observables are, indeed, independent
under permutations.

2.1.3. Fock space As a final step in the description of many-particle systems, we
equip the mathematical framework with the possibility to describe fluctuating particle
numbers. In this section, we will focus on the mathematical space, the Fock space,
that is required to deal with different particle numbers. The operators that describe
changes in particle numbers will be discussed in Section 2.2.

The bosonic and fermionic Fock spaces, built on the single-particle subspace H,
are defined as

FB(H) ≡ H(0)
B ⊕H

(1)
B ⊕H

(2)
B ⊕ . . . , (17)

FF (H) ≡ H(0)
F ⊕H

(1)
F ⊕H

(2)
F ⊕ . . . , (18)

where we consider an infinite number of terms. We have introduced the direct sum
“⊕”, which is introduced in more detail in Appendix A. First, note thatH(1)

B/F is simply

the single-particle Hilbert spaceH. Furthermore, we encounter the spaceH(0)
B/F , which

represents the vacuum state, i.e. the state with out any particles. Because there is
only one possible state, denoted |0〉, that describes the system without any particles

in it, the Hilbert space H(0)
B/F is one-dimensional. A one-dimensional complex Hilbert

space is just the set of complex numbers, and, thus, H(0)
B/F

∼= C. To understand this

structure, it is instructive to consider a general many-particle wave function |Ψ〉, which
takes the form

|Ψ〉 = Ψ(0) ⊕ |Ψ(1)〉 ⊕ |Ψ(2)〉 ⊕ . . . , with |Ψ(n)〉 ∈ H(n)
B/F , (19)

which can be interpreted as a superposition of states with different particle numbers.
Note that Ψ(0) ∈ C is a complex number that describes the vacuum contribution in this

superposition; when we measure the system, there is a probability
∣∣Ψ(0)

∣∣2 observing
that the system contains no particles. Due to the probabilistic interpretation of the
wave function in quantum theory, it is crucial that Ψ is normalised, i.e.

‖Ψ‖2 =

∞∑
n=0

‖Ψ(n)‖2 = 1. (20)
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An important object for Section 2.2 is the vacuum state. This pure state is described
by a wave function that contains no particles at all:

|0〉 = 1⊕ 0⊕ 0⊕ . . . , (21)

where the 0’s represent the zero vectors in each of the n-particle spaces.
As a less trivial example, let us consider the coherent state |α〉 for a single

bosonic mode. Because we consider a single mode system there is only one mode
that can be populated by particles, which means that the single-particle Hilbert space
H is one-dimensional, i.e. H ∼= C. As a consequence, the single-mode coherent state
|α〉 ∈ FB(C). The single-mode bosonic Fock space has the special property of only
having a single state |n〉 with n particles, for each value of n ∈ N. In a quantum optics
textbook, one will find that for any α ∈ C a coherent state can be constructed as

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉, (22)

In the the Fock space formalism as introduced in (17), we can express |α〉 in the form
(19) as

|α〉 = e−
|α|2

2 ⊕ αe− |α|
2

2 ⊕ α2

2
e−
|α|2

2 ⊕ · · · ⊕ αn√
n!
e−
|α|2

2 ⊕ . . . (23)

Due to our choice of a single-mode system, we find that every term in the direct sum
is just a complex number, which would not have been the case for a multimode sys-
tems. Our choice of a coherent state as an example highlights the narrow connection
between a single-mode bosonic Fock space and such a harmonic oscillator, which we
will now explore more formally.

Now that we have defined the bosonic and fermionic Fock spaces, we can focus
our attention on their structures. In particular, one could wonder how structures from
the single-particle Hilbert space H translate to the Fock space F(H). It turns out that
Hilbert spaces with a direct sum structure, i.e., H = G⊕K (where G and K are Hilbert
spaces), leads to interesting features of the Fock space F(G ⊕ K). The direct sum,
here, is completely unrelated to the direct sum that appears in (17, 18) to separate
layers of the Fock space with different particles.

Physically, the direct sum structure (G ⊕K) can be used to break up a system in
different parts. For example, for ultra-cold atoms, trapped in an optical lattice, the
single-particle Hilbert space can represent the lattice. The direct sum structure may
be used to break up the lattice in sub-lattices, or we may even go down to a direct sum
of all individual lattice sites [75, 76]. As a second example, one can consider photons
in quantum optics. In this case, the single-particle Hilbert space is equivalent to the
set optical mode space. The direct sum can then be used to break up the system in a
specific modes basis [77]. It should be emphasised that, here, we refer to a direct sum
structure in the single-particle Hilbert space (or mode space in an optics jargon).

To structure Fock space, we use the core idea that a direct sum structure in the
single-particle Hilbert space induces a tensor product structure in the Fock space.
This fact is mathematically formalised in the following isomorphism

FB/F (G ⊕ K) ∼= FB/F (G)⊗FB/F (K). (24)

What (24) tells us, is that we can take the whole single-particle Hilbert space (the
whole lattice or the whole mode space) and build a Fock space on it to accommodate
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the particles. Equivalently, we can break the system down in substructures (e.g. indi-
vidual lattice sites or individual modes) and construct a Fock space for each of them,
which are then combined by means of a normal tensor product. The result (24) is
rather tedious to prove with our present toolbox, hence, we will come back to this
point in Section 2.2 where we explicitly construct the isomorphism in the language of
second quantisation.

In the light of (24), it should be pointed out that any discrete Hilbert space H is
isomorphic to a direct sum structure (see Appendix A for further details)

H ∼= C⊕ C⊕ C⊕ C⊕ . . . . (25)

Because of (24), this implies that their Fock spaces can be written as

FB/F (H) ∼= FB/F (C)⊗FB/F (C)⊗FB/F (C)⊗ . . . . (26)

It becomes immediately apparent that we can learn a lot about many particle systems
by analysing the properties of the smaller (and relatively simple) Fock spaces FB/F (C),
which we will refer to as the single-mode Fock spaces. At this point, we see a first
major difference between bosons and fermions.

As mentioned in our discussion of (23), a single-mode bosonic system only has
one single n-particle state |n〉 for every possible number of particles. In other words,
for bosons, the n-particle space constructed on the set complex numbers is simply the
set of complex numbers itself (since a Hilbert space generate by one single vector is
equivalent to the complex numbers). More formally, in the light of (15), we find that

C(n)
B = C. Hence, by inserting this identity in (17) we obtain

FB(C) = C⊕ C⊕ C⊕ . . . ∼= L2(R), (27)

where the direct sum is of infinite length. In physical terms, this means that the single-
mode Fock space is equivalent to a quantum harmonic oscillator. This consideration
supports the fact that optical modes are treated as harmonic oscillators in quantum
optics. Equation (26) shows that the space that describes photons in an m-mode
optical system is equivalent to a system of m quantum harmonic oscillators.

The single-mode Fock space for fermions has a very different structure, because

C(n)
F = 0 for all n > 1. This is a direct consequence of Pauli’s exclusion principle, since

there is only one wave function in the single-particle Hilbert space. This single-particle
wave function can only be occupied by a single fermion. Equation (17) then reduces
to

FF (C) = C⊕ C ∼= C2, (28)

which is the Hilbert space that describes a two-level system. This highlights a
fundamental connection between fermions and spin systems. The identity (26) then
implies that we can map a fermionic systems to a spin chain (and vice versa), which
is formalised by the Jordan-Wigner transformation [69, 78].

2.2. Second quantisation

The formalism in Section 2.1, which is usually referred to as first quantisation, has
the inconvenience that it requires the use of symmetrisation or anti-symmetrisation of
tensor product structures, which tend to mask the fundamental structures of the
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many-particle system. Second quantisation provides a more insightful framework
that focuses more on how states are populated with particles. In quantum field
theory, this framework represents the particles’ nature as fundamental excitation of a
physical field. In quantum optics, for example, photons represent the excitations of
the electromagnetic field.

2.2.1. Creation and annihilation operators The basis of the second quantisation
formalism, is the creation operator, typically denoted with a†(ϕ), which describes
the act of adding a single particle with wave function ϕ ∈ H to a quantum state in
Fock space. We can define the creation operator by its action on the many-particle
wave function |Ψ〉 ∈ FB/F (H), given by (19),

a†(ϕ)|Ψ〉 = 0⊕Ψ(0)|ϕ〉 ⊕ |ϕ〉 ∨ |Ψ(1)〉 ⊕ |ϕ〉 ∨ |Ψ(2)〉 ⊕ . . . , for bosons, (29)

a†(ϕ)|Ψ〉 = 0⊕Ψ(0)|ϕ〉 ⊕ |ϕ〉 ∧ |Ψ(1)〉 ⊕ |ϕ〉 ∧ |Ψ(2)〉 ⊕ . . . . for fermions. (30)

We see that the creation operator depletes the vacuum and maps every n-particle
contribution to the (n+1)-particle sector. Hence, we can construct the wave functions
(13, 14) using this formalism:

|ψ1〉 ∨ · · · ∨ |ψn〉 = a†(ψ1) . . . a†(ψn)|0〉, for bosons (31)

|ψ1〉 ∧ · · · ∧ |ψn〉 = a†(ψ1) . . . a†(ψn)|0〉, for fermions (32)

where one must not forget that the bosonic and fermionic creation operators are
different objects which act on different spaces. It must be pointed out that any wave
function |Ψ〉 in the Fock space F(H) can be represented by a linear combination
of vectors of the type a†(ψ1) . . . a†(ψn)|0〉, where the different vectors in this linear
combination may contain different numbers of creation operators. Furthermore, one
can directly deduce the linear property of creation operators:

a†(xψ + yϕ) = x a†(ψ) + y a†(ϕ), (33)

which holds for all |ϕ〉, |ψ〉 ∈ H and all x, y ∈ C.
A narrowly related operator, that is of importance in many-particle physics, is

the number operator N̂ . This operator can also be defined in terms of its action on an
arbitrary |Ψ〉 ∈ FB/F (H) :

N̂ |Ψ〉 = 0⊕ |Ψ(1)〉 ⊕ 2|Ψ(2)〉 ⊕ 3|Ψ(3)〉 ⊕ . . . , (34)

It is not difficult to see that wave functions that are fully defined within the n-particle
space, i.e., those of the form 0 ⊕ · · · ⊕ 0 ⊕ |Ψ(n)〉0 ⊕ · · · ⊕ 0, are eigenvectors of the
number operator N̂ , with associated eigenvalue n. They are commonly referred to as
number states or Fock states.

The adjoint operation of the creation operator is known as the annihilation
operator a(ϕ). This operator is easiest to understand in terms of its action on wave
functions of the form (13, 14). We find that for bosons

a(ϕ)
[
|ψ1〉 ∨ · · · ∨ |ψn〉

]
=

n∑
j=1

〈ϕ | ψj〉 |ψ1〉 ∨ · · · ∨ |ψj−1〉 ∨ |ψj+1〉 ∨ · · · ∨ |ψn〉, (35)
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while for fermions we obtain

a(ϕ)
[
|ψ1〉 ∧ · · · ∧ |ψn〉

]
=

n∑
j=1

〈ϕ | ψj〉 |ψ1〉 ∧ · · · ∧ |ψj−1〉 ∧ |ψj+1〉 ∧ · · · ∧ |ψn〉. (36)

Observe that wave functions in the n-particle are now mapped to the (n− 1)-particle
sector. Also note that when |Ψ〉 is normalised, this is typically not the case for
a†(ϕ)|Ψ〉, neither for a(ϕ)|Ψ〉. This aspect highlights the non-unitary nature of these
operators, implying that one must generally renormalise the state after applying
the creation/annihilation operator. For fermions, this procedure never poses any
problems. For bosons, however, one may encounter difficulties. Indeed, one must
guarantee that

〈Ψ|a(ϕ)a†(ϕ)|Ψ〉 <∞, (37)

which imposes additional constraints on the wave functions |Ψ〉 ∈ FB(H) that have a
physical meaning. Because (37) must be fulfilled for all ϕ ∈ H, it can be shown that
the important condition for the many-particle wave function (19) to fulfil is

〈Ψ|N̂ |Ψ〉 =

∞∑
n=0

n‖Ψ(n)‖2 <∞. (38)

The left-hand side represents the expected result for a measurement of the total par-
ticle number in the state |Ψ〉. In other words, the bosonic Fock space can only accom-
modate states with a finite amount of particles.

The virtue of the second quantisation formalism lies in the calculus of creation
and annihilation operators. The final element necessary to understand this calculus
are the canonical (anti-)commutation relations.‡ With the tools introduced above, it
should not be too hard to verify that

[a†(ψ1), a†(ψ2)] = 0 and [a(ψ1), a†(ψ2)] = 〈ψ1 | ψ2〉1 for bosons, (39)

and

{a†(ψ1), a†(ψ2)} = 0 and {a(ψ1), a†(ψ2)} = 〈ψ1 | ψ2〉1 for fermions. (40)

In particular, the fact that fermionic creation operators fulfil {a†(ψ), a†(ψ} = 0 means
that we can never create two fermions with the same single-particle wave function
ψ ∈ H.

We can now use the creation and annihilation operators to revisit the identity
F(G ⊕ K) ∼= F(G) ⊗ F(K) in (24). At the basis of this important identity lies the
isomorphism U , which was rather intricate to define in Section 2.1.3. However, in
second quantisation, we can define the action of the isomorphism on the creation
operators:

Ua†(ψ1 ⊕ ψ2)U† = a†(ψ1)⊗ 1 + 1⊗ a†(ψ2) for bosons, (41)

Ua†(ψ1 ⊕ ψ2)U† = a†(ψ1)⊗ 1 + (−1)N̂ ⊗ a†(ψ2) for fermions, (42)

‡ Remember that the commutator of two operators A and B is defined as [A,B] = AB−BA, whereas
their anti-commutator is given by {A,B} = AB +BA.
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where (−1)N̂ is known as the parity operator (it returns 1 for wave functions with an
even number of particles and −1 for states with an odd number of particles). To get
the isomorphism (24), all that remains to be done, is to define the action of U on the
vacuum:

U |0〉G⊕K = |0〉G ⊗ |0〉K. (43)

With these definitions, and with (31, 32) we can now understand the isomorphism
(24) in a much more elegant way.

It is also insightful to revisit the single-mode spaces FB(C) and FF (C) in the
light of second quantisation. First of all, it should be emphasised that the single-
mode space only has a single creation (and annihilation) operator a†. As we stressed
before, the mathematical framework is essentially defined by the calculus of creation
and annihilation operators. For the bosonic single-mode Fock space, we find that (39)
reduces to [a, a†] = 1, which is exactly the commutation relation that describes the
ladder operators of a harmonic oscillator. For the fermionic case, we find that (39)
describes an operator with properties {a, a†} = 1 and (a†)2 = 0. This is exactly the
recipe for the Pauli operator σ+, given by a matrix

σ+ =

(
0 1
0 0

)
, (44)

which solidifies the connection between fermionic systems and spin chains.

This concludes our description of how second quantisation is used to describe
states. However, the full potential of the formalism stems from its possibility to also
describe observables, as we will see in the next section.

2.2.2. Single-particle observables Second quantisation can describe not only many-
particle wave functions, but also many-particle observables. To this end, we start
by introducing the important framework of single-particle observables. To lower no-
tational overhead, we will omit the “B/F” subscripts when the results are valid for
both fermionic and bosonic systems.

A single-particle observable A is an operator that acts on the single-particle
Hilbert space, i.e. A ∈ B(H. In a sense, it represents an attribute of each individual
particle particle. Such an observable can be embedded in the space of observables
acting on the n-particle space, by constructing the operator§

A(n) = A⊗ 1⊗ · · · ⊗ 1 + 1⊗A⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗A. (45)

We can then lift the single-particle observable to the level of the Fock space by defining

F(A) ≡ 0⊕A⊕A(2) ⊕ . . . . (46)

Note that (45) implies that single-particle observables are additive in many-particle
systems. An important example of such an observable is the Hamiltonian of a system

§ Technically, since we are only considering spaces of either symmetrised or anti-symmetrised vectors,

we must formally defineA(n) as a restriction of the expression in (45) to the spaceH(n)
B/F

. For example,

one may encounter expressions as (A⊗1+1⊗A) |
H(n)
B/F

. For the sake of limiting notational overhead,

these restrictions are not explicitly mentioned.
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of non-interacting particles. We can describe such as system by a single-particle
Hamiltonian H ∈ B(H), which acts on the many-particle Fock space as F(H). The
additivity now makes sense, as we can simply add the energy of each individual
particle to obtain the total energy of the system. Another important example is the
number operator (34) is also a single-particle observable. Indeed, it can be verified
that N = F(1).

Single-particle observables have useful features, such as their behaviour with
respect to commutators. When we consider two observables A,B ∈ B(H), we find
that

[F(A),F(B)] = F
(
[A,B]

)
. (47)

This result is particularly important when dealing with the dynamics of non-
interacting (or quasi-free) particles. In the Heisenberg picture, we find that the
dynamics of an observable X̂ ∈ B

(
F(H)

)
is generated by a Hamiltonian F(H), as

prescribed by
d

dt
X̂ = i[F(H), X̂], with X̂(0) = X̂0 (48)

When X̂ = F(X) is a single particle observable, we find that

F
(

d

dt
X − i[H,X]

)
= 0, (49)

which has a solution F [X(t)], where

X(t) = eitHX0 e
−itH . (50)

In other words, when one deals with many-particle systems, but only single-particle
observables are considered and there is no interaction between the particles, every-
thing can be solved on the level of the single-particle Hilbert space H.

It will probably not come as a surprise that here, too, creation and annihilation
operators can play an important role to simplify calculations, as well as to gain a
deeper insight on the structure of these single-particle observables. By evaluating the
action of observables of the form F(A) on wave functions of the type (31), one can
eventually derive the identity

F(A) =
∑
i,j

〈ei|A|ej〉a†(ei)a(ej), (51)

where the vectors |ei〉 ∈ H form a basis of the Hilbert space. Again, let us highlight
the simple example of the number operator

N̂ = F(1) =
∑
i

a†(ei)a(ei), (52)

which is independent of the chosen basis {|ei〉}. We can understand this result a little
better by introducing the single-mode number operator

n̂(ψ) = F(|ψ〉〈ψ|) = a†(ψ)a(ψ), (53)

which counts the number of particles that occupy the single-particle wave function
|ψ〉 ∈ H (or in terms of quantum optics, the number of particles in the mode associ-
ated with a†(ψ)).



Signatures of Many-Particle Interference 14

To introduce a final important class of operators that is narrowly related to the
single-particle observables, let us return to (48). In general, the dynamics is described
by

X̂(t) = eitF(H)X̂0e
−itF(H), (54)

where we are confronted with the propagator exp[−itF(H)]. It turns out that this
propagator has an appealing form:‖

e−itF(H) = 1⊕ e−itH ⊕ (e−itH ⊗ e−itH)⊕ . . . . (55)

This is an example of a so-called exponential element in the set of operators on the
Fock space. In general, for A ∈ B(H), we define these objects as

E(A) = 1⊕A⊕ (A⊗A)⊕ . . . . (56)

These objects have a list of interesting properties which will be used (though sometimes
implicitly) throughout the remainder of the text:

E(A†) = E(A)†, (57)

E(A)E(B) = E(AB), (58)

E(A)a†(ψ) = a†(Aψ)E(A), (59)

a(ψ)E(A) = E(A)a(Aψ), (60)

E(eA) = eF(A), (61)

E(A⊕B) ∼= E(A)⊗ E(B). (62)

For the reader who wants to get acquainted with the many-particle formalism, proving
these identities may be a fruitful exercise.

The construction of single-particle observables can in principle be generated to
describe more general classes of n-particle observables. For such observables, we
find a generalisation of (51) with n creation operators and n annihilation operator.
The most general observables on the Fock space can contain many different terms
with varying numbers of creation and annihilation operators. Take, for example, the
Hamiltonian that describes a Hubbard model [79, 80, 81]. This Hamiltonian contains a
single-particle term which describes the tunnelling between different sites, and a two-
particle term that accounts for interaction between particles. A general observable
X̂ on the Fock space is actually polynomials in creation and annihilation operators.
From a mathematical perspective, this is where the real importance of creation and
annihilation operator lies: they are the generators of the algebra of many-particle
observables. As such, one could argue that they are the most fundamental objects this
mathematical framework.

2.2.3. Gaussian states and quasi-free states One last piece of technical machinery
that is useful to introduce, is the notion of Gaussian – and quasi-free – states. These
states are, in a way, the most controllable quantum states in many-particle systems.
They are commonly associated with ground- or thermal states of systems of non-
interacting particles. In quantum optics, the states that describe the coherent light

‖ Again, the n-fold tensor products must formally be restricted to the spaces of symmetrised or

anti-symmetrised H(n)
B/F

wave functions.
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emitted by a laser and squeezed light also belong to the class of Gaussian states.

A general quantum state need not be pure, a consideration that commonly leads
us to the framework of density matrices. A density matrix ρ is a trace-class operator
on the Fock space F(H), which has to be positive semi-definite (i.e., have positive
eigenvalues) and normalised (ie., tr ρ = 1). The class of Gaussian states can be entirely
described in terms of how their density matrix behaves with respect to products of
creation- and annihilation operators.

We start by considering the monomial a#(ψ1) . . . a#(ψn), where a# is either a
creation or annihilation operator (there is no reason to specify). A Gaussian state is
completely defined by the expectation values of these monomials. To simplify matters
considerably, we will restrict ourselves to the case where tr[ρa#(ψ)] = 0,¶ where we
find that for bosons a Gaussian state is any state that behaves as follows

tr[a#(ψ1) . . . a#(ψ2n+1)ρ] = 0, (63)

tr[a#(ψ1) . . . a#(ψ2n)ρ] =
∑
P

tr[a#(ψi1)a#(ψj1)] . . . tr[a#(ψin)a#(ψjn)], (64)

where P represents the so-called perfect matchings (or pair-partitions). To get such a
perfect matching, we break up the set of indices {1, . . . , 2n} up in pairs. An example
of such a perfect matching is {{1, 2}, {3, 4}, . . . , {2n−1, 2n}}, but, obviously, there are
many other possible ways to divide the set of indices in pairs (the number of possible
ways is given by the product of all the odd numbers up to 2n− 1). In (64), we denote
a generic perfect matching as {{i1, j1}, . . . , {in, jn}}, with i1 ≤ i2 ≤ · · · ≤ in and
j1 ≤ j2 ≤ · · · ≤ jn.

Fermionic Gaussian states, which are more commonly known as quasi-free states,
have an additional complication due to the anti-commutation relations. Not only
must we do bookkeeping of perfect matchings, we must also keep track of signs. This
forces us to include the sign ε of the perfect matching. For a given perfect matching,
ε = sign(σ), where σ is the permutation that maps the set {1, . . . , 2n} to the set
{i1, j1, i2, j2, . . . , in, jn}. With this notation, we find for fermions

tr[a#(ψ1) . . . a#(ψ2n+1)ρ] = 0, (65)

tr[a#(ψ1) . . . a#(ψ2n)ρ] =
∑
P
ε tr[a#(ψi1)a#(ψj1)ρ] . . . tr[a#(ψin)a#(ψjn)ρ]. (66)

where P again represents all the possible perfect matchings.
The above definitions of Gaussian (or quasi-free) states may look a little tedious,

and in practice they often, indeed, turn out to be quite hard to evaluate for large n.
Nevertheless, these states have a profound advantage as compared to vast majority of
other states: they are easy to understand and interpret. In particular, note that the
states are completely determined by expectation values of single-particle operators
tr[a#(ψ1)a#(ψ2)ρ]. When these expectation values are known, the can be used to
evaluate the expectation value of an arbitrary observable via (64, 66).

It is useful to describe two matrices Q,S ∈ B(H), that act on the single particle
Hilbert space to characterise a Gaussian state. It is most convenient to define these
matrices component-wise

〈ψ|Q|ϕ〉 = tr[a†(ψ)a(ϕ)ρ], and 〈ψ|S|ϕ〉 = tr[a(ψ)a(ϕ)ρ]. (67)

¶ It turns out to be completely straightforward to include this case for bosons, but nearly impossible
to include it for fermions.
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The matrix Q is positive semidefinite (i.e. Q ≥ 0), and is often called the coherence
matrix. In many ways, this object behaves as a non-normalised density matrix that
describes the single-particle behaviour of the system. The matrix S, on the other
hand, has a special feature: it is conjugate-linear, which means that

S(x|ϕ〉+ y|ψ〉) = x∗S|ϕ〉+ y∗S|ψ〉, (68)

where x∗ is the complex conjugate of x. It is not hard to see from (64, 66) that these
matrices suffice to characterise the Gaussian state entirely.

Of course, Q and S cannot simply be chosen freely, they have to fulfil some
conditions to make sure that the Gaussian state is normalised, positive, and reflects
the correct bosonic (39) and fermionic (40) features. These conditions tend to be quite
different for bosons and fermions. For fermions, we find first of all that S† = −S, due
to the anti-commutation relation. Furthermore, we must guarantee the positivity of
the state, which is most generally achieved by the condition

tr[ρ(a†(ψ) + a(ϕ))(a†(ϕ) + a(ψ))] ≥ 0. (69)

Using the Schur complement, (69) can be shown to lead to the condition

Q ≥ 0 and S†Q−1S +Q ≤ 1. (70)

The matrix Q can be understood as a single-particle density matrix, which is not
normalised to one, but rather does trQ give the number of particles. The latter
condition in (70) also implies that Q ≤ 1, which is a manifestation of Pauli’s exclusion
principle. Indeed, the matrix elements 〈ψ|Q|ψ〉 denoted the number of particles that
occupy single-particle wave function (i.e. mode) |ψ〉 ∈ H. Therefore, the condition
that Q 6 1 implies that 〈ψ|Q|ψ〉 6 1 for any single-particle wave function. Hence, the
condition directly implies that there is never more than one particle that occupies the
same single-particle wave function.

For bosons, a different condition must to be imposed for S, since the commutation
relation implies that S† = S. When the positivity condition (69) is enforced for
fermionic Gaussian states, we find that

Q ≥ 0 and S†Q−1S −Q ≤ 1. (71)

Note that the differences with the fermionic case appear small, but the physical impli-
cations are huge. Most notably, bosons can bunch together and occupy the same state,
which can ultimately lead to exotic phenomena such as Bose-Einstein condensation.

Much of the remainder of this work will deal with number states, and in particular
with those of the form (31) and (32). However, it should be stressed that for fermions
these Slater determinants are, in fact, Gaussian states. It is an excellent exercise
to verify this. To do so, start by taking a set of vectors ψ1, . . . , ψn such that
〈ψi | ψj〉 = δij , and defining

|Ψ〉 =
1

N a†(ψ1) . . . a†(ψn)|0〉, (72)

one must now check that (66) holds, and more specifically that

〈Ψ|a#(ϕ1) . . . a#(ϕ2m)|Ψ〉 =
∑
P
ε〈Ψ|a#(ϕi1)a#(ϕj1)|Ψ〉 . . . 〈Ψ|a#(ϕin)a#(ϕjm)|Ψ〉,

(73)
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where P again represents all the possible perfect matchings. Life is considerably
simplified since 〈Ψ|a(ψ)a(ϕ)|Ψ〉 = 0, so that using (67) we find that S = 0. Hence,
the state is completely described by Q. It turns out that the fermionic coherence
matrix for these states is given by

Q =

n∑
i=1

|ϕi〉〈ϕi|. (74)

To simplify the expression (73), let us define the submatrix Q{ϕ} of Q with matrix

elements Q
{ϕ}
ij = [〈ϕi|Q|ϕj〉]ij . Using this matrix, we then obtain

〈Ψ|a#(ϕ1) . . . a#(ϕ2m)|Ψ〉 = detQ{ϕ}. (75)

In a slightly more general sense, one can prove that fermionic Gaussian states with
S = 0 are pure if and only if Q is a projection operator, i.e. Q2 = Q.

Gaussian states are typically considered to be the many-particle states that are
closest to classical physics, even though they can already describe some non-classical
features such as squeezing. Hence, their Gaussianity means that Slater determinants
(72) are not expected to induce exotic quantum phenomena. Much to the contrary,
bosonic states of the form (31), sometimes known as Fock states, are non-Gaussian
states, which seems to imply that they are more non-classical than their fermionic
counterparts. For a framework where fermions and bosons seems to be so much alike,
this may appear odd. However, this profound difference is believed to lie at the basis
of the computational hardness of bosonic many-particle interference, which is a topic
of Section 3.

2.3. Distinguishability

Before we move on to discussing the topic of many-particle interference, we
take a moment to address an important issue in many-particle systems. This
apparent paradox is related to the concept of indistinguishability: how can there
be distinguishable particles? Distinguishable particles are typically associated with
tensor product structures, i.e. the two-particle state of two distinguishable particles
with wave functions |ϕ〉, |ψ〉 ∈ H, is simply given by |ϕ〉 ⊗ |ψ〉. However, if these
particles are both electrons with the same spin, this wave function should be |ϕ〉∧|ψ〉—
according to the framework of the previous sections, as seen in (4, 5). Nevertheless,
when these electrons are very far away from eachother, shouldn’t they actually be
distinguishable? This type of questions often causes confusion to those who just start
working with many-particle systems, and here we will clarify the issue. The solution
to this apparent paradox is deeply ingrained in the identity (24).

To address this issue, let us consider a box Λ ⊂ R3, such that the Hilbert space
for a quantum particle in such a box is given by L2(Λ). We can now populate the box
with two particles, with wave functions |ψ〉, |ϕ〉 ∈ L2(Λ). When we assume that these
particles are fermions, we find that their two-particle state is given by

|Ψ〉 = a†(ψ)a†(ϕ)|0〉. (76)

Obvious, these creation and annihilation operators fulfil the anti-commutation relation
(40), implying that the particles are indistinguishable. Now, let us split the box in
two parts, Λ1 and Λ2, such that Λ1 ∪ Λ2 = Λ. The Hilbert space can now be written
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as L2(Λ) ∼= L2(Λ1)⊕L2(Λ2). The wave functions inherit this structure, such that we
may write ψ 7→ ψ1 ⊕ ψ2 and ϕ 7→ ϕ1 ⊕ ϕ2. Note, that this is still the same system,
we just gave each half of the box a different name. We can now use the identity (42),
that lies at the basis of (24), to rewrite the state |Ψ〉 of the two particles in the box:

|Ψ〉 =
[
a†(ψ1)⊗ 1 + (−1)N̂ ⊗ a†(ψ2)

][
a†(ϕ1)⊗ 1 + (−1)N̂ ⊗ a†(ϕ2)

]
|0〉 ⊗ |0〉 (77)

= a†(ψ1)a†(ϕ1)|0〉 ⊗ |0〉 − a†(ϕ1)|0〉 ⊗ a†(ψ2)|0〉 (78)

+ a†(ψ1)|0〉 ⊗ a†(ϕ2)|0〉+ |0〉 ⊗ a†(ψ2)a†(ϕ2)|0〉.

Thus far, this is merely a rewriting of that state |Ψ〉 ∈ F [L2(Λ)] in terms of the
equivalent space F [L2(Λ1)] ⊗ F [L2(Λ2)], and the particles still seem to have their
indistinguishable character. Let us now assume that one particle is fully localised in
one part of the box Λ1, whereas the other particle lingers in the other side of the box
Λ2. This implies that ψ 7→ ψ1 ⊕ 0, and ϕ 7→ 0⊕ ϕ2 (i.e., ψ2 = ϕ1 = 0). When this is
inserted in (78), we find

|Ψ〉 ∼= a†(ψ1)|0〉 ⊗ a†(ϕ2)|0〉, (79)

and, thus, we find the tensor product structure that is associated with distinguishable
particles. In particular, the particles can be distinguished from one another by virtue
of the different spatial structure of their wave functions. Note that a completely
equivalent argument can be given for bosonic particles.

In the reasoning that led towards (79), the capability of identifying Λ1 and Λ2 is
crucial. This highlight that distinguishability cannot be understood independent of the
measurement. If the partition of the box were chosen differently, the structure (79)
would not be found. When we assume that the two-particle state is initially given by
(79), the particles’ wave functions may evolve over time to give rise to a many-particle
wave function of the form (78). Hence, dynamics may influence the capability to dis-
tinguish particles.

Up to this point, we used a particular spatial structure of the particles’ wave
functions, which are external DOF, to distinguish them. However, particles can also
be rendered distinguishable because of internal DOF, which will de facto make them
non-identical. Common examples of such internal DOF might be the frequency (or
time-frequency mode) of a photon, the spin of an electron, et cetera.

Mathematically, the separations of internal and external DOF can be achieved on
the level of the single-particle Hilbert space H = HE ⊗ HI+, where HE denotes the
Hilbert space of external DOF, and HI describes the internal DOF. To show how these
internal DOF can make particles distinguishable, we will again put two particles in a
box Λ ⊂ R3. To vary a little bit compared to the previous example, let us assume that
this time the particles are photons—and, thus, bosons—with their own polarisations.
Hence, we must set the Hilbert spaces HE = L2(Λ) and HI = C2. This implies that

H = L2(Λ)⊗ C2 ∼= L2(Λ)⊕ L2(Λ), (80)

where the latter isomorphism should be straightforward to check mathematically.
Physically, we must remember that the direct sum in L2(Λ)⊕L2(Λ) implies a chosen

+ Be careful, the tensor product in HE ⊗ HI is a tensor product between different single-particle
DOF, and it is completely unrelated to the tensor product between Fock spaces in (24) the we have
come to associate with disntinguishability.
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basis for the polarisation modes, e.g., horizontal and vertical polarisation. We then
populate the box with two particles, with wave functions |ψ〉 ⊗ |p〉 and |ϕ〉 ⊗ |s〉 ∈ H.
We can now write the polarisation states in terms of the chosen mode basis, i.e.,
|p〉 = p1|H〉+ p2|V 〉 and |s〉 = s1|H〉+ s2|V 〉. In terms of the isomorphism in (80), we
then find that |ψ〉 ⊗ |p〉 7→ p1|ψ〉 ⊕ p2|ψ〉 and |ϕ〉 ⊗ |s〉 7→ s1|ϕ〉 ⊕ s2|ϕ〉. By virtue of
(42), we can than write our two-particle state in the Fock space as

|Ψ〉 = a†(ψ ⊗ p)a†(ϕ⊗ s)|0〉 (81)

= a†(p1ψ ⊕ p2ψ)a†(s1ϕ⊕ s2ϕ)|0〉 (82)

= p1s1a
†(ψ)a†(ϕ)|0〉H ⊗ |0〉V + p2s1a

†(ϕ)|0〉H ⊗ a†(ψ)|0〉V (83)

+ p1s2a
†(ψ)|0〉H ⊗ a†(ϕ)|0〉V + p2s2|0〉H ⊗ a†(ψ)a†(ϕ)|0〉V .

Notice that we essentially describe the system as a Fock space for particles with
polarisation state |H〉 “tensored” to a Fock space for particles with polarisation state
|V 〉. Again, we up to this point, this is just a matter of rewriting. However, when we
set |p〉 = |H〉 and |s〉 = |V 〉, we observe that the state reduces to

|Ψ〉 = a†(ψ)|0〉H ⊗ a†(ϕ)|0〉V , (84)

and we again uncover the tensor project structure associated with distinguishable
particles. Again, notice that our capability of observing this distinguishability hinges
from the chosen polarisation basis to measure. A crucial difference to the previously
discussed distinguishability based on spatial DOF, is that the internal DOF are not
expected to change via a simple free evolution.

The acute reader may have realised that identity (26) implies that we can
distinguish particles in orthogonal single-particle wave functions (or “modes” in the
optics jargon). This is a correct observation, but it relies strongly on the capacity to
measure exactly the right set of single-particle wave functions. Since fermions cannot
occupy the same single-mode wave function, we can in principle always find a way to
distinguish them. The electrons in an atom can, for example, be distinguished by the
energy levels, and orbitals they occupy in combination with their spins. In this sense,
bosons can be more “truly indistinguishable”, because bosons can occupy the same
single-particle wave function. In optics, for example, one could argue that the only
truly indistinguishable photons are the ones that occupy exactly the same mode.

However, as was stressed several times, what really determines whether or not
particles behave in a distinguishable or indistinguishable manned, is the measurement.
This concept lies at the basis of the phenomenon of many-particle interference, which
will be extensively discussed in the remainder of this Tutorial.

3. Many-particle interference

We concluded Section 2.3 with a discussion on the subtle subject of distinguishability,
where is was emphasised that distinguishability of particles does not only depend on
the state of the particles, but also on the measurement setup. This idea is reminiscent
of the wave-particle duality, where the experimental setup determines whether we will
observe wave-like or particle-like features. There is a parallel to our framework, where
the experimental setup will determine whether particles show their indistinguishable
nature, or rather behave as distinguishable particles.
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The wave-particle duality can famously be tested in interferometers, like Young’s
double slit setup. In absence of decoherence effects, we will a priori observe interference
fringes in the output of the experiment, associated with wave-like behaviour. However,
which-way information can completely destroy these interference fringes and lead to
particle-like measurement statistics. In this section, we will explore a remarkably
similar feature of many-particle systems: when many identical particles are jointly
injected into an interferometer, we will observe many-particle interference effects that
are associated with their mutual indistinguishability. However, when we posses some
form of “which-particle” information, we can destroy these interference fringes and
recover the statistics associated with many particles.

We start exploring the interference phenomenon in the two-particle scenario,
known as the Hong-Ou-Mandel effect. Subsequently, we explore the many-particle
extension, and explain what it means for particles to be partially distinguishable.

3.1. The Hong-Ou-Mandel effect

It is instructive to start by exploring many-particle interference for the two-particle
case. Let us start by introducing the interferometric setup, involving two separate
beams of particles. Each one of these beams is simply represented by one single
mode, such that the single-particle Hilbert space H associated with the two beams
is of dimension two, i.e. H ∼= C2. We can describe this space in terms of a basis
{|e1〉, |e2〉}, where |ej〉 is associate with the jth beam.

Recalling (26), the Fock space of the system is given by F(H) ∼= F(C) ⊗ F(C),
where each F(C) represents the Fock space of particles in one of the beams. This
implies that a particle in the first beam can effectively be distinguished from a particle
in the second beam, as described in Section 2.3. Indeed, the beam gives as a form of
“which-particle” information. Like in any interferometer, we will now scramble this
information by mixing the two beams (or, more generally, the modes).

The easiest way to mix two beams is using a passive linear element called
beamsplitter (following the jargon in optics) [82]. On the level of the single-particle
Hilbert space H, the beamsplitter is a unitary operator, given by

U =
1√
2

(
1 1
−1 1

)
(85)

As such, we find that the each input beam is mixed between the two-output beams,
i.e.

|e1〉 7→ U |e1〉 =
1√
2

(|e1〉+ |e2〉), and |e2〉 7→ U |e2〉 =
1√
2

(|e1〉 − |e2〉), (86)

such that the beams are clearly mixed, and we can subsequently no longer obtain
“which-particle” information by measuring the individual output modes. This unitary
operator provides us with a description of the beamplitter on the level of the single-
particle Hilbert space. To lift it to the many-particle Fock space, we will employ the
exponential element E(U), as introduced in (56).

Now that we described the beamsplitter, we can select the initial state

|Ψ〉 = a†(e1)a†(e2)|0〉, (87)

such that we have exactly one particle in each of the two separate beams. Note that
this mode occupation is the only possible case for which we can compare fermions and
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bosons, since for fermions a†(e1)a†(e1) = 0. When we study the evolution of the two
particles in the Schrödinger picture, we can apply the unitary transformation of the
beamsplitter to the state. By applying (59), we find that

|Ψ〉 7→ E(U)|Ψ〉 = a†(Ue1)a†(Ue2)|0〉. (88)

By virtue of (33) and (86), we can rewrite this as

E(U)|Ψ〉 =
1

2

[
a†(e1)a†(e1)− a†(e2)a†(e2) + a†(e1)a†(e2)− a†(e2)a†(e1)

]
|0〉. (89)

Through the commutation relations (39) for bosons and the anti-commutation
relations (40) for fermions, this expression simplifies considerably:

E(U)|Ψ〉 =
1

2

[
a†(e1)a†(e1)|0〉 − a†(e2)a†(e2)|0〉

]
for bosons, (90)

E(U)|Ψ〉 = a†(e1)a†(e2)|0〉 for fermions. (91)

Observe that the seemingly simple difference between commutation and anti-
commutation completely changes the quantum state that exits the beamsplitter. For
bosons, we find that the two particles are either both in the first or both in the second
output beam, which is referred to as bosonic bunching. The fermions, instead, are
found each in a different beam, and, thus, they are said to anti-bunch. Both effects
can be understood as an interference phenomenon at the level of probability ampli-
tudes, due to the particles’ indistinguishability. Nevertheless, one can alternatively
describe the fermionic anti-bunching as a manifestation of Pauli’s exclusion principle.
After all, there is only one fermionic two-particle state in a two-mode setup, and thus
there is no other state that fermions could populate. Note that in a dynamical sense,
these particles (both bosons and fermions) are non-interacting and, as such, one could
describe the beamsplitter in terms of a single-particle Hamiltonian. Given that the
particles are not physically interacting with each other, the observed phenomenon can
only be explained through their indistinguishability. The observed effect was already
hinted at in Section 2.3: the beamsplitter causes a mismatch between the modes that
are measured and the modes that are occupied by the particles. Because the particles
are otherwise identical, this mismatch induces a behaviour of indistinguishable parti-
cle, which causes interference effects.

To really interpret (90, 91) as an interference phenomenon, we must include the
measurement stage of the output beams in our description. The standard measurement
setup in this experiment consists of a particle detector on each of the two output
beams. For bosons, these experiments were first carried out with photons, since they
are readily available, non-interacting particles and the optical elements necessary for
the manipulation are easily accessible. Photo-detection usually cannot resolve the
number of detected photons (conventional detectors click if at least one photon hits
the sensor). However, since one typically has good control over the initial number of
photons, when both detectors click in our two-particle setup, we be confident that there
was exactly one photon in each output beam. This is why it is common to perform
a coincidence measurement, where one evaluates the probability of both detectors
clicking simultaneously. Mathematically, this probability is obtained by projecting
onto a measurement state |M〉 ∈ F(H) that is associated with the positive-operator
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valued measure (POVM) of the pair of detectors. For a coincidence count of both
detectors, we must choose

|M〉 = a†(e1)a†(e2)|0〉, (92)

the wave function with one particle in each beam. The probability pΨ→M to detect the
output state |M〉, given that we injected the wave function |Ψ〉 into the beamsplitter,
is then given by

pΨ→M = |〈M |E(U)|Ψ〉|2 (93)

= 0 for bosons, (94)

= 1 for fermions, (95)

where we used (90,91), and applied the commutation relations (39) for bosons and the
anti-commutation relations (40) for fermions. For bosons, the experimental outcome
associated with |M〉 never occurs, thus, we say that this measurement outcome is
suppressed.

To further the interpretation of this suppression phenomenon as a quantum
interference effect, we must understand what happens to the system when we have
some “which-particle” information. The simplest way of approaching this scenario is
to assume that both particles are completely different, and following them through the
interferometer. Because the particles are distinguishable, they evolve independently
of each other, and we can use the standard rules for composition of probabilities. This
allows us to briefly forget about the whole quantum mechanical treatment. In this
case, we can simply look at the probability that the particle in the jth input beam is
detected in the kth output beam, pj→k, which is given by

pj→k = |〈ek|U |ej〉|2. (96)

Because fully distinguishable particles in different beams are completely uncorrelated,
we can simply evaluate the two-particle probability with combinatorics:

p{1,2}→{1,2} = p1→1p2→2 + p1→2p2→1 =
1

2
, (97)

where we see that the probability of a coincidence count for distinguishable particles
is different from both to bosonic and the fermionic case. In the context of quantum
interference, we see destructive interference for this output event in the bosonic case,
whereas the interference is constructive for fermions.

To finalise our understanding of this interference effect, we develop a quantum
mechanical derivation of the probability p{1,2}→{1,2} for distinguishable particles. For
this derivation, we go back to Section 2.3, where it was argued that internal DOF are
sufficient to render particles distinguishable. As such, we extend the single-particle
Hilbert space to H = C2 ⊗ HI , where C2 still represents the two beams that are
mixed on the beamsplitter, and HI describes the internal DOF (which we will leave
unspecified for the time being). When we assume that there is no entanglement
between the beam and the internal DOF, we define the single-particle wave functions
for the particles’ internal DOF ϕ,ψ ∈ HI , such that the full many-particle wave
function |Ψ〉 ∈ F(H) is now given by

|Ψ〉 = a†(e1 ⊗ ϕ)a†(e2 ⊗ ψ)|0〉. (98)
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We then assume that the beamplitter only mixes the beams, leaving the internal
degrees untouched, such that its operation on the many-particle wave function can be
described by E(U ⊗ 1), and

E(U ⊗ 1) = a†(Ue1 ⊗ ϕ)a†(Ue2 ⊗ ψ)|0〉. (99)

To add generality to this treatment, we leave U unspecified for the moment. The
measurement stage is the most subtle one, since we want the detectors to resolve
the number of particles in the output beams, and make a detection regardless of the
internal DOF. However, we still need to define the POVM on the full Hilbert space
F(H). To this end, we define a basis I = {f1, f2, . . . } of HI , measurement states of
the form∗

|M ; q, r〉 = a†(e1 ⊗ fq)a†(e2 ⊗ fr)|0〉, (100)

and the POVM element, associated with a detection of one particle in each beam, as

PM =
∑
q,r

|M ; q, r〉〈M ; q, r|. (101)

In other words, we sum (or integrate, in the case of a continuous basis) over all internal
DOF of each particle. The probability (93) is now generalised to

pΨ→M = 〈Ψ|E(U† ⊗ 1)PME(U ⊗ 1)|Ψ〉 (102)

=
∑
q,r

∣∣〈0|a(e2 ⊗ fr)a(e1 ⊗ fq)a†(Ue1 ⊗ ϕ)a†(Ue2 ⊗ ψ)|0〉
∣∣2. (103)

We can again use (39, 40) to simplify this expression, and we obtain

pΨ→M =
∑
q,r

|U11U22〈fq | ϕ〉〈fr | ψ〉+ U12U21〈fr | ϕ〉〈fq | ψ〉|2 for bosons, (104)

=
∑
q,r

|U11U22〈fq | ϕ〉〈fr | ψ〉 − U12U21〈fr | ϕ〉〈fq | ψ〉|2 for fermions, (105)

where we introduce the shorthand notation Uij = 〈ei|U |ej〉. Because it is useful to
understand the more complicated results that will follow, we will now go through the
full evaluation of (104) and (105):

|U11U22〈fq | ϕ〉〈fr | ψ〉 ± U12U21〈fr | ϕ〉〈fq | ψ〉|2 (106)

= U11U22U
∗
11U

∗
22〈ϕ | fq〉〈fq | ϕ〉〈ψ | fr〉〈fr | ψ〉

+ U12U21U
∗
12U

∗
21〈ϕ | fr〉〈fr | ϕ〉〈ψ | fq〉〈fq | ψ〉

± U11U22U
∗
12U

∗
21〈ϕ | fr〉〈fr | ψ〉〈ψ | fq〉〈fq | ϕ〉

± U12U21U
∗
11U

∗
22〈ψ | fr〉〈fr | ϕ〉〈ϕ | fq〉〈fq | ψ〉,

where we used the compact notation “±”, where “+” refers to bosons and “−”
fermions. Furthermore, we use that∑

q

|fq〉〈fq| =
∑
r

|fr〉〈fr| = 1. (107)

∗ For simplicity, we choose the basis for the internal DOF to be countable, but the presented
argumentation also carries through for continuous bases.
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If we then insert (106) and (107) in(104), we find that for bosons

pΨ→M =|U11|2|U22|2 + |U12|2|U21|2 (108)

+ |〈ψ | ϕ〉|2
(
U12U21U

∗
11U

∗
22 + U11U22U

∗
12U

∗
21

)
,

and for fermions

pΨ→M =|U11|2|U22|2 + |U12|2|U21|2 (109)

− |〈ψ | ϕ〉|2
(
U12U21U

∗
11U

∗
22 + U11U22U

∗
12U

∗
21

)
.

Interestingly, the first two terms in both (108) and (109) correspond to the transition

probabilities for distinguishable particle, i.e. |U11|2|U22|2 + |U12|2|U21|2 = pclass
{1,2}→{1,2}

as given by (97). In other words, we can interpret (108,109) as

pΨ→M = pclass
{1,2}→{1,2} + |〈ψ | ϕ〉|2 × interference terms. (110)

Note in particular the appearance of the factor |〈ψ | ϕ〉|2 in front of the interference
terms, which represents the overlap of the particles’ wave functions for the internal
degree of freedom. In Section 2.3, we noted that particles are effectively distinguishable
when thee wave functions for their internal degree of freedom are orthogonal, i.e. when
|〈ψ | ϕ〉|2 = 0. In this case, (110) shows clearly the the interference terms vanish, and
that we recover the result (97) for distinguishable particles. On the other hand,

when |〈ψ | ϕ〉|2 = 1, it is directly verified that we obtain (90) for bosons and (91) for
fermions. In other words, when the wave functions for the internal degree of freedom
are the same (up to a phase), we find the result for indistinguishable particles.

In a more general sense, |〈ψ | ϕ〉|2 represents the degree up to which we can distin-
guish the two particles. As such, it directly captures the amount of “which-particle”
information that is present in the experiment. Just as for “which-way” information
in standard interference experiments, we observe that “which-particle” information
destroys the many-particle interference effects.

To conclude this section, we present to Hong-Ou-Mandel interference effect as it
is commonly used in experiments, and choose the time-frequency domain as additional
internal] degree of freedom [83]. We can expand a general time-frequency wave
function |ψ〉 ∈ HI as

|ψ〉 =

∫
R

dt Fψ(t)|t〉 =

∫
R

dω F̃ψ(ω)|ω〉, (111)

where Fψ(t) is a function that represents the state in the time domain, whereas it

Fourier transform F̃ψ(ω) describes the wave function |ψ〉 in the frequency domain.
We then find that

〈ψ | ϕ〉 =

∫
R

dt F ∗ψ(t)Fϕ(t) =

∫
R

dω F̃ ∗ψ(ω)F̃ϕ(ω), (112)

where ∗ indicates the complex conjugate. In other words, when we know how to
represent the wave functions in either the time or frequency domain, we can use it to
calculate |〈ψ | ϕ〉|2 in (108) or (109).

] One could of course debate whether the time-frequency domain is really an “internal” degree of
freedom, but at least it is an additional degree of that often renders identical particles distinguishable.
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In order to remain close to the the nature of the particles, we treat them as
Gaussian wave packets that have a reasonably small uncertainty in time. In optics, one
common solution to generate photons is by means of spontaneous parametric down-
conversion (SPDC) [7, 6]. In general, SPDC is a complicated process that generates
(possibly entangled) photon pairs with properties that depend on the details of its
implementation (e.g. pump power, crystal length, the time-frequency mode of the
pump, etc.) [?]. For simplicity, we will consider a particle with an expected arrival
time τ , with central frequency ω0 and an uncertainty ∆ω. In the frequency domain,
the Gaussian wave packet for this particle is described by

F̃ψ(ω) =
e−

(ω−ω0)2

4∆ω2

(2π)1/4(∆ω)1/2
eiωτ . (113)

When we assume that both photons in the experiment are generated by the same
SPDC process, the values ω0 and ∆ω are the same for both particles. Hence, when
we assume that one particle arrives at τ1 and the other at τ2, we directly evaluate

|〈ψ | ϕ〉|2 = e−∆ω2∆τ2

, (114)

where ∆τ = τ1−τ2. This result is narrowly related to the so-called Fourier uncertainty
relation, which relates the temporal width of a pulse to the spread in the frequency
domain (i.e. the bandwidth). When ∆ω2∆τ2 → 0, and the time-delay between the
particle becomes small with respect to the distribution of frequencies, we observe that
the particles behave in a distinguishable way. In particular, we can now insert (85)
and (114) in (108) to obtain

pΨ→M =
1

2
(1− e−∆ω2∆τ2

) for bosons. (115)

If we replace the bosonic photons with a fermionic context, for example by working
with matter waves, we find

pΨ→M =
1

2
(1 + e−∆ω2∆τ2

) for fermions. (116)

As such, we find the well-known Hong-Ou-Mandel dip, and its fermionic equivalent,
shown in Fig. 1. It is clearly seen that we recover also the limiting cases (94), (95),
and (97). This solidifies the observed phenomenon as a two-particle interference
effect, and highlights the importance of distinguishability as a form of “which-particle”
information that destroys the interference.

3.2. Determinants and permanents

The above two-particle interference in the Hong-Ou-Mandel setup can also be ob-
served in many-particle experiments. In this section, we will assume that particles are
either fully indistinguishable or fully distinguishable and determine the expressions
for the many-particle transition probability pΨ→M in a larger interferometer. In the
next section, we present a full quantum treatment of the case where the particle have
an internal degree of freedom that allows us to make them (partially) distinguishable.

In the Hong-Ou-Mandel scenario, we started by mixing beams in a beamsplitter,
which presented us with a simple interferometer. For our many-particle, setup, we
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Figure 1. Probability of a coincidence measurement at the two different output
ports of a balanced beamsplitter, for two particles injected in distinct input
ports. When varying the time delay ∆τ , with ∆τ small as compared to the
bandwidth ∆ω, destructive interference is seen for non-interacting bosons (blue
solid line), whereas constructive interference, i.e. the Pauli effect, is observed for
non-interacting fermions (green dashed line).

generalise this aspect and inject n particles in a large multiport interferometer, with
m input ports and m output ports. In analogy to the previous section, we can then
treat the single-particle space as being m-dimensional, such that H ∼= Cm. We will
assume that the interferometer is simply described by an m ×m unitary matrix U ,
which connects the input ports to the output ports.

We start by considering distinguishable particles, in order to generalise (97). Note
that (96) remains valid in this new scenario: the probability that a particle, which is
injected in an input port j, is detected in output port k is given by

pj→k = |〈ek|U |ej〉|2 = |Ukj |2, (117)

where ek is the kthe vector in the standard basis, and thus represents a single-
particle wave function that is localised on the k input/output port. We are now
interested in a set of n distinguishable particles, that are injected in input ports
i1, . . . , in (e.g. if we inject n particles in the first n input ports, these labels are set
to i1 = 1, i2 = 2, . . . , in = n), and we evaluate the probability that they are detected
in output ports o1, . . . , on. This transition probability can be calculated in complete
analogy to (97), but we must take all the possible permutations of particles into
account. However, when an output port is occupied by several particles, e.g. o1 = o2,
we must make sure to avoid double counting, and therefore we must divide the result



Signatures of Many-Particle Interference 27

by
∑
σ∈Sn δo1,oσ(1)

. . . δon,oσ(n)
. Thus, we obtain

p{i1,...,in}→{o1,...,on} =

∑
σ∈Sn pi1→oσ(1)

. . . pin→oσ(n)∑
σ∈Sn δo1,oσ(1)

. . . δon,oσ(n)

(118)

=

∑
σ∈Sn

∣∣Ui1oσ(1)

∣∣2 . . . ∣∣Uinoσ(n)

∣∣2∑
σ∈Sn δo1,oσ(1)

. . . δon,oσ(n)

. (119)

The quantity p{i1,...,in}→{o1,...,on} can be treated as a probability distribution that de-
scribes with which probability a certain set of output detectors o1, . . . , on simultane-
ously click upon the injection of particles in input ports i1, . . . , in. Because the number
of terms in this sum grows as n! with the number of particles, these probabilities are
in generally not easy to calculate. Nevertheless, it is straightforward to sample clicks
of output detectors, i.e. choosing o1, . . . , on, which respect the probability distribution
(119). To do so, one can use (117) for each individual particle to select an output port.

The derivation becomes considerably more complicated when we consider
indistinguishable fermions or bosons. In analogy to the two-particle setting, we define
the initial state

|Ψ〉 = a†(ei1) . . . a†(ein)|0〉, (120)

and in order to be able to compare fermions and bosons, we assume that all particles
are injected in different modes, i.e. i1 6= i2 6= · · · 6= in. The action of the interferometer
is then given by

|Ψ〉 7→ E(U)|Ψ〉 = a†(Uei1) . . . a†(Uein)|0〉. (121)

We approach the problem via the measurement state associated with the POVM that
projects on the output ports o1, . . . , on, where the detectors are placed:

|M〉 =
1

N a†(eo1) . . . a†(eon)|0〉, (122)

where the normalisation constant is different from the case where multiple particles
land in the same detector. The quantity of interest is the transition probability

pΨ→M = |〈M |E(U)|Ψ〉|2 =
1

N 2

∣∣〈0|a(eon) . . . a(eo1
)a†(Uei1) . . . a†(Uein)|0〉

∣∣2, (123)

which can be calculated using Wick’s theorem, based on the (anti-)commutation
relations for creation and annihilation operators. Alternatively, some reader may
find it more convenient to go back to first quantisation and apply (13, 14) to evaluate
this quantity. Both methods ultimately lead to the general result that

〈0|a(ϕn) . . . a(ϕ1)a†(ψ1) . . . a†(ψn)|0〉 (124)

=
∑
σ∈Sn

〈ϕ1 | ψσ(1)〉 . . . 〈ϕn | ψσ(n)〉 for bosons,

〈0|a(ϕn) . . . a(ϕ1)a†(ψ1) . . . a†(ψn)|0〉 (125)

=
∑
σ∈Sn

sign(σ)〈ϕ1 | ψσ(1)〉 . . . 〈ϕn | ψσ(n)〉 for fermions.
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Note that these results can also be used to determine the normalisation factors for
many-particle wave functions such as (122). In that case, the state is chosen such that
〈eok | eol〉 = δok,ol , such that (124) implies that

N = 〈0|a(eon) . . . a(eo1
)a†(eo1

) . . . a†(eon)|0〉 =

√∑
σ∈Sn

δo1,oσ(1)
. . . δon,oσ(n)

for bosons,

(126)
and, as indicated before, N = 1 for fermions, since we cannot have more than one
fermion in each output port. It should not come as a surprise that the normalisation
factor resembles the factor that was introduced in (119) to avoid double counting.

The results (124, 125) can be used to evaluate (123), which leads to

pΨ→M =

∣∣∑
σ∈Sn Uoσ(1)i1 . . . Uoσ(n)in

∣∣2∑
σ∈Sn δo1,oσ(1)

. . . δon,oσ(n)

for bosons, (127)

=

∣∣∣∣∣ ∑
σ∈Sn

sign(σ)Uoσ(1)i1 . . . Uoσ(n)in

∣∣∣∣∣
2

for fermions. (128)

There are several convenient ways to rewrite these expressions. We start by applying
the method that explicitly shows the interference terms:∣∣∣∣∣ ∑

σ∈Sn

Uoσ(1)i1 . . . Uoσ(n)in

∣∣∣∣∣
2

=
∑

σ,σ′∈Sn

Uoσ(1)i1 . . . Uoσ(n)inU
∗
oσ′(1)i1

. . . U∗oσ′(n)in
(129)

=
∑
σ∈Sn

∣∣Uoσ(1)i1

∣∣2 . . . ∣∣Uoσ(n)in

∣∣2 (130)

+
∑

σ,σ′∈Sn
σ 6=σ′

Uoσ(1)i1 . . . Uoσ(n)inU
∗
oσ′(1)i1

. . . U∗oσ′(n)in
.

Thus, when we focus on output events that are compatible with the Pauli exclusion
principle, i.e. o1 6= o2 6= · · · 6= on, we can rewrite (124, 125) as

pΨ→M =
∑
σ∈Sn

∣∣Uoσ(1)i1

∣∣2 . . . ∣∣Uoσ(n)in

∣∣2 (131)

+
∑

σ,σ′∈Sn
σ 6=σ′

Uoσ(1)i1 . . . Uoσ(n)inU
∗
oσ′(1)i1

. . . U∗oσ′(n)in
for bosons,

pΨ→M =
∑
σ∈Sn

∣∣Uoσ(1)i1

∣∣2 . . . ∣∣Uoσ(n)in

∣∣2 (132)

+
∑

σ,σ′∈Sn
σ 6=σ′

sign(σ) sign(σ′)Uoσ(1)i1
. . . Uoσ(n)in

U∗oσ′(1)i1
. . . U∗oσ′(n)in

for fermions.

as we can see, we have recovered the transition probability for distinguishable particles
(119), garnished by additional interference terms. For the two-particle case in (3.1),
we found that bosonic and fermionic interference behave in a completely opposite
way. However, (131) and (132) show that this observation does not generalise the the
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many-particle case. We find that the interference terms for bosons and fermions are
the same up to a sign.This means that for many particles, where one must consider
a large variety of permutations σ, we find a behaviour which can be rich and subtle.
Furthermore, (131) and (132) also indicate the the number of interference terms that
is to be considered grows roughly as (n!)2 with the number of particles n. Hence, it is
reasonable to expect that calculating these probabilities is, in general, a challenging
task.

To delve deeper into the evaluation of pΨ→M , we can recast the probability (124,
125) in yet another form. First, let us define the matrix Usub – an n× n matrix that
connects the occupied input ports in |Ψ〉 to the output ports in |M〉. We explicitly
construct this matrix in terms of its components

(Usub)jk = Uojik . (133)

Now, we use this matrix to rewrite the fermionic result (125) as follows

pΨ→M =

∣∣∣∣∣ ∑
σ∈Sn

sign(σ)Uoσ(1)i1 . . . Uoσ(n)in

∣∣∣∣∣
2

= |detUsub|2 for fermions. (134)

For bosons, we are confronted with an object that resembles a determinant, but it does
not take into account the sign of the permutation. This object is commonly known as
the permanent. For a general n× n matrix A, the permanent is defined as

permA =
∑
σ∈Sn

A1σ(1) . . . Anσ(n). (135)

We can thus rewrite (127) as

pΨ→M =
|permUsub|2

perm I
, (136)

where we define I as the matrix with components Ijk = δoj ,ok . The calculation
of perm I is ultimately a counting exercise where notational overhead is the main
difficulty. In the above treatment, we consider the state |M〉 in terms of its particle
nature, and describe it by associating an output port oj to every particle. However, by
virtue of (26) we can equivalently describe |M〉 in terms of the number of particles in

each output port. We can define the mode occupation vector ~M as an m-dimensional
vector (m being the number of output ports), and the kth component Mk describes
the number of particles in the kth output port. A good exercise to get insight in
permanents is to show that

perm I =

m∏
k=1

Mk!. (137)

In general, the quantity permUsub in (136) is much harder to evaluate, since Usub

does not generally have a structure that simplifies the evaluation. As a matter of fact,
calculating permanents is a problem that falls in the complexity class #P , making
it a notoriously hard computational problem. The determinant in (134) is a much
simpler object to evaluate, because of its basis-independence. Hence, for fermionic
processes, we can perform a convenient decomposition of Usub and use it to calculate
pΨ→M in an efficient way. For bosons, none of these tricks apply. Thus, even though
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the interference phenomena for bosons (131) and fermions (132) seem highly similar,
the bosonic transition probability (136) is much harder to calculate (with present day
computers it the calculations become unfeasible around ≈ 60 bosons).

As we argued before, we can interpret pΨ→M as the probability to measure the
state given by mode occupation list ~M , given that we prepared the system in initial
state Ψ. For bosonic particles, generating detector outputs that respect the probability
distribution pΨ→M is known as Boson Sampling. It turns out that even performing
this sampling is hard for a classical computer [37, 84], unless there is a structure in
Usub that allows us to calculate permanents in an efficient way (e.g. when Usub is the
identity matrix, everything becomes trivial). This result is strong, in the sense that it
does not depend on the type of algorithm that one uses to simulate the sampling. In
a sense, this means that – assuming highly plausible conjectures from computational
complexity theory [37] – there is no way to circumvent the computational difficulties
that are induced by these permanents.

A final interesting remark about the fundamental difference between the
computation complexity of fermionic and bosonic interference traces back to Section
2.2.3. In the literature of continuous-variable quantum computation, it is quite well-
known that Gaussian measurements of Gaussian states can be efficiently simulated
with classical computers. Hence, non-Gaussian elements are understood to be a
necessary feature to reach a quantum computational advantage. At present, the exact
relation between non-Gaussian features and quantum advantages is not completely
understood. Discussions about the importance of non-Gaussian features in either the
measurement or the state is typically limited to bosonic systems. In our discussion
of many-fermion interference, |Ψ〉 and |M〉 were Gaussian states, and the obtained
interferences can be simulated efficiently [37]. Hence, one may wonder whether many-
fermion sampling can also lead to a quantum advantage when a non-Gaussian element
(e.g. interaction between the particles) is added. At present, this remains an open
question.

3.3. Partial distinguishability

Just like in the two-particle case, we can study the transition from indistinguishable
to distinguishable particles. The mechanism by which this process occurs is essentially
the same as in Section 3.1, but the resulting interference phenomena can behave quite
differently.

As before, we extend the single-particle Hilbert space by adding an internal DOF.
We denote this enlarged Hilbert space by HI . The full single-particle Hilbert space,
upon which we construct the Fock space to describe the many-particle problem, is
now described by H = HE ⊗ HI , where HE is an m-dimensional Hilbert space that
describes the m input ports. The initial state now becomes

|Ψ〉 = a†(ei1 ⊗ ψ1) . . . a†(ein ⊗ ψn)|0〉, (138)

where the eij ∈ HE are defined as in Section 3.2. Furthermore, we assume that there
is no entanglement between internal and external DOF. Moreover, we assume that
i1 6= i2 6= · · · 6= in. The action of the interferometer is assumed to leave the internal
DOF unchanged, and thus it is described by E(U ⊗ 1). To describe measurements,
we fix a basis I = {f1, f2, . . . } of HI , and describe the measurement states as

|M ; r1, . . . , rn〉 = a†(eo1 ⊗ fr1) . . . a†(eon ⊗ frn)|0〉. (139)



Signatures of Many-Particle Interference 31

For simplicity, we assume throughout this section that the output ports are different
for all particles, i.e. o1 6= o2 6= · · · 6= on. Note that |M ; r1, . . . , rn〉 singles out a specific
configuration for the internal DOF. However, the actual detectors are assumed to be
blind for the internal DOF, which means that the associated POVM element is defined
by

PM =
∑

r1,...,rn

|M ; r1, . . . , rn〉〈M ; r1, . . . , rn|. (140)

Here, every rk is a different index that is summed over, such that we sum (or integrate
for continuous bases) over the internal DOF for all particles. As for the two-particle
case, we again find that

pΨ→M = 〈Ψ|E(U† ⊗ 1)PME(U ⊗ 1)|Ψ〉. (141)

To evaluate this probability we must combine the elements that we acquired in Section
3.2 via Wick’s theorem, and the treatment of internal DOF of Section 3.1. We
first evaluate |〈M ; r1, . . . , rn|E(U ⊗ 1)|Ψ〉|2 by applying (124) for bosons or (125) for
fermions. Next, we use that

∑
rk
|frk〉〈frk | = 1 to deal with the internal DOF in the

detectors, and eventually find that for bosons

pΨ→M =
∑
σ∈Sn

∣∣Uoσ(1)i1

∣∣2 . . . ∣∣Uoσ(n)in

∣∣2 (142)

+
∑

σ,σ′∈Sn
σ 6=σ′

〈ψσ′(1) | ψσ(1)〉 . . . 〈ψσ′(n) | ψσ(n)〉Uoσ(1)i1 . . . Uoσ(n)inU
∗
oσ′(1)i1

. . . U∗oσ′(n)in
,

and for fermions

pΨ→M =
∑
σ∈Sn

∣∣Uoσ(1)i1

∣∣2 . . . ∣∣Uoσ(n)in

∣∣2 (143)

+
∑

σ,σ′∈Sn
σ 6=σ′

(
sign(σ) sign(σ′) 〈ψσ′(1) | ψσ(1)〉 . . . 〈ψσ′(n) | ψσ(n)〉

× Uoσ(1)i1 . . . Uoσ(n)inU
∗
oσ′(1)i1

. . . U∗oσ′(n)in

)
.

We observe that, once again, we can interpret the probability the composition of
two terms: the probability for distinguishable particles p{i1,...,in}→{o1,...,on} (118),
and interference terms, like in (110). Note that all these interference terms come
with a different weight, 〈ψσ′(1) | ψσ(1)〉 . . . 〈ψσ′(n) | ψσ(n)〉, which characterises the
“which-particle” information. In the simple case where ψ1 = ψ2 = · · · = ψn,
we recover the expressions (131) and (132) for indistinguishable particles, whereas
ψ1 ⊥ ψ2 ⊥ · · · ⊥ ψn implies that all the factors 〈ψσ′(1) | ψσ(1)〉 . . . 〈ψσ′(n) | ψσ(n)〉 = 0
for σ 6= σ′, such that we recover the result of distinguishable particles.

In (108) and (109), we saw that two-particle interferences for bosons and fermions
manifests itself in completely opposite manners.. The appearance of the factor
|〈ψ | ϕ〉|2 for the internal DOF moreover gives rise to a monotonous vanishing of
many-particle interference. Much to the contrary, we see that (142) and (143) differ
in a more subtle way, based on the signs of different permutations sign(σ)sign(σ′).
Moreover, there is a rich zoo of possible ways of rendering the particles distinguish-
able, and the factors 〈ψσ′(1) | ψσ(1)〉 . . . 〈ψσ′(n) | ψσ(n)〉 certainly do not guarantee a
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Figure 2. Train of wave packets, with fixed time delay ∆τ between subsequent
wave packets, and fixed temporal width 1/∆ω for each wave packets. The degree
of distinguishability is shown to be controlled by a single variable: ∆τ∆ω.

monotonous transition. To some extent, this behaviour has been theoretically and
experimentally explored in literature [18, 15].

To illustrate the richness of many-particle interference, we consider an example
where particles are progressively rendered distinguishable through the time-frequency
degree of freedom, as in Section 3.1. In mathematical terms, we again follow (113)
and represent the jth particle’s internal time-frequency DOF by a wave function |ψj〉,
with

F̃ψj (ω) =
e−

(ω−ω0)2

4∆ω2√
(2π)1/2∆ω

eiωτj , (144)

where τj is the expected arrival time of the particle, ω0 is the central frequency, and
∆ω is the uncertainty in the frequency domain (i.e. the bandwith). Because we assume
that all particles are generated by the same process, but at different times, we assume
that ω0 and ∆ω are the same for each particle. Using (112), we obtain that

〈ψj | ψk〉 = e−
1
2 ∆ω2(τj−τk)2

eiω0(τj−τk), (145)

which can be directly inserted in (142, 143) to calculate the transition probability for
a specific choice of interferometer U and output ports |M〉.

In Fig. 3 we inject six particles in a 30-mode interferometer that is described by
a randomly chosen unitary matrix U . The arrival times τj = j∆τ of the particles
are chosen such that there is a fixed time-delay ∆τ between consecutive particles,
as shown in Fig. 2. From (145), we see that the relevant quantity is the time delay
in units of the bandwidth, i.e. ∆τ∆ω, which is the parameter that is varied in
Fig. 3. Note that the parameter ω0 that appears in (145) does not appear in the
final expression for pΨ→M . From (142, 143) we see that changing the time delays
can significantly alter the weight of certain interference terms. Fig. 3 clearly shows
that this has a profound and non-monotonous impact on pΨ→M . All three panels are
generated with the same input state and unitary interferometer (only the output state
is varied) yet we observe a variety of qualitatively different interference phenomena.
Note that both bosonic and fermionic many-particle interference can be destructive or
constructive. Furthermore, the maximal deviation from the distinguishable-particle
limit is not necessarily obtained in ∆τ∆ω = 0, which highlights the non-monotonicity.
Finally, we also stress that fermionic and bosonic many-particle interference do not
necessarily influence the dynamics in opposite directions.
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Figure 3. Transmission probability pΨ→M (142, 143) for varying
distinguishability ∆τ∆ω. Six bosonic (blue solid line) or fermionic (green
dashed line) particles are injected in 30-mode interferometer that implements
a randomly chosen (with respect to the Haar measure) unitary transformation
U . Probabilities for a joint detection event in the detectors M = {1, . . . , 6} (left
panel), M = {7, . . . , 12} (middle panel), and M = {25, . . . , 30} (right panel) are
shown.

In summary, we have learned that many-particle interference is a rich phenomenon
that is hard to predict for growing number of particles. From the example in Fig. 3 we
learn that even a single interferometer with a single n-particle input state can give rise
to a very different behaviour for different output configurations. When we combine
this aspect with the large number of possible output configurations and the associated
low probabilities for each of these configurations, it becomes clear that many-particle
interference effects are hard to unambiguously observe experimentally. This fact lies at
the physical basis of the debate on the validation of Boson Sampling. Hence, what is
needed to gain deeper insight in this phenomenon is a clear-cut experimental signature
of genuine many-particle quantum interference.

4. Signatures of many-particle interference

Many-particle interferences are notoriously hard to calculate, especially for bosons,
which makes it very hard validate the functionality of devices that use such
interferences, e.g. Boson Sampling. There have been a range of approaches to the
problem of verifying Boson Sampling, including techniques from computer science
[64, 60] and data science [22, 65]. In this Tutorial, we will focus on a series of rigorous
approaches [62, 67] that have a genuinely physical motivation, where the main goal is
to identify and observe certain hallmarks of many-particle interference. The different
approaches all come with a certain functionality, advantages, and disadvantages. An
ideal validation scheme should be robust (i.e. it should work for any interferometer
regardless of U , even when there are errors in its implementation), scalable (i.e. it
should work for small and large numbers of modes and particles), and versatile (i.e. it
should be able to distinguish Boson Sampling from several other options). In Table
1, we provide an overview of validation schemes for Boson Sampling that have been
successfully realised in small-scale experiments. We note that the best methods known
today are based on finding statistical patterns in sampling data, which can either be
done with techniques from data science [22, 65], or with the help of physical processes
[67].
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Method Robust? Scalable?
Versatile?

Uniform [61] Distinguishable Mean-Field [62]
Row-rank [64] 4 4 4 8 8

Bunching [33] 4 ? 4 4 8

Likelihood [63] 8 4 4 4 ?
Bayesian [85] 8 4 4 ? 4

Suppression laws [62] 8 4 4 4 4

Pattern recognition [22] 4 4 4 4 4

Statistical [67] 4 4 4 4 4

Table 1. List of validation schemes for Boson Sampling (with one important
reference) which have been successfully implemented in proof-of-principle
experiments. For each method, we indicate whether it is robust (i.e. it can be used
for any interferometer, and can tolerate errors in its implementation), scalable to
large-scale implementations, and whether it is versatile. To probe versatility, we
indicate whether they can identify the most common alternative sampling models
in literature (i.e. uniform sampling [61], sampling of distinguishable particles, and
mean-field sampling [62]). The validation methods that are highlighted in bold
are discussed in the remainder of this tutorial. See [22] for a more detailed table.

4.1. Suppression laws

Our first signature is a direct generalisation of the Hong-Ou-Mandel effect of Fig. 1.
When particles in (108) are perfectly indistinguishable, and when the beamsplitter is
balanced as in (85), we observe that a coincidence event is fully suppressed by de-
structive interference. The concept of suppression laws generalises this destructive
interference effect to the case of multiport interferometers in which many particles
are injected, and one searches for measurement states |M〉 that are prohibited by the
unitary evolution, i.e. the probability pΨ→M = 0. Note that, since we assume that
the particles are fully indistinguishable, we will not consider internal DOF throughout
this section.

The general bosonic and fermionic suppression laws, as described in [30, 31],
are strongly related to symmetries that are reflected in, both, the initial state |Ψ〉
and the unitary transformation U . To describe these symmetries, we define the
permutation matrix Pπ that represents the mode-permutation π ∈ Sm which acts
on the m-dimensional single-particle Hilbert space H (corresponding to the m input
ports of the interferometer). In our specific context, we consider a permutation of the
input ports of the interferometer. Using the notation introduced in Section 3.2, these
permutations are given by

Pπek = eπ(k), (146)

where ek is the single-particle wave function that is localised on the kth input port.
Because Pπ is a unitary operator that acts on the single-mode Hilbert space H, we
can make it act on the many-particle state by constructing E(Pπ) as in (56). For
simplicity, the input state |Ψ〉 is chosen such that each input port is populated by at
most one particle:

|Ψ〉 = a†(ei1) . . . a†(ein)|0〉. (147)

The action of the mode-permutation π ∈ Sm can be evaluated as

E(Pπ)|Ψ〉 = a†(eπ(i1)) . . . a
†(eπ(in))|0〉. (148)
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To implement the suppression law, we first identify the symmetries of the initial state,
i.e. permutations π ∈ Sm for which

E(Pπ)|Ψ〉 = |Ψ〉, for bosons, (149)

E(Pπ)|Ψ〉 = sign(π)|Ψ〉, for fermions. (150)

As a next step, we must identify the interferometers that will give rise to suppressed
output event. To do so, we define the eigen-decomposition

Pπ = A†DA, (151)

where A is a unitary matrix with the eigenvectors of Pπ as columns, and D is a
diagonal matrix with the eigenvalues {λ1, . . . , λm} of Pπ on the diagonal. To obtain
suppressed output events, the interferometer must now be constructed such that

U = A. (152)

Note that [30, 31] provides an extended version where additional phase shifts are added
to the input and output ports, but for simplicity we will not restrict to the simplest
case (152).

We project the output of this interferometer on a particular output state |M〉,
given by

|M〉 = a†(eo1
) . . . a†(eon)|0〉, (153)

where we assume for simplicity that there is at most one particle per output port,
i.e. o1 6= o2 6= · · · 6= on. The transition probability pΨ→M is then given by

pΨ→M = |〈M |E(A)|Ψ〉|2, (154)

and we can explore the impact of the symmetries (149, 150) on 〈M |E(A)|Ψ〉.
Let us start by considering the case of bosonic particles. First of all, we use (149)

to obtain the identity

〈M |E(A)|Ψ〉 = 〈M |E(A)E(Pπ)|Ψ〉. (155)

First we use (58) to write E(A)E(Pπ) = E(APπ) and then we insert (151) to find
that E(A)E(Pπ) = E(D)E(A). Hence, we find that

〈M |E(A)|Ψ〉 = 〈M |E(D)E(A)|Ψ〉. (156)

Now, we can use (60) together with (153) to obtain

〈M |E(D) = 〈0|a(Deo1) . . . a(Deon). (157)

Because D is a diagonal matrix in the basis of localised single-particle wave functions
ek, we find that Dek = λkek, where λk is the kth eigenvalue of Pπ, associated with the
kth column of A. By virtue of the conjugate-linearity of the annihilation operators,
we then find

〈M |E(D) =

 n∏
j=1

λ∗oj

〈M |. (158)
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By inserting the above identities in (155) we obtain

〈M |E(A)|Ψ〉 =

 n∏
j=1

λ∗oj

〈M |E(A)|Ψ〉, (159)

which implies
n∏
j=1

λoj 6= 1 =⇒ 〈M |E(A)|Ψ〉 = 0. (160)

Returning to (154), this conclusion entails the suppression of the detection event
associated with |M〉, i.e. pΨ→M = 0.

For the fermionic case, the derivation is analogous. The key difference is that we
start from the identity

sign(π)〈M |E(A)|Ψ〉 = 〈M |E(A)E(Pπ)|Ψ〉. (161)

This identity then leads us to the fermionic equivalent of (160), which reads

n∏
j=1

λoj 6= sign(π) =⇒ 〈M |E(A)|Ψ〉 = 0. (162)

Note that (162) implies that the suppressed output events for bosons and fermions are
the same when sign(π) = 1. Nevertheless, it was shown in [30, 31] that fermions give
rise to an extended suppression law that excludes more output events than (162). The
easiest way to prove this extended suppression law is via (134), where we the then
use the properties of the determinant, and of (Pπ)sub. From (151), we can derive the
identity

(Pπ)subAsub = AsubDsub. (163)

If Asub is invertible (which is not evident since, we are dealing with a submatrix of a
unitary matrix), we can recast this identity into the form

(Pπ)sub = AsubDsubA
−1
sub. (164)

This directly implies that (Pπ)sub and Dsub must have the same eigenvalues.
Because, Dsub is still a diagonal matrix, we deduce that these eigenvalues must be
{λo1

, . . . , λon}. Notice that the invertibility of Asub is equivalent to demanding that
detAsub 6= 0. When we introduce Λsub to indicate the set eigenvalues of of (Pπ)sub,
we find the extended fermionic suppression law by contraposition

Λsub 6= {λo1 , . . . , λon} =⇒ detAsub = 0, (165)

and thus, from (162), we find that pΨ→M = 0 for the detection event where the parti-
cles are detected in output ports o1, . . . , on. This proves the extended suppression law
for fermions, and it can be shown that the events which are suppressed by condition
(162) are also included in the extended suppression law (165).

It was shown in [31] that known suppression laws for special interferometers, such
as the Fourier matrix [28] and the Sylvester interferometer [29, 25, 26], fit within the
general framework that was presented in this section. Various suppression laws have
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also been tested experimentally [29, 24], and used for the validation of small-scale
Boson Sampling experiments.

The advantage of this benchmark of genuine bosonic many-particle interference
(assuming that the particles are fully distinguishable) is that it provides a simple means
for falsification. If a state |M〉 is supposed to be suppressed, but it is nevertheless
observed, we know we can reject the claim of genuine many-interference (assuming
an ideal detection stage, i.e. with no dark counts). However, the problem with this
method is its sensitivity to imperfections. Suppression laws are based on symmetries,
which can be slightly broken, and on full indistinguishability, which can be distorted
by the particles’ internal DOF. Even though partial distinguishability can be included
in the theory of total destructive interference [31], and experimental imperfections can
be mitigated, it still limits the practical use this approach. Hence, alternative methods
have been developed that do not exhibit these disadvantages.

4.2. Statistical signatures and random matrix theory

As emphasised at the end of the previous section, suppression laws are confronted with
several disadvantages. In particular, they only serve as signature of many-particle
interference for specific interferometers, given by (152). These highly symmetric in-
terferometers are generally not of great interest for reaching a quantum advantage
through Boson Sampling. In this section we therefore introduce a different method,
based on correlations between output detectors. This method has two major advan-
tages. First, the statistical benchmark works regardless of the interferometer that is
used to implement the Boson Sampling protocol. Second, very generated sampled
output event is used in the validation scheme (in strong contrast with the suppression
law, where only suppressed events are capable of falsifying genuine many-particle in-
terference).

Up to this point, our analysis aimed at understanding the probability distribution
pΨ→M of observing particles in different combinations of output detectors (represented
by the measurement-states |M〉), for a given initial many-particle wave function |Ψ〉
and a given interferometer U . However, here we consider a different type of statistical
quantifier: the correlation between output detectors. As we have seen in Section 2.2.3,
correlations functions of the form tr[ρa†(ψ1) . . . a†(ψq)a(ϕ1) . . . a(ϕq′)] are sufficient to
fully characterise many-particle state ρ, under the condition that these functions are
known for all possible monomial lengths q and q′, and for all possible choices of single-
particle wave functions ψ1, . . . , ψq, ϕ1 . . . , ϕq′ ∈ H. However, this condition does not
imply that we require such a degree of information to identify the presence of many-
particle interference. Thus, we can focus on low-order (in creation and annihilation
operators) correlations to extract signatures of many-particle interference. Similar
ideas have been implemented for studying many-particle quantum walks [86].

The simplest measurable “correlation” is the expectation value of the local
number operator for the oth output detector, n̂o = a†(eo)a(eo). This quantity is
obtained by counting the number of photons that are detected by the detector over
many runs of the sampling experiment, which allows us to evaluate tr[n̂oρ]. When we
choose ρ = E(U)|Ψ〉〈Ψ|E(U†), with |Ψ〉 given by (147) and U a unitary that describes
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an arbitrary interferometer, we find that for fermions and bosons

tr[n̂oρ] = 〈0|a(ein) . . . a(ei1)E(U†)a†(eo)a(eo)E(U)a†(ei1) . . . a†(ein)|0〉 (166)

= 〈0|a(ein) . . . a(ei1)a†(U†eo)a(U†eo)a
†(ei1) . . . a†(ein)|0〉 (167)

=

n∑
k=1

|Uoik |2, (168)

where we again use the notation 〈ek|U |ej〉 = Ukj . The first step follows directly
from (59), whereas the second step requires some combinatorics. The last equality is
ultimately an application of the commutation (for bosons) or anti-commutation (for
fermions) relations creation and annihilation operators, (39) and (40), respectively.
The crucial result is that we observe that the average particle number of a single
output detector cannot differentiate between fermions and bosons. When the particles
are completely distinguishable, we can express

tr[n̂oρ] =

n∑
k=1

pik→o =

n∑
k=1

|Uoik |2, (169)

where we use (117). Hence, we also fail to see a difference between distinguishable
and indistinguishable particles in the expected number of particles.

The next experimentally feasible possibility is to consider correlations between
pairs of detectors: tr[n̂o1 n̂o2ρ]. When we again choose ρ = E(U)|Ψ〉〈Ψ|E(U†), with
|Ψ〉 as in (147), we find that

tr[n̂o1 n̂o2ρ] (170)

= 〈0|a(ein) . . . a(ei1)a†(U†eo1
)a†(U†eo2

)a(U†eo2
)a(U†eo1

)a†(ei1) . . . a†(ein)|0〉.

For bosons, the only way to evaluate this quantity is by a direct application of the
commutation relations (39), which results in

tr[n̂o1 n̂o2ρ] =

n∑
k,l=1
k 6=l

(
|Uo1ik |2|Uo2il |2 + Uo1ikUo2ilU

∗
o1il

U∗o2ik

)
, for bosons. (171)

For fermions, an analogous calculation is possible, but it is more elegant to use an
alternative approach. In Section 2.2.3, we stressed that a fermionic state of the form
(147), i.e. a Slater determinant, is a Gaussian state, with correlations given by (73).
The matrix Q that characterises the correlations in the initial states |Ψ〉 is given by

Q =

n∑
k=1

|eik〉〈eik |, (172)

and with ρ = E(U)|Ψ〉〈Ψ|E(U†) and (73) we find

tr[n̂o1
n̂o2

ρ] = 〈Ψ|a†(U†eo1
)a†(U†eo2

)a(U†eo2
)a(U†eo1

)|Ψ〉 (173)

= 〈eo1
|UQU†|eo1

〉〈eo2
|UQU†|eo2

〉 (174)

− 〈eo1
|UQU†|eo2

〉〈eo2
|UQU†|eo1

〉,
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where we note that

〈eo1
|UQU†|eo1

〉〈eo2
|UQU†|eo2

〉 =

n∑
k,l=1

|Uo1ik |2|Uo2il |2, (175)

〈eo1
|UQU†|eo2

〉〈eo2
|UQU†|eo1

〉 =

n∑
k,l=1

Uo1ikUo2ilU
∗
o1il

U∗o2ik
. (176)

Combining both terms leads to the final result

tr[n̂o1
n̂o2

ρ] =

n∑
k,l=1
k 6=l

(
|Uo1ik |2|Uo2il |2 − Uo1ikUo2ilU

∗
o1il

U∗o2ik

)
, for fermions. (177)

It should be emphasised that there is a clear difference between the bosonic result (171)
and the fermionic one (177), which is given by the contribution of the interference
term Uo1ikUo2ilU

∗
o1il

U∗o2ik
. The observant reader has probably noticed the similarity

between the obtained correlation functions (171, 177) and the Hong-Ou-Mandel
transfer probabilities (108, 109), which ultimately lies at the foundation of this
statistical signature of many-particle interference: the correlations (171) and (177) sum
over all the possible two-particle processes that connect a pair of input particles to the
chosen output detectors. This observation is solidified by considering the correlations
for distinguishable particles, which are given by

tr[n̂o1 n̂o2ρ] =

n∑
k,l=1
k 6=l

pik→o1pik→o2 =

n∑
k,l=1
k 6=l

|Uo1ik |2|Uo2il |2, (178)

where the absence of the terms Uo1ikUo2ilU
∗
o1il

U∗o2ik
indicated the absence of many-

particle interference.
The use of correlation functions also provides us with a tool to easily explore the

impact of the non-Gaussian statistics when |Ψ〉 (147) is a bosonic state. To do so,
we compare the bosonic number state to a bosonic Gaussian state ρ, as introduced in
Section 2.2.3. For simplicity, we assume that the state is purely thermal, such that
S = 0. In order to have a state which is as close as possible to the number state (147),
we take inspiration from the fermionic Slater determinant and choose Q as in (172).
The bosonic case strongly resembles the fermionic Gaussian states:

tr[n̂o1
n̂o2

ρ] = 〈Ψ|a†(U†eo1
)a†(U†eo2

)a(U†eo2
)a(U†eo1

)|Ψ〉 (179)

= 〈eo1
|UQU†|eo1

〉〈eo2
|UQU†|eo2

〉 (180)

+ 〈eo1
|UQU†|eo2

〉〈eo2
|UQU†|eo1

〉.

when we, again, use (175, 176), we now find that

tr[n̂o1
n̂o2

ρ] =

n∑
k,l=1
k 6=l

(
|Uo1ik |2|Uo2il |2 + Uo1ikUo2ilU

∗
o1il

U∗o2ik

)
(181)

+ 2

n∑
k=1

|Uo1ik |2|Uo2ik |2, for thermal bosons,
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where the final term indicates the difference between a bosonic number state and a
bosonic thermal state.

Note that the terms |Uo1ik |2|Uo2il |2 appear in the bosonic (171), fermionic (177),
and distinguishable-particle (178) correlations. On a practical level, this contribution
provides no insight on the presence of many-particle interference. To make the
signature of many-particle interference more sensitive, we should thus attempt to
cancel these terms. Equation (169) provides a clear inspiration for the statistical
quantity that may help achieve this goal: the truncated correlation (also referred as
multivariate cumulant), given by

Co1o2 = tr[n̂o1 n̂o2ρ]− tr[n̂o1ρ] tr[n̂o2ρ]. (182)

Combining (171, 177, 178, 181) with (169) directly leads to the result

CBo1o2
= −

n∑
k=1

|Uo1ik |2|Uo2ik |2 +
n∑

k,l=1
k 6=l

Uo1ikUo2ilU
∗
o1il

U∗o2ik
, (bosons) (183)

CTo1o2
=

n∑
k=1

|Uo1ik |2|Uo2ik |2 +

n∑
k,l=1
k 6=l

Uo1ikUo2ilU
∗
o1il

U∗o2ik
, (thermal) (184)

CFo1o2
= −

n∑
k=1

|Uo1ik |2|Uo2ik |2 −
n∑

k,l=1
k 6=l

Uo1ikUo2ilU
∗
o1il

U∗o2ik
, (fermions) (185)

CDo1o2
= −

n∑
k=1

|Uo1ik |2|Uo2ik |2, (distinguishable). (186)

It is clear that a given configuration of input ports and interferometer (that implements
the unitary U) generally lead to different particle number correlations Co1o2

. However,
it is far from clear whether the measurement of a certain value for Co1o2

can allow
us to identify the particle type. To answer this question, we show a histogram in
Fig. 4 of the obtained values for a randomly chosen U (from the uniform distribution
over all unitary matrices, known as the Haar measure), obtained by considering all
possible pairs of output modes o1 and o2. These histograms clearly highlight that
CDo1o2

, CFo1o2
6 0 and CTo1o2

> 0. The negativity of CDo1o2
is directly seen from (186),

but for CFo1o2
a brief additional analysis is required:

CFo1o2
= −

n∑
k,l=1

Uo1ikUo2ilU
∗
o1il

U∗o2ik
(187)

= −
n∑
k=1

Uo1ikU
∗
o2ik

(
n∑
l=1

Uo1ilU
∗
o2il

)∗
(188)

= −
∣∣∣∣∣
n∑
k=0

Uo2ikU
∗
o1ik

∣∣∣∣∣
2

6 0. (189)

The positivity of CTo1o2
then follows immediately from the observation that CTo1o2

=
−CFo1o2

. The latter highlights the parallel between fermionic particles and thermal
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Figure 4. Histogram indicating the different values observed for the pair
correlations Co1o2 , obtained for n = 8 particles in a single, randomly chosen,
50-mode interferometer (with U chosen from the Haar measure). Data are shown
for bosonic Fock states (183), bosonic thermal states (184), fermionic number
states (185), and distinguishable particles (186).

bosons. The most crucial information provide by Fig. 4 is that the histogram for a
bosonic number state as input in the interferometer overlaps with all other histograms.
This implies that we cannot associate a particular range of values to typical bosonic
many-particle interference. However, we do observe that the statistical properties
of these sets of correlations Co1o2

(which we refer to as C-datasets) differ strongly,
depending on the particle type. This observation lies at the basis the statistical sig-
natures for many-particle interference.

The C-datasets in Fig. 4 are obtained for a single interferometer, and, hence, the
statistical features of these distributions can be obtained from a single experimental
setup. As a way of quantitatively grasping the properties of these histograms, we
evaluate the moments of the distribution, where

mq ≡
2

m(m− 1)

∑
o1>o2

(Co1o2)
q

(190)

defines the qth moment. Essentially, given a linear-optical interferometer, mq can be
estimated by simply looking at all correlations between pairs of output detectors, and
averaging over them. Numerically, this is a tractable task, and for some interferometers
it is also analytically feasible (see Appendix B.1 for an example). Furthermore, we can
acquire some additional understanding of the first moment (see Appendix B.2), and
we can explicitly derive some relations between the moments obtained for different
particle types:

n

m(m− 1)
> mT

1 > mF
1 > mD

1 > mB
1 > − n

m(m− 1)
, (191)

mB
1 = mT

1 + 2mD
1 . (192)

Furthermore, it is evident from (191) that the size of the interferometer and the
number of particles play and important role in determining the order of magnitude of
these moments. Therefore, we introduce rescaled quantities that allow us to compare
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Figure 5. Scatterplots depicting the normalised mean NM (193) on the
horizontal axis and the coefficient of variation CV (194) on vertical axis. Panels
(a) and (b) are obtained for a large 50-mode interferometer, in which n = 8
particles are injected. Panels (c) and (d) are generated by injecting n = 3
particles in a 7-mode interferometer. In (a) and (c), data are shown for one
single interferometer, in which different particle types were injected: bosonic
Fock states (blue dots), bosonic thermal states (red diamonds), fermionic number
states (green triangles), and distinguishable particles (orange squares). On (b)
and (d), the same type of data are shown for 200 different, randomly chosen
interferometers; black circles indicate the centres of mass of the clouds of points
that are obtained for different particle types. The random matrix predictions (200
- 203, 206 - 208) for each particle type are shown by a large red dot.

different system sizes more directly. The normalised mean (NM) simply rescales the
first moment, and the coefficient of variation (CV ) compares the second to the first
moment. These quantities are formally defined as

NM = m1
m2

n
, (193)

CV =

√
m2 −m2

1

m1
. (194)

Similar objects can be defined for higher moments (e.g. the Skewness, as in [67]), but
here we will restrict our analysis to NM and CV .

In general, the values of the above moments differ for every interferometer, as we
highlight in Fig. 5. The figure shows the values of NM and CV for different particle
types. In panels (a) and (c), we show the result for one single, randomly chosen
interferometer. For different interferometers, it is natural to expect to find different
values, and it is a natural question whether the variability in the observed values
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is dominated by the particle type or by the specificities of the interferometer. To
investigate this aspect, we gather the results for 200 randomly chosen interferometers
in panels (b) and (d). These results show an interesting feature: for a given particle
type, the values for NM and CV generally fall in the same region of the plot, and
these regions are distinct for different particle types. Moreover, it is clear from (c)
and (d) that the method is more effective for larger systems with more modes (large
m) and particles (large n).

From the point of view of random matrix theory (RMT), it is not very surpris-
ing that such low-order moments of low-order correlations obtained from big random
matrices are very much alike (think for example of the density of eigenvalues of one
large random matrix that coincides with the ensemble average density of eigenvalues
[87]). Thus, it is observed that, for sufficiently large interferometers, the moments
of the distribution of the C-dataset (and thus also NM and CV ) are very close to
the average value over the ensemble of all possible interferometers (i.e. the average
of Co1o2

over the Haar measure). This observation provides us with an interesting
opportunity, since these averages can be evaluated analytically.

Let us denote the averaging over the set of all unitary matrices with respect to
the Haar measure (i.e. the uniform distribution over the ensemble of unitary matrices)
by EU (. . . ), then we are interested in evaluating EU (Cqo1o2

) for an arbitrary choice of
o1 and o2. First, we fix our attention on the first moment (q=1) for the bosonic case,
where we directly see that

EU (CBo1o2
) = −

n∑
k=1

EU (|Uo1ik |2|Uo2ik |2) +

n∑
k,l=1
k 6=l

EU (Uo1ikUo2ilU
∗
o1il

U∗o2ik
). (195)

The technical task at hand is to evaluate EU (Uo1ikUo2ilU
∗
o1il

U∗o2ik
) for k 6= l and

EU (Uo1ikUo2ikU
∗
o1ik

U∗o2ik
), where in both cases o1 6= o2. The core result at our disposal

is the following identity for m×m random unitary matrices U [88, 89, 90]:

EU (Ua1,b1 . . . Uan,bnU
∗
α1,β1

. . . U∗αn,βn) (196)

=
∑

σ,π∈Sn

Vm(σ−1π)

n∏
k=1

δ(ak − ασ(k))δ(bk − βπ(k)),

where Vm(σ−1π) are commonly referred to as the Weingarten functions. For low
orders, the values of these functions can be obtained from tables that are available in
literature [91], or by using a direct, yet sophisticated approach based on the Schur-Weyl
duality [92]. The calculations are simplified a little by the fact that these Weingarten
functions only depend on the length of the cycles of the permutations.

To apply (196), we define two permutations e : (1, 2) 7→ (2, 1) and id : (1, 2) 7→
(1, 2). Note that we must only consider cases where σ = id and, thus obtain that

EU
(
Uo1ikUo2ilU

∗
o1il

U∗o2ik

)
= Vm(id)δ(ik − il)δ(il − ik) + Vm(e)δ(ik − ik)δ(il − il)

(197)

= Vm(e) = Vm(2),

where Vm(2) refers to the Weingarten function for a permutation with one cycle of



Signatures of Many-Particle Interference 44

length 2. For the other term, we obtain that

EU
(
Uo1ikUo2ikU

∗
o1ik

U∗o2ik

)
= Vm(id)δ(ik − ik)δ(ik − ik) + Vm(e)δ(ik − ik)δ(ik − ik)

(198)

= Vm(1, 1) + Vm(2),

where Vm(1, 1) refers to the Weingarten function for a permutation with two cycle of
length 1. We can combine (197) and (198) to obtain that

EU (CBo1o2
) =

n∑
k,l=1
k 6=l

Vm(2)−
n∑
k=1

(
Vm(1, 1) + Vm(2)

)
(199)

= −n(m+ n− 2)

m(m2 − 1)
,

where we used the tables of [91] to obtain the final result. A completely analogous
evaluation for the other particle types gives us the following random-matrix estimates
for sufficiently large mode numbers m:

mB
1 ≈ EU (CB) = −n(m+ n− 2)

m(m2 − 1)
, (200)

mT
1 ≈ EU (CT ) =

n(m− n)

m(m2 − 1)
, (201)

mD
1 ≈ EU (CD) = − n

m(m+ 1)
, (202)

mF
1 ≈ EU (CF ) = − n(m− n)

m(m2 − 1)
. (203)

Note that these final results only depend on the number of modes and the number of
particles, and not on the specific output and input modes which were chosen.

For the second moment, the situation is considerably more complicated, as we
must evaluate

EU

((
−

n∑
k=1

|Uo1ik |2|Uo2ik |2 +

n∑
k,l=1
k 6=l

Uo1ikUo2ilU
∗
o1il

U∗o2ik

)
(204)

×
(
−

n∑
k′=1

∣∣Uo1ik′

∣∣2∣∣Uo2ik′

∣∣2 +

n∑
k′,l′=1
k 6=l′

Uo1ik′Uo2il′U
∗
o1il′

U∗o2ik′

))
,

=

n∑
k,k′=1

EU

(
|Uo1ik |2|Uo2ik |2

∣∣Uo1ik′

∣∣2∣∣Uo2ik′

∣∣2)

− 2

n∑
k′,k,l=1
k 6=l

EU

(∣∣Uo1ik′

∣∣2∣∣Uo2ik′

∣∣2Uo1ikUo2ilU
∗
o1il

U∗o2ik

)

+

n∑
k,k′,l,l′=1

k 6=l
k′ 6=l′

EU

(
Uo1ikUo2ilU

∗
o1il

U∗o2ik
Uo1ik′Uo2il′U

∗
o1il′

U∗o2ik′

)
.
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To understand the complexity of the problem, it is useful to return to (197) and realise
the importance of repeated indices. We must differentiate between all the cases where
either k′ and/or l′ equals k and/or l. For example, this means that we must split

n∑
k,k′=1

EU

(
|Uo1ik |2|Uo2ik |2

∣∣Uo1ik′

∣∣2∣∣Uo2ik′

∣∣2) (205)

=

n∑
k,k′=1
k 6=k′

EU

(
|Uo1ik |2|Uo2ik |2

∣∣Uo1ik′

∣∣2∣∣Uo2ik′

∣∣2)

+

n∑
k=1

EU

(
|Uo1ik |2|Uo2ik |2|Uo1ik |2|Uo2ik |2

)
.

For the other two terms in (204), we must perform an equal exercise, but with more
ways of repeating the indices. In this Tutorial, we will not write down all of these
terms explicitly, but the interested reader can find details in [93]. By evaluating (197)
for each different type of terms that appears in this expansion, we find the final results
for the second moments:

mB
2 ≈ EU (CB

2
) =

2n
(
m2n+m2 + 9mn− 11m+ n3 − 2n2 + 5n− 4

)
m2(m+ 2)(m+ 3)(m2 − 1)

, (206)

mT
2 = mF

2 ≈ EU (CF
2
) =

2n(n+ 1)(m− n)(m− n+ 1)

m2(m+ 2)(m+ 3)(m2 − 1)
, (207)

mD
2 ≈ EU (CD

2
) =

n
(
m2n+ 3m2 +mn− 5m+ 2n− 2

)
m2(m+ 2)(m+ 3)(m2 − 1)

. (208)

The obtained results (200 - 203) and (206 - 208) can now be used to obtain random-
matrix estimates for the normalised mean NM (193) and the coefficient of variation
CV (194) for every particle species. These estimates give us an analytical grasp on
the expected statistical signatures of many-particle interference.

To highlight the accuracy of these analytical approximations, we pinpoint the
random-matrix estimates in Fig. 5. We clearly see a spread of the moments, obtained
for individual randomly chosen interferometers, around the predictions from RMT.
It is important to observe that the spread is much larger for the small seven-port
interferometer. When the number of modes grows, the random-matrix estimates are
expected to become more precise, and this is exactly the behaviour that manifests in
this example. Furthermore, we see that the random-matrix results agree very well
with the centre of the cloud of points, and can thus be seen as the average of the
moments of many random interferometers.

Now that we have established a clear idea of the statistical signatures of
different types of many-particle interference, it is important to understand how such
a benchmark can serve in practice for the validation of a many-particle interference
experiment such as Boson Sampling. One of the simplest techniques at our disposal
is the evaluation of the distance from point (NM,CV ), as obtained from a specific
interferometer, to the different random-matrix estimates. We can then conjecture
that the observed probability distribution is associated with the particle type of the
closest analytical value. Fig. 5 suggests that this method should be effective for large
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interferometers, but it may fail for smaller (more realistic) setups. Distance measures
do not consider the characteristic size of the different the clusters of points for different
particle types, even though the bosonic cluster of points is clearly more extended than
for example the cluster for distinguishable particles. In principle, one can use RMT to
estimate the spread of these clusters, since deviations around the estimates of moments
are characterised by higher moments.

A more pragmatic solution corresponds to generating more statistics. It is
clearly shown in Fig. 5 that the average over the (NM,CV ) of several interferometers
coincides with the random-matrix results. Additional statistics can easily be acquired
with a reconfigurable unitary circuit at one’s disposal, but this is a technical challenge
[94, 95]. However, when the particles are inserted in different input ports of one single
interferometer, it acts almost as a new interferometer. Specifically when the number
of modes is much larger than the number of particles (m� n2), an entirely different
set of input modes probes a different uncorrelated part of the unitary matrix that
describes the entire interferometer [37]. In practice, this approach is natural in the
problem of scattershot Boson Sampling [43, 44].

An even more pragmatic take on benchmarking is to follow a data science ap-
proach and use ideas from machine learning. Indeed, the numerically simulated sam-
pling data of Fig. 5 are easy to generate in large quantities, which means that we have
ample data to train a supervised learning algorithm (e.g. a support vector machine)
to associate regions in the (NM,CV ) - plane with certain particle types. This ap-
proach have proven to be successful to validate many-particle interference experiments
[21]. Because also experimental imperfections in the interferometers can be included
in simulations, the comparison to the random-matrix predictions allows to identify
systematic errors that cause the statistics of the interferometers to deviate from the
Haar measure, as was seen in [21].

There are several challenges related to the experimental observation of such a
statistical signature of many-particle interference. First of all, there are practical
difficulties introduced by the partial distinguishability of particles, which will be
discussed in detail in the next section. Then, there is the need for particle-number-
resolving detectors, which currently represents a formidable challenge for photonic
systems. Furthermore, we are generally confronted with a more subtle class of finite-
size effects in the evaluation of the correlations Co1o2 themselves. Generally, these
correlations are evaluated based on a finite sample of output events, and therefore
they only give an estimate to the real value of Co1o2

. A recent work evaluated the
impact of these finite-size effects [96], which uses the Metropolis-type simulations [97]
of Boson Sampling as an interesting tool to test the statistical benchmark.

Finally, it must be emphasised that the above statistical signature, as presented
here, can be generalised and extended in many different ways. A profound example is
the analysis of higher moments of the C-dataset (e.g. the skewness was considered in
[67] and made a more extended study of the information gained from different statis-
tical quantifiers in [21]). However, this does not undo the fact that the C-dataset built
upon two-point correlations essentially probes two-particle interference processes, and
it is bound to miss a considerable amount of physics. For instance, a more profound
extension of the method that considers three-point correlations was explored in [98].
Finally, the approach based on the C-dataset is closely related to those that use the
g(2) and g(3) functions [99, 100].



Signatures of Many-Particle Interference 47

The goal of the above statistical benchmark, as well as the other validation
protocols, is to rule out alternative physical models that may have given rise to the
measured output data (the other particle types in our case). In this section, we
explored four simple models, but one can also consider a more artificial sampling
model, such as sampling from the uniform distribution of output events [61, 63, 64]
(note that for such a sampler CV vanishes). The so-called mean-field sampler
[29, 62, 101, 102] has been highly successful in the literature for reproducing sampling
data that resemble Boson Sampling. It is interesting, from both a physical and a
more application-oriented perspective, to investigate further “error models” for Boson
Sampling experiments [66, 103, 104, 105, 106]. Arguably, the most important error
model to keep in mind is partial distinguishability. In the following section we explore
how the statistical signature can indeed probe the distinguishability transition.

4.3. The statistical Hong-Ou-Mandel effect

In the previous section, we studied the applicability of the statistical benchmark with
various particle types, among which we discussed distinguishable particles. In the light
of Sections 2.3 and 3.3, we know that distinguishability is a subtle concept, in partic-
ular because particles can be partially distinguishable, as governed by their internal
DOF. In this section, we explore the capability of the statistical benchmark to capture
the distinguishability transition and, perhaps, quantify the degree of distinguishability
between the particles.

To study the distinguishability transition the internal DOF of the particles must
be taken into account. We will only consider two types of input states: those with
a well-defined particle number, i.e. bosonic and fermionic number states. Similar to
Section 3.3, we now consider a Hilbert space H = Cm ⊗HI , where Cm describes the
m input ports, and HI describes the internal (non-observed) DOF. The input state is
then, again, given by

|Ψ〉 = a†(ei1 ⊗ ψ1) . . . a†(ein ⊗ ψn)|0〉, (209)

but detectors are blind to these internal DOF. Hence, we choose a basis {f1, f2, . . . }
of HI (for simplicity, we assume the existence of a discrete basis) and define the
observables

N̂(ej) =
∑
k

a†(ej ⊗ fk)a(ej ⊗ fk), (210)

which count the number of particles in the jth output detector, characterised by mode
ej ∈ Cm, regardless of the internal DOF. Due to the action of the interferometer, we
obtain an output state ρ = E(U⊗1)|Ψ〉〈Ψ|E(U†⊗1), such that the C-dataset is given
by

Co1o2 = tr[N̂o1N̂o2ρ]− tr[N̂o1ρ] tr[N̂o2ρ]. (211)

Through exactly the same techniques used in (171) and (177), combined the identity
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k|fk〉〈fk| = 1, we find that

CFo1o2
=−

n∑
k=1

|Uo1ik |2|Uo2ik |2 −
n∑

k,l=1
k 6=l

|〈ψk | ψl〉|2Uo1ikUo2ilU
∗
o1il

U∗o2ik
, (fermions)

(212)

CBo1o2
=−

n∑
k=1

|Uo1ik |2|Uo2ik |2 +

n∑
k,l=1
k 6=l

|〈ψk | ψl〉|2Uo1ikUo2ilU
∗
o1il

U∗o2ik
, (bosons). (213)

As expected from Section 3.3, we recover the result (186) for distinguishable parti-
cles when 〈ψk | ψl〉 = δk,l, and the results for fully indistinguishable bosons (183) or
fermions (185) when 〈ψk | ψl〉 = 1. In this section, though, we are interested in the
intermediate regime.

We note that the correlations Co1o2 depend only on the overlaps of the states

of the particles’ internal DOF, i.e. |〈ψk | ψl〉|2. Here we see a strong resemblance
to the Hong-Ou-Mandel effect (110), which highlights once more that the two-point
correlations Co1o2

probe all the possible two-particle interference processes that take
place.

The correlations (212, 213) generally depend on the characteristics implemented
by the interferometer, and on the chosen output modes o1, o2. As in the previous
section, the value of a single Co1o2

does not provide insights in the exact degree of
distinguishability, and it is more instructive to study moments mq, see (190), of the
C-dataset. For a randomly chosen interferometer, the arguments from the previous
section still apply; hence, we can surmise that for a sufficiently large numbers of
modes, m, and particles, n, these moments can be approximated by RMT, such that
mq ≈ EU (Cq). We then start obtain the generalisation of (195) to include partial
distinguishability:

EU (Co1o2) = −
n∑
k=1

EU (|Uo1ik |2|Uo2ik |2)±
n∑

k,l=1
k 6=l

|〈ψk | ψl〉|2EU (Uo1ikUo2ilU
∗
o1il

U∗o2ik
),

(214)
where “+” gives the result for bosons and “−” for fermions. The random-matrix
averages to be evaluated in (214) are actually the same as those in (195). Using these
results if Section 4.2 following (195), we find

m1 ≈ EU (C) = − n

m(m+ 1)
∓ 1

m(m2 − 1)

n∑
k,l=1
k 6=l

|〈ψk | ψl〉|2. (215)

By virtue of a computation analogous to (204), we can subsequently determine the
result for the second moment:

m2 ≈ EU (C2) =
2A− 2B(m− 5) + C(10 +m+m2)± 2D(2 + 6m− n+mn)

(m− 1)m2(m+ 1)(m+ 2)(m+ 3)
(216)

+
(m− 2)(1 + 3m)n+ 2n2 +mn2 +m2n2)

(m− 1)m2(m+ 1)(m+ 2)(m+ 3)
,
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Figure 6. Pair-correlations Co1o2 (212, 213) for varying values of ∆ω∆τ . Each
curve represents a different pair of output detectors o1, o2, for three bosons (left)
or fermions (right) injected in a randomly chosen 7-mode interferometer.

where “+” (“−”) gives the result for bosons (fermions).

A =

n∑
k1,k2,l1,l2=0
k1 6=k2 6=l1 6=l2

|〈ψk1
| ψl1〉|2|〈ψk2

| ψl2〉|2, (217)

B =

n∑
k,l1,l2=0
k 6=l1 6=l2

|〈ψk | ψl1〉|2|〈ψk | ψl2〉|2, (218)

C =

n∑
k,l=0
k 6=l

|〈ψk | ψl〉|4, (219)

D =

n∑
k,l=0
k 6=l

|〈ψk | ψl〉|2. (220)

In principle, there is a lot of freedom to choose the states of the particles for
various internal DOF [107]. As our go-to example, we will consider a train of wave
packets, characterised by overlaps (145), as shown in Fig. 2, and attempt to use
the statistical signatures to explore the indistinguishability transition. First of all, we
explore the behaviour of individual correlators for a single interferometer in Fig. 6. The
only thing that can be concluded from these data is that neither for fermions, nor for
bosons there is a global pattern in the indistinguishability transition; in some cases the
correlations increase, whereas in others they decrease. Furthermore, the correlations
do not even necessarily reach a maximum or minimum value in ∆τ∆ω = 0. This
clearly emphasises the need from more robust quantifiers.

In Fig. 7 we observe a much more systematic behaviour when we evaluate the
normalised mean NM for many different interferometers. For bosonic particles, NM
increases monotonically when the particles become more distinguishable, i.e. when
the values of ∆ω∆τ divert further from zero. In the fermionic case, the behaviour is
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Figure 7. Distinguishability transition as seen by the normalised mean NM
(193) and the coefficient of variation CV (194), by varying the time delay relative
to the spectral width of the wave packets ∆ω∆τ . Top panels show the case where
three bosonic (blue curves) and fermionic (green curves) particles were injected
in 25 randomly chosen seven-mode interferometers. Bottom panels show eight
bosonic (blue curves) and fermionic (green curves) particles were injected in 25
randomly chosen 50-mode interferometers. Data are obtained by averaging the
correlations for all possible output ports of each interferometer.

exactly the opposite, as is to be expected from (212, 213). For small interferometers,
the feature is qualitatively robust, although we still see significant fluctuations between
the different curves (i.e. different interferometers). However, as we increase the size
of the system, we gradually acquire a more robust quantitative behaviour, which
manifests by the results for eight particles in several different 50-mode interferometers.
Indeed, the different curves are in such a good agreement that it becomes hard to
distinguish them.

For the coefficient of variation, CV , we see a much wilder behaviour for
the small interferometers. Generally, CV reaches a minimal value for maximal
indistinguishability, i.e. ∆τ∆ω = 0. It is more remarkable that the bosonic and
fermionic curves seem to behave in a qualitatively similar way. Again, when we explore
the regime of more particles in larger interferometers (n = 8 and m = 50 in this case),
we observe an increased robustness. The observed curves for CV seem to be far less
dependent on the specific details of the realised interferometers, and depend more on
some coarse-grained parameters.

The increased robustness of NM and CV to differences between various randomly
chosen interferometers indicates clearly that random matrix methods should be
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Figure 8. Random matrix approximation (solid lines) for the normalised mean
NM (193, 215), compared to the data of Fig. 7 that were obtained for individual
interferometers (dashed lines). The distinguishability transition is seen by varying
the time delay between consecutive particles relative to the spectral width of the
wave packets, i.e. ∆ω∆τ .

virtuous to reproduce these results and obtain an analytical understanding. In other
words, we expect (215) and (216) to be good approximations for the observed curves.
This expectation is clearly lived up to in Figs. 8 and 9, where the dashed line indicate
single random realisations of the interferometers, and the solid line shows the random
matrix prediction.

Finally, one may wonder why it is necessary to consider the coefficient of variation
CV , when NM clearly gives a more robust result. The answer is provided in Fig. 10,
which shows that CV has a far greater interferometric visibility in the regions of
interest (n� m). The interferometric visibility is defined as

VNM =

∣∣∣NM ind
B/F −NMdis

B/F

∣∣∣∣∣∣NM ind
B/F +NMdis

B/F

∣∣∣ , (221)

VCV =

∣∣∣CV ind
B/F − CV dis

B/F

∣∣∣∣∣∣CV ind
B/F + CV dis

B/F

∣∣∣ , (222)

and serves to quantify the size of the observed indistinguishability transition. In Fig. 10
only the bosonic case is shown, but, from the random matrix predictions, it is easy
to see that the result for the fermionic case is qualitatively similar. One could argue
that these visibilities should in the first place be compared to the size of the statistical
fluctuation around the random matrix results. However, a typical experiment does
contain other sources of errors, for instance due to the fact that the measured corre-
lations are extracted from a finite set of measurements [96]. Such additional errors
might make it hard to observe a statistically significant feature of small visibility, such
as for the normalised mean NM .
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individual interferometers (dashed lines). The distinguishability transition is seen
by varying the time delay between consecutive particles relative to the spectral
width of the wave packets, i.e. ∆ω∆τ .

The phenomenology discussed throughout this section can be retrieved within the
final Fig. 11, where we show the different trajectories that are followed by the points
in Fig. 5 as we gradually make the particles more distinguishable. This figure nicely
captures that CV is a good quantifier for the indistinguishability transition, whereas
it is far less suitable to discriminate between bosons and fermions. Hence, a combined
study of NM and CV provides more information.

These results are only the tip of the iceberg. After all, we did only consider
separable number states at the input, and only studied the lowest order correlations.
It is to be expected that one may reach a far richer zoo of phenomena, once one
allows entanglement between the particles. It is likely that we will observe a different
behaviour when one includes entanglement in the external DOF and entanglement
in the internal DOF. Furthermore, higher order correlations may allow us to explore
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varying numbers n of input particles, and sizes m of the interferometers. Brighter
(more orange) colours indicate higher visibility. All data are obtained from the
bosonic random matrix approximations (215) and (216).
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Figure 11. Scatter plot showing the same type of data as Fig. 5. The normalised
mean NM (193) is represented on the horizontal axis and the coefficient of
variation CV (194) on vertical axis. Points were obtained by injecting eight
bosonic Fock states (blue dots), fermionic number states (green triangles), and
distinguishable particles (orange squares) into a 50-mode interferometer that was
randomly chosen from the Haar measure. The random matrix predictions (200
- 203, 206 - 208) for each particle type are shown by a large red dot. Curves
connecting the different points show how the position of the point changes by
varying ∆ω∆τ , hence making the particles more distinguishable.
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much more intricate aspects of partial distinguishability, such as those discussed in
[20, 108].

Partial distinguishability is known to be an important factor in the breakdown of
the computational complexity of Boson Sampling [103, 104, 109, 110], and, therefore,
it is indispensable to have good benchmarks at our disposal to characterise these
effects. In this light, more general measures of indistinguishability such as [111] can
provide additional insights that may help improve and extend the statistical signatures
of many-particle interference.

5. Conclusions and outlook

Throughout this Tutorial, we have extensively introduced the mathematical framework
that describes many-particle quantum systems. This framework was then used
to introduce the phenomenon of many-particle interference, for which we finally
developed several observable signatures. Nevertheless, it should be stressed that this
Tutorial is only intended to equip the interested reader with a toolbox to approach
the field. The results that are presented and the literature that is cited is certainly
not all-embracing. For a broader overview, we refer the reader to recent reviews on
photonic quantum technologies [16, 112] and quantum supremacy [113, 114, 115].

The signatures of many-particle interference that were described in this Tutorial
are likely to be just scratch the surface of what many-particle interference has to
offer. On the level of fundamental physics, there is a dire need for a general
framework to characterise the distinguishability of particles. Even though we generally
know how transfer probabilities change due to the gradual onset of distinguishability
[17, 116, 117, 118], it is also known that distinguishability can appear in many forms
[108]. Even though progress is being made [111], it remains an open question whether
there are tractable measures for understanding how partial distinguishability distorts
the many-particle interference pattern. It is conjectured that higher-order correlations
will play a role in answering this question. This question is of particular relevance
since we are gradually starting to understand how partial distinguishability distorts
the computation complexity of Boson Sampling [103, 104, 109, 110].

Apart from the questions that still surround the standard Boson Sampling setup,
there is by now also a whole range of extensions to the framework. A first set of
protocols have explored Boson Sampling with continuous variable detection [119, 120],
also demonstrating the computational complexity in this setting. Most attention has
been devoted to the so-called Gaussian Boson Sampling [45], where one injects non-
classical light into a linear-optical interferometer, rather than photonic Fock states.
This setup is gradually becoming more prominent, due to its inherent scalability and
potential applications beyond merely proving a quantum computational advantage
[121, 122, 123, 124, 125]. It was shown that the statistical signature for many-
particle interference can be extended to serve as a benchmark for Gaussian Boson
Sampling [126]. However, it is currently unclear which physical phenomenon really
makes Gaussian Boson Sampling hard. It is currently still an open question whether
these extended setups can be mapped to the notion of many-particle interference as
presented throughout this Tutorial .

What all these different setups have in common, however, is the presence of at
least one non-Gaussian element in the setup. This can be either the state [119, 120],
the measurement process [45], or both [37]. This observation makes a connection to an
essential fact in continuous-variable quantum information processing: non-Gaussian
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features are necessary to reach a quantum computational advantage [127, 128, 129].
This connection became even more pronounced when it was pointed out that the
scenario of fermionic many-particle interference does, in fact, only contain Gaussian
elements. However, non-Gaussian features represent only a necessary condition for
reaching a quantum advantage. What other elements are required, and how non-
Gaussianity should be used to reach a regime that is intractable for a classical com-
puter, both remain an important open question.

Finally, let us ponder upon the limitations of the setting that was considered in
this Tutorial. We initially stressed the important lack of interactions between the
particles we study. Interactions would also be a potential source of non-Gaussian
effects, but the downside is that they are hard to control (both theoretically and
experimentally). Nevertheless, statistical signatures of many-particle interference have
been used in the context of interacting particles [58, 59]. Hence, it is reasonable to
expect that also sampling from such setups is computationally hard, but turning this
conjecture into a formal proof is far from evident.

Another aspect that was not considered throughout the Tutorial is the possibility
of adding many-particle entanglement to the mix. The formalism that was introduced
in Section 2—and in particular the discussion of Section 2.3—provides a good starting
point for studying the phenomenon of many-particle entanglement. The identity (24)
is crucial for understanding many of the subtleties in the ongoing debate; for some
recent developments, see for example [130, 131, 132, 133, 134]. How many-particle
interference processes are affected by the presence of many-particle entanglement, be
it either in the internal or external DOF, is still a largely open question. It has
been shown [135] that many-particle interference effects can serve to detect entan-
glement between a pair of particles by using methods that are closely related to the
statistical signatures of Section 4.2. Furthermore, one may wonder whether adding
entanglement between the incoming bosons can increase the computational complex-
ity of Boson Sampling, which may allow to reach a computational advantage with a
smaller number of photons (at the cost of having to entangle them).

It is hard to deduce what exactly Dirac had in mind when he wrote that
“Interference between two different photons never occurs.” [1]. Therefore, it is crude to
go as far as to say that Dirac was blatantly mistaken. However, if the reader is to take
away one main message from this Tutorial, it is that photons (and all identical particles
for that matter) can be made to interfere, and the signatures of these interferences
are gradually being unveiled.
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with a pair of distant atoms. Phys. Rev. Lett. 119 160401.

[50] Rom T, Best T, van Oosten D, Schneider U, Fölling S, Paredes B, and Bloch I 2006 Free
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Appendix A. Direct sums and tensor products

Here we take a moment to briefly introduce some basic notions of the direct sum
“⊕” and the tensor product “⊗”. We first go over their mathematical structure, and
subsequently discuss the physical meaning of these constructs.

Appendix A.1. Mathematical structure

Both the direct sum and the tensor product are operations that act on a pair of vectors
in a Hilbert space, which result in a vector in a larger space. When defined on the
level of Hilbert space, these operations serve to create a larger sapce with a certain
structure.

Appendix A.1.1. The direct sum First, we consider the direct sum for finite-
dimensional Hilbert spaces H1 = Cd1 and H2 = Cd2 . Let us start by choosing vectors
|v〉 ∈ Cd1 and |w〉 ∈ Cd2 . In some arbitrary basis, these vectors can be represented
as |v〉 = (v1, . . . , vd1)t and |w〉 = (w1, . . . , wd2)t. The general rule is than that we can
represent

|v〉 ⊕ |w〉 = (v1, . . . , vd1
, w1, . . . , wd2

)t. (A.1)

On immediately seems that |v〉 ⊕ |w〉 is a vector of dimension d1 + d2.
The direct sum for vectors can then be generalised to a direct sum for Hilbert

spaces by defining

H1 ⊕H2 = {|v〉 ⊕ |w〉 | |v〉 ∈ H1, |w〉 ∈ H2}. (A.2)

We see that dimH1 ⊕ H2 = d1 + d2, and as a consequence we find the isomorphism
Cd1 ⊕ Cd2 ∼= Cd1+d2 . Note that (A.8) provides an explicit construction of this
isomorphism. Furthermore, there is a natural basis of H1 ⊕ H2 with respect to the
direct sum structure. When we choose a basis E of H1 and F of H2, we can construct
the basis

{|e〉 ⊕ |0〉 | |e〉 ∈ E} ∪ {|0〉 ⊕ |f〉 | |f〉 ∈ F}, (A.3)

where 0 represents the zero vector.
Importantly, we can also use direct sums to decompose a Hilbert space and give

it more structure. For example, we can consider H = Cd, and use the direct sum
structure to decompose it as

Cd ∼= C⊕ · · · ⊕ C︸ ︷︷ ︸
×d

. (A.4)

As a simple example, let us consider a qubit C2. We can then choose the basis {|0〉, |1〉},
such that a general state vector |ϕ〉 can be represented as

|ϕ〉 = α|0〉+ β|1〉 =

(
α
β

)
= α⊕ β, (A.5)
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with α, β ∈ C. Note that this decomposition depends on our chosen basis {|0〉, |1〉},
were we to choose another basis, the definition would be different. This leads to the
more general observation that the decomposition (A.4) must be interpreted in an as-
sociated basis.

Finally, we note that the above structures can also be defined when H1 and H2

are infinite-dimensional. We can then take |f〉 ∈ H1 and |g〉 ∈ H2, and generally
represent the elements of the Hilbert space as functions f(x) and g(x), respectively,
over some domain Λ1 (for H1) and Λ2 (for H2), with Λ1∩Λ2 = ∅. We can then define
the function

f ⊕ g : Λ1 ∪ Λ2 → C : x 7→
{
f(x), x ∈ Λ1

g(x), x ∈ Λ2.
(A.6)

Just like in the finite-dimensional case we can use then define H1 ⊕ H2, construct
a natural basis, et cetera. Here, we will limit ourselves to the important example
of square integrable functions. Let us consider the square integrable functions in a
volume of space Λ1, i.e. L2(Λ1), and in a second volume of space Λ2, i.e. L2(Λ2). We
now find the identity

L2(Λ1)⊕ L2(Λ2) ∼= L2(Λ1 ∪ Λ2). (A.7)

We have clearly increased the space through the direct sum, but the dimension of the
domain has remained unchanged.

Appendix A.1.2. The tensor product A second natural construct to increase the
size of a Hilbert space is the tensor product. We again start by considering finite-
dimensional Hilbert spaces H1 = Cd1 and H2 = Cd2 , choosing vectors |v〉 ∈ Cd1 and
|w〉 ∈ Cd2 . We, again, represent the vectors in some basis |v〉 = (v1, . . . , vd1)t and
|w〉 = (w1, . . . , wd2)t to describe the general rule for the tensor product

|v〉 ⊗ |w〉 = (v1w1, . . . , v1wd2 , v2w1, . . . , v2wd2 , . . . , vd1w1, . . . , vd1wd2)t. (A.8)

The resulting vector is now of dimension d1d2. We can use this construction to define
a new Hilbert space

H1 ⊗H2 = {|v〉 ⊗ |w〉 | |v〉 ∈ H1, |w〉 ∈ H2}, (A.9)

with dimH1 ⊗H2 = d1d2. This space comes with an associated natural basis that is
considerably different from that of the direct sum structure; when we choose a basis
E of H1 and F of H2, we obtain the basis

{|e〉 ⊗ |f〉 | |e〉 ∈ E , |f〉 ∈ F}, (A.10)

for H1 ⊗ H2. Contrary to the direct sum, we cannot decompose any possible finite-
dimensional Hilbert space as a long tensor product.

The construction for infinite dimensional spaces is also considerably different from
the direct sum. When we consider |f〉 ∈ H1 and |g〉 ∈ H2, we can represent the vectors
as functions f : Λ1 → C and g : Λ2 → C, respectively. We can then define

f ⊕ g : Λ1 × Λ2 → C : (x1, x2) 7→ f(x1)g(x2). (A.11)
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Note that the domain of the function f⊕g is of a higher dimensions than the domains
of f and g. A particularly important example is found, again, for the square integrable
functions, where we now consider the cases L2(Rd1) and L2(Rd2). It can then be shown
that

L2(Rd1)⊗ L2(Rd2) ∼= L2(Rd1+d2). (A.12)

Appendix A.2. Physical interpretation

Physically, the direct sum and the tensor product have a very different meaning, even
though they are often intertwined in one way or the other. The golden rule rule to
keep in mind is that, generally, tensor products indicate different DOF. This may be
the case for different distinguishable particles, or different spins in a spin chain. Each
spin or particle comes with its own small Hilbert space, and the total system is then
described by the tensor product of all these small Hilbert spaces. Furthermore, one
also uses the tensor product to combine the wide range of different DOF for a single
particle. In the case of a photon, one may for example take a tensor product of its
polarisation DOF, spatial DOF, and spectral DOF (note that for a photon one typi-
cally refers to these DOF as modes).

The interpretation of the direct sum is less straightforward, since it does not
increase the number of DOF, but rather the values that these DOF can take. This
may sound somewhat exotic, but in some settings this idea is quite natural. When,
for example, we use a tight-binding model to describe an atom in a one-dimensional
optical lattice, we have essentially one spatial dimension, with a variety of different
possible measurement outcomes (i.e. the different lattice sites). We can divide the set
of lattice sites in two groups, for example “left” and “right”. This gives us a Hilbert
space for the left part of the system, and another one for the right part of the system.
The Hilbert space of the total lattice can than be retrieved by taking the direct sum
of the left and right Hilbert spaces.

Let us consider, as an additional example, the case of a photon with some spectral
DOF. Imagine that we have a frequency comb (light with a discrete set of equidistantly
spaced frequencies) at our disposal, with central frequency ω0. We can separately de-
scribe the frequencies that are closer to the red, and those that are closer to the blue,
resulting in two independent Hilbert space (also referred to as mode spaces in the
optics context). To describe the whole frequency comb, we then take the direct sum
of these different mode spaces.

Appendix B. Moments of correlations

Appendix B.1. The Fourier interferometer

A notable example for which moments of the correlations between the interferometer’s
output ports can be calculated explicitly is the Fourier interferometer. This circuit
implements a discrete Fourier transformation and has played in important role in the
development of suppression laws [27]. This interferometer is given by the unitary
matrix F with components

Foj =
1√
m

exp

(
2πi

(o− 1)(j − 1)

m

)
, (B.1)
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such that we find correlations

CBo1o2
= − n

m2
+

1

m2

n∑
k,l=1
k 6=l

exp

(
2πi

(o2 − o1)(jk − jl)
m

)
, (B.2)

CTo1o2
=

n

m2
+

1

m2

n∑
k,l=1
k 6=l

exp

(
2πi

(o2 − o1)(jk − jl)
m

)
, (B.3)

CFo1o2
= − n

m2
− 1

m2

n∑
k,l=1
k 6=l

exp

(
2πi

(o2 − o1)(jk − jl)
m

)
, (B.4)

CDo1o2
= − n

m2
(B.5)

Because Co1o2
= Co2o1

, we can rewrite

mq =
1

m(m− 1)

m∑
o1,o2=1
o1 6=o2

(Co1o2
)
q
, (B.6)

which is particularly convenient, because it allows us to use the identity

m∑
o1,o2=1
o1 6=o2

exp

(
2πi

(o2 − o1)(jk − jl)
m

)
= −m, (B.7)

which holds regardless of the values of the integers jk and jl. Invoking this identity
leads to

mB
1 = − n

m2
− n(n− 1)

m2(m− 1)
, (B.8)

mT
1 =

n

m2
− n(n− 1)

m2(m− 1)
, (B.9)

mF
1 = − n

m2
+

n(n− 1)

m2(m− 1)
, (B.10)

mD
1 = − n

m2
. (B.11)

A similar argument can be used to calculate the second moment, which we will
only present explicitly for the bosonic case. Note first of all that

(
CBo1o2

)2
= − n

2

m4
− 2n

m4

n∑
k,l=1
k 6=l

exp

(
2πi

(o2 − o1)(jk − jl)
m

)
(B.12)

+
1

m4

n∑
k,l,p,q=1
k 6=l
p 6=q

exp

(
2πi

(o2 − o1)(jk − jl + jp − jq)
m

)
,
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The calculation of

1

m5(m− 1)

m∑
o1,o2=1
o1 6=o2

n∑
k,l,p,q=1
k 6=l
p 6=q

exp

(
2πi

(o2 − o1)(jk − jl + jp − jq)
m

)
(B.13)

is rather cumbersome, since we have to count all the terms where jk− jl+ jp− jq = 0,
a number which is found to be (2n−1)(n−1)n/3. For all of these terms, we find that
exp(2πi(o2 − o1)(jk − jl + jp − jq)/m) = 1. For all other terms, we can again invoke
the identity (B.7). This leads to the result

1

m5(m− 1)

m∑
o1,o2=1
o1 6=o2

n∑
k,l,p,q=1
k 6=l
p 6=q

exp

(
2πi

(o2 − o1)(jk − jl + jp − jq)
m

)

=
(2n− 1)(n− 1)n

3m4
− (n− 1)n(n(3n− 5) + 1)

3m4(m− 1)
, (B.14)

which can be used to reach the following result for the second moment:

mB
2 = − n

2

m4
+

2n2(n− 1)

m4(m− 1)
+

(2n− 1)(n− 1)n

3m4
− (n− 1)n(n(3n− 5) + 1)

3m4(m− 1)
. (B.15)

The calculation of mB
2 shows how the expressions for these moments gradually get

more complicated.

Appendix B.2. The special case of the first moment

It is generally possible to simplify the first moment of the correlation between output
detectors of a single interferometer, i.e. the case where q = 1 in (190). At the heart of
this simplification lies the following identity for a unitary m×m matrix U :

m∑
o2=1
o2 6=o1

Uo2iU
∗
o2j = δi,j − Uo1iU

∗
o1j . (B.16)

We can directly use this result to calculate

1

m(m− 1)

m∑
o2,o1=1
o2 6=o1

n∑
k=1

|Uo1ik |2|Uo2ik |2

=
1

m(m− 1)

n∑
k=1

m∑
o1=1

|Uo1ik |2(1− |Uo1ik |2) (B.17)

=
n

m(m− 1)
− 1

m(m− 1)

n∑
k=1

m∑
o1=1

|Uo1ik |4, (B.18)
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and

1

m(m− 1)

∑
o2,o1=1
o2 6=o1

n∑
k,l=1
k 6=l

Uo1ikUo2ilU
∗
o1il

U∗o2ik

= − 1

m(m− 1)

n∑
k,l=1
k 6=l

m∑
o1

|Uo1ik |2|Uo1il |2 (B.19)

= − 1

m(m− 1)

m∑
o1=1

(
n∑
k=1

|Uo1ik |2
)2

+
1

m(m− 1)

n∑
k=1

m∑
o1=1

|Uo1ik |4 (B.20)

A direct calculation then shows that

mB
1 =− n

m(m− 1)
− 1

m(m− 1)

m∑
o1=1

(
n∑
k=1

|Uo1ik |2
)2

(B.21)

+
2

m(m− 1)

n∑
k=1

m∑
o1=1

|Uo1ik |4,

mT
1 =

n

m(m− 1)
− 1

m(m− 1)

m∑
o1=1

(
n∑
k=1

|Uo1ik |2
)2

, (B.22)

mF
1 =− n

m(m− 1)
+

1

m(m− 1)

m∑
o1=1

(
n∑
k=1

|Uo1ik |2
)2

, (B.23)

mD
1 =− n

m(m− 1)
+

1

m(m− 1)

n∑
k=1

m∑
o1=1

|Uo1ik |4. (B.24)

Interestingly, this result directly shows a hierarchy that holds for every interferometer:

n

m(m− 1)
> mT

1 > mF
1 > mD

1 > mB
1 > − n

m(m− 1)
. (B.25)

We also uncover an interesting relation between the case of bosons in a number states,
thermal bosons, and distinguishable particles:

mB
1 = mT

1 + 2mD
1 . (B.26)

Note, finally, that
mF

1 = −mT
1 (B.27)

, which is a consequence of the general fact that CFo1o2
= −CTo1o2

for any pair of output
correlators in any interferometer. This fact can be traced back to (64) and (66), since
both cases result from a Gaussian state. In absence of any squeezing, we find that

CTo1,o2
= tr[ρTa†(eo1

)a†(eo2
)a(eo2

)a(eo1
)]− tr[ρTa†(eo1

)a(eo1
)] tr[ρTa†(eo2

)a(eo2
)]

=
∣∣tr[ρTa†(eo1

)a(eo2
)]
∣∣2 (B.28)

CFo1,o2
= tr[ρFa†(eo1

)a†(eo2
)a(eo2

)a(eo1
)]− tr[ρFa†(eo1

)a(eo1
)] tr[ρFa†(eo2

)a(eo2
)]

= −
∣∣tr[ρFa†(eo1

)a(eo2
)]
∣∣2, (B.29)
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where we use the bosonic rule (64) for CTo1,o2
, and the fermionic rule (66) for CFo1,o2

.

To finally conclude that CFo1o2
= −CTo1o2

, note that the thermal states are constructed
in a way such that tr[ρFa†(ϕ)a(ψ)] = tr[ρTa†(ϕ)a(ψ)] for all ϕ and ψ ∈ H.
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