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Abstract

The initial formation stages of surfactant-templated silica thin films which grow at the air-

water interface were studied using combined Spin-Echo Modulated Small-Angle Neutron 

Scattering (SEMSANS) and Small Angle Neutron Scattering (SANS). The films are formed 

from either a cationic surfactant (CTAB) or non-ionic surfactant (C16EO8) in a dilute acidic 

solution, by addition of TMOS. Previous work has suggested a two stage formation 

mechanism with mesostructured particle formation in the bulk solution driving film formation 

at the solution surface. From the SEMSANS data, it is possible to pinpoint accurately the time 

associated with the formation of large particles in solution, that go on to form the film, and to 

show their emergence is concomitant with the appearance of Bragg peaks in the SANS 
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2

pattern, associated with the 2D-hexagonal order. The combination of SANS and SEMSANS 

allows a complete depiction of the steps of the synthesis that occur in the subphase.

Keywords: Small angle neutron scattering (SANS), spin-echo modulated small angle neutron 

scattering (SEMSANS), mesoporous silica, kinetics, micelles, mesophase, particles, silica 

films

Introduction

Mesoporous materials, discovered in 1992,1 present a well-defined and organised porosity. 

They are formed by mixing an amphiphilic structuring agent with an inorganic precursor in 

solution. Depending on the synthesis conditions, the material is synthesized as sub-

micrometric grains in solution,2-3 monoliths,4-5 or as thin-films, either via spin-coating,6 dip-

coating7-8 or by spontaneous formation at the air-water interface.9

Ever since the groups of Ozin10 and Aksay11 reported on the synthesis of mesophase inorganic 

thin films formed at the solution surface in 1996, these materials have been a topic of great 

interest. The ability to manipulate the mesostructure in the films, their intrinsic porosity, the 

size of their pores, and other morphological parameters give the films potential applications in 

a wide variety of scientific and technological fields such as selective membranes,12 

catalysis,13-14 gas sensors,15 and drug-delivery.16 Extensive research has been done on these 

self-assembling silica-surfactant systems; however, the mechanism of this self-assembly, 

leading to the formation of the mesostructured thin films, is still a matter of debate. Currently, 

the two possible mechanisms that have been proposed in the literature are the silica-coated 

micelles mechanism and the silica-droplet phase separation mechanism.9 The former relies on 

the addition of silica species to the corona of the micelles in the solution, influencing the 

micelles shape, usually promoting more elongated packing parameters. Then, either some of 

the silica-enriched micelles migrate to the interface to form the film, or alternatively form 
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3

mesostructured particles in the subphase that later migrate to the interface. The latter 

mechanism suggests the rapid formation of phase-separated droplets rich in surfactant and 

silica species - often called flocs - and possibly remaining-quasi globular micelles in the bulk. 

The flocs are suggested as nucleation sites for micelle elongation and reorganisation into a 

mesostructure. In the first case, the signal of elongating micelles should be measured in the 

bulk before the signal of larger flocs, while the second hypothesis suggests the appearance of 

large objects in the bulk prior to any reshaping of the micelles.

To investigate the behaviour of the micelles and particles in the bulk, a combination of 

traditional Small Angle Neutron Scattering (SANS) and Spin-Echo Modulated Small-Angle 

Neutron-Scattering (SEMSANS)17-19 was implemented on the Larmor instrument (ISIS, 

Rutherford Appleton Laboratory, UK). This allowed for the investigation of phenomena on 

the nano- and micro-metre scale simultaneously, providing valuable insights on the behaviour 

of the micelles prior to and during aggregation. Furthermore, it enables the identification of 

the formation of an ordered mesostructure within the larger aggregates. Finally, when 

evidence was found for the phase-separation mechanism, SANS/SEMSANS was used to 

determine whether the micelles aggregated in an orderly fashion, or whether random 

aggregation was followed by ordering into the later observed mesostructure. Because this was 

the first-ever application of this combined technique on a real physical-chemical system, a 

description of the setup is provided below.

Material and Methods

Films preparation

Mesoporous silica film forming solutions were prepared following already established 

protocols.20-21 The films are formed from solution by mixing tetramethoxysilane (TMOS) 

with a surfactant solution in acidic conditions. The surfactant (SF) used was either 
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4

hexadecyltrimethylammonium bromide (CTAB) or octaethylene glycol monohexadecyl ether 

(C16EO8) depending on the synthesis. The C16EO8 was purchased from Nikko Chemicals, 

Japan (BC- 8SY). The CTAB, HCl, D2O and TMOS were purchased from Sigma-Aldrich and 

all were used as received. For each synthesis, the molar ratio SF:HCl:D2O was 1:2.39:658, in 

agreement with previous studies.9 Several syntheses were studied by varying the molar ratio 

between the silica source and the surfactant. In detail, three molar ratios =3.6; 7.21 𝑟𝑚𝑜𝑙 =
𝑛𝑇𝑀𝑂𝑆

𝑛𝑆𝐹

and 10.81 were investigated, using CTAB as surfactant, and one ratio (rmol=7.21) for C16EO8. 

Those ratios correspond to ratios previously investigated with other techniques.9  TMOS was 

added to the already prepared surfactant solution in 0.2M HCl, which was then stirred for one 

minute before filling the SANS cell. The cell cap was left off to allow evaporation and hence 

have similar synthesis conditions to previous studies.

Combined SEMSANS and SANS measurements

In a typical small angle neutron scattering (SANS) measurement, the sample loaded in a cell 

is exposed to a well-collimated neutron beam, inducing scattering. The intensity of the 

scattered beam I is recorded on a pixelated detector, while the non-scattered, direct, beam is 

discarded using a beamstop. The scattered intensity is azimuthally averaged and given as a 

function of the scattering vector , with λ the wavelength of the neutron beam and 𝑞 =
4𝜋
𝜆 sin (

𝜃
2)

θ the scattering angle. The q-range accessible in SANS permits probing dimensions typically 

ranging from 1 to a few hundred nm.

To access the larger µm-scale structures at very low q, we have to measure the scattering 

which is contained within the footprint of the direct beam, which is usually discarded. 

However, with the addition of several components we can gain additional information using a 

new technique called spin-echo modulated small angle neutron scattering (SEMSANS), 

proposed by Gähler.22 We implemented this method using a polarised beam and two 
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5

superconducting Wollaston prisms 23-24 to create a spatial modulation of the intensity of the 

neutron beam at the detector position. The change in modulation amplitude caused by 

scattering from the sample gives the sample density autocorrelation function G(δSE),17-19  

where δSE, the spin-echo length, is the length scale being probed and is dependent upon the 

period (p) of the neutron intensity modulation at the detector. The quantity G(δSE) is the same 

as that measured in spin-echo small angle neutron scattering (SESANS) 25 and we can use the 

same models and transforms to interpret the data. Unlike SESANS, the SEMSANS method 

has all the components for neutron spin manipulation before the sample and hence can be 

combined with the SANS technique for simultaneous measurements. Due to the use of time of 

flight, a range of wavelengths is probed at the same time, allowing measuring SEMSANS and 

SANS simultaneously.

A detailed description of the different components of the setup for the SEMSANS 

measurements, and of the procedure for the data corrections can be found in refs 26-31 and in 

the supplementary information. 

The measurements were performed on the LARMOR instrument at the ISIS Pulsed Neutron 

and Muon Source. The sample to detector distance is 4 m and the accessible SANS q-range is 

0.08-0.4 Å-1, while the accessible range of spin-echo lengths was 0.35<δSE≤2.5 µm. A series 

of runs were performed every 19 minutes until an equilibrium state was found. 

SESANS

In addition to the combined SEMSANS/SANS measurements, we also utilised the 

monochromatic SESANS instrument at the TU-Delft.32 Briefly, this utilises a 2.03 Å beam 

with a series of inclined magnetised films to encode the polarisation. This instrument has 

encoding films before and after the sample and cannot be combined with SANS. However, 

this is able to reach significantly higher spin-echo lengths. For these measurements the same 
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6

correlation function G(δSE) is determined. Nonetheless, measurement at each spin-echo length 

has to be performed separately (due to the monochromatic nature of the beam) and the sample 

was measured for eleven different spin-echo lengths which were cycled through every 19 

minutes (i.e. 100 s measurement per spin-echo length). This was to preserve a similar time 

structure to the combined SEMSANS/SANS measurements made on LARMOR. 

SANS data treatment

The theoretical model for the formation of mesostructured materials studied in small angle 

scattering has already been described in the literature.33-34 The expression for the intensity can 

be described as the sum of four terms:

𝐼𝑡𝑜𝑡(𝑞) = 𝐼𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠(𝑞) + 𝐼𝐵𝑟𝑎𝑔𝑔(𝑞) + 𝐼𝑃𝑜𝑟𝑜𝑑(𝑞) + 𝑏𝑔     (1)

with  the contribution of the ellipsoidal micelles of surfactant in solution;  𝐼𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠(𝑞) 𝐼𝐵𝑟𝑎𝑔𝑔(𝑞)

the contribution of the forming mesostructured material;  a Porod term at the very 𝐼𝑃𝑜𝑟𝑜𝑑(𝑞)

low angles associated with the forming particles and  a constant background term.𝑏𝑔

For ellipsoidal micelles with radii (R,R,εR),  (in cm-1) can be expressed as:35𝐼𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠(𝑞)

𝐼𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠(𝑞) = 𝐴𝑃(𝑞,𝑅,𝜀,𝜎)     (2)

with  the scale factor, depending on the number of micelles per unit 𝐴 = 𝑛(𝜌𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠 ― 𝜌0)2

volume n (in cm-3), ρmicelles and ρ0 the scattering length densities of the core of the micelles 

and solvent respectively (ρ0=6.335 1010 cm-2 for D2O), and P(q) the form factor of the 

micelles with their volume included (in cm6). P(q) is defined as:

𝑃(𝑞,𝑅,𝜀,𝜎) = 〈∫𝜋
2

0
[𝐹(𝑞,𝑟(𝑅,𝜀,𝜃))]2𝑠𝑖𝑛𝜃𝑑𝜃〉

𝜎

     (3)
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7

with , to describe the ellipticity of the radii.𝑟(𝑅,𝜀,𝜃) = 𝑅(𝑠𝑖𝑛2𝜃 + 𝜀²𝑐𝑜𝑠2𝜃)
1

2

𝐹(𝑞,𝑟) = 𝑉(𝑟)𝑓𝑠(𝑞,𝑟)     (4)

is the form factor amplitude for a sphere of core radius r.  is the volume of a 𝑉(𝑟) =
4
3𝜋𝑟3

sphere of radius r and  the normalized form factor amplitude of a 𝑓𝑠(𝑞,𝑟) =
3[sin (𝑞𝑟) ― 𝑞𝑅𝑐𝑜𝑠(𝑞𝑟)]

(𝑞𝑟)3

sphere of radius r.

Finally, the polydispersity in size  is taken into account using the Schulz-Zimm 〈.〉𝜎

distribution, i.e, for a certain function :𝐹′(𝑞,𝑟)

〈𝐹′(𝑞,𝑟)〉𝜎 = ∫𝑓𝑆𝑍(𝑅,𝑟,
1

𝜎2 ― 1)𝐹′(𝑞,𝑅)𝑑𝑅     (5)

with 𝑓𝑆𝑍(𝑥,𝑥0,𝑧) =
𝑥𝑧

𝛤(𝑧 + 1)(𝑧 + 1
𝑥0 )𝑧 + 1

𝑒
―(𝑧 + 1)

𝑥
𝑥0

In order to easily compare the contribution from the free micelles to the overall intensity, one 

can rewrite equation 2 as follow:

𝐼𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠(𝑞) = 𝐼𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠(𝑞 = 0)𝑃′(𝑞,𝑅,𝜀,𝜎)     (6)

with 

𝐼𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠(𝑞 = 0)
= 𝐴𝑃(0,𝑅,𝜀,𝜎) = 𝑛(𝜌𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠 ― 𝜌0)2𝑃(0,𝑅,𝜀,𝜎) = 𝑛(𝜌𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠 ― 𝜌0)2𝑉2

𝑒𝑙𝑙(𝑅,𝜀)
     (7)

the intensity from the micelles at q=0 (in cm-1) and the normalised 𝑃′(𝑞,𝑅,𝜀,𝜎) =
𝑃(𝑞,𝑅,𝜀,𝜎)  
𝑃(0,𝑅,𝜀,𝜎)   

form factor.  is the volume in cm3 of an ellipsoid of radius (R, R, εR). 𝑉𝑒𝑙𝑙(𝑅,𝜀) =
4
3𝜋𝜀𝑅3
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8

We note that previous studies, using different D2O/H2O contrasts, showed that the micelles 

are of a core-shell type.36 Nonetheless, in our case, with only one contrast, we can fit the 

scattering from the micelles using only this homogeneous ellipsoid form factor. 

The contribution associated with the mesophase is given by :37-38𝐼𝐵𝑟𝑎𝑔𝑔(𝑞)

𝐼𝐵𝑟𝑎𝑔𝑔(𝑞) = ∑
ℎ𝑘𝑙

𝐼ℎ𝑘𝑙𝐿ℎ𝑘𝑙(𝑞,𝑎,𝐷,𝜈)     (8)

with  the function that will reproduce the lattice organisation (e.g. Bragg peaks 𝐿ℎ𝑘𝑙(𝑞,𝑎,𝐷,𝜈)

found at the positions qhkl), taking into account the lattice parameter a (in nm) associated to 

the peak position and type of organisation, the lattice dimension D (in nm) which depends on 

the peak width, the numerical parameter ν associated with the peak shape (0 for a Lorentzian 

shape, 1 for a Gaussian shape), and l, h, k the Miller indices of the reticular planes associated 

to the mesophase. Values of the h, k, l indices, and hence the peaks positions will be highly 

dependent on the type of mesophase studied. In the q-range used in this study, only the first 

peak can be measured, which prevents discrimination of which type of mesophase is forming 

(2D hexagonal, cubic etc) and hence extraction of the lattice parameter a. 

Nonetheless, for the CTAB templated films, we can assume that the Bragg peak for the 

particles formed in the subphase is associated with a 2D-hexagonal ordering, as already well-

established in the literature36, 39-40 and measuring one peak is enough to extract both the lattice 

parameter and lattice dimension. Indeed, for a 2D-hexagonal mesophase, the position of the 

Bragg peaks is given by the formula  . The first peak is in that 𝑞ℎ𝑘𝑙 = 𝑞ℎ𝑘 =
4𝜋

𝑎 3 ℎ2 + 𝑘2 + ℎ𝑘

case associated with the (10) plane and is found at position . The intensity parameter 𝑞10 =
4𝜋

𝑎 3

of this peak I10 can be written:

𝐼10 = 𝐼(𝑞 = 𝑞10) = 𝑛′(𝜌𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠 ― 𝜌′0)2𝑃(𝑞10,𝑅,𝜀,𝜎)      (9)
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9

It is associated not only with the number of micelles within the mesostructured phase domains 

n’, but also the contrast between the micelles and the silica walls ( , where ρ’0 (𝜌𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠 ― 𝜌0′)2

is the scattering length density of the condensing “silica walls” between the micelles). As only 

one Bragg peak was extracted, it is not possible to separate the two parameters n’ and ρ’0. 

The films templated with C16EO8 form a variety of mesophases dependant on the 

silica:surfactant molar ratio. At the ratio studied here, rmol=7.2, the films contain a  𝑃𝑚3𝑛

cubic phase,21 however the structure within the particles in the subphase cannot be determined 

from the single peak observed here, although, as for the CTAB templated particles, it can still 

be used to extract a d-spacing and domain size. 

Finally we note that the width of the peak is also limited by the resolution in q (called Δq) of 

the SANS detector. This means the domain size of the mesophase can be accurately extracted 

only for values .𝐷 ≤
2𝜋
∆𝑞

At small angles, the Porod term  is associated with the growing mesophase, with a 𝐼𝑃𝑜𝑟𝑜𝑑(𝑞)

parameter related to the smooth interface of the forming mesostructured particles:

𝐼𝑃𝑜𝑟𝑜𝑑(𝑞) =
𝐾

𝑞4     (10)

The q-range used in SANS does not allow extraction of the size of the particles, which is 

instead observed using the spin-echo configuration.

SEMSANS and SESANS data treatment

For both SEMSANS and SESANS, data are expressed in the form of (𝐺(𝛿𝑆𝐸) ―1) ∗ 𝛴𝑡 =

as a function of spin-echo length (δSE). where,  is the neutron wavelength, t the 
ln (𝑃

𝑃0
)

𝜆²𝑡  

sample thickness and t a measure of the scattering power. In SEMSANS, P=P(λ) is the 
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10

amplitude of the intensity modulations on the detector for the sample at a given wavelength, 

while P0 is the one from the blank; while in SESANS they are the amplitude of the 

polarisation directly. A more detailed explanation of the extraction of  versus δSE is 
ln (𝑃

𝑃0
)

𝜆²𝑡

given in S.I and in ref 41. 

Both the SESANS and SEMSANS data were fitted to a simple dilute sphere model as given 

by Andersson et al.25 This is characterised by two parameters: a measure of the scattering 

power independent from wavelength and sample thickness (t) and radius (Rparticles in µm).  

We note that, for concentration of particles below ca 10%:

𝛴𝑡 =
3
2𝑅𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠(∆𝜌)²𝜑(1 ― 𝜑)     (12)

with Δρ the contrast between the particles and the solvent and φ the volume fraction of 

particles. This means that Σt and Rparticles are correlated. In the plots of ln(P/P0)/(2t) vs δSE 

(see for example Figure 1.b), the signal decreases until it reaches a plateau. The position in δSE 

of the plateau can be related to 2Rparticles, while the value of ln(P/P0)/(2t) at the plateau is 

related to Σt. In SEMSANS, we can only probe a limited spatial range of spin-echo lengths δSE 

(≤2.5 µm), which means we will have an accurate measurement of Rparticles and Σt only for 

particles ≤2.5 µm, where the plateau of the signal is clearly observed. This is nonetheless 

sufficient to evidence the formation of µm-sized particles in this study.

Results

Synthesis using CTAB at a ratio rmol=3.6

A synthesis solution made using CTAB as surfactant with a molar ratio rmol=3.6 was 

investigated using the combined SEMSANS and SANS setup, with SANS and SEMSANS 

patterns as a function of time given in Figure 1. This ratio has the lowest amount of silica of 
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11

the three investigated, hence presents a slower speed of reaction. Both the SANS and the 

SEMSANS data were fitted using the models for mesostructured 2D-hexagonal domain 

growth kinetics and for growth of spherical particles respectively, detailed in the Materials 

and Methods section. SANS patterns (Figure 1.a) demonstrate that at the beginning of the 

reaction, CTAB micelles in solution are present, with a slightly prolate shape. Over time, an 

elongation of the micelles is observed, before a Bragg peak arises at around 2 hours (observed 

but too weak to be fitted at 110 min, labelled below as tBragg), associated with the formation of 

a hybrid 2D-hexagonal mesostructure, which further grows in intensity with time. 

Concomitantly to the Bragg peak’s initial appearance, the SEMSANS signal diverges from a 

flat line (Figure 1.b, divergence is present at 110 min but clearer at 129 min), with a 

modulation observed around δSE=1.5 µm, characteristic of particles typically bigger than 1 µm 

in solution. 

A detailed analysis of the parameters extracted from fitting the SANS and SEMSANS data for 

the entire reaction is given in Figures 2 and 3. 

Figure 2 allows a clear comparison with time between Imicelles(q=0) the intensity from the 

micelles of CTAB in solution, I10 the peak intensity associated with the mesophase 

organisation and Σt the scattering power associated with the µm-sized particles observed in 

SEMSANS. The signal associated with the micelles firstly increases until tBragg=110 min, 

before strongly decreasing while signals for both mesostructure and µm-sized particles 

increase after tBragg. The first increase of Imicelles(q=0) is assumed to be due to the 

incorporation of silica species into the CTAB micelles, modifying both the micelle shape and 

their contrast with the solvent as further described in the next paragraph. The decrease after 

the emergence of the Bragg peak is explained by the continuing consumption of the micelles 

to form the mesophase. On the other hand, signals associated with the 2D-hexagonal phase 

and the µm-sized particles appear around the same time (although I10 was too weak to be 
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12

fitted at 110 min). Σt shows a sharp increase before fluctuating around a plateau, which seems 

to indicate that large particles are quickly formed and then their number remains roughly 

constant with time. Comparatively, the signal of I10 grows more slowly upon time, mirroring 

the decrease of the signal of micelles of CTAB in solution.

A more detailed analysis can be obtained through the study of the parameters extracted from 

the fits and given in Figure 3. This allows a sketch of the different steps of the reactions to be 

proposed, shown in Scheme 1.

The shape of micelles clearly evolves during the reaction, as seen from the values of the 

micelle radius R and the micelle ellipticity ε with time (Fig 3a and b). At t=0, micelles of 

CTAB can be fitted using a model of slightly prolate ellipsoids (R=2.4±0.1 nm and ε=1.8±0.1) 

in solution (step 1 in Scheme 1). With time, changes in the SANS pattern can be reproduced 

well by an elongation of the micelles (R=2.2±0.1 nm and ε=3.0±0.1 at t=tBragg), (step 2 in 

Scheme 1). After tBragg, the contribution of the micelles in the SANS pattern is modelled only 

by decreasing Imicelles(q=0), without further modification of the micelles form factor (R and ε 

fixed). This elongation can be explained by the incorporation of silica species in the micelles. 

Indeed, from Imicelles(q=0), we can extract the number of micelles per unit volume n and the 

scattering length density of the micelles ρmicelles (Fig 3 c and d). Before precipitation (t<tBragg), 

we make the hypothesis that the number of micelles remains roughly constant in solution, 

assuming the change in shape can be mostly related to the addition of silica in their corona 

(although it is possible that reshaping of the micelles would induce a change in aggregation 

number and probably a slight decrease of n, neglected here). We can hence extract ρmicelles, 

that is found to increase from -0.24210-6 Å-2 at time t=0 (scattering length density of CTAB) 

to 0.910-6 Å-2 once the Bragg peak is detected. From ρmicelles, it is also possible to derive the 

amount of silica species xsilica in the micelles (Fig 3e), assuming micelles are composed only 

of CTAB and silica. This amount is found to reach almost 30% before the mesophase 
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13

precipitation. As only a core model is needed to fit the data, it is impossible to describe with 

accuracy the localisation of the silica species in the micelles. Moreover, it is possible that a 

fraction of D2O is present in the micelles, neglected here, leading to a probable overestimation 

of xsilica. After tBragg, as the shape of the micelles does not evolve, ρmicelles is fixed while the 

decrease of Imicelles(q=0) can be well described by the decrease of the number of micelles in 

solution n, consistent with their consumption in the particles to form the 2D-hexagonal 

network. The fact that this parameter equals zero at long time is a proof that most of the 

micelles are eventually consumed to form the mesophase (steps 3 and 4 in Scheme 1).

As seen on Figure 2, at t=tBragg a signal of µm-sized particles is detected in SEMSANS, 

concomitant with a Bragg peak of a mesophase in SANS. 

The radius of the large particles Rparticles  quickly reaches a very large size (at t=tBragg=110 

min, fits give a Rparticles at ca 80 nm, while it is found above 2 µm for the next measurement 

made at 129 min). Then, it slightly decreases upon time, again with some fluctuations, 

reaching 1.5±0.2 µm at 386 min (Fig 3f). As for the 2D-hexagonal organisation, the lattice 

parameter a does not vary significantly with time, whereas the apparent decrease in the 

domain size D observed around tBragg is probably explained by an overestimation of D at those 

early stages, due to the weak Bragg peak intensity at this time (Fig 3g and h). A value of D of 

approximately 80 nm is found throughout the entire kinetics series, which is more than ten 

times smaller than the particle radius observed in SEMSANS. This measurement of domain 

size may be artificially limited by the resolution of the SANS detector, however earlier 

measurement on film growth using X-ray reflectivity, where peak width was not defined by 

the detector resolution, suggested a domain size around 200 nm.39 This size is still much 

smaller than the particle sizes observed here, which may suggest that the 1.5 µm particles are 

composed of several 2D-hexagonal domains.
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As described previously, after t=tBragg, we observed three phenomena: the appearance of 

particles in the SEMSANS signal, the appearance and slow growth of the Bragg peak 

associated with the 2D-hexagonal mesophase and the slow decrease of the signal from 

micelles in solution. The concomitance between these phenomena is a direct indication that 

the nucleation of the particles is due to the rapid aggregation of silica-enriched micelles into 

phase separated particles. This immediately triggers a 2D-hexagonal organisation of the 

micelles within the particles, due to the higher concentration and interactions between 

micelles.  Interestingly, while Σt quickly reaches a plateau around ca t=160 min, indicating 

that most phase-separated particles are formed at that time (step 3 in Scheme 1), both 

Imicelles(q=0) and I10 continue to evolve with time; which suggests that the micelle organisation 

continues for a long period after particle formation, by the formation of new 2D-hexagonal 

domains in the particles, as the domain size does not increase with time (step 4 in Scheme 1). 

Around 160 min where most particles are formed, the number of micelles which are not 

organised is ca half the initial number of micelles. These unorganised micelles could be either 

already present in the particles (hence at a relatively high concentration) or still free in 

solution (in a dilute regime). As the signal of unorganised micelles is always fitted as non-

interacting, it is assumed that most are still in solution. This other half of unorganised micelles 

is consumed over time, mirroring the growth of the Bragg peak intensity I10, suggesting that 

the increase of number of 2D-hexagonal domains in the particles is probably not only due to 

micelles reorganisation within the particles but also to further adsorption of more silica-

enriched micelles from the water phase. Adsorption of surfactant-silica composite micelles 

onto silica surfaces in an epitaxial fashion is well-established11, 42 and once the particle surface 

exists it is highly likely that further accretion of micelles onto this surface will continually 

occur. Possibly, the decrease in size of the large particles arises due to the continuing silica 

condensation and re-organisation of both silica and micelles in the particles, leading to 
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compaction of initial aggregates which are composed of several different ~80 nm domains of 

2D hexagonal organisation.

Finally, after t=160 min, the polydispersity in size of the large particles is quite narrow, 

especially considering the fact that they are probably composed of several domains as already 

seen by the difference between the domain size and the particles radius. This reflects the 

formation process which is reminiscent of a phase separation, similar to coacervation 

observed in polymer-surfactant systems where uniform liquid droplets form at a critical 

composition.43 A coacervation-like mechanism has previously been suggested for the 

formation of micelle templated silica particles formed in bulk solution in systems where no 

film formation occurs.44 

The mesostructured silica film at this silica:surfactant ratio is hence obtained by later 

migration of a portion of the 2D-hexagonal ordered particles to the interface (step 5 in 

Scheme 1).

Increasing the amount of TMOS (CTAB, rmol=7.21 and 10.81)

Two other syntheses using CTAB as surfactant were carried at higher TMOS concentrations 

(rmol=7.21 and 10.81, in Figures 4 and 5 respectively, and also in S.I. S3, S4 and S5). Similar 

stages to the kinetics were also observed when rmol=7.21 compared to the already discussed 

rmol=3.6 (SANS and SEMSANS data are given in Figure 4). Nonetheless, observation of µm-

scaled particles is observed at an earlier time for rmol=7.21 (already at 66 min, compared to 

110 min for rmol=3.6), see Figure 6 and Figure S6, S.I. A smaller particle radius is also found, 

at approximately 1.1 µm, whereas the lattice parameter and domain size are similar to the case 

rmol=3.6 (see Figure S7, S.I.). The fact that precipitation occurs sooner at rmol=7.21 is expected 

as more silica species are present.20 Also, this fastest precipitation is associated with micelles 

less enriched with silica (xsilica around 15%, compared to 30%) and less anisotropic (at the 
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precipitation time, ε=2.5±0.1 for rmol=7.21, compared to 3.0±0.1 for rmol=3.6, see Figures 3 

and 6). This suggests that the precipitation time is driven by the silica polymer size rather than 

the micelle properties, similar to the effects of polymer molecular weight on coacervation 

observed in polymer surfactant systems. In such systems a threshold molecular weight must 

be achieved before phase separation into droplets occurs,43 and here, as silica concentration 

increases this molecular weight will be reached more rapidly. 

For the molar ratio rmol=10.81, a loss of the beam prevented us to measure the beginning of 

the kinetic run (see SANS and SEMSANS measurements in Figure S4 and S5, S.I.). Although 

a signal from SEMSANS shows the presence of ca 1-2 µm particles once the beam was 

restored (first pattern at 164 min, see Figure S4), no Bragg peak can be seen in the highly 

noisy SANS patterns, in correspondence with earlier SANS studies on solutions at this ratio.36 

Hence, to have a better understanding of the mechanisms involved in that reaction, we 

performed additional SESANS experiments at Delft, and compared them to a set of data 

previously measured using SANS on LOQ.36 SESANS and SANS data are given in Figure 5. 

The most striking aspect is that in this case, even if CTAB micelles are very slowly elongating 

upon time (see fitting parameters given in Figure 7), no Bragg peak is observed. Moreover, at 

long times (around 650 min in SANS and 800 min in SESANS), a sudden change in the signal 

is observed in SANS and a signal of very large particles (ca 8 µm) is detected in SESANS. 

The modification of the SANS signal gives a sharp increase of both the scaling factor and the 

ellipticity of the micelles (see Figure 7), but it is believed this is an artefact due to the growth 

of those large objects measured in SESANS. Indeed, the fits obtained at those times cannot 

reproduce accurately the data, with the emergence of a “shoulder” around 0.1 Å-1. This 

shoulder, associated with the increase of the signal at small angle (q<0.05 Å-1), could be the 

signature of the formation of disordered fractal-like silica gel particles, possibly from further 

aggregation of the 1-2 µm particles observed in SEMSANS at earlier times. We note that 
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below 300 min, the CTAB micelles in this system are still only slightly prolate, with an 

ellipticity <1.5 (see Figure 7). This would indicate that if the phase-separation is triggered by 

the silica polymer size, the rearrangement into a mesophase is controlled by the micelle 

properties and most importantly its silica loading. Associated with the absence of Bragg 

peaks, these results indicate that for this ratio, a silica polymer network is forming in solution 

almost independently of the CTAB micelles, associated with the high amount of silica species 

in the solution, favouring silica-silica over silica-CTAB interactions. This silica network does 

collapse into particles rather than forming a solution spanning gel, trapping the micelles but at 

this point the silica polymer is too condensed to allow rearrangement into the ordered 2D 

hexagonal phase within the particles. The difference in times between the changes observed in 

SANS (650 min) and SESANS (800 min) is not necessarily significant as small variations in 

reproducing the same synthesis (e.g. slight changes in pH or level of deuteration) might 

influence the times associated with each event in the kinetics.

Those results are a strong indication that the mechanisms of the film formation are profoundly 

modified at this ratio, which is correlated with the fact that films formed much more slowly at 

rmol=10.80 with CTAB have a much smoother interface compared to rmol=3.6 and 7.21.20 The 

difference of roughness of the film has been previously explained by suggesting that for 

rmol=10.81, it was formed by the aggregation of individual micelles at the interface, whereas 

for the other ratios the film is formed by already formed 2D-hexagonal particles migrating to 

the interface. This scenario is consistent with the results obtained in this study, especially the 

absence of mesostructured particles at rmol=10.81. It is possible that the high amount of silica 

species creates a competition between adsorption of silica species onto the micelles and silica-

silica condensation, preventing the organisation of the elongated micelles into a 2D-hexagonal 

order within particles in the bulk. The elongated micelles will hence more slowly migrate to 

the interface, to form a smooth silica film, with a 2D-hexagonal organisation to allow the 
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highest packing between the micelles. On the contrary, for the two other ratios, the rapid 

formation of mesostructured silica particles in the subphase consumed the hybrid micelles, as 

seen by the decrease of the number of micelles per unit volume n, and the film is formed by 

accumulation of these submicrometer grains at the interface. The small amount of 

mesostructured grains involved in the film formation compared to the ones present in the 

subphase prevents the quantification of this phenomenon.

Comparison with a synthesis made using C16EO8 at rmol=7.21

A final synthesis was studied replacing CTAB by C16EO8, at a molar ratio rmol=7.21 (Figure 

8). Before addition of TMOS, C16EO8 micelles can be well modelled by a purely spherical 

model with a radius R=3.2±0.1 nm. However, similarly to the synthesis with CTAB, an 

elongation of the micelles is observed in solution upon time (until t=110 min), with a micelle 

radius decreasing from 3.2 to 2.5 nm, while the ellipticity ε increase from 1 to 4.8 (see 

parameters in Figure 9). C16EO8 micelles experience more drastic changes in their 

morphology upon the synthesis than CTAB at the same ratio, which is expected due to the 

larger headgroup that will interact with the silica species (8 EO groups compared to 

N(CH3)3
+). This results in a higher proportion of silica within the micelles (above 50% 

compared to 15% for CTAB at the same ratio) and an overall slower kinetics compared to 

CTAB at this silica:surfactant ratio.

At time t=110 min, a Bragg peak arises associated with the precipitation of the mesostructure 

in the subphase, once again concomitant with the appearance of a signal from particles in 

SEMSANS (see parameters in Figure 9). The same events as previously observed with CTAB 

can be pinpointed with this system, even if 2 µm sized particles and ordered mesophase are 

still forming at the last recorded pattern (239 min), evidencing a slower evolution than for 

CTAB at the same ratio.

Page 18 of 44

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19

As only one Bragg peak is observed, questions about the type of mesostructure formed in the 

particles arise. The peak is found at position q=0.110±0.005 Å-1 which gives a d-spacing 

d=5.7±0.2 nm.  Previous studies of films made in these synthesis conditions showed a   𝑃𝑚3𝑛

cubic mesophase in the films, but with a d-spacing expected at 6.3 nm21. A d-spacing of 5.7 

nm was found for C16EO8 mesostructured films at a ratio rmol=3.6 and associated with a 2D-

hexagonal mesophase. 

The results demonstrate that the formation of micelle templated silica particles CTAB and 

C16EO8 follow the same steps, characterised by an elongation of the micelles due to the 

incorporation of silica species, before phase separation and formation of the mesostructure, 

observed simultaneously in SANS and SEMSANS. It is expected that for rmol=3.6 and 7.21, 

these particles slowly migrate to the interface to form the film, as previously suggested.20-21, 39 

Conclusion

Using a combination of SEMSANS and SANS, kinetics of formation of mesoporous films 

were studied. Specifically the method allows measurement of the evolution of the system 

within the subphase over a wide range of length scales, in contrast to GISAXS or reflectivity 

that focus on the air-water interface. It was observed that for these syntheses, micelles of 

surfactant are initially present within the subphase. Evolution of the system is triggered by the 

addition of the silica source; which gradually hydrolyses in the acidic environment. This 

allows the incorporation of silica species within the micelles. Over time, incorporation of the 

silica species gradually elongates the micelles shape and the silica polymer grows in the 

solution. Finally, phase separation occurs, and mesostructured particles are formed in 

solution. Particles are formed containing micelles in an ordered mesophase – presumed to be a 

2D hexagonal arrangement when CTAB is used as the templating surfactant – as can be 

observed by the concomitance of the emergence of a signal of particles in SEMSANS with the 
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Bragg peak associated with the micelle organisation in SANS. The fact that no large objects 

can be observed in SEMSANS prior to the emergence of the Bragg peak in SANS, coupled 

with the fact that micelles are non-interacting prior to the phase separation, suggests that upon 

precipitation micelles in the particles quickly rearrange in a mesophase with several domains 

but that the number of ordered domains increases with time due to further adsorption of silica 

enriched micelles, while the particle size shrinks a little due to the rearrangement of the 

micelles and continuing silica condensation. Indeed, after the formation of the particles, the 

signal of the remaining micelles in solution continues to decrease over time as they are added 

to the already formed particles. A portion of these mesostructured particles are assumed to 

migrate to the interface to form the rough mesostructured silica film previously observed in 

GISAXS. This model of formation of mesostructured particles is valid for both CTAB and 

C16EO8. The ratio of silica source compared to surfactant influences the reaction rate, or even 

disturbs this mechanism when too much silica is added, by competition between silica-

surfactant and silica-silica interactions. 
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Figures

Scheme 1: Sketch of the different steps proposed to be involved in the formation of a 

mesostructured film in the reaction using CTAB as surfactant at a silica:surfactant molar ratio 

rmol=3.6
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Figure 1: (a)  versus q (in Å-1) obtained from SANS measurements and (b) Normalized 𝐼(𝑞)

neutron spin-echo signal  versus the spin-echo length  (in µm) obtained from 
ln (𝑃

𝑃0)

𝜆2𝑡 𝛿𝑆𝐸

SEMSANS measurements for the kinetics using CTAB as surfactant with rmol=3.6. All 

patterns (a and b) have been shifted for clarity (non-shifted patterns can be found in Figure 

S1, S.I.) The colour gives the time associated with each pattern. In black lines, fits of the 

SANS and SEMSANS data are presented according to the models given in the Materials and 

Methods section.
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Figure 2: Comparison over time of the different contributions to the SANS and SEMSANS 

signals during the reaction in solution using CTAB at a ratio rmol=3.6: in blue, the intensity 

Imicelles(q=0) of CTAB micelles in solution extracted from the fitting of the SANS data, in grey 

the scattering power Σt of µm-sized particles measured in SEMSANS and in red the intensity 

I10 of the Bragg peak observed in SANS. Different scales in y have been overlapped to allow a 

clear depiction of the variation of these parameters with time. Figure S2 in S.I. gives separate 

graphs of these three parameters with their associated scales.
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Figure 3: Evolution of different parameters extracted from fitting the SANS and SEMSANS 

data from the reaction in solution using CTAB at a ratio rmol=3.6. In blue, parameters 

associated to the micelles of CTAB in solution: (a) the micelle radius Rmicelles (nm), (b) the 
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ellipticity of the micelles ε. From Imicelles(q=0) (cm-1) plotted in Figure 2, (c) the number of 

micelles per unit volume n (cm-3) and (d) the scattering length density of the micelles ρmicelles 

(Å-2) were extracted, assuming that before the Bragg peaks appearance, n stays constant, 

while once the mesophase is forming, it is ρmicelles which does not change. (e) The proportion 

of silica within the micelles xsilica is extracted by . 𝜌𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠 = 𝑥𝑠𝑖𝑙𝑖𝑐𝑎𝜌𝑠𝑖𝑙𝑖𝑐𝑎 +(1 ― 𝑥𝑠𝑖𝑙𝑖𝑐𝑎)𝜌𝐶𝑇𝐴𝐵

In grey, (f) the radius Rpart (µm) of µm-sized particles detected in SEMSANS. Finally in red, 

parameters associated with the 2D-hexagonal organisation within the µm-sized particles from 

fitting of the SANS Bragg peak: (g) the lattice parameter of the 2D-hexagonal order a (nm) 

and (h) the domain size D (nm).

 

Figure 4: (a)  versus q (in Å-1) obtained from SANS measurements and (b) Normalized 𝐼(𝑞)

neutron spin-echo signal  versus the spin-echo length  (in µm) obtained from 
ln (𝑃

𝑃0)

𝜆2𝑡 𝛿𝑆𝐸

SEMSANS measurements for the kinetic runs using CTAB as surfactant with rmol=7.21. All 

patterns (a and b) have been shifted for clarity (non-shifted patterns can be found in Figure 

S3, S.I.) The colour gives the time associated with each pattern. In black lines, fits of the 

SANS and SEMSANS data are presented according to the models given in the Materials and 

Methods section.
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Figure 5: (a)  versus q (in Å-1) obtained from previous SANS measurements (on LOQ)36 𝐼(𝑞)

and (b) Normalized neutron spin-echo polarization  versus the spin-echo length  (in 
ln (𝑃

𝑃0)

𝜆2𝑡 𝛿𝑆𝐸

µm) obtained from SESANS measurements at Delft for the kinetic runs using CTAB as 

surfactant with rmol=10.80. Fits of the SANS data are provided in black lines.

Figure 6: Evolution of different parameters extracted from fitting the SANS and SEMSANS 

data of the reaction in solution using CTAB at a ratio rmol=7.21. (a) Comparison between 

Imicelles(q=0) (in blue), I10 (in red) and Σt (in grey) upon time. Separated graphs with their 

associated scales can be found in Figure S6, S.I. In blue, (b) the micelle radius Rmicelles (nm), 
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(c) the ellipticity of the micelles ε and (d) xsilica (%) the amount of silica incorporated in the 

micelles obtained from fitting the SANS data. In grey, (e) the radius Rpart (µm) of µm-sized 

particles detected in SEMSANS. Other fitting parameters can be found in Figure S7, S.I.

Figure 7: (a to c) Evolution with time of (a) Imicelles(q=0) (cm-1), (b) the micelle radius Rmicelles 

(nm) and (c) the ellipticity of the micelles ε extracted from the fitting of the SANS data 

measured previously at LOQ. Around 650 min, a sudden increase in scale and ellipticity is 

observed, associated with the formation of a gel. (d) Particle radius measured in SESANS 

(Delft) over time. At 800 min, a signal of very large particles is observed and corresponds to 

macroscopic phase separation.
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Figure 8: (a)  versus q (in Å-1) obtained from SANS measurements and (b) Normalized 𝐼(𝑞)

neutron spin-echo signal  versus the spin-echo length  (in µm) obtained from 
ln (𝑃

𝑃0)

𝜆2𝑡 𝛿𝑆𝐸

SEMSANS measurements for the kinetic runs using C16EO8 as surfactant with rmol=7.21. All 

patterns (a and b) were shifted for clarity (non-shifted SANS spectra can be found in Figure 

S8, S.I.) The colour gives the time associated with each pattern. In black lines, fits of the 

SANS and SEMSANS data are presented according to the models given in the Materials and 

Methods section.
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Figure 9: Evolution of different parameters extracted from fitting the SANS and SEMSANS 

data of the reaction in solution using C16EO8 at a ratio rmol=7.21. (a) Comparison between 

Imicelles(q=0) (in blue), I10 (in red) and Σt (in grey) upon time. Separated graphs with their 

associated scales can be found in Figure S9, S.I. In blue, (b) the micelle radius Rmicelles (nm), 

(c) the ellipticity of the micelles ε and (d) xsilica (%) the amount of silica incorporated in the 

micelles obtained from fitting the SANS data. In grey, (e) the radius Rpart (µm) of µm-sized 

particles detected in SEMSANS. Other fitting parameters can be found in Figure S10, S.I.
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TOC Figure: Combination of SANS and SEMSANS allows probing several length scales. 
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