
HAL Id: hal-03037675
https://hal.science/hal-03037675

Submitted on 3 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Benchmarking of Gaussian boson sampling using
two-point correlators

D S Phillips, M Walschaers, J J Renema, I A Walmsley, N Treps, J Sperling

To cite this version:
D S Phillips, M Walschaers, J J Renema, I A Walmsley, N Treps, et al.. Benchmarking of Gaussian bo-
son sampling using two-point correlators. Physical Review A, 2019, 99, �10.1103/physreva.99.023836�.
�hal-03037675�

https://hal.science/hal-03037675
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW A 99, 023836 (2019)

Benchmarking of Gaussian boson sampling using two-point correlators

D. S. Phillips,1,* M. Walschaers,2 J. J. Renema,3 I. A. Walmsley,1 N. Treps,2 and J. Sperling1

1Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
2Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University,

Collège de France, 4 place Jussieu, F-75252 Paris, France
3Complex Photonic Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands

(Received 30 July 2018; published 19 February 2019)

Gaussian boson sampling is a promising scheme for demonstrating a quantum computational advantage using
photonic states that are accessible in a laboratory and, thus, offer scalable sources of quantum light. In this
contribution, we study two-point photon-number correlation functions to gain insight into the interference of
Gaussian states in optical networks. We investigate the characteristic features of statistical signatures which
enable us to distinguish classical from quantum interference. In contrast to the typical implementation of boson
sampling, we find additional contributions to the correlators under study which stem from the phase dependence
of Gaussian states and which are not observable when Fock states interfere. Using the first three moments,
we formulate the tools required to experimentally observe signatures of quantum interference of Gaussian
states using two outputs only. By considering the current architectural limitations in realistic experiments,
we further show that a statistically significant discrimination between quantum and classical interference is
possible even in the presence of loss, noise, and a finite photon-number resolution. Therefore, we formulate and
apply a theoretical framework to benchmark the quantum features of Gaussian boson sampling under realistic
conditions.

DOI: 10.1103/PhysRevA.99.023836

I. INTRODUCTION

In their seminal work [1], Hanbury Brown and Twiss an-
alyzed two-point correlators to improve the apparent angular
size estimation of distant stars. On the quantum level, two-
point correlations render it possible to experimentally uncover
nonclassical properties of light, e.g., photon antibunching
[2]. Nowadays, general quantum correlations form the foun-
dation of quantum information and communication science
[3–5]. For example, continuous-variable entanglement offers
a robust resource for quantum protocols when optical modes
propagate through the turbulent atmosphere [6,7]. While
quantum correlations enable us to perform certain tasks, such
as quantum teleportation [8,9], the problem of whether or
not there is a true advantage of quantum protocols over
classical information processing is still debated as quantum
correlations can be significantly diminished in the presence of
imperfections and require error correction (see Ref. [10] for a
recent popular discussion). For these reasons, the application-
oriented study of realistic quantum correlations is a timely
problem of fundamental importance for the development of
quantum technologies.

A promising scheme to demonstrate the advantage of quan-
tum computers over classical computers is boson sampling
[11]. This scheme comprises sending indistinguishable pho-
tons into a multiport interferometer, for example, made up of
variable beam splitters and phase shifters, and measuring the
photon-number distribution from the output. The multiport
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interferometer implements a unitary transformation of the
bosonic modes that in turn yields a highly entangled output
state. Calculating the output probability for a given configu-
ration is related to calculating the permanent of the unitary
transformation matrix [12], which is a computationally hard
problem as it scales exponentially with the size of the system
[13]. Therefore, building a device which could sample from
the output of an interferometer faster than a classical com-
puter could do would unambiguously demonstrate a quantum
computational advantage.

One problem with realizing the boson sampling protocol
experimentally is that single photons are hard to generate effi-
ciently. Common experimental methods rely on post-selection
from the Gaussian states obtained from spontaneous paramet-
ric down conversion; however, post-selection does not scale
favorably [14–17]. To remedy this problem, scattershot boson
sampling was introduced to effectively increase the number
of down-conversion sources. However, this scheme ultimately
relies on a similar post-selection [18,19], thus making it prone
to the same scaling problems. An alternative solution is to
use more deterministic photon sources for boson sampling,
such as quantum dots [20,21]. Currently, though, the degree
of indistinguishability between two different quantum dots is
not high enough, and one must resort to a single dot with delay
lines instead. The disadvantage of this approach can lead to an
unfavorable scaling in time.

A recent development in the field of boson sampling
is to use Gaussian states as the inputs to the multi-
port interferometer. Gaussian states can be generated deter-
ministically from spontaneous parametric down-conversion
sources. While calculating the probability of a given output
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photon-number configuration in the original boson sampling
problem is related to calculating a matrix permanent, the
Gaussian-boson-sampling equivalent is related to calculating
the Hafnian of a matrix, which still lies in the same complexity
class due to photon-number projection being a non-Gaussian
measurement [22,23]. It is important to note, however, that
there are currently no rigorous hardness results for Gaussian
boson sampling that tolerate (e.g., additive) errors. Still, some
potential uses have been proposed for the protocol apart from
proving a quantum computational advantage. These potential
applications include the nontrivial simulation of complex
molecular vibronic spectra [24–27] (of which a proof-of-
concept experiment has already been performed [27]), per-
forming sophisticated calculations in graph theory [28,29],
and quantum machine learning [30].

Beyond such practical considerations, even fundamental
aspects of Gaussian boson sampling are still actively studied.
The setup fits in the quest for achieving a true quantum
advantage in the continuous-variable setting. It is well es-
tablished that a non-Gaussian element is required to render
a setup hard to simulate on a classical computer [31–34]. In
scattershot and Gaussian boson sampling, the non-Gaussian
features are introduced at the measurement stage through
the use of photodetectors. Still, a quantum computational
advantage has also been found in alternative scenarios with
Gaussian detectors and non-Gaussian input states [35–38].
Furthermore, in standard and scattershot boson sampling,
utilizing photodetectors and Fock states, one can identify the
phenomenon of many-particle interference [39–41]—a gener-
alization of the Hong-Ou-Mandel effect [42]—as the source
of the computational complexity. At present, it is unclear
whether Gaussian boson sampling is just a manifestation of
the same physical phenomenon, or whether there is additional
physics to be uncovered in these setups which would lead to a
different computational complexity condition. One approach
to answering this question is to investigate how measurable
signatures of many-particle interference change in Gaussian
boson sampling by analyzing correlations.

Signatures of many-particle interference also serve an im-
portant purpose as a tool for the benchmarking of boson sam-
pling. The debate on how to validate a boson sampler started
with the concern that it would be impossible to distinguish
data from a boson sampling setup from data that were drawn
from a uniform distribution. Thus, the first certification proto-
cols aimed at making the distinction between these scenarios
[43–45]. Even though this led to the development of several
certification protocols [46,47], the main focus in research
on validation of boson sampling has shifted to hallmarks of
many-boson interference [48–54]. Furthermore, the alterna-
tive hypotheses for the origins of sampling data have gotten
more physically motivated; most notably, one often probes the
distinguishability of particles.

In general, we can single out two approaches to bench-
marking many-particle interference. On the one hand, one
can construct highly symmetric unitary circuits (e.g., the
Fourier interferometer [49]) that manifest totally destructive
interference, which are unique benchmarks of many-boson
interference. On the other hand, one may instead use Haar-
random circuits that are common in boson sampling and
employ statistical analysis on the data (e.g., by studying

two-point correlators [53]) to find statistical signatures of
many-particle interferences.

Recent developments [55,56] in the understanding of total
destructive interference may provide a potential pathway for
constructing a benchmark for Gaussian boson sampling. Nev-
ertheless, the statistical signatures [53,54,57] are found by an-
alyzing intensity correlations between output detectors, which
can be calculated for arbitrary initial states. Therefore, this
approach is a viable candidate for a benchmark of Gaussian
boson sampling, a route which we extensively explore in this
article.

By benchmarking, we mean comparing the output cor-
relations of quantum Gaussian input states (for instance, a
squeezed vacuum) to a classical analog. The classical analog
could be a coherent or thermal state—i.e., a classical state is
erroneously prepared in a laboratory when the actually desired
state is squeezed, where both of which are Gaussian states.
By comparing the output correlations of the two states in the
presence of experimental imperfections and limitations, one
can determine the required accuracy to observe a meaningful
difference between classical and nonclassical inputs.

It is important to stress that our benchmarking scheme is
an experimentally friendly way to distinguish different input
states rather than being a sufficient condition to certify true
Gaussian boson sampling. It could be used to complement
a more robust verification scheme; it can be applied directly
to sampling data that are obtained from the Gaussian boson
sampler. Indeed, the availability of an efficient and simple
benchmark is an important step in the general endeavor of
verification. The findings in Ref. [11] already suggest that
sampling from the output probability distribution can proba-
bly never be certified by a single verifier alone, thus emphasiz-
ing the need for several experimentally relevant benchmarking
protocols. In addition to this, one of the findings of Ref. [58]
was that efficient, full certification of boson sampling that uses
only the usual photon-number measurements is not possible.
Therefore if this result extends to Gaussian boson sampling,
then only benchmarking is possible using the measurements
outlined in our scheme.

In this paper, we investigate two-point correlation func-
tions based on photon-number measurements to characterize
boson sampling in continuous-variable systems, i.e., for gen-
eral Gaussian states propagating in optical networks. Based on
this method, we exploit the differences in the statistical sig-
natures of the two-point correlation functions to discriminate
Gaussian boson sampling with nonclassical (i.e., squeezed)
from classical input states. Furthermore, it is shown that
the phase dependence of squeezed states leads to additional
contributions in correlators, unseen for rotationally invariant
Fock states. Moreover, we complement our analysis by inves-
tigating the impact of a broad class of imperfections which
can occur in realistic experimental realizations.

The paper is organized as follows. In Sec. II, we start by
providing a general introduction to the two-point correlators,
used in our benchmarking protocol. This is then supplemented
by the framework of Gaussian quantum states in Sec. III,
which is applied in Sec. IV to find a closed expression for the
relevant correlators. These expressions can then be averaged
over the Haar measure by using techniques from random
matrix theory to obtain the relevant statistical signatures,

023836-2



BENCHMARKING OF GAUSSIAN BOSON SAMPLING USING … PHYSICAL REVIEW A 99, 023836 (2019)

FIG. 1. Gaussian boson sampling scheme. In the depicted exam-
ple, N = 4 squeezed states are fed into an M = 9 port interferometer,
represented by a unitary U . The photon-number correlation C1,2 of
two outputs is measured to apply the here-proposed benchmark.

established in Refs. [53,57]. In Sec. V, we compare these sta-
tistical signatures to numerical simulations of Gaussian boson
sampling, where we investigate the influence of squeezing on
the correlators. Finally, in Sec. VI, we apply the developed
tools to carry out an in-depth analysis of experimental imper-
fections, relevant for future implementations.

II. CORRELATION FUNCTIONS

In statistical physics, a two-point correlator quantifies the
correlation between two measured quantities. In general, cor-
relators are second-order cumulants over multiple random
variables, and higher orders can be generalized by the Ursell
function [59]. These higher order correlators have a long
history in quantum statistical mechanics as they characterize
many-body states [60–63] and are commonly referred to as
truncated correlation functions. For two classical random vari-
ables, X and Y , the two-point correlator C(X,Y ) is commonly
defined as

C(X,Y ) = E(XY ) − E(X )E(Y ), (1)

where E(· · · ) denotes the expectation value.
Such correlations have been used to identify the statistical

properties in the interest of benchmarking boson sampling
with Fock states [53,54]. Driven by the superior scaling of
Gaussian boson sampling and the experimental feasibility to
generate Gaussian states with down-conversion sources, we
apply a similar analysis in order to benchmark boson sampling
with phase-sensitive Gaussian quantum states against analo-
gous classical states which can mimic some of the features of
quantum Gaussian states. In Fig. 1, we outline the scenario
under study in which a number of Gaussian input states are
mixed in a unitary optical network. In particular, a two-point
correlation measurement of two output ports is analyzed.

As the conjectured hardness of Gaussian boson sampling
arises from projecting the output states onto the photon-
number basis, the two-point correlation function for Gaussian
states is also considered in the number basis, in line with

the analysis in Ref. [53], rather than using the Gaussian
quadrature correlations as obtained from balanced homodyne
detection. The photon-number two-point correlation function
Cj,k on 2 output modes j and k ( j, k ∈ {1, . . . , M}) is given by

Cj,k = 〈n̂ j n̂k〉 − 〈n̂ j〉〈n̂k〉, (2)

where n̂ j is the jth photon-number operator and 〈· · · 〉 denotes
the quantum-mechanical expectation value. This corresponds
to the quantum-mechanical version of the classical expression
in Eq. (1).

Two variants can be considered to implement the boson
sampling procedure; cf. Ref. [53]. In the first scenario, one
uses one fixed Haar-random unitary U to evolve the input state
and then calculates Cj,k for all output combinations j < k.
The obtained set of correlators is then used as a data set for
statistical tests, e.g., estimating moments of the correlators. In
the second adaptation, one fixes the output ports (say j = 1
and k = 2, without loss of generality) and evolves the input
state under many different Haar-random unitaries, i.e., unitary
maps which are distributed according to the Haar measure.
Here, the statistics is gathered by evaluating C1,2 for each
different realization of U , which is closer to the analytical
methods that are used to predict the statistical properties of
the correlators.

In the limit of a large number of modes, the correlations
between the components of U are sufficiently small and both
approaches become equivalent. However, practical reasons
can make one implementation favorable over the other for a
smaller number of modes M. For example, by fixing the uni-
tary U , the size of the data set of correlators is automatically
limited to M(M − 1)/2, which might be insufficient statistical
predictions. On the other hand, in many experimental setups
(see, e.g., Ref. [54]), experimental constraints simply make it
impossible to implement a large number of different realiza-
tions of U . Nevertheless, in this article, we are able to explore
the potential of Gaussian boson sampling with reconfigurable
linear optics circuits and photon-number-resolving detectors
on two output modes, which gives us the liberty to consider as
many different realizations of U as required.

To obtain statistical quantifiers of the resulting randomiza-
tion process, the distribution of Cj,k values can be analyzed.
Note that the j and k indices are dropped in the following
relations—meaning C denotes an arbitrary element Cj,k—as
all of the permutations are taken into account when the two-
point correlator is averaged over many different Haar-random
unitaries. For our purpose, the first characteristic is given by
the normalized mean

NM = EU (C)M2

N
, (3a)

the second one is the coefficient of variation

CV =
√
EU (C2) − EU (C)2

EU (C)
, (3b)

and the third quantity is the skewness

Sk = EU (C3) − 3EU (C)EU (C2) + 2EU (C)3√
[EU (C2) − EU (C)2]3

. (3c)
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These three quantifiers correspond to the normalized first
three moments of the distribution of Cj,k for a fixed system av-
eraged over many Haar-random unitaries, labeled as EU (· · · ).
A main objective of this work is to tell different families of
Gaussian quantum states apart based on the values of NM,
CV, and Sk.

III. GAUSSIAN STATE FORMALISM

In the quantum-optical description, each mode is repre-
sented through annihilation and creation operators, â j and â†

j ,
respectively. We may collect the annihilation operator in the
vector

â = (â1, . . . , âM )T. (4)

The bosonic operators satisfy the commutation relation
[â j, â†

k] = δ j,k , with δ denoting the Kronecker symbol. For
each mode, we can write the photon-number operator as n̂ j =
â†

j â j .
For the phase-space representation of optical fields, the

quadrature representation is favorable, which is based on the
operators

q̂ j = â j + â†
j and p̂ j = â j − â†

j

i
. (5)

We then define the 2M-dimensional vector of quadrature
operators as

ξ̂ = (q̂1, . . . , q̂M , p̂1, . . . , p̂M )T. (6)

Its expectation value corresponds to the location of the state
in phase space, ξ0 = 〈ξ̂〉. In addition, we get the 2M × 2M
covariance matrix V from the symmetric elements

Vj,k = 1
2 〈�ξ̂ j�ξ̂k + �ξ̂k�ξ̂ j〉, (7)

using the abbreviation �x̂ = x̂ − 〈x̂〉 for arbitrary operators x̂.
The covariance matrix also yields the covariances for the

bosonic ladder operators,

〈�â j�âk〉 = Vj,k+iVj,k+M+iVj+M,k−Vj+M,k+M

4
, (8a)

〈�â†
j�âk〉 = Vj,k+iVj,k+M−iVj+M,k+Vj+M,k+M

4
−δ j,k

2
. (8b)

Similarly, we identify complex displacements via

〈â j〉 = ξ0, j + iξ0, j+M

2
= α0, j . (8c)

Finally, an M-mode Gaussian state is equivalently given by
a Wigner function which reads

W (ξ) = exp
[− 1

2 (ξ − ξ0)TV −1(ξ − ξ0)
]

√
(2π )2M det V

, (9)

where ξ includes the conjugate quadrature variables which
define the 2M-dimensional phase space.

In the context of boson sampling, the annihilation operators
of the input modes evolve under a unitary that describes the
interferometer,

â �→ Uâ. (10)

For the covariance matrix and the displacement vector, the
transformation reads as follows:

V �→ OV OT and ξ0 �→ Oξ0, (11)

where the orthogonal and symplectic transformation O is a
2M × 2M matrix defined by

O =
(

Re(U ) −Im(U )

Im(U ) Re(U )

)
, (12)

which is decomposed in separate blocks referring to the q and
p components.

Note that it is possible to calculate the probability of a
given output photon-number configuration P(n), where n is an
M-dimensional vector of output photon numbers in each mode
from V and ξ0 alone. This can be done using multidimensional
Hermite polynomials but involves rather complicated compu-
tations [64,65].

A premise of boson sampling is that the states entering
the interferometer are uncorrelated. This means that all en-
tries of the input covariance matrix which correlate different
modes are zero. For this reason, we can characterize each
single-mode input in terms of a 2 × 2 covariance and a two-
dimensional displacement vector. Further, a diagonalization
can be achieved via a local unitary, which yields a single-mode
covariance matrix of the form(〈(�q̂ j )2〉 0

0 〈(�p̂ j )2〉
)

= diag(vq, j, vp, j ). (13)

In such a diagonal form, the covariance matrix corresponds
to a physical state if the uncertainty relation vq, jvp, j � 1 holds
true. For vq, j = vp, j = 1, we have a coherent or vacuum state,
the latter for zero displacement. In the case that the variances
are identical but larger than one, the input is a (displaced)
thermal state. A (displaced) squeezed state is described when
one of the variances is below the vacuum fluctuation, vq, j < 1
or vp, j < 1. For completeness, we could also have a clas-
sical state (vq, vp � 1) which exhibits, however, an unequal
noise distribution in the two quadratures (vp �= vq). Such a
state could simulate a squeezed vacuum state by having an
asymmetric Wigner function that still has classical (i.e., not
squeezed) variances.

We are able to characterize the input states using relations
(8a) and (8b). This yields the equivalent correlations for the
bosonic operators from

vq, j + vp, j

4
= 〈�â†

j�â j〉 + 1

2
= 〈�â j�â†

j〉 − 1

2
, (14a)

vq, j − vp, j

4
= 〈�â†

j�â†
j〉 = 〈�â j�â j〉. (14b)

IV. ALGEBRAIC RESULTS

A. Two-point correlator for Gaussian states

For our purposes, it is convenient to formulate the corre-
lations in terms of central moments, â j = �â j + α0, j , where
α0, j is the complex displacement [Eq. (8c)]. This enables us
to write the photon-number operators as

n̂ j = �â†
j�â j + �â†

jα0, j + α∗
0, j�â j + α∗

0, jα0, j . (15)
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Using this decomposition and 〈�â j〉 = 0, the two-point cor-
relators can be expanded as

Cj,k = 〈�â†
j�â j�â†

k�âk〉 − 〈�â†
j�â j〉〈�â†

k�âk〉
+ α0, jα

∗
0,k〈�â†

j�âk〉 + α∗
0, jα0,k〈�â j�â†

k〉
+ α0, jα0,k〈�â†

j�â†
k〉 + α∗

0, jα
∗
0,k〈�â j�âk〉

+ 〈(α∗
0, j�â j + α0, j�â†

j )�â†
k�âk〉

+ 〈�â†
j�â j (α

∗
0,k�âk + α0,k�â†

k )〉. (16)

For Gaussian states, the odd-order central moments vanish
which means that the last two lines of Eq. (16) are zero.
Moreover, the properties of Gaussian states imply that the first
summand in Eq. (16) can be expressed in terms of second-
order correlations (see the Appendix). Combining these con-
siderations, we find that two-point correlators for Gaussian
states read

Cj,k= 〈�â†
j�â†

k〉〈�â j�âk〉 + 〈�â†
j�âk〉〈�â j�â†

k〉
+ α0, jα

∗
0,k〈�â†

j�âk〉 + α∗
0, jα0,k〈�â j�â†

k〉
+ α0, jα0,k〈�â†

j�â†
k〉 + α∗

0, jα
∗
0,k〈�â j�âk〉. (17)

It is worth noting that for a vanishing displacement, only the
first line in Eq. (17) contributes.

B. Propagation in the interferometer

In the following, let us describe the propagation of two-
point correlators in the optical network. The relations (14) can
describe the bosonic ladder-operator correlations for the initial
state, and Eq. (17) gives their relation to the photon-number
correlators. Thus, for the family of Gaussian initial states
under consideration, we get correlators of the form C(in)

j,k = 0
for j �= k and

C(in)
j, j = v2

q, j + v2
p, j − 2 + 2ξ 2

0, jvq, j + 2ξ 2
0, j+Mvp, j

8
. (18)

Further, we recall that the propagation in the network
yields â �→ Uâ. Then the definition of the two-point correlator
results in the following evolution of the input correlators:

C(out)
j,k =

M∑
r,s,t,u=1

U ∗
j,rUj,sU

∗
k,tUk,u

× (〈â†
r âsâ

†
t âu〉(in) − 〈â†

r âs〉(in)〈â†
t âu〉(in) ). (19)

Here the superscripts “(in)” and “(out)” are introduced to
clearly differentiate between the input and output modes,
respectively. As demonstrated above, we can again write
the input correlations in terms of central moments and use
the properties of central moments of Gaussian states (cf. the
Appendix). Consequently, we find

〈â†
r âsâ

†
t âu〉(in) − 〈â†

r âs〉(in)〈â†
t âu〉(in)

= δs,tδr,u〈�âs�â†
s 〉(in)〈�â†

r �âr〉(in)

+ δr,tδs,u〈�â†
r �â†

r 〉(in)〈�âs�âs〉(in)

+ δs,tα
∗
0,rα0,u〈�âs�â†

s 〉(in)+δr,uα0,sα
∗
0,t 〈�â†

r �âr〉(in)

+ δs,uα
∗
0,tα

∗
0,r〈�âs�âs〉(in)+δr,tα0,sα0,u〈�â†

r �â†
r 〉(in),

(20)

also using that there are no cross correlations in the input
state, 〈�â†

x�ây〉(in) = 0 = 〈�âx�ây〉(in) for x �= y. Inserting
this into the previous relation, we obtain

C(out)
j,k = (

S j,k[U ]∗ + 1
2δ j,k

)(
S j,k[U ] − 1

2δ j,k
)

+ Dj,k[U ]Dj,k[U ]∗ + α∗
U, jαU,kS j,k[U ]∗

+ αU, jα
∗
U,kS j,k[U ] + α∗

U, jα
∗
U,kDj,k[U ]

+ αU, jαU,kDj,k[U ]∗, (21)

with the abbreviations αU,l = ∑M
w=1 Ul,wα0,w, such that αU,l

is the coherent component of the output mode l , and

S j,k[U ] =
M∑

w=1

U ∗
j,wUk,w

vq,w + vp,w

4
, (22a)

Dj,k[U ] =
M∑

w=1

Uj,wUk,w

vq,w − vp,w

4
. (22b)

The finding in Eq. (21) presents the most general input-
output relation of two-point, photon-number correlators for
the scenario of Gaussian boson sampling with independent
inputs. From now on, we exclusively focus on the output
correlations. Therefore, we skip the superscript and Cj,k ex-
clusively refers to the output correlations in all following
considerations. Also note in this context that the input is
uniquely defined by the input variances vq, j and vp, j as well
as the displacement vector ξ0.

C. Discussion

For a known unitary and a well-characterized input state,
Eq. (21) can be directly evaluated. For example, when co-
herent states are injected (i.e., vp = vq = 1), we immediately
obtain Cj,k = 0. The result in Eq. (21) is generally useful
for simulating experiments in which a mean field is present.
Yet, additional terms, associated with the displacement in
phase space, considerably increase the complexity of random
matrix calculations. Moreover, displacements (e.g., by mixing
states on a beam splitter with a coherent state) are hard to
generate in the experimental setting of interest. Also note
that displacement is a classical operation, which makes it
an unlikely resource for a quantum advantage. Therefore, in
the remainder of this article, we focus on nondisplaced input
states and set α0,w = 0 for all input modes w = 1, . . . , M. It
is then practical to recast Eq. (21) in a form that explicitly
captures the structure of the correlations in terms of the
components of the unitary circuit,

Cj,k =
M∑

w,w′=1

(vq,w+vp,w )(vq,w′+vp,w′ )

16
Uj,wUk,w′U ∗

j,w′U ∗
k,w

+
M∑

w,w′=1

(vq,w−vp,w )(vq,w′−vp,w′ )

16
Uj,wUk,wU ∗

j,w′U ∗
k,w′

− 1

4
δ j,k . (23)
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This result not only provides an interesting tool for bench-
marking experiments; it also offers a direct comparison to
many-boson interference using Fock states as inputs [53,66].
In such arrangements, the correlators Cj,k are associated solely
with two-particle interference processes, arising from terms
proportional to Uj,wUk,w′U ∗

j,w′U ∗
k,w. These terms also appear

in Eq. (23) and, thus, can be considered hallmarks of simi-
lar interference processes appearing in the present Gaussian
setting. However, there are also considerable differences be-
tween the Fock state correlators [53,66] and the Gaussian
scenario in Eq. (23). For instance, the terms proportional to
Uj,wUk,wU ∗

j,wU ∗
k,w (for w′ = w) are added in the Gaussian

case, whereas they are subtracted in the Fock state case.
Even more profound is the appearance of a completely

new class of terms proportional to Uj,wUk,wU ∗
j,w′U ∗

k,w′ , which
are absent in scenarios with fixed particle numbers. As their
contribution is weighted with the difference of the variances,
they reflect the nonrotational invariance of the initial Gaussian
states when compared to Fock states (and mixtures thereof)
in phase space. The appearance of this new class of terms
may indicate the presence of a new type of interference phe-
nomenon that can manifest itself in Gaussian boson sampling.
In particular, this is an indication that Gaussian interference
experiments may show new physics beyond the many-particle
interference processes for boson sampling with Fock states.

Thus, with the aim of quantifying the impact of phase-
dependent input states, it is sensible to introduce the operators

ε̂ j = q̂2
j − p̂2

j

4
(24)

for j = 1, . . . , M, which have in our scenario the expectation
values 〈ε̂ j〉 = (vq, j − vp, j )/4. This quantity is the difference
of the two quadratures and characterizes the eccentricity
of the uncertainty ellipse in phase space. Also, note that ε̂ j

complements the definition of the photon-number operator,
n̂ j + 1/2 = (q̂2

j + p̂2
j )/4.

D. Randomization over unitaries

It is possible to use random matrix theory to obtain analyt-
ical expressions for EU (C), EU (C2), and EU (C3) to evaluate
the quantities in (3), defining NM, CV, and Sk. The random-
ization yields the same result when swapping output modes
which corresponds to a unitary transformation, mapping the
set of unitaries onto itself and, thus, does not affect the Haar
measure. This justifies the notation EU (Cx

j,k ) = EU (Cx ) for
any integer x and j �= k.

We focus on a scenario with N occupied modes, implying
M − N vacuum inputs (1 � N � M). As permutations of
input modes are unitary operations, we further say that the
first N modes are the occupied ones. Further on, like in the
case of boson sampling with single photons, we assume that
the states in the occupied modes are all identical. Thus, we
have the input quadrature variances (s = p, q)

vs, j =
{
vs for j = 1, . . . , N,

1 for j = N + 1, . . . , M.
(25)

Furthermore, the average photon number in the occupied input
modes is given by

〈n̂ j〉 = 〈n̂〉 = vq + vp − 2

4
. (26)

In addition, the eccentricity [Eq. (24)] reads

〈ε̂ j〉 = 〈ε̂〉 = vq − vp

4
(27)

for the N occupied input modes. With these considerations,
we obtain

Cj,k = 〈n̂〉2
N∑

w,w′=1

Uj,wUk,w′U ∗
j,w′U ∗

k,w

+〈ε̂〉2
N∑

w,w′=1

Uj,wUk,wU ∗
j,w′U ∗

k,w′ . (28)

To evaluate the random matrix average EU (C), we use the
linearity of the expectation value such that

EU (C) = 〈n̂〉2
N∑

w,w′=1

EU (Uj,wUk,w′U ∗
j,w′U ∗

k,w )

+〈ε̂〉2
N∑

w,w′=1

EU (Uj,wUk,wU ∗
j,w′U ∗

k,w′ ). (29)

The averages can then be obtained through the following
identity for M × M random unitary matrices U [67–69]:

EU
(
Ua1,b1 . . .Uan,bnU

∗
α1,β1

. . .U ∗
αn,βn

)
=

∑
σ,π∈Sn

VM (σ−1π )
n∏

k=1

δ(ak − ασ (k) )δ(bk − βπ (k) ), (30)

where Sn denotes the permutation group for n elements and
V are class coefficients (also known as Weingarten func-
tions), typically determined recursively. Because only low-
order terms are considered here, the necessary values for
the class coefficients can be taken from the literature [70].
For higher order moments, it is often convenient to resort
to alternatives, such as semiclassical methods [71], or use a
direct, yet sophisticated approach based on the Schur-Weyl
duality [72].

Furthermore, for the evaluation of the higher moments
EU (C2) and EU (C3), it suffices to straightforwardly evaluate
C2

jk and C3
jk and apply the same techniques. These compu-

tations will rapidly become more intricate because of the
appearance of cross terms, which introduce new types of
nonvanishing terms when applying Eq. (30).

To implement relation (30) and do the bookkeeping of
indices in the calculation of EU (C), EU (C2), and EU (C3),
we resort to methods that are analogous to those detailed
in Appendix B of Ref. [73]. By summing all the nonzero
contributions upon evaluation of Eq. (30), we obtain as the
final result

EU (C) = N (M − N )

(M − 1)M(M + 1)
〈n̂〉2 + N

M(M + 1)
〈ε̂〉2, (31a)
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EU (C2) = 2N (N + 1)(M − N + 1)(M − N )

(M − 1)M2(M + 1)(M + 2)(M + 3)
〈n̂〉4 + 2N (M − N )(MN + 3M − N + 1)

(M − 1)M2(M + 1)(M + 2)(M + 3)
〈n̂〉2〈ε̂〉2

+2N (M2N + M2 + NM − 3M + 2N − 2)

(M − 1)M2(M + 1)(M + 2)(M + 3)
〈ε̂〉4, (31b)

EU (C3) = 6(N + 1)N (N + 2)(M − N + 2)(M − N + 1)(M − N )

(M − 1)M2(M + 1)2(M + 2)(M + 3)(M + 4)(M + 5)
〈n̂〉6

+ 6N (N + 2)(M − N )(M − N + 1)(MN + 5M − N + 7)

(M − 1)M2(M + 1)2(M + 2)(M + 3)(M + 4)(M + 5)
〈n̂〉4〈ε̂〉2

+ 6N (N + 2)(M − N )(M2N + MN + 5M2 + 5M + 4N − 4)

(M − 1)M2(M + 1)2(M + 2)(M + 3)(M + 4)(M + 5)
〈n̂〉2〈ε̂〉4

+ 6N (N + 2)(M2N + 5MN + M2 − 7M + 12N − 12)

(M − 1)M2(M + 1)(M + 2)(M + 3)(M + 4)(M + 5)
〈ε̂〉6. (31c)

These expressions can then be inserted into Eq. (3) to straight-
forwardly obtain analytical expressions for NM, CV, and Sk.
Also, in the next section, we use numerical methods to inves-
tigate how these analytical predictions compare to simulated
outcomes for a Gaussian boson sampling experiment.

V. SIMULATION RESULTS

In the following, we simulate an experimental setup with
reconfigurable linear optics and photon-number-resolved de-
tection and investigate the impact of the properties of the input
states on the benchmarking scheme. Specifically, we study
thermal and squeezed states (cf. the discussion at the end of
Sec. III) as two paradigmatic examples of relevance for exper-
imental implementations. In addition, for all simulations and
without loss of generality, we set j = 1 and k = 2, meaning
that we are working with C1,2 the whole time.

A. Simulation methods

Two different methods can be used to simulate the values
of C1,2 for different Haar-random unitaries. The first one
is closest to what would be done in a laboratory. We first
use Eqs. (6) and (7) to get the covariance matrix V and
displacement vector ξ0 for the state under consideration. We
then use Eqs. (11) and (12) for the unitary evolution. The
following step is tracing over all but modes 1 and 2; that
is, we only consider the 4 × 4 matrix and four-component
vector

Ṽ =

⎛
⎜⎜⎜⎜⎝

V1,1 V1,2 V1,M+1 V1,M+2

V2,1 V2,2 V2,M+1 V2,M+2

VM+1,1 VM+1,2 VM+1,M+1 VM+1,M+2

VM+2,1 VM+2,2 VM+2,M+1 VM+2,M+2

⎞
⎟⎟⎟⎟⎠ (32)

and ξ̃0 = (ξ0,1, ξ0,2, ξ0,M+1, ξ0,M+2)T of the output state. With
those, we then compute the photon-number distribution using
the procedures in Refs. [64] and [65]. This gives an array
of values for the probabilities P(n1, n2) of detecting (n1, n2)
photons; then, C1,2 is directly calculated. This is a straightfor-
ward, yet a highly computationally inefficient approach as it
corresponds to simulating Gaussian boson sampling, a prob-
lem considered to be computationally difficult [22,23]. As

Gaussian states do not have a finite photon-number
distribution—though the probabilities of detecting higher
photon numbers get increasingly smaller—a maximum
photon-number resolution nmax can be defined. This has im-
plications for C1,2 which are discussed in detail in Sec. VI D.

The other method of simulating C1,2 is to use our results
from Sec. IV directly. This approach is much quicker as it
avoids the intermediate calculation of photon-number distri-
butions [64,65]. From the set of randomly generated C1,2

values, NM, CV, and Sk are obtained. These values can be
compared to the exact values in Eqs. (3) and (31) for the same
systems to get an idea of how many Haar-random unitary
evolutions one requires to determine good estimates for NM,
CV, and Sk in simulations and future experiments.

B. Squeezed and thermal state comparison

Pure squeezed states form a class of Gaussian states that
cannot be modeled with classical light. They have been
produced in experiments for decades and thus serve as a
good starting point to develop an intuition for our bench-
marking scheme. Furthermore, squeezed-vacuum inputs are
the archetypal scenario for Gaussian boson sampling [22,23].
In contrast, thermal light behaves in a highly classical way,
rendering it an ideal example to contrast against the squeezed
vacuum. It is worth emphasizing that Gaussian boson sam-
pling with thermal input states can be simulated in an efficient
way.

1. Small and large systems

First, we separately consider squeezed and thermal states
as inputs for boson sampling to gather insights into their
characteristic features. This is done using a small system of
M = 8 and N = 2, typical for what is currently achievable in
a laboratory, as well as in a large system of M = 120 and
N = 10 to compare with the results from Ref. [53]. These
numbers were selected due to the technical requirement in
boson sampling of having many more modes available than
nonvacuum input states, i.e., M � Nν for ν = 2. As it was
shown that boson sampling cannot be hard for ν < 2 [11], we
specifically focus on this borderline case.

Complementary to the definition in Sec. III, based on the
state’s covariance matrix, it is helpful to expand the squeezed
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and thermal states in the photon-number basis for further
insight. A single-mode squeezed state |S〉 (without displace-
ment) is described through the squeezing operator acting
on the vacuum state, i.e., |S〉 = exp [r(eiφ â†2 − e−iφ â2)/2]|0〉,
where r is the squeezing parameter and φ defines the an-
tisqueezing axis in phase space. Thus, the squeezed state
exhibits the photon-number basis expansion

|S〉 = 1√
cosh(r)

∞∑
n=0

[eiφ tanh(r)]n

√
(2n)!

n!2n
|2n〉. (33)

In this form, the squeezed state is a coherent superposi-
tion of photon-number states. When this is generalized to a
squeezed state input in M modes, the covariance matrix is
given by

V = diag(e2r1 , . . . , e2rM , e−2r1 , . . . , e−2rM ), (34)

where r j is the squeezing parameter for mode j (note that
r j = 0 corresponds to vacuum in mode j). Likewise, we
have vq, j = e2r j and vp, j = e−2r j in Eq. (14). Thus, we get
〈n̂ j〉 = sinh2(r j ), and the eccentricity is quantified as 〈ε̂ j〉 =
sinh(2r j )/2 [Eq. (24)]. As a local diagonalization can be per-
formed, and we can choose squeezing along the p quadrature
axis and antisqueezing along the q quadrature axis, we set
φ = 0 in Eq. (33).

By contrast, a thermal state ρ̂T is a classical (i.e., incoher-
ent) mixture of photons,

ρ̂T = 1

n̄ + 1

∞∑
n=0

(
n̄

n̄ + 1

)n

|n〉〈n|, (35)

where n̄ = 〈n̂〉 is the mean thermal photon number. For a
thermal state, the off-diagonal density matrix elements in the
Fock basis are always zero as thermal states are rotationally
invariant, also implying 〈ε̂〉 = 0. Again, when generalizing
this to M modes, we obtain

V = diag(2n̄1+1, . . . , 2n̄M+1, 2n̄1+1, . . . , 2n̄M+1), (36)

with n̄ j denoting the mean photon number of the jth mode.
Let us stress that n̄ j = 0 corresponds to a vacuum input state
in mode j.

In our simulations, we consider the scenario of M identical
input modes [cf. Eq. (25)]. This leads to typical histograms
for squeezed and thermal states for small and large systems
as shown in Fig. 2, top and bottom plots, respectively. In both
cases, we have the same mean photon number per mode for
the input states, 〈n̂〉 = 1. The eccentricity for the thermal state
is zero, whereas we have 〈ε̂〉 = √

2 for the squeezed state.
Because of the latter phase dependence, we have an additional
contribution to C1,2 [cf. Eq. (29)], resulting in a distinctively
broader distribution for squeezed states compared to thermal
states with the same number of photons.

In Fig. 3, we compare the variation of NM, CV, and Sk,
as defined in Eqs. (3), for both types of state and for large
and small systems. To do so, we average over the simulation
values of C1,2, C2

1,2, and C3
1,2, and compare the results to

the values of NM, CV, and Sk that are obtained via the
relations in Eq. (31). On the one hand, these results allow
us to probe and, thereby, distinguish the features of squeezed
and thermal states. For thermal states, CV and Sk are constant

FIG. 2. Comparison of histograms of C1,2 for squeezed states
[r = ln(1 + √

2) (〈n̂〉 = 1) and φ = 0; cf. Eq. (33)] and thermal
states [n̄ = 1; cf. Eq. (35)]. For both plots, a sample of 10 000
different Haar-random unitaries was generated. The top plot shows
the histogram for two occupied modes out of eight available modes,
N = 2 and M = 8, respectively. In the bottom plot, we have N = 10
and M = 120.

with varying average photon number which can be understood
from Eq. (31) for 〈ε̂〉 = 0. Therefore, the 〈n̂〉 terms cancel out
in the final expression for CV and Sk. For squeezed states, we
do observe an effect of altering 〈n̂〉, which can be used as a
method to distinguish both types of states.

Moreover, through all of Fig. 3, we gauge the number of
iterations that are required to let the statistics of the simulated
data converge to the analytical predictions as marked by the
standard error. Because of the increased standard error, it is
obvious that the uncertainties are larger in Fig. 3 (top) com-
pared to the corresponding plot in Fig. 3 (bottom), describing
10 000 iterations versus 1 000 000, respectively. Furthermore,
by comparing Fig. 3 (top) and Fig. 3 (middle), we can observe
that the system size does not affect the relative uncertainties
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FIG. 3. Parameters MN, CV, and Sk (columns from left to right) for squeezed and thermal states. The analytical expressions (orange
dot-dashed lines for squeezed states and purple dotted lines for thermal states) and the values obtained from the simulated data with 1σ error
bars (blue stars for squeezed states and yellow dots for thermal states) are plotted. The top row shows the results for a small system, N = 2
and M = 8, and 10 000 Haar-random unitaries are generated to sample C1,2. The middle row shows the results for a large system, N = 10 and
M = 120, and a Haar-random sample of 10 000 values for C1,2 from 10 000. The bottom row shows the results for a small system, N = 2 and
M = 8, however, for an increased sample size of 1 000 000 values for C1,2 compared to the first row.

for the corresponding moment for the same number of itera-
tions. This demonstrates that we need to be conscious of the
number of iterations performed depending on which moment
we wish to consider, though with a tunable photonic circuit,
it would be experimentally possible to generate sufficiently
many random unitaries to reach the necessary statistical error
on the measured data.

From the different results in Fig. 3, it seem appropriate
to use NM to distinguish between squeezed and thermal
states at large 〈n̂〉 and Sk to tell them apart at small 〈n̂〉.
However, due to the relation σNM < σCV < σSk (where σx is
the standard error in x ∈ {NM, CV, Sk}), it becomes apparent
that it is most efficient to use NM to discriminate between
squeezed and thermal input states. Also there will always
be implementation-dependent sources of error in addition to
the statistical uncertainties; therefore further error analysis

directly on experimental data would be required [54]. This is
discussed in more detail in Sec. VI C.

2. Constant dilution

So far, we studied the impact of the type of state and the
sample size on the implementation of boson sampling proto-
cols with Gaussian states. We now investigate the influence of
the distribution of a fixed amount of energy (i.e., total photon
number) into a varying number of occupied modes, referred to
as constant dilution. The motivation to study such a problem
comes from Ref. [23], where the impact of multiphoton events
in the same mode is considered. Specifically, the question is
addressed whether it is more favorable to increase the squeez-
ing and use a few occupied inputs or have less squeezing
distributed over a larger number of modes.
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FIG. 4. The histograms of the two-point correlators C1,2 for
〈n̂〉 = 1, with N = 1, 2, and 4. Squeezed (thermal) states are
depicted in the top (bottom) plot.

For this reason, we consider the mean total photon number
〈n̂〉, where

n̂ =
M∑

j=1

n̂ j . (37)

This mean value reads 〈n̂〉 = N〈n̂〉 for our scenario of N
occupied input modes with identical input states. For inves-
tigating the impact of the number of occupied modes, we
keep the total energy constant while altering N , yielding
〈n̂〉 = 〈n̂〉/N for each nonvacuum input. Typical histograms
for dilution can be seen in Fig. 4. For a fair comparison, we
additionally fix the number of modes M, regardless of the
choice of occupied modes N . We make the particular choice
of M = 10 modes to satisfy the minimal constraint M � N2.

In Fig. 5, Eqs. (3) and (31) are applied to plot the variation
of NM for several values of 〈n̂〉. We observe that the corre-
lations are most pronounced for fewer occupied inputs with
a higher mean photon number. This can be understood from
the following considerations. For full dilution and spreading
over all modes, N = M, the terms proportional to 〈n̂〉 vanish in

FIG. 5. Variation of NM with N for 〈n̂〉 ∈ {1, 2, 3, 4}. The
normalized mean NM for squeezed (thermal) states is shown in the
top (bottom) plot.

Eq. (28). Since these terms are always positive, their vanishing
reduces the value of C1,2. Moreover, 〈ε̂〉 also takes its smallest
value in the case of full dilution, such that this scenario
must lead to the lowest C1,2. If we treat unoccupied modes
as asymmetries in the system, then larger asymmetries (i.e.,
small N or large 〈n̂〉) lead to larger two-point correlators.
Thus, our method works best when remaining within the bo-
son sampling limit (i.e., M � N2) in order to obtain stronger
correlations.

VI. EXPERIMENTAL CONSIDERATIONS

In a theoretical framework, one can assume that all states
are created perfectly, all components are lossless, there is no
noise, all unitaries are ideal, and each detector has a 100%
efficiency and an ideal photon-number resolution. In reality
this is not the case. In this section, we therefore explore how
the results from the previous sections are affected by such
impurities and the tolerances required to obtain statistically
significant results.

For instance, we can think of experimental limitations in
terms of state degradation, as measured, for example, by the
state’s purity. For a generic state density matrix ρ̂, the state is
pure if Tr(ρ̂2) = 1 and mixed if Tr(ρ̂2) < 1. For a Gaussian
state, we can also invoke the relation

Tr(ρ̂2) = 1√
det (V )

, (38)
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FIG. 6. Heat maps of NM, CV, and Sk (columns from left to right) for squeezed states with varying quantum efficiency η and squeezing
parameter r for small (N = 2 and M = 8, top row) and large (N = 10 and M = 120, bottom row) optical networks. Note that 1 − η is plotted
on the horizontal axis for an increasing loss fraction.

which is true for any number of modes [64]. In general, the
influence of a given imperfection onto the covariance matrix
V determines the impact on the correlators.

Further, imperfections can affect each individual mode in a
different manner. This can be considered by using our general
results from Sec. IV. However, in practice, one can assume
that all prepared states are subjected to almost the same
amount of impurities when passing similar optical elements
and being measured with similar detectors. Thus, for the
sake of getting a fundamental idea of what the influence of
different imperfections is, we can approximate imperfections
by modeling them with identical influence on all modes.

A. Network loss

The general description of multimode light propagating in
a lossy network has been formulated, e.g., in Ref. [74]. As out-
lined above, here we assume that the loss is homogeneously
distributed. Thus, let η be the overall quantum efficiency of
the optical network and the detectors; i.e., the values η = 1
and η = 0 correspond to no loss and full loss, respectively.
The well-known impact of loss on the characteristic quantities
of Gaussian states reads

V �→ ηV + (1 − η)E and ξ �→ √
ηξ, (39)

where E is the identity matrix. This means that the covariance
matrix including loss is a convex mixture of the lossless
covariance and the covariance matrix of the vacuum state (i.e.,
the identity matrix). In particular, the quadratures transform
as vs �→ ηvs + (1 − η), with s ∈ {q, p}. Thus, we get for the

defining quantities of the correlator

〈n̂〉 �→ η
vq + vp − 2

4
and 〈ε̂〉 �→ η

vq − vp

4
. (40)

We can now use this to study the effect of loss on C1,2 and
its moments for a desired state, and the implications it has on
distinguishing classical and quantum interference.

For example, we can consider a squeezed state at the input
of a given mode. Using Eqs. (34) and (39), the corresponding
covariance matrix is then given by V = ηdiag(e2r, e−2r ) +
(1 − η)diag(1, 1). This means we obtain the purity from
Eq. (38) as

Tr(ρ̂2) = [4η(1 − η) sinh2(r) + 1]−1/2. (41)

In addition, we can also characterize the purity through the
uncertainty relation, which is minimally satisfied (i.e., vqvp =
1) for pure Gaussian states. Including loss, we find for the
squeezed state

〈(�q̂)2〉〈(�p̂)2〉 = 4η(1 − η) sinh2 (r) + 1. (42)

Finally, from Eqs. (28) and (40), we can directly see that Cj,k

scales as

Cj,k �→ η2Cj,k . (43)

The impact of loss [Eq. (43)] on NM, CV, and Sk for
squeezed states is depicted in Fig. 6. We see that CV and
Sk do not vary with loss, which is intuitively clear from the
definitions (3) as the loss factors will cancel out. From this
we might think that CV and Sk are good measures to tell
squeezed states and thermal states apart. However, we will see
in Sec. VI C that even with loss we get the most information
with the least effort out of NM.
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FIG. 7. Heat maps of NM, CV, and Sk (columns left to right) for noisy squeezed states obtained by varying squeezing parameter r and
noise parameter ν, for a small (N = 2 and M = 8, top row) and large (N = 10 and M = 120, bottom row) systems. The (white) lines for the
subvacuum variance boundary in Eq. (46) are additionally depicted; to the left of those lines, we have a subvacuum variance.

B. Additive noise

Adding Gaussian noise corresponds to a convolution with
a Gaussian distribution. The thermal noise due to the envi-
ronment is negligible for many optical settings. Still, other
sources of noise have to be considered, for example, contribu-
tions from a nonideally filtered pump laser of the parametric
process, etc.

We take for our scenario V �→ V + V noise, where the sec-
ond term represents the convoluted noise contribution. Again,
for simplicity, we assume that any quadrature for any mode
is affected by the same noise, which gives V noise = νE. This
leads to adapting the vq and vp parameters in mode j as

vq �→ vq + ν and vp �→ vp + ν. (44)

Consequently, we find 〈n̂〉 �→ 〈n̂〉 + ν/2, while the eccentric-
ity remains unchanged, 〈ε̂〉 �→ 〈ε̂〉. In addition, we arrive at

〈(�q̂)2〉〈(�p̂)2〉 = 1 + ν2 + 2ν cosh (2r) = 1

[Tr(ρ̂2)]2
.

(45)

From this we see that we only have a pure state when ν = 0,
and any squeezing will exacerbate the purity.

Another interesting property is considering subvacuum
variances, i.e., squeezing. When the squeezing is along the
p quadrature, then we have vp = e−2r � 1 for a pure single-
mode squeezed vacuum state (r � 0). It is interesting to
consider the range of r and ν for which squeezing is preserved,
vp < 1. We arrive at the condition

r > − 1
2 ln(1 − ν), (46)

which defines the boundary separating classical from
squeezed states.

In Fig. 7, we show the dependence of the values of NM,
CV, and Sk on the noise and squeezing parameters. Compared
to the loss scenario (cf. Fig. 6), the functional landscape is
more complex. Specifically, the coefficient of variation (center
row) and the skewness (right row) exhibit nontrivial relations.
Comparing the lower right-hand corner of the CV and Sk
plots for both small (top row) and large (bottom row) systems
in Fig. 7, it appears that the noise is suppressed by higher
moments as the change with ν is more shallow in the Sk plots
compared to the CV plots.

C. Discrimination via statistical significance

In Secs. V B and VI B, the discrimination of squeezed and
thermal states using NM, CV, and Sk was discussed. It was
suggested that NM would be suitable at higher average photon
numbers and Sk at lower average photon numbers. However,
when considering the experimental implications of this, the
ideal situation is to use the metric which involves the least
number of Haar-random unitaries, i.e., getting away with the
fewest data points.

In order to determine this, we approximate NM, CV, and
Sk by generating a set of C1,2 from several Haar-random
unitaries and using the relations in Eq. (3). The variation in
values of C1,2 enables us to assign statistical uncertainties
to those quantities, using the typical propagation of errors.
Further, we consider �NM = NMS − NMT (and equivalent
for CV and Sk), which is the difference of this the normalized
mean for squeezed and thermal states. The metric we impose
is the minimum number of iterations required for �NM to
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FIG. 8. The top row shows �NM with 3σ error bars plotted
against average photon number 〈n̂〉 for small systems (N = 2 in M =
8) with η = 0.2 (i.e., 80% loss). On the left, the system evolved under
10 different Haar-random unitaries (i.e., 10 trials); we considered 50
trials for the plot on the right. The bottom row depicts �Sk with
3σ error bars plotted against average photon number 〈n̂〉 for small
systems (N = 2 in M = 8). The left and right plots use 10 000 and
50 000 trials, respectively. The blue error bars are from the simulated
data, and orange dotted lines are from the analytical expressions.
Black zero lines have been added to the plots in the left column to
show that the error bars go through zero.

be nonzero with a 3σ statistical significance. This statistical
bound is enough to tell the considered families of states apart.
Specifically, we find that the minimal number is not massively
affected by loss or system size, which is discussed in the
following.

From our previous analysis, we can see that �NM scales
with 〈n̂〉, so only low values of 〈n̂〉 are considered at the
top of Fig. 8. The top two plots contain parameters typical
for current photonic architectures. We can see that 10 trials
are not enough, but 50 trials discriminate between squeezed
and thermal states with a 3σ significance. In addition to this,
further simulations showed that the degree of system loss does
not affect the number of trials required for discrimination.
This result is encouraging, as 50 trials seems to be a feasible
number to undertake in a laboratory.

It was proposed in Sec. V B that Sk might be a good
measure to discriminate between squeezed and thermal states
at low values of 〈n̂〉 by considering Fig. 3. Therefore, we
consider the same for �Sk with varying 〈n̂〉. The results can
be found at the bottom of Fig. 8 for small systems (N = 2 in
M = 8); losses were not considered as loss does not effect
Sk (cf. Fig. 6). We see that 10 000 trials are insufficient
for a discrimination, but 50 000 allow this with a statistical
significance of 3σ . The meaning of this result is that on the
order of 103 more trials are required when using Sk compared
to NM to tell squeezed and thermal states apart, regardless of

the value of 〈n̂〉. Therefore, NM is clearly the best metric as it
works sufficiently well, even in the presence of system loss.

D. Detectors with finite photon-number resolution

It was mentioned in Sec. V A that one of the simulation
methods involved projecting the output state onto the photon-
number basis and calculating C1,2 from the obtained statistics.
If P(n1, n2) is the probability of detecting n1 photons in mode
1 and n2 photons in mode 2, then C1,2 is given by

C1,2 =
∞∑

n1,n2=0

n1n2P(n1, n2) −
( ∞∑

n1=0

n1P(n1)

)( ∞∑
n2=0

n2P(n2)

)
,

(47)

where the marginal distributions are given by P(n1) =∑∞
n2=0 P(n1, n2) and P(n2) = ∑∞

n1=0 P(n1, n2).
The output of the simulation after tracing over all but

modes 1 and 2 is a matrix where the entries correspond to
P(n1, n2). Equations (33) and (35) yield that the contributions
for high photon numbers become arbitrarily small for both
squeezed and thermal states. Therefore, for a finite simula-
tion, we can consider a highest sensible photon number and
truncate our statistics without affecting the result.

In fact, such a truncation resembles a common experi-
mental restriction to photon-number detectors. It is possible
to multiplex detectors with a finite maximal photon-number
resolution [75,76], such as transition edge sensors (TESs), to
increase the maximally measurable photon number. Still, each
TES is restricted to about 11 photons, which consequently
poses a significant limitation to the mean photon number
for an experiment. Therefore, the maximum photon-number
resolution the detectors are capable of is an important consid-
eration.

It is also worth mentioning that recent developments in
Gaussian boson sampling theory have lead to extending the
framework to click detectors [77], where it is shown that the
problem has the same unfavorable scaling for low squeezing.
However, as we will see, photon number resolution is still
required for a measurement of C1,2 with low error.

In order to test this, for a given system evolved under a
given Haar-random unitary, P(n1, n2) can be calculated up
to a level much higher than a TES is capable of (here, for
up to 40 photons per mode). Then this sample enables us to
approximate C1,2 via Eq. (47) by truncating at successively
higher values of maximal photon numbers (n1, n2 � nmax).
These values are then compared to the analytical value for the
same system and Haar-random unitary using Eq. (28), and the
relative distance [C(analytical)

1,2 − C(estimated)
1,2 ]/C(analytical)

1,2 between
the exact and estimated result can be calculated.

Examples for the desired convergence with the maximal
photon number nmax can be seen at the top of Fig. 9. For
statistical analysis, it is useful to say that suitable relative
distance of smaller than 10−3 should be achieved, i.e.,

− log10

(
C(analytical)

1,2 − C(estimated)
1,2

C(analytical)
1,2

)
> 3. (48)

The required value of nmax to achieve this will depend on the
system in question. A lossy system will have lower 〈n̂〉 on
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FIG. 9. The top row depicts convergence plots of C1,2 for an
example Haar-random unitary (which have been normalized against
the exact value) plotted against maximum photon number resolution
nmax. Both consider a small system (N = 2 in M = 8) with 〈n̂〉 = 1.
On the left, we have a system with full transmission η = 1. On
the right, we consider a system with η = 0.2, typical of current
architectures. The bottom plot shows two histograms for the number
of incidences of nmax that satisfy convergence condition in Eq. (48)
for 500 different Haar-random unitaries (η = 1 on the left and η =
0.2 on the right).

average compared to a lossless system, so a lower resolution
would be required for the same convergence. Also, we observe
that for N = 10 occupied modes in an M = 120-mode system,
we have a more dilute photon number distribution at the
output compared to N = 2 and M = 8. Thus, the former case
also requires a lower resolution. As the measurement should
be done for different unitaries, typical histograms can be
additionally seen at the bottom of Fig. 9. The spread in values
arises due to the variation in scattering of different unitaries to
the output ports in consideration. Even with only 500 different
Haar-random unitaries, it shows there is a mean resolution for
the convergence condition in Eq. (48). Interestingly, squeezed
state inputs require a slightly higher resolution compared to
a thermal state with the same mean photon number. This is
specifically due to the fact that higher photon-number correla-
tions scale differently for these classes of states, even though
the mean photon number is the same. Moreover, typical
experimental parameters for current architecture would be two
single-mode squeezed vacuum inputs with 〈n̂〉 ≈ 1 each with
80% loss per mode, which corresponds to the right column
in Fig. 9. Therefore, a TES resolution (nmax = 11) would be
enough to measure C1,2 to within the error bound. If the loss
were reduced, the squeezing could be even further reduced to
lower 〈n̂〉, allowing for a reduced nmax.

VII. SUMMARY AND CONCLUSIONS

In summary, we established methods for benchmarking
boson sampling in realistic setups with Gaussian input states.

Based on a previously introduced technique [53] applicable
to phase-insensitive Fock states, we derived an analytical
expressions for the intensity correlation between pairs of
output detectors. In particular, these correlations are found
to be affected by the eccentricity of the initial states’ un-
certainty ellipses. This effect is not present in the standard
boson sampling setup. The corresponding additional terms
in the correlators may indicate a previously unstudied type
of many-particle interference phenomenon in this setting that
is induced through squeezing. The resulting different struc-
ture of the two-point correlators translates to a quantitative
difference upon averaging over all possible unitary circuits.
By virtue of random matrix theory, these averages could then
be evaluated analytically, which provides us with a predictive
tool to recognize faulty Gaussian boson samplers.

Furthermore, our results enable us to efficiently distinguish
nonclassical squeezed vacuum states from classical thermal
input states. This is an important finding as sampling from
the latter states can be simulated efficiently with classical
resources, while this is not the case for the former states. In
addition, we observed a clear difference in the properties of
the correlations when few modes with highly squeezed input
states are compared to many modes with weakly squeezed
input states for a constant expectation value of the total
particle number.

We then employed the obtained properties of the two-point
correlators as a tool to assess experimental constraints. In
the standard boson sampling setup, losses can be eliminated
through post-selection, even though this has a negative effect
on the sampling efficiency because of a decreased number of
accounted events, and therefore on the reasonableness of any
claim to “quantum advantage.” For Gaussian boson sampling,
loss and noise processes must be taken into account explicitly;
we were able to perform this task when applying our general
approach. Typically, these imperfections have the advantage
of being Gaussian such that they can be simply incorporated
in the initial state. We identified the average two-point corre-
lation as a good robust certifier of Gaussian boson sampling,
even in the presence of attenuation and other noise processes.
Additionally, we showed that the rescaled higher moment—
the coefficient of variation and the skewness—are unaffected
by loss. However, these higher moments do show interesting
features in the presence of classical Gaussian noise. In partic-
ular, we show that the second and third moments can be used
as probes for transitions from nonclassical to classical light,
which occurs when the classical noise drives the quadrature
fluctuations beyond the shot-noise level. Ultimately, we find
that the mean value for the two-point correlators is the most
useful quantity at our disposal since it can be obtained with
rather low statistical fluctuations from relatively low sample
sizes. The higher moments, as represented by the coefficient
of variation and the skewness, require much more effort to
reach convergence in the statistics.

Finally, we explored the feasibility of performing the pro-
posed correlation tests for Gaussian boson sampling exper-
imentally with state-of-the-art photon-number resolving de-
tectors. These results suggest that for small photonic circuits
with a small number of occupied input ports, we may only
use a subset of possible random photonic circuits. As the
number of modes increases and we consider larger circuits,
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we observe that the requirements on the level of photon
counting become less stringent. Ultimately, this implies that
the presented methods are well suited for implementations in
large-scale boson sampling setups.

Here we compared interesting classes of phase-sensitive
quantum states from a fundamental physics perspective, and,
moreover, explored the impact of several important error
models. In essence, we found that often the mean two-point
correlation is already sufficient to distinguish different classes
of inputs. It remains an open question whether there is a
genuinely challenging attack for Gaussian boson sampling, as
was the case with the mean field sampler in the standard boson
sampling scenario [53]. Similarly, it is an intriguing open
question in what sense the present results might be affected
by the possibility of having (partial) distinguishability in the
additional degrees of freedom of the input states, e.g., through
different polarizations or time-frequency modes.
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APPENDIX: MOMENTS OF GAUSSIAN STATES

A convenient method to access the moments of a dis-
tribution is formulated in terms of characteristic functions,
the Fourier transform of the initial distribution. In Ref. [78],
a comprehensive introduction to characteristic functions for
quantum-optical phase-space distributions can be found.
Here, let us recall some concepts which are essential for our
purposes.

The characteristic function to the Glauber-Sudarshan dis-
tribution is the normally ordered expectation value of the
displacement operator, taking the form

�(β) = 〈eβ1â†
1 e−β∗

1 â1 · · · eβM â†
M e−β∗

M âM 〉 (A1)

for an M-mode quantum state of light and the complex vec-
tor β = (β1, . . . , βM )T. The characteristic function satisfies
�(0) = 1 (normalization) and �(−β) = �(β)∗ (Hermitic-
ity). The derivatives of the characteristic function relate to the
moments of the distribution,

∂
j1
β1

· · · ∂ jM
βM

∂
k1
β∗

1
· · · ∂kM

β∗
M
�(β)

∣∣
β=0

= (−1)k1+···+kM
〈
â† j1

1 · · · â† jM
M âk1

1 · · · âkM
M

〉
. (A2)

Furthermore, the reformulation âl = �âl + α0,l results in the
characteristic function

��(β) = eβ†α0−α†
0β�(β) (A3)

for central moments.
For our purposes, we are specifically interested in Gaussian

states. In this case, the characteristic function is known to
simplify to

��(β) = eϑ (β), (A4)

where we used the second-order polynomial

ϑ (β) = 1

2

M∑
j,k=1

(〈�â†
j�â†

k〉β jβk + 〈�â j�âk〉β∗
j β

∗
k )

−
M∑

j,k=1

〈�â†
j�âk〉β jβ

∗
k . (A5)

It is worth recalling that all except the second-order deriva-
tives of ϑ vanish for β = 0. From the derivatives of this
specific characteristic function, we find the following relation
for the central fourth-order moments for Gaussian states:

〈∂βr ∂βs∂β∗
t
∂β∗

u
��(β)|β = 〈�â†

r �â†
s �ât�âu〉

= 〈�â†
r �â†

s 〉〈�ât�âu〉
+〈�â†

r �ât 〉〈�â†
s �âu〉

+ 〈�â†
r �âu〉〈�â†

s �ât 〉. (A6)

Using the bosonic commutation relations for â†
s and ât , we

can express the sought-after moments in terms of normally
ordered moments. This finally yields

〈�â†
r �ât�â†

s �âu〉 = 〈�â†
r �â†

s 〉〈�ât�âu〉
+ 〈�â†

r �ât 〉〈�â†
s �âu〉

+ 〈�â†
r �âu〉〈�ât�â†

s 〉. (A7)

[1] R. Hanbury Brown and R. Q. Twiss, A test of a new type
of stellar interferometer on Sirius, Nature (London) 178, 1046
(1956).

[2] H. J. Kimble, M. Dagenais, and L. Mandel, Photon Antibunch-
ing in Resonance Fluorescence, Phys. Rev. Lett. 39, 691 (1977).

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, 2010).

[4] S. Lloyd and S. L. Braunstein, Quantum Computation over
Continuous Variables, Phys. Rev. Lett. 82, 1784 (1999).

[5] E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient
quantum computation with linear optics, Nature (London) 409,
46 (2001).

[6] M. Bohmann, A. A. Semenov, J. Sperling, and W. Vogel,
Gaussian entanglement in the turbulent atmosphere, Phys.
Rev. A 94, 010302(R) (2016).

[7] F. Steinlechner, S. Ecker, M. Fink, B. Liu, J. Bavaresco,
M. Huber, T. Scheidl, and R. Ursin, Distribution of high-
dimensional entanglement via an intra-city free-space link, Nat.
Commun. 8, 15971 (2017).

023836-15

https://doi.org/10.1038/1781046a0
https://doi.org/10.1038/1781046a0
https://doi.org/10.1038/1781046a0
https://doi.org/10.1038/1781046a0
https://doi.org/10.1103/PhysRevLett.39.691
https://doi.org/10.1103/PhysRevLett.39.691
https://doi.org/10.1103/PhysRevLett.39.691
https://doi.org/10.1103/PhysRevLett.39.691
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1103/PhysRevA.94.010302
https://doi.org/10.1103/PhysRevA.94.010302
https://doi.org/10.1103/PhysRevA.94.010302
https://doi.org/10.1103/PhysRevA.94.010302
https://doi.org/10.1038/ncomms15971
https://doi.org/10.1038/ncomms15971
https://doi.org/10.1038/ncomms15971
https://doi.org/10.1038/ncomms15971


D. S. PHILLIPS et al. PHYSICAL REVIEW A 99, 023836 (2019)

[8] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, Teleporting an Unknown Quantum State via
Dual Classical and Einstein-Podolsky-Rosen Channels, Phys.
Rev. Lett. 70, 1895 (1993).

[9] J.-G. Ren et al., Ground-to-satellite quantum teleportation,
Nature (London) 549, 70 (2017).

[10] A. Bleicher, Quantum algorithms struggle against
old foe: Clever computers, Quanta Magazine, https://
www.quantamagazine.org/quantum-computers-struggle-against-
classical-algorithms-20180201 (2018).

[11] S. Aaronson and A. Arkhipov, The computational complexity
of linear optics, Theory Comput. 9, 143 (2013).

[12] S. Scheel, Permanents in linear optical networks, arXiv:quant-
ph/0406127.

[13] L. G. Valiant, The complexity of computing the permanent,
Theor. Comput. Sci. 8, 189 (1979).

[14] M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S.
Aaronson, T. C. Ralph, and A. G. White, Photonic boson
sampling in a tunable circuit, Science 339, 6121 (2013).

[15] M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and
P. Walther, Experimental boson sampling, Nat. Photonics 7, 540
(2013).

[16] J. B. Spring et al., Boson sampling on a photonic chip, Science
339, 6121 (2013).

[17] A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão,
N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F.
Sciarrino, Integrated multimode interferometers with arbitrary
designs for photonic boson sampling, Nat. Photonics 7, 545
(2013).

[18] A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L.
O’Brien, and T. C. Ralph, Boson Sampling from a Gaussian
State, Phys. Rev. Lett. 113, 100502 (2014).

[19] M. Bentivegna et al., Experimental scattershot boson sampling,
Sci. Adv. 1, e1400255 (2015).

[20] H. Wang et al., High-efficiency multiphoton boson sampling,
Nat. Photonics 11, 361 (2017).

[21] J. C. Loredo, M. A. Broome, P. Hilaire, O. Gazzano, I.
Sagnes, A. Lemaitre, M. P. Almeida, P. Senellart, and A. G.
White, Boson Sampling with Single-Photon Fock States from
a Bright Solid-State Source, Phys. Rev. Lett. 118, 130503
(2017).

[22] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C.
Silberhorn, and I. Jex, Gaussian Boson Sampling, Phys. Rev.
Lett. 119, 170501 (2017).

[23] R. Kruse, C. S. Hamilton, L. Sansoni, S. Barkhofen, C.
Silberhorn, and I. Jex, A detailed study of Gaussian boson
sampling, arXiv:1801.07488.

[24] A. Aspuru-Guzik and P. Walther, Photonic quantum simulators,
Nat. Phys. 8, 285 (2012).

[25] J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, and A.
Aspuru-Guzik, Boson sampling for molecular vibronic spectra,
Nat. Photonics 9, 615 (2015).

[26] J. Huh and M.-H. Yung, Vibronic boson sampling: Generalized
Gaussian boson sampling for molecular vibronic spectra at
finite temperature, Sci. Rep. 7, 7462 (2017).

[27] W. R. Clements, J. J. Renema, A. Eckstein, A. A. Valido,
A. Lita, T. Gerrits, S. W. Nam, W. S. Kolthammer, J. Huh,
and I. A. Walmsley, Approximating vibronic spectroscopy with
imperfect quantum optics, J. Phys. B: At. Mol. Opt. Phys. 51,
245503 (2018).

[28] J. M. Arrazola, T. R. Bromley, and P. Rebentrost, Quantum
approximate optimization with Gaussian boson sampling, Phys.
Rev. A 98, 012322 (2018).

[29] J. M. Arrazola and T. R. Bromley, Using Gaussian Boson Sam-
pling to Find Dense Subgraphs, Phys. Rev. Lett. 121, 030503
(2018).

[30] D. Su, K. K. Sabapathy, C. R. Myers, H. Qi, C. Weedbrook,
and K. Bradler, Implementing quantum algorithms on tem-
poral photonic cluster states, Phys. Rev. A 98, 032316
(2018).

[31] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K.
Nemoto, Efficient Classical Simulation of Continuous Variable
Quantum Information Processes, Phys. Rev. Lett. 88, 097904
(2002).

[32] A. Mari and J. Eisert, Positive Wigner Functions Render Clas-
sical Simulation of Quantum Computation Efficient, Phys. Rev.
Lett. 109, 230503 (2012).

[33] V. Veitch, N. Wiebe, C. Ferrie, and J. Emerson, Efficient sim-
ulation scheme for a class of quantum optics experiments with
non-negative Wigner representation, New J. Phys. 15, 013037
(2013).

[34] S. Rahimi-Keshari, T. C. Ralph, and C. M. Caves, Suffi-
cient Conditions for Efficient Classical Simulation of Quantum
Optics, Phys. Rev. X 6, 021039 (2016).

[35] T. Douce, D. Markham, E. Kashefi, E. Diamanti, T. Coudreau,
P. Milman, P. van Loock, and G. Ferrini, Continuous-Variable
Instantaneous Quantum Computing is Hard to Sample, Phys.
Rev. Lett. 118, 070503 (2017).

[36] L. Chakhmakhchyan and N. J. Cerf, Boson sampling
with Gaussian measurements, Phys. Rev. A 96, 032326
(2017).

[37] U. Chabaud, T. Douce, D. Markham, P. van Loock, E. Kashefi,
and G. Ferrini, Continuous-variable sampling from photon-
added or photon-subtracted squeezed states, Phys. Rev. A 96,
062307 (2017).

[38] A. P. Lund, S. Rahimi-Keshari, and T. C. Ralph, Exact boson
sampling using Gaussian continuous-variable measurements,
Phys. Rev. A 96, 022301 (2017).

[39] M. C. Tichy, M. Tiersch, F. Mintert, and A. Buchleitner, Many-
particle interference beyond many-boson and many-fermion
statistics, New J. Phys. 14, 093015 (2012).

[40] M. C. Tich, Interference of identical particles from entangle-
ment to boson-sampling, J. Phys. B: At. Mol. Opt. Phys. 47,
103001 (2014).

[41] M. Tillmann, S.-H. Tan, S. E. Stoeckl, B. C. Sanders, H. de
Guise, R. Heilmann, S. Nolte, A. Szameit, and P. Walther,
Generalized Multiphoton Quantum Interference, Phys. Rev. X
5, 041015 (2015).

[42] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of Subpi-
cosecond Time Intervals between two Photons by Interference,
Phys. Rev. Lett. 59, 2044 (1987).

[43] C. Gogolin, M. Kliesch, L. Aolita, and J. Eisert, Boson sam-
pling in the light of sample complexity, arXiv:1306.3995.

[44] S. Aaronson and A. Arkhipov, BosonSampling is far from
uniform, Quantum Inf. Comput. 14, 1383 (2014).

[45] N. Spagnolo et al., Experimental validation of photonic boson
sampling, Nat. Photon. 8, 615 (2014).

[46] L. Aolita, C. Gogolin, M. Kliesch, and J. Eisert, Reliable quan-
tum certification of photonic state preparations, Nat. Commun.
6, 8498 (2015).

023836-16

https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1038/nature23675
https://doi.org/10.1038/nature23675
https://doi.org/10.1038/nature23675
https://doi.org/10.1038/nature23675
https://www.quantamagazine.org/quantum-computers-struggle-against-classical-algorithms-20180201
https://doi.org/10.4086/toc.2013.v009a004
https://doi.org/10.4086/toc.2013.v009a004
https://doi.org/10.4086/toc.2013.v009a004
https://doi.org/10.4086/toc.2013.v009a004
http://arxiv.org/abs/arXiv:quant-ph/0406127
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231440
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
https://doi.org/10.1126/science.1231692
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1038/nphoton.2013.112
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1126/sciadv.1400255
https://doi.org/10.1126/sciadv.1400255
https://doi.org/10.1126/sciadv.1400255
https://doi.org/10.1126/sciadv.1400255
https://doi.org/10.1038/nphoton.2017.63
https://doi.org/10.1038/nphoton.2017.63
https://doi.org/10.1038/nphoton.2017.63
https://doi.org/10.1038/nphoton.2017.63
https://doi.org/10.1103/PhysRevLett.118.130503
https://doi.org/10.1103/PhysRevLett.118.130503
https://doi.org/10.1103/PhysRevLett.118.130503
https://doi.org/10.1103/PhysRevLett.118.130503
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevLett.119.170501
http://arxiv.org/abs/arXiv:1801.07488
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphoton.2015.153
https://doi.org/10.1038/nphoton.2015.153
https://doi.org/10.1038/nphoton.2015.153
https://doi.org/10.1038/nphoton.2015.153
https://doi.org/10.1038/s41598-017-07770-z
https://doi.org/10.1038/s41598-017-07770-z
https://doi.org/10.1038/s41598-017-07770-z
https://doi.org/10.1038/s41598-017-07770-z
https://doi.org/10.1088/1361-6455/aaf031
https://doi.org/10.1088/1361-6455/aaf031
https://doi.org/10.1088/1361-6455/aaf031
https://doi.org/10.1088/1361-6455/aaf031
https://doi.org/10.1103/PhysRevA.98.012322
https://doi.org/10.1103/PhysRevA.98.012322
https://doi.org/10.1103/PhysRevA.98.012322
https://doi.org/10.1103/PhysRevA.98.012322
https://doi.org/10.1103/PhysRevLett.121.030503
https://doi.org/10.1103/PhysRevLett.121.030503
https://doi.org/10.1103/PhysRevLett.121.030503
https://doi.org/10.1103/PhysRevLett.121.030503
https://doi.org/10.1103/PhysRevA.98.032316
https://doi.org/10.1103/PhysRevA.98.032316
https://doi.org/10.1103/PhysRevA.98.032316
https://doi.org/10.1103/PhysRevA.98.032316
https://doi.org/10.1103/PhysRevLett.88.097904
https://doi.org/10.1103/PhysRevLett.88.097904
https://doi.org/10.1103/PhysRevLett.88.097904
https://doi.org/10.1103/PhysRevLett.88.097904
https://doi.org/10.1103/PhysRevLett.109.230503
https://doi.org/10.1103/PhysRevLett.109.230503
https://doi.org/10.1103/PhysRevLett.109.230503
https://doi.org/10.1103/PhysRevLett.109.230503
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1103/PhysRevX.6.021039
https://doi.org/10.1103/PhysRevX.6.021039
https://doi.org/10.1103/PhysRevX.6.021039
https://doi.org/10.1103/PhysRevX.6.021039
https://doi.org/10.1103/PhysRevLett.118.070503
https://doi.org/10.1103/PhysRevLett.118.070503
https://doi.org/10.1103/PhysRevLett.118.070503
https://doi.org/10.1103/PhysRevLett.118.070503
https://doi.org/10.1103/PhysRevA.96.032326
https://doi.org/10.1103/PhysRevA.96.032326
https://doi.org/10.1103/PhysRevA.96.032326
https://doi.org/10.1103/PhysRevA.96.032326
https://doi.org/10.1103/PhysRevA.96.062307
https://doi.org/10.1103/PhysRevA.96.062307
https://doi.org/10.1103/PhysRevA.96.062307
https://doi.org/10.1103/PhysRevA.96.062307
https://doi.org/10.1103/PhysRevA.96.022301
https://doi.org/10.1103/PhysRevA.96.022301
https://doi.org/10.1103/PhysRevA.96.022301
https://doi.org/10.1103/PhysRevA.96.022301
https://doi.org/10.1088/1367-2630/14/9/093015
https://doi.org/10.1088/1367-2630/14/9/093015
https://doi.org/10.1088/1367-2630/14/9/093015
https://doi.org/10.1088/1367-2630/14/9/093015
https://doi.org/10.1088/0953-4075/47/10/103001
https://doi.org/10.1088/0953-4075/47/10/103001
https://doi.org/10.1088/0953-4075/47/10/103001
https://doi.org/10.1088/0953-4075/47/10/103001
https://doi.org/10.1103/PhysRevX.5.041015
https://doi.org/10.1103/PhysRevX.5.041015
https://doi.org/10.1103/PhysRevX.5.041015
https://doi.org/10.1103/PhysRevX.5.041015
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
http://arxiv.org/abs/arXiv:1306.3995
https://doi.org/10.1038/nphoton.2014.135
https://doi.org/10.1038/nphoton.2014.135
https://doi.org/10.1038/nphoton.2014.135
https://doi.org/10.1038/nphoton.2014.135
https://doi.org/10.1038/ncomms9498
https://doi.org/10.1038/ncomms9498
https://doi.org/10.1038/ncomms9498
https://doi.org/10.1038/ncomms9498


BENCHMARKING OF GAUSSIAN BOSON SAMPLING USING … PHYSICAL REVIEW A 99, 023836 (2019)

[47] M. Bentivegna et al., Bayesian approach to boson sampling
validation, Int. J. Quantum Inf. 12, 1560028 (2014).

[48] J. Carolan et al., On the experimental verification of quantum
complexity in linear optics, Nat. Photonics 8, 621 (2014).

[49] M. C. Tichy, K. Mayer, A. Buchleitner, and K. Mølmer, Strin-
gent and Efficient Assessment of Boson-Sampling Devices,
Phys. Rev. Lett. 113, 020502 (2014).

[50] V. S. Shchesnovich, Universality of Generalized Bunching and
Efficient Assessment of Boson Sampling, Phys. Rev. Lett. 116,
123601 (2016).

[51] L. Rigovacca, C. Di Franco, B. J. Metcalf, I. A. Walmsley, and
M. S. Kim, Nonclassicality Criteria in Multiport Interferometry,
Phys. Rev. Lett. 117, 213602 (2016).

[52] N. Viggianiello et al., Experimental generalized quantum sup-
pression law in Sylvester interferometers, New J. Phys. 20,
033017 (2018).

[53] M. Walschaers, J. Kuipers, J.-D. Urbina, K. Mayer, M. C. Tichy,
K. Richter, and A. Buchleitner, Statistical benchmark for boson
sampling, New J. Phys. 18, 032001 (2016).

[54] T. Giordani et al., Experimental statistical signature of many-
body quantum interference, Nat. Photonics 12, 173 (2018).

[55] C. Dittel, G. Dufour, M. Walschaers, G. Weihs, A. Buchleitner,
and R. Keil, Totally Destructive Many-Particle Interference,
Phys. Rev. Lett. 120, 240404 (2018).

[56] C. Dittel, G. Dufour, M. Walschaers, G. Weihs, A. Buchleitner,
and R. Keil, Totally destructive interference for permutation-
symmetric many-particle states, Phys. Rev. A 97, 062116
(2018).

[57] M. Walschaers, J. Kuipers, and A. Buchleitner, From many-
particle interference to correlation spectroscopy, Phys. Rev. A
94, 020104(R) (2016).

[58] D. Hangleiter, M. Kliesch, J. Eisert, and C. Gogolin, Sam-
ple complexity of device-independently certified “quantum
supremacy”, arXiv:1812.01023.

[59] S. B. Shlosman, Signs of the Ising model Ursell functions,
Commun. Math. Phys. 102, 679 (1986).

[60] D. W. Robinson, The ground state of the Bose gas, Commun.
Math. Phys. 1, 159 (1965).

[61] O. Bratteli, A. Kishimoto, and D. W. Robinson, Stability prop-
erties and the KMS condition, Commun. Math. Phys. 61, 209
(1978).

[62] D. Goderis, A. Verbeure, and P. Vets, Non-commutative central
limits, Probab. Theory Rel. Fields 82, 527 (1989).

[63] B. Nachtergaele, Y. Ogata, and R. Sims, Propagation of cor-
relations in quantum lattice systems, J. Stat. Phys. 124, 1
(2006).

[64] V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko, Multidi-
mensional Hermite polynomials and photon distributions for
polymode mixed light, Phys. Rev. A 50, 813 (1994).

[65] P. Kok and S. L. Braunstein, Multi-dimensional Hermite poly-
nomials in quantum optics, J. Phys. A: Math. Gen. 34, 6185
(2001).

[66] K. Mayer, M. C. Tichy, F. Mintert, T. Konrad, and A.
Buchleitner, Counting statistics of many-particle quantum
walks, Phys. Rev. A 83, 062307 (2011).

[67] M. Creutz, On invariant integration over SU(N), J. Math. Phys.
19, 2043 (1978).

[68] D. Weingarten, Asymptotic behavior of group integrals in the
limit of infinite rank, J. Math. Phys. 19, 999 (1978).

[69] S. Samuel, U(N) integrals, 1/N, and the De Wit–’t Hooft anoma-
lies, J. Math. Phys. 21, 2695 (1980).

[70] P. W. Brouwer and C. W. J. Beenakker, Diagrammatic method
of integration over the unitary group, with applications to
quantum transport in mesoscopic systems, J. Math. Phys. 37,
4904 (1996).

[71] G. Berkolaiko and J. Kuipers, Combinatorial theory of the
semiclassical evaluation of transport moments. I. Equivalence
with the random matrix approach, J. Math. Phys. 54, 112103
(2013).
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