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The addition or subtraction of a photon from a Gaussian state of light is a versatile and experimentally
feasible procedure to create non-Gaussian states. In multimode setups, these states manifest a wide range of
phenomena when the photon is added or subtracted in a mode-tunable way. In this paper we derive the truncated
correlations, which are multimode generalizations of cumulants, between quadratures in different modes as
statistical signatures of these states. These correlations are then used to obtain the full multimode Wigner
function, the properties of which are subsequently studied. In particular we investigate the effect of impurity in
the subtraction or addition process and evaluate its impact on the negativity of the Wigner function. Finally, we
elaborate on the generation of inherent entanglement through subtraction or addition of a photon from a pure
squeezed vacuum.
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I. INTRODUCTION

Continuous-variable (CV) quantum optics has ample ad-
vantages for quantum information processing. The most
notable strength of general optical systems is their resilience
against decoherence, which proves useful for quantum pro-
tocols. In CV quantum optics, states with arbitrarily many
entangled modes (normalized solutions to Maxwell’s equa-
tions) can be deterministically generated [1,2]. However, these
experimentally generated states are Gaussian, i.e., they can be
described by a multivariate Gaussian probability distribution
on the optical phase space (for formal details, see Sec. II).
Because Gaussian statistics can easily be simulated with
classical computation resources [3], the use of these states
in quantum computation is limited.

To reach full universal quantum computation, CV setups
require at least one non-Gaussian ingredient. There have been
several theoretical and experimental proposals to achieve this,
ranging from ancillary Gottesman-Kitaev-Preskill states [4] to
specific non-Gaussian gates, e.g., [5]. Within this paper we
focus on photon addition and subtraction as de-Gaussification
techniques [6]. Such techniques have, for example, proven
their worth for entanglement distillation [7–9]. In particular,
the subtraction of a photon is in essence a simple procedure
that, as originally proposed [10], only requires a beam splitter
and a photodetector. However, because beam splitters are not
mode selective, this simple photon-subtraction scheme will
increase the impurity of the state. To avoid such incoherent
mixing of modes, a theory for coherent mode-selective photon
subtraction was recently developed [11,12]. Considerable
steps have already been undertaken to implement this coherent
mode-dependent photon subtraction in a quantum frequency
comb [13].

In this paper we extend the theoretical framework for such
multimode photon-added and -subtracted states. Our central
achievement is the derivation of the general Wigner function
[14,15] for these states. Even though the Wigner functions
for (multi)photon-added and -subtracted states are known in
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several specific setups, e.g., [10,16–19], general multimode
results are still lacking, even in the case of single-photon
addition and subtraction.

We approach this problem from a statistical-mechanics
perspective, by deriving truncated correlation functions
[20–23] for these particular cases of mode-selective photon
addition and subtraction from multimode Gaussian states.
Truncated correlations as such are useful witnesses for the
Gaussianity of states, but they are also connected to phase-
space representations. Specifically, we employ the truncated
correlations to derive the characteristic function, which upon
Fourier transformation gives us the Wigner function; this key
result is shown in (50). In the remainder of the work, we
investigate the negativity of this Wigner function, which is an
important indicator of the nonclassicality of the state [24–28]
from a quantum probability theory perspective. Finally, we also
investigate the entanglement properties that can be deduced
from the Wigner function, which are ultimately the features
that we want to exploit in future application in quantum
technologies. This work elaborates on the details behind [29]
and generalizes the results to nonpure photon addition and
subtraction.

The paper is structured in three major parts. In Sec. II
we introduce the mathematical formalism and concepts that
mix techniques from quantum statistical mechanics [21–23]
and quantum optics [14,15]. These techniques are applied
in Sec. III to investigate multimode mode-selective photon
addition and subtraction. To make our abstract results more
concrete, we finally study two examples in Sec. IV: the
subtraction and addition from the two-mode symmetrically
squeezed vacuum and from an experimentally obtained state.
The latter is an extension of the results of [29].

II. MULTIMODE QUANTUM OPTICS ON PHASE SPACE

A. Optical phase space and quadrature operators

The study of continuous-variable multimode quantum
optics is in essence a study of quantum physics in a high-
dimensional phase space. For optical systems, the relevant
phase space is generated by the real and imaginary parts
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of the contributing electric fields, the amplitude and phase
quadratures, respectively.

The modal structure of light is essential in the present work.
A mode is simply a normalized1 solution u(r,t) to Maxwell’s
equation, which has both a spatial and a temporal structure,
as indicated by the arguments r and t , respectively. A general
complex electric field E(r,t) can then be represented in terms
of a mode basis {uj (r,t) | j = 1, . . . ,m} as

E(r,t) =
m∑

j=1

(xj + ipj )uj (r,t), (1)

where xj and pj are the amplitude and phase quadra-
tures, respectively. Therefore, every vector f = (x1, . . . ,xm,

p1, . . . ,pm)t ∈ R2m can be associated with a set of phase and
amplitude quadratures in the specific mode basis. The vector
space R2m that is generated in this way is the optical phase
space. As such, any vector f ∈ R2m represents a classical
electromagnetic field. When, in addition, f is normalized, this
classical electric field is associated with a new mode. Thus, it
is useful to introduce

N (R2m) = {f ∈ R2m | ‖f ‖ = 1} (2)

to describe modes. However, the dimension of N (R2m) is
larger than the number of modes m. This is a consequence
of the complex amplitude of the field, which associates two
quadratures with every mode. To faithfully reproduce the
properties of these complex amplitudes in (1), the phase and
amplitude quadratures are connected through a symplectic
structure represented by a matrix J that acts on the optical
phase space R2m and has the properties

J 2 = −1, (3)

(f1,Jf2) = −(f2,Jf1) for all f1,f2 ∈ R2m, (4)

where (·,·) denotes the standard inner product on R2m. This
structure implies that the optical phase space is a phase
space as also studied in analytical mechanics. An important
consequence of (4) is that (f,Jf ) = 0 for every f ∈ R2m. The
orthogonal vectors f,Jf ∈ N (R2m) are associated with the
same mode uf (r,t) such that the space generated by f and Jf

is the two-dimensional phase space that describes all possible
electromagnetic fields in mode uf (r,t).

One can always construct an orthonormal symplectic
basis Es = {e(1), . . . ,e(m),J e(1), . . . ,J e(m)} of the optical phase
space, where e(i) is the basis vector that generates the
phase-space axis that denotes the amplitude quadrature of
mode ui(r,t), whereas Je(i) generates the associated phase
quadrature. The symplectic basis Es of the optical phase
space is directly associated with a mode basis {uj (r,t) | j =
1, . . . ,m}. Hence, a change of basis in the optical phase space
implies a change in mode basis.

When we combine the above optical phase space with the
framework of statistical mechanics, we can describe classical

1The modes uj (r,t) are functions in space and time, but are
typically normalized only in the spatial degrees of freedom, i.e.,∫ |uj (r,t)|2d3r = 1 for any time t . For concrete examples and a more
thorough introduction, see [30–32].

optics setups. However, to treat problems in multimode
quantum optics, we must go through the procedure of canonical
quantisation. To do so, we associate a quadrature operator
Q(f ) with each f ∈ N (R2m). These operators fulfill the
crucial mathematical property

Q(af1 + bf2) = aQ(f1) + bQ(f2) (5)

for all f1,f2 ∈ N (R2m) and a,b ∈ R with a2 + b2 = 1. This
property implies that the operator Q(f ) is independent of
the basis chosen to express f . Moreover, these operators are
governed by the canonical commutation relation [21,33]

[Q(f1),Q(f2)] = −2i(f1,Jf2) for all f1,f2 ∈ N (R2m).

(6)

We have defined (6) such that the operator Q(f ) corresponds
to a quadrature operator with the shot noise equal to one.

The linearity condition (5) can be extended to all a,b ∈ R
to define operators Q(α) for non-normalized α ∈ R2m. This
generalization does not lead to any mathematical problems
and (6) still holds. Physically, such different norms of α

can be associated with rescaled quadrature measurements.
In this article, the generalized quadratures will be used to
limit notational overhead in the definition of the displacement
operator (7).

B. Representing quantum states

Because quantum physics is a statistical theory, we require a
mathematical object to describe the statistics of measurements:
the quantum state. We focus on systems that can accurately
be represented in a Hilbert space H, on which Q(f ) is
an (unbounded) operator. The quantum state can then be
represented by a density operator ρ, which is positive and
has trρ = 1.2

However, the density operator is not the most practical
tool to characterize a state of a continuous-variable system.
Quasiprobability distributions on phase space are a common
and practical alternative, not only due to their importance to
interpret the fundamental physics of the state, but also because
they can be measured experimentally. Throughout this paper
we will particularly emphasize the Wigner function as an
important tool, because, at least for small mode numbers,
it can be experimentally reconstructed through tomographic
methods.

From the mathematical point of view, we start by construct-
ing the characteristic function in order to derive the Wigner
function. To do so, we first define the displacement operator

D(α) ≡ exp[−iQ(Jα)/2], α ∈ R2m. (7)

Importantly, α is generally not normalized as its norm dictates
the distance of the displacement. Indeed, this operator’s action
on a quadrature operator is given by

D(−α)Q(f )D(α) = Q(f ) + (f,α) (8)

2We may, in principle, also apply the methods in the present work
to more general states and their representation of the C∗-algebra of
the canonical commutation relations. This allows us to treat systems
of infinitely many modes.
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such that the strength and direction of the displacement are
given by ‖α‖ and α/‖α‖, respectively. Via the displacement
operator, we can introduce the characteristic function as

χ (α) ≡ tr{ρD(2Jα)} = tr{ρ exp[iQ(α)]}. (9)

Subsequently, one can construct the Wigner function by a
multidimensional Fourier transformation

W (β) = 1

(2π )2m

∫
R2m

dα χ (α)e−i(α,β) for β ∈ R2m, (10)

where β indicates a point in phase space, hence it need not
be normalized. The Wigner function shares the normalization
properties of a probability distribution and its marginals are
probability measures. However, the full Wigner function is
merely a quasiprobability distribution in the sense that it can
assume negative values for some regions of phase space. It
is this negativity that sets quantum mechanics apart from
classical probabilistic theories on phase space. As such,
negativity can be seen as a genuine sign of quantumness, which
was also associated with quantum supremacy [3,28].

Furthermore, the characteristic function can be directly
linked to the cumulants of a specific quadrature measurement
statistics. Indeed, ln χ (α) is also known as the cumulant-
generating function, which implies that

∂n

∂λn
ln χ (λf )

∣∣∣∣
λ=0

≡ 〈Q(f )n〉T , (11)

with λ ∈ R and f ∈ N (R2m). Here 〈Q(f )n〉T denotes the nth
cumulant for the measurement of the quadrature Q(f ). A
straightforward calculation [21,23] now shows that one can
recast the characteristic function in the form

χ (α) = exp

{ ∞∑
n=1

in

n!
〈Q(α)n〉T

}
, α ∈ R2m. (12)

Thus, knowledge of all the cumulants for all the different
quadratures, i.e., for all f ∈ N (R2m) and all orders n, implies
full knowledge of the quantum state.

We now introduce these cumulants in a more explicit form,
by treating them as a special case of truncated correlation
functions.

C. Truncated correlation functions

The cumulants of Q(f ) (11) are related to the statistics of
a single mode f ∈ N (R2m) and do not explicitly elucidate
how different modes are correlated. However, to study such
questions the cumulant can be generalized to a multimode
form that is commonly referred to as the truncated correlation
[20] between different quadratures.3

Truncated correlation functions are the multivariate ex-
tensions of cumulants and describe how quadratures for
different modes are correlated. They, too, are generated
using displacement operators D(α) [Eq. (7)]. In general,

3In statistics literature one may also encounter the terminology
“joint cumulant,” whereas in quantum field theory one also refers to
the “connected part of the correlation.”

we obtain

〈Q(f1) · · · Q(fn)〉T
≡ ∂ ln tr[ρD(2λ1Jf1) . . . D(2λnJfn)]

∂λ1 · · · ∂λn

∣∣∣∣
λ1=···=λn=0

,

(13)

which can be related to χ (α) in (9) through the identity
D(α)D(β) = D(α + β) exp{−i(α,Jβ)/4}.

In an experimental setting, it is more practical to obtain the
truncated correlation functions by jointly measuring distinct
quadratures and following a recursive recipe

〈Q(f1)〉T = tr{ρQ(f1)},
〈Q(f1)Q(f2)〉T = tr{ρQ(f1)Q(f2)}

−〈Q(f1)〉T 〈Q(f2)〉T ,

〈Q(f1)Q(f2)Q(f3)〉T = tr{ρQ(f1)Q(f2)Q(f3)}
−〈Q(f1)Q(f2)〉T 〈Q(f3)〉T
−〈Q(f1)Q(f3)〉T 〈Q(f2)〉T
−〈Q(f2)Q(f3)〉T 〈Q(f1)〉T
−〈Q(f1)〉T 〈Q(f3)〉T 〈Q(f2)〉T ,

...

. (14)

These truncated correlation functions are experimentally mea-
surable through, for example, multimode homodyne measure-
ment [34–36]. By expanding α ∈ R2m in a specific mode basis
in (12), the role of truncated correlations becomes apparent.
Thus, the set of truncated correlations forms an important tool
for characterization. More specifically, one may wonder to
what order one needs to measure these correlations to extract a
given property of the state. Such a property, which is of special
interest throughout this text, is the state’s Gaussianity.

D. Gaussian states

Of particular importance in quantum optics are the Gaussian
states. In the broad sense, a state of a CV system is said to
be Gaussian if it induces Gaussian statistics in all modes.
This implies that the function χ , and hence also the Wigner
function, is a multivariate Gaussian [14,15]

χG(α) = exp

{
− (α,V α)

2
+ i(ξ,α)

}
, (15)

WG(β) = exp{− 1
2 ((β − ξ ),V −1(β − ξ ))}

(2π )m
√

det V
, (16)

where ξ is a vector that describes the states displacement and
V is referred to as the covariance matrix. Therefore, V is
a positive-semidefinite matrix on R2m, which describes the
correlations between different field quadratures in a specific
mode basis. A crucial demand for this V to be associated with
a well-defined quantum state is given by [21]

(f1,Vf1)(f2,Vf2) � |(f1,Jf2)|2 for all f1,f2 ∈ N (R2m),

(17)
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which is the multimode version of Heisenberg’s uncertainty
relation. Alternatively, the properties of V can also be
expressed by the condition V + iJ � 0.

The insertion of (15) in (13) imposes important conditions
upon the truncated correlations of Gaussian states. At first it is
directly obtained that

〈Q(f )〉T = (ξ,f ), (18)

〈Q(f1)Q(f2)〉T = (f1,Vf2) − i(f1,Jf2). (19)

Furthermore, we deduce the general condition that for a
Gaussian state

〈Q(f1) · · ·Q(fn)〉T = 0, n > 2, (20)

for all f1, . . . ,fn ∈ N (R2m). The implication of (20) is that all
non-Gaussian states must have nonzero truncated correlations.
Furthermore, it was shown [37] that for non-Gaussian states,
there is never an order from which onward the truncated
correlation functions become zero. Therefore, these functions
are ideal tools for the operational characterisation of non-
Gaussian states. Specifically, in multimode systems where full
tomographies tend to be completely unfeasible, they are an
experimentally accessible alternative.

E. Entanglement

In the context of quantum physics, one often associates
correlations with the study of entanglement, which is com-
monly seen as an important resource for quantum computation
and quantum communication. The profound advantage of
CV quantum optics is the simplicity with which Gaussian
entanglement between modes can be generated. Continuous-
variable entanglement is strongly dependent of the mode
basis in which the problem is described. To see this, it is
instructive to consider an arbitrary symplectic basis B =
{b(1), . . . ,b(m),J b(1), . . . ,J b(m)} of R2m and express β ∈ R2m

in (10) in this basis:

β =
m∑

i=1

ζ (i)
x b(i) + ζ (i)

p Jb(i). (21)

In this mode basis, the Wigner function is a function of the ζ

variables, i.e., W (β) = W (ζ (1)
x , . . . ,ζ (m)

x ,ζ (1)
p , . . . ,ζ (m)

p ).4

We refer to a CV state as fully separable in the mode basis
B when its Wigner function can be written as

W
(
ζ (1)
x , . . . ,ζ (m)

x ,ζ (1)
p , . . . ,ζ (m)

p

)
=
∫

dλ p(λ)
m∏

i=1

Wλ

(
ζ (i)
x ,ζ (i)

p

)
, (22)

a statistical mixture of a product of single-mode Wigner
functions. To obtain a statistical mixture, λ must correspond to
a way of labeling states and p(λ) is a probability distribution on
this set of labels. Any state for which (22) does not hold is said

4A different choice of mode basis B changes the form of the
Wigner function. Thus, physical properties such as entanglement,
which depend on the form of the Wigner function, depend on the
chosen mode basis.

to be entangled in mode basis B. Note that one can introduce
more refined terminology for multimode entanglement [38].
Analyzing such different types of multipartite entanglement,
however, falls beyond the scope of this work.

It is natural to ask whether there always exists a mode basis
in which the state is separable. We will provide a negative
answer to this question by showing that this is generally not
the case for photon-added and -subtracted states. If we can
construct a mode basis for which (22) holds, we will refer to the
state as passively separable, to highlight that any entanglement
present in a specific mode basis can be undone by passive linear
optics. States that are not passively separable are now referred
to as inherently entangled.

We show now that the Gaussian states of Sec. II D are
always passively separable, by using the properties of their
covariance matrices. The Wigner function (16) of a nondis-
placed (i.e., ξ = 0) Gaussian state ρG is completely governed
by the positive-semidefinite covariance matrix V , which
can be decomposed as V = St�S through the Williamson
decomposition. Here S is a symplectic matrix and � � 1
is diagonal (the diagonal elements of � are known as the
symplectic spectrum). Because S is symplectic, it can be
further decomposed with the Bloch-Messiah decomposition:
S = O ′KO, where O and O ′ are orthogonal and symplectic
and K is diagonal and symplectic. This now allows us to
rewrite V = OtKVthKO, where Vth = O ′t�O ′ � 1 is the
covariance matrix of a thermal state. We use this structure
to separate the covariance into a pure part and added classical
noise

V = Vs + Vc. (23)

Here Vs = OtK2O is the covariance matrix of a pure squeezed
vacuum state ρs and Vc = OtK(Vth − 1)KO is the covariance
matrix of the additional noise. Note that, a priori, Vc does
not fulfill (17) and is therefore not the covariance matrix of a
quantum state. We can think of the state characterized by V as
being generated by injecting ρs into a noisy Gaussian channel
[39,40]. We obtain that

ρG =
∫
R2m

d2mξ ′D(ξ ′)ρsD(−ξ ′)
exp

{− (ξ,V −1
c ξ )
2

}
(2π )m

√
det Vc

, (24)

which implies that the Wigner function for ρG can be
represented by

WG(β) =
∫

d2mξ Ws(β − ξ )pc(ξ ), (25)

where

pc(ξ ) = exp
{− (ξ,V −1

c ξ )
2

}
(2π )m

√
det Vc

(26)

and

Ws(β) = exp
{− 1

2 (β,V −1
s β)

}
(2π )m

√
det Vs

. (27)

The Bloch-Messiah decomposition naturally gives a specific
mode basis (obtained through the orthogonal transformation
O) in which Ws factorizes for any ξ ∈ R2m. In this mode basis,
the Wigner function (25) has the form (22), which implies that
the state ρG is passively separable. Thus, any entanglement
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that is present in the original mode basis can be undone by
a passive linear optics circuit that is described by Ot or by
measuring quadratures in mode basis associated with O.

Thus we provided an explicit construction of a linear optics
operation to render a given Gaussian state separable. For mixed
states this is typically not the only linear optics operation that
can undo entanglement. Indeed, the core ingredient of the de-
composition (24) is (23) such that for every pure-state covari-
ance matrix V ′

s � V , we can set Vc = V − V ′
s in (23). Because

V ′
s characterizes a pure Gaussian state, we can find a mode

basis of symplectic eigenvectors of V ′
s . We can thus simply di-

agonalize V ′
s = O ′tK ′2O ′, where O ′t describes an alternative

linear optics circuit that can undo entanglement in the Gaussian
state. The above method, using Williamson and Bloch-Messiah
decomposition, shows that such a V ′

s always exists.
For simplicity, we assumed that ρG was nondisplaced.

However, the argument is straightforwardly extended to
displaced Gaussian states by letting the displacement operator
act on ρG.

III. SINGLE-PHOTON-ADDED AND -SUBTRACTED
GAUSSIAN STATES

A. Induced correlations

As we argued in the Introduction, non-Gaussianity is a
crucial ingredient to achieve universal quantum computation.
Moreover, for technological applications, it is essential that
the complexity of any quantum device can be increased, hence
requiring a sense of scalability. In CV quantum optics, we
first and foremost consider such scalability in the number of
modes. Therefore, we must consider a multimode setup, in
which we can incorporate a non-Gaussian operation. From
an experimental perspective, a promising procedure to fulfill
these conditions is mode-selective photon subtraction [11–13]
or addition [6,41].

In this work we limit ourselves to the subtraction or addition
of a single photon in a setup with an arbitrary mode number m.
To effectively model the associated subtraction and addition
procedures, we must introduce the annihilation and creation
operators for an arbitrary vector in phase space g ∈ N (R2m),
a(g) and a†(g), respectively. In our framework, they are defined
as

a†(g) ≡ 1
2 [Q(g) − iQ(Jg)],

a(g) ≡ 1
2 [Q(g) + iQ(Jg)], (28)

from which we directly obtain an alternative version of the
canonical commutation relation (6),

[a(g1),a†(g2)] = (g1,g2) + i(g1,Jg2). (29)

These operators create or annihilate photons in a specific mode,
represented by g. However, g is a vector in the 2m-dimensional
phase space, whereas there are only m modes. Therefore, we
stress that a†(Jg) = −ia†(g) such that the photons created
by the operators a†(g) and a†(Jg) clearly only differ by a
global phase. As global phases have no physical importance
in quantum physics, the creation operators a†(g) and a†(Jg)
really create a photon in the same mode.

We now focus on an arbitrary nondisplaced Gaussian state,
which we formally describe by a density matrix ρG, and

convert it to a non-Gaussian state by means of mode-selective
photon addition or subtraction in a mode g ∈ N (R2m). As
was argued in Sec. II D, this nondisplaced Gaussian state can
be completely characterized by its covariance matrix V . The
new photon-added and -subtracted states’ density operators
are then given by

ρ− = a(g)ρGa†(g)

〈n̂(g)〉G (30)

for subtraction and

ρ+ = a†(g)ρGa(g)

〈n̂(g)〉G + 1
(31)

for addition. We introduced the notation 〈·〉G ≡ tr(ρG·) for the
expectation values in the state ρG and n̂(g) ≡ a†(g)a(g) for
the number operator that counts the number of photons in the
mode g ∈ N (R2m).

In order to characterize the non-Gaussian features of the
system, we follow the ideas of Sec. II C and evaluate the
truncated correlation functions. If the state is indeed non-
Gaussian, we should obtain nonzero values for the truncated
correlation functions of some order beyond than 2. However,
because we intend to use the recursive procedure of Sec. II C to
evaluate the correlations, it is instructive to start by evaluating
the two-point correlation 〈Q(f1)Q(f2)〉T for arbitrary f1,f2 ∈
N (R2m). Because the state is nondisplaced, by definition
〈Q(f )〉T = 0 and we obtain that for the photon-subtracted
(hence the minus sign superscript) state

〈Q(f1)Q(f2)〉−T = tr{ρ−Q(f1)Q(f2)} (32)

= 〈a†(g)Q(f1)Q(f2)a(g)〉G
〈n̂(g)〉G , (33)

where we used (30) and the cyclic property of the trace.
Analogously, for photon addition we obtain

〈Q(f1)Q(f2)〉+T = 〈a(g)Q(f1)Q(f2)a†(g)〉G
〈n̂(g)〉G + 1

. (34)

The property (20) for nondisplaced Gaussian states implies
that expectation values of products of quadrature operators
factorize in pairs [20,21,23,42]. Combining this with the
definition (28) for the creation and annihilation operators in
terms of quadratures, and with the linearity of the trace, we
find

〈Q(f1)Q(f2)〉−T = 〈a†(g)Q(f1)〉G〈Q(f2)a(g)〉G
〈n̂(g)〉G

+ 〈a†(g)Q(f2)〉G〈Q(f1)a(g)〉G
〈n̂(g)〉G

+ 〈Q(f1)Q(f2)〉G (35)

and

〈Q(f1)Q(f2)〉+T = 〈a(g)Q(f1)〉G〈Q(f2)a†(g)〉G
〈n̂(g)〉G + 1

+ 〈a(g)Q(f2)〉G〈Q(f1)a†(g)〉G
〈n̂(g)〉G + 1

+ 〈Q(f1)Q(f2)〉G. (36)
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To proceed with the evaluation, we use (19) and (28) to obtain

〈a†(g)Q(f )〉G = 1
2 {(f,[V − 1]g) − i(f,[V − 1]Jg)},

〈Q(f )a†(g)〉G = 1
2 {(f,[V + 1]g) − i(f,[V + 1]Jg)},

〈Q(f )a(g)〉G = 1
2 {(f,[V − 1]g) + i(f,[V − 1]Jg)},

〈a(g)Q(f )〉G = 1
2 {(f,[V + 1]g) + i[(f,[V + 1]Jg)]},

〈n̂(g)〉G = 1
4 {(g,Vg) + (Jg,V Jg) − 2}. (37)

When we insert these results in (35), we ultimately obtain that
for the photon-subtracted nondisplaced Gaussian state

〈Q(f1)Q(f2)〉±T = 〈Q(f1)Q(f2)〉G + (f1,A
±
g f2), (38)

with

(f1,A
−
g f2) ≡ 〈a†(g)Q(f1)〉G〈Q(f2)a(g)〉G

〈n̂(g)〉G

+ 〈a†(g)Q(f2)〉G〈Q(f1)a(g)〉G
〈n̂(g)〉G

and

(f1,A
+
g f2) ≡ 〈a(g)Q(f1)〉G〈Q(f2)a†(g)〉G

〈n̂(g)〉G + 1

+ 〈a(g)Q(f2)〉G〈Q(f1)a†(g)〉G
〈n̂(g)〉G + 1

,

where A±
g is a matrix that acts on the space R2m. Inserting (37)

in (38) directly leads to

A±
g = 2

(V ± 1)(Pg + PJg)(V ± 1)

tr{(V ± 1)(Pg + PJg)} . (39)

Here we introduced Pg and PJg as the projectors on the vectors
g and Jg, respectively. This implies that Pg + PJg is the
projector on the two-dimensional phase space, associated with
the mode in which the photon was subtracted. It can directly
be verified that A±

g describes additional correlations between
quadratures that are induced by the photon-subtraction or
-addition process. Ultimately, these additional correlations
are completely determined by the mode g from which the
photon is subtracted and the correlation matrix V of the initial
nondisplaced Gaussian state ρG.

Experimentally, however, it is hard to guarantee that (30)
and (31) are the exact states that we obtain. In general, the
subtraction process adds some degree of impurity. There are
various sources of impurities in an experimental context,
ranging from photon losses to contributions of higher photon
numbers in the subtraction [13], which go beyond the scope
of the present work. Nevertheless, we consider one important
type of impurity in the subtraction process, related to the lack
of control of the mode selectivity [12]. In the most extreme
case, one may think of photon subtraction by means of a
beam splitter, where it is impossible to infer from which mode
the photon originated in the case of copropagating modes. In
general terms, it is hard to control exactly in which mode the
photon is added or subtracted [12]. This implies that we have
to deal with a mixture of the form

ρ− =
∑

k γka(gk)ρGa†(gk)∑
k γk〈n̂(gk)〉G , (40)

with
∑

k γk = 1 and γk � 0, for subtraction, or

ρ+ =
∑

k γka
†(gk)ρGa(gk)

1 +∑k γk〈n̂(gk)〉G , (41)

with
∑

k γk = 1 and γk � 0, for addition. The details of
the participating modes and the γk depend strongly on the
experimental setup and can be estimated through a detailed
modeling [11,12].

Through the linearity of the expectation value, we can
directly verify that

〈Q(f1)Q(f2)〉±T = 〈Q(f1)Q(f2)〉G + (f1,A
±
mixf2), (42)

where

A±
mix = 2(V ± 1)

∑
k γk

(
Pgk

+ PJgk

)
tr
{
(V ± 1)

∑
k γk

(
Pgk

+ PJgk

)} (V ± 1).

(43)

We use (42) to evaluate the higher-order truncated correlations
in Appendix A. This leads to the remarkable result that these
truncated correlations too are governed by the matrix A±

mix. As
a final result, we obtain

〈Q(f1) · · · Q(f2k)〉T
= (−1)k−1(k−1)!

∑
p∈P (2)

∏
i∈p

(
fi1 ,A

±
mixfi2

)
,

Q(f1) · · · Q(f2k−1)〉T = 0 (44)

for all k > 1. Here P (2) indicates the set of all pair partitions,
i.e., all the ways of dividing the set {f1, . . . ,f2k} up in k pairs.
In the literature, e.g., [43], this partition is also known as a
perfect matching. For even orders, the truncated correlations
(44) are generally nonzero. This is a clear statistical signature
of the non-Gaussian character of the state.

B. Phase-space representations

1. Multimode Wigner function

To highlight that the above truncated correlation functions
grant us full knowledge of the quantum state, we use them
to construct the quantum characteristic function for the
photon-subtracted state (30) by virtue of (12). To do so, we
need to know the state’s cumulants, which are the truncated
correlations (44) for f1 = f2 = · · · = f2k = f . Central in
this evaluation is that every pair partition p ∈ P (2) in (44)
contributes the same term (f,A±

mixf )k because the contribution
of each mode is the same. We only need to count the number
of pair partitions to know which combinatorial factor to add.
We find that the cumulant is given by

〈Q(f )2k〉T = (−1)k−1 (2k − 1)!

2k−1

(
f,A±

mixf
)k + (f,Vf )δk,1,

(45)

〈Q(f )2k−1〉T = 0. (46)
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It now remains to evaluate the series in Eq. (12), for which we
find that

∞∑
n=1

inλn

n!
〈Q(f )n〉T

= −λ2(f,Vf )

2
+

∞∑
k=1

i2kλ2k

(2k)!
(−1)k−1 (2k − 1)!

2k−1

(
f,A±

mixf
)k

= −λ2(f,Vf )

2
−

∞∑
k=1

1

k

(
λ2
(
f,A±

mixf
)

2

)k

, (47)

where the series was already rewritten to only sum over the
even cumulants since all odd contributions are zero. The final
series in (47) is subtle because it does not necessarily converge.
However, χ (λf ) maps the points of phase space to the complex
plane; as such we may resort to an analytical continuation of
the series to obtain that

χ (λf ) = exp

{
−λ2

2
(f,Vf ) −

∞∑
k=1

1

k

(
λ2
(
f,A±

mixf
)

2

)k
}

=
(

1 − λ2
(
f,A±

mixf
)

2

)
exp

{
−λ2

2
(f,Vf )

}
. (48)

Therefore, we have obtained the quantum characteristic
function (9) to fully characterize the states. In principle, this
also allows us to derive the Wigner function by means of a
multidimensional Fourier transformation. We may formally
write the Wigner function as

W±(β) = 1

(2π )2m

∫
R2m

dα χ (α)e−i(α,β)

= 1

(2π )2m

∫
R2m

dα

(
1 −

(
α,A±

mixα
)

2

)

× exp

{
− (α,V α)

2
− i(α,β)

}
. (49)

This Fourier transform is explicitly computed in Appendix B
and leads to

W±(β) = 1
2

[(
β,V −1A±

mixV
−1β
)− tr

(
V −1A±

mix

)+ 2
]
WG(β),

(50)

where WG(β) is the Wigner function of the initial Gaussian
state (16) before the addition or subtraction of the photon.
This now gives us the full multimode Wigner functions of a
nondisplaced photon-added or -subtracted state. We observe
that the general structure of the Wigner function is given by a
multivariate polynomial of order 2, multiplied by the Gaussian
Wigner function of the initial state.

2. Negativity

The negativity of the Wigner function is often seen as a
genuine quantum feature in CV systems. With (50) we have
all the tools at hand to analyze such features in the Wigner
function.

At first, we note that the Wigner function (50) is negative
if and only if there are vectors β ∈ R2m for which(

β,V −1A±
mixV

−1β
)− tr

(
V −1A±

mix

)+ 2 � 0. (51)

However, it is directly verified that V −1A±
mixV

−1 is a positive-
semidefinite matrix, hence(

β,V −1A±
mixV

−1β
)

� 0 for all β ∈ R2m. (52)

Therefore, the necessary and sufficient condition for the
existence of negative values of the Wigner function is

tr
(
V −1A±

mix

)
� 2. (53)

By setting β = 0 in (51) we clearly see that (53) is indeed
a sufficient condition. Through (43), we can rephrase this
condition as∑

k

γk[(gk,V
−1gk)+(Jgk,V

−1Jgk)] > 2 (for subtraction),

∑
k

γk[(gk,V
−1gk)+(Jgk,V

−1Jgk)] > −2 (for addition),

(54)

which is automatically fulfilled for photon addition. Hence, we
formally show that photon addition to a nondisplaced Gaussian
state always induces a negative Wigner function, even when
the initial state and the addition process are mixed. On the
other hand, for photon subtraction the condition for negativity
of the Wigner function can be violated when there is too much
thermal noise compared to the amount of squeezing (see the
example in Sec. IV A).

Finally, we emphasize that the equation(
β,V −1A±

mixV
−1β
) = tr

(
V −1A±

mix

)− 2 (55)

defines the manifold of zeros of the Wigner function. Specif-
ically, Eq. (55) generates a multidimensional ellipsoid. The
details of the manifold depend strongly on the details of the
subtraction or addition process and on the covariance matrix
V . However, as expected, the general condition for Eq. (55) to
have solutions is also given by (53).

3. Entanglement

In this section we elaborate on the passive separability
of the Wigner function (50). First, we prove that, whenever
a photon is added or subtracted to or from a mode that is
not entangled with any other modes in the initial Gaussian
state, the resulting photon-added or -subtracted state will
remain passively separable. We then prove for pure states that
subtraction or addition of a photon in any other mode renders
the state inherently entangled.

For any possible decomposition (23) of the Gaussian state’s
covariance matrix V , we may use (24) to write the photon-
subtracted state as

ρ− = a(g)ρGa†(g)

〈n̂(g)〉G
= 1

〈n̂(g)〉G

∫
d2mξ a(g)D(ξ )ρsD(−ξ )a†(g)pc(ξ ) (56)

and the photon-added state as

ρ+ = a†(g)ρGa(g)

〈n̂(g)〉G + 1

= 1

〈n̂(g)〉G + 1

∫
d2mξ a†(g)D(ξ )ρsD(−ξ )a(g)pc(ξ ),

(57)
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where we initially focus on the pure subtraction of
a photon from mode g ∈ N (R2m). The evaluation of
a(g)D(ξ )ρsD(−ξ )a†(g) is cumbersome and is therefore left
for Appendix C, where we describe the general subtraction
(addition) of a photon from (to) a displaced state. In general,
we can use (C17) to write the Wigner function of ρ± in (56)
and (57) as

W−(β) =
∫

d2mξ W−
ξ (β)

×〈n̂(g)〉s + 1
4 [(ξ,g)2 + (ξ,Jg)2]

〈n̂(g)〉G pc(ξ ) (58)

and

W+(β) =
∫

d2mξ W+
ξ (β)

×〈n̂(g)〉s + 1 + 1
4 [(ξ,g)2 + (ξ,Jg)2]

〈n̂(g)〉G + 1
pc(ξ ), (59)

with

W±
ξ (β) = Ws(β − ξ )

tr[(Vs + ‖ξ‖2Pξ ± 1)(Pg + PJg)]

×{‖(Pg + PJg)(1 ± V −1
s )(β − ξ )‖2

+2(ξ,(Pg + PJg)(1 ± V −1
s )(β − ξ ))

+tr[(Pg + PJg)(‖ξ‖2Pξ − V −1
s ∓ 1)]}. (60)

Note that Ws and Vs denote the Wigner function and covariance
matrix, respectively, of ρs , as introduced in (24) and (25). The
passive separability of the Wigner functions (58) and (59) now
depends on two aspects. First, it hinges on the factorizability
of the pure-state Wigner function W±

ξ (β), as given by (60).
Second, we require that

p−
c (ξ ) ≡ 〈n̂(g)〉s + 1

4 [(ξ,g)2 + (ξ,Jg)2]

〈n̂(g)〉G pc(ξ ) (61)

and

p+
c (ξ ) ≡ 〈n̂(g)〉s + 1 + 1

4 [(ξ,g)2 + (ξ,Jg)2]

〈n̂(g)〉G + 1
pc(ξ ) (62)

are well-defined probability distributions.
a. Probability distributions p±

c (ξ ). It is straightforwardly
verified that p±

c (ξ ) are well-defined probability distributions.
Because we know that p−

c and p+
c are positive functions, it

suffices to validate their normalization. To do so, we evaluate∫
d2mξ [(ξ,g)2 + (ξ,Jg)2]pc(ξ )

=
∫

d2mξ [(ξ,g)2 + (ξ,Jg)2]
exp

{− (ξ,V −1
c ξ )
2

}
(2π )m

√
det Vc

= (g,Vcg) + (Jg,VcJg) = tr{(Pg + PJg)Vc}, (63)

where we used that∫
d2mξ Pξ‖ξ‖2 exp

{− (ξ,V −1
c ξ )
2

}
(2π )m

√
det Vc

= Vc. (64)

This implies that∫
d2mξ p−

c (ξ ) = 〈n̂(g)〉s + 1
4 tr{(Pg + PJg)Vc}
〈n̂(g)〉G

= 1

4〈n̂(g)〉G [tr{(Pg + PJg)(Vs − 1)}
+tr{(Pg + PJg)Vc}]

= 1

4

tr{(Pg + PJg)(V − 1)}
〈n̂(g)〉G = 1, (65)

where we use that, by construction, V = Vs + Vc. Analo-
gously, we find that ∫

d2mξ p+
c (ξ ) = 1. (66)

b. Factorizability of W±
ξ (β). Because p±

c (ξ ) are probabil-
ity distributions, the states (58) and (59) are passively separable
whenever a mode basis exists in which W±

ξ (β) factorizes for
every ξ . The factor Ws(β − ξ ) in (60) directly fixes a basis
in which this problem must be considered because Ws(β − ξ )
only factorizes in a product of single-mode Wigner functions
in the symplectic basis of eigenvectors of Vs . We define this
basis as Es = {e(1), . . . e(m),J e(1), . . . J e(m)} and decompose
the vectors β and ξ as

β =
m∑

j=1

β(j )
x e(j ) + β(j )

p J e(j ), (67)

ξ =
m∑

j=1

ξ (j )
x e(j ) + ξ (j )

p J e(j ), (68)

from which it directly follows that, in this basis, the pure-state
Wigner function Ws(β − ξ ) takes the form

Ws(β − ξ ) =
m∏

j=1

W (j )
s

(
β(j )

x − ξ (j )
x ,β(j )

p − ξ (j )
p

)
. (69)

Next we consider the behavior of the polynomial

P2(β − ξ ) = {‖(Pg + PJg)(1 ± V −1)(β − ξ )‖2

+2(ξ,(Pg + PJg)(1 ± V −1)(β − ξ ))

+tr[(Pg + PJg)(‖ξ‖2Pξ − V −1 ∓ 1)]} (70)

in this basis. The factorizability of P2(β − ξ ) is completely
governed by the vector (Pg + PJg)(1 ± V −1

s )(β − ξ ). Be-
cause of the projector (Pg + PJg), P2(β − ξ ) is in essence
a single-mode function determined by the mode g. It is
straightforwardly verified that in the case in which there exists
a mode i in the symplectic basis of eigenvectors of Vs for
which g ∈ span{e(i),J e(i)}, we find

W±
ξ (β) = W

(i)
±
(
β(i)

x − ξ (i)
x ,β(i)

p − ξ (i)
p

)
×

m∏
j = 1
j �= i

W (j )
s

(
β(j )

x − ξ (j )
x ,β(j )

p − ξ (j )
p

)
(71)

such that W±
ξ factorizes in the mode basis Es for any

displacement ξ .

053835-8



STATISTICAL SIGNATURES OF MULTIMODE SINGLE- . . . PHYSICAL REVIEW A 96, 053835 (2017)

We showed that the Wigner function of the single-photon-
added and -subtracted states can always be represented as

W±(β) =
∫

d2mξ W±
ξ (β)p±

c (ξ ). (72)

Whenever a photon is added to or subtracted from a mode that
is part of a basis in which ρs factorizes there exists a basis in
which W±

ξ factorizes (71) for any ξ . Thus, in this case, there
exists a mode basis in which the Wigner function is of the form
(22), because p±

c (ξ ) is a well-defined probability distribution.
In other words, subtracting (adding) a photon from (to) a mode
that is part of a basis in which ρs factorizes leads to the intuitive
result that the state remains passively separable.

It follows automatically from (30) and (31) that we can
generalize this approach to the scenario where the subtraction
or addition process is not pure. In this case we define

λk = γktr{(V ± 1)(Pgk
+ PJgk

)}
tr{(V ± 1)

∑
k γk(Pgk

+ PJgk
)} (73)

and find that

W±
mix(β) =

∑
k

λkW
±
gk

(β) (74)

=
∫

d2mξ p±
c (ξ )

∑
k

λkW
±
gk,ξ

(β), (75)

where W±
gk

(β) is the Wigner function of (58) or (59) for a spe-
cific subtraction mode gk and analogously W±

gk,ξ
(β) is given by

(60) for a specific subtraction (addition) mode gk . Thus, if one
can find a set of subtraction (addition) modes {gk} such that for
any of these modes gk ∈ span{e(k),J e(k)}, with e(k),J e(k) ∈ Es ,
the state is passively separable.

Every Vs � V gives rise to a possible decomposition (23)
of the Gaussian state’s covariance matrix V . Hence, each of
these possible Vs leads to a different basis Es of symplectic
eigenvectors with an associated set of eigenmodes. Subtracting
or adding the photon in any mode in any such basis will leave
the final state passively separable. In other words, the state
is passively separable whenever the photon is subtracted or
added in a mode that is part of any mode basis for which the
initial Gaussian state is separable. It is, on the other hand,
unclear that subtracting or adding a photon in any other mode
automatically induces inherent entanglement. The reason is
that we must consider all possible decompositions of the
state ρ± in convex combinations of pure states. A priori, it
is possible that convex combinations exist, which are not of
the form (58) and (59). Also for such decompositions linear
separability must be excluded to prove inherent entanglement.
This issue falls outside of the scope of our present work and is
left as an open problem.

In the special case of a pure state V = Vs is a symplectic
matrix such that we can directly find the mode basis Es where
Ws(β − ξ ) in (60) factorizes. If there is no mode i for which
g ∈ span{e(i),J e(i)}, we find that P2(β − ξ ) in (70) is a sum of
terms associated with different modes of the basis Es . Because
W±

ξ (β) in (60) is the Wigner function of a pure state, it is
impossible to write it as statistical mixture of Wigner functions.
Moreover, we cannot factorize W±

ξ (β) in the basis where
Ws(β − ξ ) is factorized. However, in any other basis there
are cross terms in Ws(β − ξ ) that prevent its factorizations

and are associated with off-diagonal terms in Vs that correlate
different modes. These multimode factors in Ws(β − ξ ) can
never be compensated by terms in P2(β − ξ ). Therefore, the
state can never be separable in a mode basis where Ws(β − ξ )
does not factorize. This implies that for photon-added and
-subtracted pure states the state is passively separable if and
only if the subtraction or addition takes place in a mode from
the mode basis for which the initial Gaussian state is separable.
This mode basis coincides with the modes obtained from
the Bloch-Messiah decomposition, commonly referred to as
supermodes.

We stress that this implies that subtracting a photon from
(or adding it to) a pure Gaussian state in a superposition of
supermodes will always induce entanglement. Moreover, this
entanglement is robust against linear operations in the sense
that it cannot be undone by passive linear optics. Therefore,
this type of inherent entanglement is clearly different from the
Gaussian entanglement discussed in Sec. II E.

C. Algebraic interpretation

The creation of inherent entanglement due to single-photon
addition and subtraction in the pure-state case can also be
understood in an algebraic way. To do so, we define the
operator O on the Hilbert space that describes the system’s
states, which implements a change in mode basis. On the mode
space, this basis change can be implemented by the orthogonal
symplectic matrix O. In other words, O describes a linear
optics circuit. The action of O on the quadrature operators is
given by

O†Q(f )O = Q(Of ) (76)

such that the structure of the canonical commutation relations
(6) remains conserved. Because we demand O to be a
symplectic matrix, it follows that OJ = JO. The definitions
(28) of the creation and annihilation operators then imply that

O†a(g)O = a(Og), O†a†(f )O = a†(Og). (77)

This implies also that we can write any photon subtraction
given by a(g) as a photon subtraction in a different mode with
additional linear optic operations, since a(g) = O†a(Otg)O.
The operation O acts in a very natural way on a Gaussian state
ρG, with covariance matrix V . Indeed, we find that OρGO† =
ρ ′

G, which is a Gaussian state with covariance matrix OV Ot .
When we now consider the action of a linear optics

operations O on the state obtained through subtracting a
photon, we find

Oρ−O† = 1

〈n̂(g)〉GOa(g)ρGa†(g)O† (78)

= 1

〈n̂(g)〉G a(Otg)OρGO†a†(Otg) (79)

= 1

〈n̂(g)〉G a(Otg)ρ ′
Ga†(Otg). (80)

In practice, these equalities describe very different ways of
preparing an identical state as shown in Fig. 1. The discussion
for photon addition is identical.

The action of linear optics (78)–(80) in the case where
Otg = e′(j ) such that the transformation localizes the photon
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FIG. 1. Circuit representation of Eqs. (78)–(80) for a pure initial
state ρG, represented in the mode basis obtained by the Bloch-Messiah
decomposition (blue lines) as a vacuum (|01〉 ⊗ · · · ⊗ |0m〉) that is
locally squeezed K2

jj and displaced D(ξ (j )). The top panel shows
that general photon subtraction is implemented by the action of
annihilation a(g) in mode g ∈ N (R2m), which is nonlocal (see
the text) in the supermode basis. The mode basis is changed
by the action of a linear optics operation (78), characterized by
an orthogonal symplectic matrix O. The bottom panel shows the
equivalent procedure (80), where the mode basis is changed (green
lines) before subtracting the photon. Here we assume that Otg = e′(j ),
which is one of the modes in the new mode basis (green lines) such
that the subtraction is local. We define aj = a(e′(j )).

subtraction to an entangled mode can be represented in a
more graphic way, using a type of circuit representation.
Specifically, in Fig. 1 we show how all the different operations
act with respect to the modes where the squeezing is local (as
obtained by the Bloch-Messiah decomposition). It highlights
clearly that we can always find a mode basis where squeezing,
displacements, and the photon subtraction (or addition) act
locally. Even though experimentally one can consider coprop-
agating modes [13], it is always possible to spatially separate
these different degrees of freedom. Hence the term “local” can
be physically understood in this sense.

D. Reduced states

An important tool to measure entanglement in quantum
systems is the reduced quantum state. When we study

entanglement, we typically fix a partition of the system to
entangle (in the case of multimode quantum optics, this
partition is comprised of different modes). The reduced state is
obtained by integrating (or tracing) out several of these degrees
of freedom. These reduced states are important in the study
of entanglement properties, specifically when the full state is
pure.

The methods provided in Sec. III B are ideally suited
to derive the Wigner functions for the reduced states of a
multimode photon-added or -subtracted state. In particular,
we stress that the characteristic function (9) is in principle
obtained in a single-mode fashion. Therefore, we can obtain
the characteristic function of the reduced state, associated with
a mode space M ⊂ N (R2m), by simply restricting α in (9) to
α = λf with f ∈ M and λ ∈ R.

We can now define a symplectic basis EM =
{ν(1), . . . ,ν(m′),J ν(1), . . . ,J ν(m′)} of M, where dimM =
m′ < m. The restrictions of the matrices V and A±

mix to M
are denoted by V M and AM

mix, respectively. These restricted
matrices are the ones that are obtained by only measuring the
correlations among the modes in M, which directly follows
from (42) and (44). This straightforwardly implies that the
Wigner function of the state on the reduced mode set M has
the form

W±
M(β ′) = 1

2

[(
β ′,V M−1

AM
mixV

M−1
β ′)

− tr
(
V M−1

AM
mix

)+ 2
]

× 1

(2π )m
√

det V M
e−(β ′,V M−1

β ′)/2, (81)

where β ′ is a vector in the optical phase space β ′ ∈ R2m′

associated with M.
The Wigner function of the reduced state naturally provides

us with a measure for the entanglement of the state if the
initial m-mode state is pure. Indeed, selecting a set of modes
determines a bipartition that contains the modes M on the
one hand and the modes that were integrated out, M⊥, on the
other hand. The purity of the reduced state on the modes M
is directly related to the entanglement between the modes in
M and in M⊥. The less pure the reduced state, the higher the
entanglement between the two parts of the bipartition.

Once the Wigner function of the reduced state is obtained,
its purity can directly be evaluated. It is given by

μM = (4π )m
′
∫
R2m′

d2m′
β ′[W±

M(β ′)
]2

. (82)

In the following section, we will use (82) to evaluate the pure-
state results obtained in Sec. III B 3.

IV. EXAMPLES

In the preceding sections we developed a framework for
the analysis of single-photon added and subtracted states. The
goal of this section is to provide two examples to highlight
the usefulness of the above results. In the first example, we
treat the well-known case of a two-mode squeezed vacuum,
where both modes are equally squeezed. The second example
extends the study in [29] and uses an initial Gaussian state that
was experimentally obtained [36].
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FIG. 2. Exterior panels show the purity (82) of the state reduced to the mode g = (x1,0,0,x2)t , in which the photon was added (orange
dashed curve) or subtracted (blue solid curve), as a function of the weight x2

2 in the superposition of supermodes. The degree of squeezing, i.e.,
s in (83), is set to s = 1 dB (top right), s = 3 dB (top left), s = 5 dB (bottom right), and s = 10 dB (bottom left). The purity of the reduced
Gaussian state, in the same mode, is shown as a reference (green dotted curve). The lower purity is directly related to higher entanglement
between g and the complementary orthogonal mode. The center panel shows values of the weight x2

2 (blue dots, left vertical axis), with
g = (x1,0,0,x2)t , for which the lowest purity (red diamonds, right vertical axis), and thus the highest entanglement, is achieved for different
values of squeezing in the case of photon subtraction. Points associated with exterior panels are highlighted.

A. Two-mode symmetrically squeezed vacuum

The two-mode symmetrically squeezed vacuum state is in
a certain sense the simplest nonclassical multimode Gaussian
state. We characterize it through its covariance matrix Vs ,
which takes the form

Vs =

⎛
⎜⎜⎜⎝

10−s/10 0 0 0

0 10−s/10 0 0

0 0 10s/10 0

0 0 0 10s/10

⎞
⎟⎟⎟⎠ (83)

in its basis of eigenmodes. The notation is chosen such that s

denotes the amount of squeezing in decibels.
At first, we use the results presented in Secs. III B and III D

to investigate the entanglement properties that are induced by
adding or subtracting a photon. With the covariance matrix
(83) we have all the necessary information to construct the
Wigner function (50) that describes a state with a single

photon added or subtracted in mode g ∈ N (R4). To induce
entanglement, we must subtract a photon in a superposition of
two supermodes. Due to the symmetry properties of the state,
it is also important to include a phase in this superposition.
Hence, the most interesting choice is g = (x1,0,0,x2)t with
x2

1 + x2
2 = 1.

In Fig. 2 we investigate the purity μ [Eq. (82)] for the reduce
density matrix associated with the mode where the photon is
subtracted or added. This is in essence a matter of integrating
out the mode orthogonal to g or setting M = span{g,Jg} in
(82). In practice, we analytically construct the reduced state’s
Wigner function (81) and perform a numerical integration to
obtain the purity, denoted by μ(g). Because the purity of the
reduce state is directly related to an entanglement measure if
the initial state is pure, we can directly associate μ(g) with
the entanglement between g and the complementary mode.
Figure 2 investigates what happens to the entanglement as
we vary the only parameter left in the system, x2/x1, which
governs g, and the squeezing s in (83).
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As a reference, let us first consider entanglement in the
Gaussian state before the subtraction or addition has taken
place. We observe entanglement between the mode M =
span{g,Jg} and the complementary mode M⊥ in the initial
squeezed vacuum state, characterized by (83). It can be clearly
seen in Fig. 2 (green curves) that in the Gaussian state
entanglement is maximal in the balanced case, i.e., for x2

2 =
1/2. Moreover, we observe that this Gaussian entanglement
increases with increased squeezing. The results for photon
addition (orange curves) are qualitatively the same as the
Gaussian case. However, quantitatively, the obtained purities
are lower, implying that the addition of a photon increases
entanglement.

The results for photon subtraction in Fig. 2 (blue curves
and central panel) are more surprising. For high squeezing
s > 5 dB, we observe a similarity with the results for photon
addition. However, for low squeezing s < 5 dB, the lowest
purity is no longer obtained for the balanced superposition of
supermodes x2

2 = 1/2, but rather for the highly imbalanced
superposition with x2

2 ≈ 0.85.5 Due to the symmetry in the
squeezing, the system is completely unchanged when x1 and x2

are interchanged. This implies that exactly the same value for
the purity is obtained for x2

2 ≈ 0.15. It is particularly surprising
that, even for s = 1 in (83), we still observe that μ(g) = 0.5
when x2

2 ≈ 0.85. Hence, we highlight a profound difference
in the induced entanglement properties for the subtraction as
compared to the addition of a photon.

In the limit of low squeezing (i.e., s → 0) it is useful to
analyze the state that is obtained by photon subtraction in the
photon representation. We straightforwardly obtain that, in the
low squeezing limit, the state, denoted by |ψ−〉, is given by

|ψ−〉 = 2
(
x2

1 − x2
2

)|1,0〉 + 4x1x2|0,1〉√
4
(
x2

1 − x2
2

)2 + 16x2
1x2

2

, (84)

where |n1,n2〉 is the state with n1 photon in mode 1 and
n2 photons in mode 2. It is directly verified that for any
solution with x2

1 = 1 − x2
2 and x2

2 = (2 ± √
2)/4, the state

|ψ−〉 is a single-photon Bell state. This immediately gives
the reason why we observe a reduced state purity of 1/2 for
these modes. The most remarkable aspect of our results is that
we show how this observed entanglement between the modes
survives under reasonably high amounts of squeezing, where
both modes are populated with many photons. Experimentally,
this should make this phenomenon easier to observe. Note
that our result is in agreement with other theoretical works
[44,45], where different mathematical tools were used to
characterize the entanglement induced by photon subtraction
from the two-mode symmetrically squeezed vacuum in the low
squeezing limit.

Not only the entanglement properties, but also the negativity
of the Wigner function behaves very differently for photon-
added and -subtracted states. We probe the state’s negativity
through the witness (53) and immediately observe that, for
both addition and subtraction of a photon, tr(V −1A±

g ) = 4

5The exact value of x2
2 for which the minimal purity is achieved

weakly varies with the squeezing.

FIG. 3. Negativity condition (53) (red highlighted region) shown
as a function of the classical noise δ (85) for a fixed squeezing of 3 dB
(top) and as a function of squeezing for a fixed noised of δ = 0.1 as
a fraction of the shot noise (bottom). The mode in which addition
(orange dashed curve) and subtraction (blue solid curve) take place
is set to g = (1/

√
2,0,0,1/

√
2)t .

when the state is pure. Hence, the condition (53) for negativity
is satisfied such that the Wigner function is negative. More
interesting is the more general case of addition or subtraction
from a mixed state. We approach this scenario through a simple
noise model by considering an initial Gaussian state with a
covariance matrix

V = Vs + δ1, (85)

where δ indicates the amount of added classical noise relative
to the shot noise. In Fig. 3 we show how the negativity witness
tr(V −1A±

g ) is influenced by the variation of the noise δ and
of the squeezing s in (83). As derived in (54), we observe
that (53) is always fulfilled for photon addition. In contrast,
the negativity of the Wigner function for photon subtraction
is very sensitive to the added noise δ. It is not surprising that
states that are more strongly squeezed are more robust to noise.
Finally, we note that, due to the symmetry of the squeezing
in both supermodes, tr(V −1A±

g ) is fully independent of the
mode (or mixture of modes) in which the photon is added or
subtracted.

In summary, we highlighted the potential of the methods of
Sec. III B to study the photon addition and subtraction from a

053835-12



STATISTICAL SIGNATURES OF MULTIMODE SINGLE- . . . PHYSICAL REVIEW A 96, 053835 (2017)

symmetric two mode squeezed vacuum. We showed that pure
photon-subtracted states have highly interesting entanglement
properties in the regime of low squeezing. Nevertheless, the
negativity of the Wigner function, which is a crucial property
to reach a quantum advantage in computation, is much more
sensitive to noise for photon subtraction than for photon
addition. A detailed understanding of the interplay of these
negativities and the entanglement properties of the states lies
beyond the scope of this work.

B. Experimentally generated Gaussian state

In [29] we already presented results for an initial Gaussian
state that was experimentally obtained [36]. Here we comple-
ment these results with, on the one hand, additional findings
for the entanglement between modes in the pure-state part.
On the other hand, we provide a study of the effect of impure
addition and subtraction [in the sense of (40) and (41)] on the
negativity of the resulting Wigner function.

1. Inherent entanglement

Our study of inherent entanglement is restricted to pure
states, in accord with Sec. III B 3. However, the covariance
matrix V of [36] is not symplectic, i.e., we cannot find a
symplectic basis of eigenvectors, which directly implies that
the state cannot be pure. This can explicitly be seen in the
Williamson decomposition V = St�S, where S is symplectic
and � � 1 is a diagonal matrix. For a pure state, one must
find that � = 1, which is not the case for V . Hence, we
will investigate entanglement properties for photon addition
and subtraction from a pure squeezed vacuum, which is
consistent with V . To do so, we resort to the Bloch-Messiah
decomposition S = O ′KO, where O and O ′ are orthogonal
symplectic matrices and K is a positive diagonal symplectic
matrix. We then obtain that V = OtKO ′t�O ′KO, which we
use to decompose V = Vs + Vc as in Sec. II E. Through this
method, we obtained a squeezed vacuum that is characterized
by Vs = K2 in the basis of eigenmodes.

Our previous work [29] showed that photon addition or
subtraction can increase entanglement between the mode in
which the photon is added or subtracted and the additional
modes. The results in Sec. III B 3 show, moreover, that the
subtraction or addition of a photon in a superposition of
eigenmodes of Vs induces entanglement in every possible
mode basis. Here, in Figs. 4 and 5, we illustrate this point
via the reduced state purity as a probe of the entanglement in
specific bipartitions.

In both Figs. 4 and 5 a photon is subtracted from or added
to the squeezed vacuum of a random mode g ∈ N (R2m). First,
we subtract or add a photon to the squeezed vacuum and
reduce the obtained state to a randomly chosen mode f , as
in Sec. III D. The purity μ of these reduced photon-added
and -subtracted states is compared to the purity μ0 of the
reduced squeezed vacuum prior to the addition or subtraction
of a photon for the same mode f . By probing 1000 different
random choices for f , Fig. 4 shows entanglement for every
bipartition of a randomly chosen mode f ∈ N (R2m) and the
15 complementary modes. More notably, we observe that the
purity μ of the reduced photon-added and -subtracted states
is always lower than the Gaussian state’s purity μ0. This is

FIG. 4. Purity μ (82) of the single-mode reduced state after the
addition (orange triangles) or subtraction (blue dots) of a photon from
a pure state deduced (see the text) from the experimental state [36].
Purities μ are compared to the purity μ0 of the same mode’s reduced
state before the addition or subtraction, i.e., the initial Gaussian state.
For all realizations, the photon is added or subtracted in the same
randomly chosen mode g ∈ N (R32). The mode f ∈ N (R32) to which
the state is reduced is chosen randomly for each realization. Points
where μ = μ0 are indicated by the red solid curve.

compelling numerical evidence that, for any squeezed vacuum
and any given mode basis, entanglement never decreases
through the addition or subtraction of a photon.

According to Sec. III B 3, we must observe entanglement
in every mode basis, provided the mode in which the photon
is subtracted or added is not an eigenmode of the squeezed
vacuum, i.e., g is not an eigenvector of Vs . Figure 4 indicates
that photon subtraction and addition increase entanglement

FIG. 5. Purity μ (82) of the single-mode reduced state after the
addition (orange triangles) or subtraction (blue dots) of a photon in
a pure state deduced (see the text) from the experimental state [36].
Each data point represents the reduction of the state to a different
eigenmode of the initial Gaussian state’s covariance matrix. The
horizontal axis indicates the squeezing (in dB) of each of these
eigenmodes. For all data points, the photon is added or subtracted in
the same randomly chosen mode g ∈ N (R32). The initial Gaussian
state is fully separable from the considered mode basis, hence the red
curve indicates μ = 1, in analogy with the red solid curve in Fig. 4.
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as compared to the initial Gaussian state. This implies that
any bipartition of modes that is entangled for the initial
Gaussian state will remain entangled after the addition or
subtraction process. Hence, it remains to verify the presence
of entanglement in the basis eigenmodes of the squeezed
vacuum where the initial Gaussian state is fully separable
(this basis is unique because we consider a pure state with
nondegenerate squeezing). This scenario is considered in
Fig. 5, where the photon-subtracted and -added squeezed
vacuums are reduced to each of the different eigenmodes
of Vs , sorted according to their respective squeezing. It can
be seen that photon addition and subtraction entangle a
bipartition of a significantly squeezed significantly squeezed
mode and the complementary modes. We note, moreover, that
photon subtraction generates more entanglement than photon
addition whenever the squeezing is sufficiently high (which
is consistent with other recent studies [46]). Modes with very
low squeezing can essentially be interpreted as the vacuum,
which limits the effectiveness of photon subtraction.

It must be emphasized that all modes in Fig. 5 are part of
the same mode basis and that the mode in which the photon
is added or subtracted is fixed. Therefore, Fig. 5 highlights
that the state is not fully separable in the basis of eigenmodes
of Vs , i.e., its Wigner function cannot be written as (22). The
results in Fig. 4 indicate the presence of entanglement in any
other mode basis. Hence, we have failed to find any basis in
which the photon-added or -subtracted state is fully separable.
This is consistent with the state being inherently entangled, as
predicted in Sec. III B 3.

2. Negativity

The negativity of the Wigner function obtained through the
pure addition or subtraction of a photon to the Gaussian state
of [36] was already studied in [29]. Here we treat the case
where the addition and subtraction processes are impure, with
A±

mix given by (43). In Fig. 6 we probe the negativity witness
tr(V −1A±

mix) for a varying degree of impurity in the addition
and subtraction processes. The top panel shows the case for
pure subtraction as a reference. Every data point corresponds
to one randomly generated mode g ∈ N (R32), in which the
photon is subtracted or added, for which tr(V −1A±

mix) was
evaluated.

Descending through the panels of Fig. 6, the impurity of
photon addition and subtraction is increased. For the second
and third plot from the top, five and ten random orthogonal
modes, respectively, participate in the process. In practice,
this implies the choice of a set {g1, . . . ,g10} of random
orthogonal vectors in N (R32). Following (40) and (41), each
of these modes gk comes with an associated weight γk , which
physically quantifies the probability that a subtracted photon
originated from the associated mode (or that the photon is
added to the associated mode in the case of addition). For
the sake of simplicity, we choose these weights to be uniform
over the modes. Thus, we set γk = 1/5 for the mixture of five
modes (second panel from the top in Fig. 6) and γk = 1/10 in
the mixture of ten modes (third panel from the top in Fig. 6).

We observe that the data points are less scattered for
increasing amounts of impurities. This should not come as
a surprise, because increasing impurity implies an averaging

FIG. 6. Test of the negativity condition (53) for an experimentally
obtained state [36], with photon subtraction or addition in a random
mode (top) or a mixture of random orthogonal modes (other panels).
Every data point represents a random choice of one (top), five (second
from top), ten (second from bottom), or 16 (bottom) orthogonal modes
gk in the mixtures (30) and (31). Weights γk in the mixtures (30) and
(31) are the same for every mode. Only realizations falling in the red
highlighted zone lead to negative Wigner functions.
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over the randomly chosen modes. This leads to the expectation
that for 16 random orthogonal modes, all realizations should
coincide, which is confirmed in the bottom panel of Fig. 6.
In this case, for every data point, a photon is subtracted from
or added to a balanced mixture of all modes such that this
scenario describes a fully mode-independent photon addition
or subtraction. Physically, this case is particularly relevant as
for photon subtraction it corresponds to the use of a beam
splitter on a set of copropagating modes.

In this case we find that A±
mix is independent of the choice of

basis in which the mixture {gk} is represented. Hence, none of
the properties of the photon-added or -subtracted state depends
on the mode basis. From (43), we directly obtain that fully
mixed subtraction or addition leads to

tr
(
V −1A±

mix

) = 2

(
1 + tr(V −1 ± 1)

tr(V ± 1)

)
. (86)

Furthermore, in the fully mode-independent scenario, the
negativity condition (53) reduces to

tr(V −1 ± 1) > 0. (87)

In the case of V obtained from [36], we obtain that tr(V −1 −
1) = 0.672 702 for photon subtraction, which clearly satisfies
the condition (87). It is remarkable that a highly multimode
impure experimentally generated state can still lead to a
negative Wigner function upon photon subtraction with a
simple beam-splitter setup. We stress, however, that our result
refers to the negativity of the full multimode Wigner function,
which is difficult to observe in single-mode measurements.
Moreover, Fig. 6 shows that tr(V −1A±

mix) is only slightly larger
than 2. This suggests that the region in phase space where the
Wigner function becomes negative is small compared to that
of a pure photon-subtracted state.

Hence, we showed that experimentally achieved Gaussian
states can lead to negative Wigner functions upon photon
subtraction. In the case of photon addition, negativity of the
Wigner function is taken for granted, as implied by (54). Fur-
thermore, we showed that the entanglement properties of the
pure squeezed vacuum, extracted from the Gaussian state [36]
through the Williamson and Bloch-Messiah decompositions,
are in agreement with the results in Sec. III B 3. It remains an
open question whether these entanglement properties persist
and can be used when we consider the actual mixed state that
is obtained in the experiment.

V. CONCLUSION

A. Summary

We started the analysis of nondisplaced multimode photon-
added and -subtracted states (where the addition or subtraction
is not necessarily pure) by deriving their truncated correlations
functions (44) of arbitrary order. The truncated correlations as
such suffice to characterize any quantum state. For Gaussian
states, in particular, these truncated correlations vanish beyond
second order. Hence, we can interpret all truncated correlations
beyond second order as clear signatures of the non-Gaussian
properties of the state.

However, in this work the truncated correlations were
primarily used as a tool to derive the full-state Wigner function
for multimode photon-added and -subtracted states (50). This

result is also highlighted in [29] and provides a compact
and insightful description of a nondisplaced multimode
photon-added and -subtracted state with arbitrarily many
modes. The more general (and more cumbersome) result for
subtraction and addition from a displaced Gaussian state is
given in Appendix C.

The non-Gaussian properties of the photon-added and
-subtracted states are all encrypted in the polynomial part of the
Wigner function (50). In particular, we obtained an elegant and
simple condition (53) for having a negative Wigner function.
Notably, this condition can be used as a tool for selecting the
mode in which to subtract a photon. For photon addition, on the
other hand, we formally proved that this condition is always
fulfilled such that the Wigner function is always negative. This
negativity condition was studied for the concrete examples of
a two-mode symmetrically squeezed vacuum and an experi-
mentally obtained Gaussian state in Figs. 3 and 6, respectively.

Finally, we devoted a considerable part of this work to the
study of the entanglement properties that can be extracted from
the Wigner function (50). In Sec. III B 3 we formalized that
subtracting (or adding) a photon in a mode that is part of a
mode basis in which the initial Gaussian state is separable
will leave the photon-subtracted (or -added) state separable.
For pure states, we showed that subtraction (or addition)
of the photon in any other mode will induce entanglement.
Importantly, this entanglement cannot be undone by passive
linear optics operations. In contrast, we stress in Sec. II E that
any entanglement in a Gaussian state can always be undone
by changing the mode basis through a passive linear optics
operation. Furthermore, we evaluated the reduction of the
Wigner function to a subset of modes (81). For a global pure
state, the purity of this reduced state can then be used as a
quantitative probe for the entanglement between the mode to
which the system is reduced and the modes that were integrated
out. These pure-state entanglement properties were evaluated
in Figs. 2 and in Figs. 4 and 5 for a two-mode symmetrically
squeezed vacuum and a 16-mode squeezed vacuum that is
compatible with the experimentally obtained Gaussian state
of [36], respectively.

B. Outlook

We started our Introduction by emphasizing the importance
of non-Gaussian states for quantum computation. In this work
we have developed a set of tools that is ready to approach con-
crete quantum information problems and quantum optics ex-
periments. Notably, one may use these techniques for a detailed
analysis of single-photon subtraction from a CV cluster state,
as used in measurement-based quantum computation [47].

The presented results also impose several open questions
for future research. First, there are still properties of the general
Wigner function (50) that are to be unveiled. Most notably, we
think about the negativity volume of the Wigner function, i.e.,
the integral of the negative part. We conjecture that the quantity
tr(V −1A±

mix) in (53) will be proportional to the negativity
volume, but this remains to be proven. Moreover, it remains
to be understood how a photon subtraction or addition in a
particular mode locally affects different modes as represented
by the reduction of the Wigner function to these modes (81).

A second open question is the generalization of our entan-
glement results to mixed states. As discussed in Sec. III B 3,
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this is not expected to be a straightforward task. A potential
route may be to derive bounds on the entanglement in the spirit
of [48].

Finally, it remains an open question how our present results
generalize to multiphoton addition and subtraction. A priori,

the methods applied here still apply in a more general scenario,
but the derivation of the truncated correlations is expected
to become a formidable task. Nevertheless, these truncated
correlations are a crucial element of our study, because they
are directly measurable in state-of-the-art experiments [36].
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APPENDIX A: DERIVATION TRUNCATED CORRELATION FUNCTIONS

We prove Eq. (44) by induction on k, which implies that we assume that all even-order truncated correlations up to order
2k − 2 are indeed given by (44). Moreover, we use that for k = 1 we have the addition expression (38), which was derived
explicitly, and that all odd-order truncated correlations vanish.

We start by explicitly writing that

〈Q(f1) · · · Q(f2k)〉T = tr{ρQ(f1) · · · Q(f2k)} −
∑

p∈P (2,4,...,2k−2)

∏
i∈p

〈Q(fi1 ) · · · Q(fir )〉T , (A1)

where we use the notation P (2,4,...,2k−2) to indicate the set of all partitions of the index set {1, . . . ,2k} where the allowed number
of elements in the subsets (that constitute the partitions) is 2,4, . . . ,2k − 2 (all even orders up to 2k − 2). This implies that we
for a partition p ∈ P (2,4,...,2k−2), we cannot fix the number over element in a subset i ∈ p. Therefore, we denote this number of
elements by r , where we know that r is even and smaller than or equal to 2k − 2. Therefore, we know that

〈Q(fi1 ) · · · Q(fir )〉T = δ2,r〈Q(fi1 )Q(fi2 )〉G + (−1)r/2−1(r/2 − 1)!
∑

p′∈P (2)
i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

)
, (A2)

with δ2,r the Kronecker delta. Moreover, we are now considering P (2)
i as the set of partitions of the index set {i1, . . . ,ir}.

Furthermore, using the factorization properties of a Gaussian state, we can express the term

tr{ρQ(f1) . . . Q(f2k)} = 〈Q(f1) . . . Q(f2k)〉G +
∑

p∈P (2)

∑
i∈p

⎛
⎝(fi1 ,A

±
mixfi2

) ∏
j∈p\i

〈Q(fj1 )Q(fj2 )〉G
⎞
⎠

=
∑

p∈P (2)

∏
i∈p

〈Q(fi1 )Q(fi2 )〉G +
∑

p∈P (2)

∑
i∈p

⎛
⎝(fi1 ,A

±
mixfi2

) ∏
j∈p\i

〈Q(fj1 )Q(fj2 )〉G
⎞
⎠, (A3)

from which it is clear that 〈Q(f1) · · ·Q(f2k)〉T contains products of up to k copies of (fi1 ,A
±
mixfi2 ) (where the arguments fi1 and

fi2 vary).
To determine the expression for this product, we first focus on the terms that have exactly k copies of (fi1 ,A

±
mixfi2 ). These

terms are all contained within

−
∑

p∈P (2,4,...,2k−2)

∏
i∈p

〈Q(fi1 ) · · · Q(fir )〉T = −
∑

p∈P (2,4,...,2k−2)

∏
i∈p

⎛
⎝δ2,r〈Q(fi1 )Q(fi2 )〉G + (−1)r−1(r − 1)!

∑
p′∈P (2)

i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

)⎞⎠.

(A4)

Moreover, it can be seen that the terms δ2,r〈Q(fi1 )Q(fi2 )〉G can be ignored, because terms with at least one factor of the form
δ2,r〈Q(fi1 )Q(fi2 )〉G cannot contain k factors of the A type. Therefore, the following expression exactly sums up all the terms
with k factors of the A type:

−
∑

p∈P (2,4,...,2k−2)

∏
i∈p

(−1)r/2−1(r/2 − 1)!
∑

p′∈P (2)
i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

) ∼
∑

p∈P (2)

∏
i∈p

(
fi1 ,A

±
mixfi2

)
. (A5)

The similarity relation is straightforward to see, but all of these terms appear multiple times. We must approach this counting
problem in a structural way. To do so, we translate our problem of set partitioning to an equivalent problem of integer partitioning.6

Specifically, in our derivation, the index set {1, . . . ,2k} of which we have considered the set partitions can be linked to the integer

6An integer partition denotes a way of writing one integer as a sum of other integers. For example, (2,4,6) would be an integer partition of
12 = 2 + 4 + 6.
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partitions of the integer k (because all the subsets in our partitions have an even number of elements). For example, when we think
of the set partition {{1,2}; {3,4,5,6}}, of an index set with k = 3, we can associate it with the integer partition (1,2) of the integer
3. However, also other set partitions are associated with the integer partition (1,2), e.g., {{3,6}; {1,2,4,5}}. These integer partitions
thus represent a class of set partitions. The procedure (A2) to evaluate the truncated correlation functions breaks the subsets,
e.g., {3,6} and {1,2,4,5} in the set partition {{3,6}; {1,2,4,5}}, into pair partitions. It now follows that one single pair partition
p′ ∈ P (2) can be obtained several times within the class of a specific integer partition. For example, {{1,2}; {3,6}; {4,5}} can be
obtained both by breaking up {{1,2}; {3,4,5,6}}, but also by breaking up {{3,6}; {1,2,4,5}} in pair partitions. However, in the
end, it is the pair partition that determines which specific product of A±

mix matrix elements it obtained. In (A5), for our example,
this implies that both {{1,2}; {3,4,5,6}} and {{3,6}; {1,2,4,5}} induce a term proportional to (f1,A

±
mixf2)(f3,A

±
mixf6)(f4,A

±
mixf5).

The crucial point of grouping everything in classes of set partitions, associated with an integer partition, is that the factors
(−1)r/2−1(r/2 − 1)! are the same for any partition within the class. After all, the r values indicated the number of elements in
the subsets and therefore the r/2 are the integers constituting the set partitions.

It is instructive to rewrite (A5) in terms of integer partitions

−
∑

p∈P (2,4,...,2k−2)

∏
i∈p

(−1)r/2−1(r/2 − 1)!
∑

p′∈P (2)
i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

)

= −
∑

(I1, . . . ,Iq )
I1 + · · · + Iq = k

I1, . . . ,Iq < k

⎛
⎝ q∏

j=1

(−1)Ij −1(Ij − 1)!

⎞
⎠
⎛
⎝ ∑

p∈P (2I1 ,...,2Iq )

∏
i∈p

⎧⎨
⎩ ∑

p′∈P (2)
i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

)⎫⎬⎭
⎞
⎠, (A6)

where q is not fixed and depends on the integer partition. We already argued that the specific terms of the form
∏

i∈p(fi1 ,A
±
mixfi2 )

occur several times. What remains is to count their multiplicity for a given set partition.
Let us now focus on one specific integer partition (I1, . . . ,Iq). To count the multiplicity of a specific product of Ag functions

within this class of partitions, this product is associated with a specific pair partition p′ ∈ P (2) and our counting process will
consist of counting in how many partitions of the class (I1, . . . ,Iq) we can embed this specific pair partition. This problem is
equivalent to asking in how many ways we can group k elements in subsets of I1, I2, ..., and Iq elements. Here these k elements
are the pairs in the pair partition. This combinatoric problem is solved using the multinomial coefficient such that we find

k!∏q

j=1 Iq!
.

An important additional ingredient is that this is independent of the specific pair partition we choose; they all occur with the
same multiplicity within the specific integer partition (I1, . . . ,Iq). This implies that

∑
p∈P (2I1 ,...,2Iq )

∏
i∈p

⎧⎨
⎩ ∑

p′∈P (2)
i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

)⎫⎬⎭ = k!∏q

j=1 Iq!

∑
p∈P (2)

∏
i∈p

(
fi1 ,A

±
mixfi2

)
. (A7)

If we now insert (A7) in (A6), we find

−
∑

p∈P (2,4,...,2k−2)

∏
i∈p

(−1)r/2−1(r/2 − 1)!
∑

p′∈P (2)
i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

)
.

= −
∑

(I1, . . . ,Iq )
I1 + · · · + Iq = k

I1, . . . ,Iq < k

⎛
⎝ q∏

j=1

(−1)Ij −1(Ij − 1)!

⎞
⎠
⎛
⎝ k!∏q

j=1 Iq!

∑
p∈P (2)

∏
i∈p

(
fi1 ,A

±
mixfi2

)⎞⎠

= −

⎛
⎜⎜⎜⎜⎜⎝k!

∑
(I1, . . . ,Iq )

I1 + · · · + Iq = k

I1, . . . ,Iq < k

q∏
j=1

(−1)Ij −1

Iq

⎞
⎟⎟⎟⎟⎟⎠
∑

p∈P (2)

∏
i∈p

(
fi1 ,A

±
mixfi2

)
. (A8)

Finally, we use that

∑
(I1, . . . ,Iq )

I1 + · · · + Iq = k

I1, . . . ,Iq � k

q∏
j=1

(−1)Ij −1

Iq

= 0, (A9)
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which explicitly includes the integer partition (k) of k, which was excluded in the derivation of (A8). This implies that

∑
(I1, . . . ,Iq )

I1 + · · · + Iq = k

I1, . . . ,Iq < k

q∏
j=1

(−1)Ij −1

Iq

= − (−1)k−1

k
. (A10)

Inserting (A10) in (A8) therefore results in

−
∑

p∈P (2,4,...,2k−2)

∏
i∈p

(−1)r/2−1(r/2 − 1)!
∑

p′∈P (2)
i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

) = (−1)k−1(k − 1)!
∑

p∈P (2)

∏
i∈p

(
fi1 ,A

±
mixfi2

)
, (A11)

which is the final result for the contribution of the terms with only factors of the form (fi1 ,A
±
mixfi2 ).

It now remains to show that all other terms, in which factors of the form 〈Q(fi1 )Q(fi2 ))〉G appear, vanish. We will use primarily
the same apparatus to prove this and start by observing that only integer partitions with a component that is 1 can lead to a term
〈Q(fi1 )Q(fi2 ))〉G. Therefore, we focus on a class associated with the integer partition

(1, . . . ,1︸ ︷︷ ︸
x<k−1

,I1, . . . Iq ′ ) with I1 + · · · + Iq ′ = k − x,

where the x first terms are particularly associated with a factor 〈Q(fi1 )Q(fi2 )〉G. We exclude the cases x = k and x = k − 1
because there tr{ρQ(f1) · · · Q(f2k)} in (A1) must also be considered. We can group the terms with x factors 〈Q(fi1 )Q(fi2 )〉G in
(A4) as

−
∑

(1, . . . ,1,I1, . . . ,Iq′ )
I1 + · · · + Iq′ = k − x

I1, . . . ,Iq′ � k − x

∑
X ⊂ I

#X = 2x

⎛
⎝∑

p∈P (2)
X

∏
i∈p

〈Q(fi1 )Q(fi2 )〉G
⎞
⎠
⎛
⎝ q ′∏

j=1

(−1)Ij −1(Ij − 1)!

⎞
⎠
⎛
⎜⎝ ∑

p∈P (2I1 ,...,2I
q′ )

I\X

∏
i∈p

⎧⎨
⎩ ∑

p′∈P (2)
i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

)⎫⎬⎭
⎞
⎟⎠

= −
∑
X ⊂ I

#X = 2x

⎛
⎝∑

p∈P (2)
X

∏
i∈p

〈Q(fi1 )Q(fi2 )〉G
⎞
⎠
⎛
⎜⎜⎜⎜⎜⎝

∑
(I1, . . . ,Iq′ )

I1 + · · · + Iq, = k − x

I1, . . . ,Iq′ � k − x

⎛
⎝ q ′∏

j=1

(−1)Ij −1(Ij − 1)!

⎞
⎠

×

⎛
⎜⎝ ∑

p∈P (2I1 ,...,2I
q′ )

I\X

∏
i∈p

⎧⎨
⎩ ∑

p′∈P (2)
i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

)⎫⎬⎭
⎞
⎟⎠
⎞
⎟⎟⎟⎟⎟⎠, (A12)

where we introduce I = {1,2, . . . ,2k}. The set X contains the subset of indices with which we associate the factors
〈Q(fi1 )Q(fi2 )〉G; the other indices I \ X have a factor of the A type connected to them. We introduce the notation P (2)

X to

denote the pair partitions of the set X , whereas P (2I1,...,2Iq′ )
I\X are all the possible even partitions of I \ X .

We can limit our efforts to understanding that

∑
(I1, . . . ,Iq′ )

I1 + · · · + Iq′ = k − x

I1, . . . ,Iq′ � k − x

⎛
⎝ q ′∏

j=1

(−1)Ij −1(Ij − 1)!

⎞
⎠
⎛
⎜⎝ ∑

p∈P (2I1 ,...,2I
q′ )

I\X

∏
i∈p

⎧⎨
⎩ ∑

p′∈P (2)
i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

)⎫⎬⎭
⎞
⎟⎠

=
∑

(I1, . . . ,Iq′ )
I1 + · · · + Iq′ = k − x

I1, . . . ,Iq′ � k − x

⎛
⎝ q ′∏

j=1

(−1)Ij −1(Ij − 1)!

⎞
⎠
⎛
⎜⎝ (k − x)!∏q ′

j=1 Ij !

∑
p∈P (2)

I\X

∏
i∈p

(
fi1 ,A

±
mixfi2

)⎞⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎝

∑
(I1, . . . ,Iq′ )

I1 + · · · + Iq′ = k − x

I1, . . . ,Iq′ � k − x

q ′∏
j=1

(−1)Ij −1 (k − x)!

Ij

⎞
⎟⎟⎟⎟⎟⎠
∑

p∈P (2)
I\X

∏
i∈p

(
fi1 ,A

±
mixfi2

)

= 0. (A13)

The above steps use exactly the same reasoning as the derivation of (A8). Finally, we used (A9) to obtain that the expression is
zero.

The case where x = k can be treated explicitly. This contribution reads

〈Q(f1) · · · Q(f2k)〉G −
∑

p∈P (2)

∏
i∈p

〈Q(fi1 )Q(fi2 )〉G = 0, (A14)

because it is the truncated correlation function in a Gaussian state. The case x = k − 1, i.e., where there is exactly one factor of
the form Ag , leads to a contribution

∑
p∈P (2)

∑
i∈p

⎛
⎝(fi1 ,A

±
mixfi2

) ∏
j∈p\i

〈Q(fj1 )Q(fj2 )〉G
⎞
⎠

−
∑

(1, . . . ,1,I1, . . . ,Iq′ )
I1 + · · · + Iq′ = k − x

I1, . . . ,Iq′ � k − x

∑
X ⊂ I

#X = 2k − 2

⎛
⎝∑

p∈P (2)
X

∏
i∈p

〈Q(fi1 )Q(fi2 )〉G
⎞
⎠
⎛
⎜⎝ ∑

p∈P (2I1 ,...,2I
q′ )

I\X

∏
i∈p

⎧⎨
⎩ ∑

p′∈P (2)
i

∏
i ′∈p′

(
fi ′1 ,A

±
mixfi ′2

)⎫⎬⎭
⎞
⎟⎠ = 0. (A15)

This contribution vanishes because in this case I \ X = {i1,i2}. Therefore, the second sum is equivalent to the first.
We have now evaluated all the different terms in (A1), assuming that for lower orders (A2) holds. Indeed, for our final result,

we have

〈Q(f1) . . . Q(f2k)〉T = (A11) + (A13) + (A14) + (A15)

= (−1)k−1(k − 1)!
∑

p∈P (2)

∏
i∈p

(
fi1 ,A

±
mixfi2

)
for k > 1. (A16)

This concludes the derivation of (44).

APPENDIX B: COMPUTATION OF THE WIGNER FUNCTION (50)

We treat the problem explicitly in the basis of eigenvectors E = {e1, . . . ,e2m} of V . Note that these eigenvectors in general
do not respect the symplectic structure of phase space. The following steps are merely technical tricks to evaluate the Fourier
transform and cannot be directly connected to a well-defined mode space. In (49) we may write

α =
2m∑
j=1

αjej , β =
2m∑
j=1

βjej . (B1)

We start from (B1), where it now follows that

(α,A±
mixα) =

m∑
i,j=1

αiαj (ei,A
±
mixej ). (B2)

Upon inserting (B2) in (49) and using the linearity of the integration we find explicitly

W (β1, . . . ,β2m) =
2m∏
k=1

1

2π

∫ ∞

−∞
dαk exp

{
−vk(αk)2

2
− iαkβk

}
−

2m∑
j=1

(ej ,A
±
mixej )

8π2

∫ ∞

−∞
dαj (αj )2 exp

{
−vj (αj )2

2
− iαjβj

}

×
2m∏

k = 1
k �= j

1

2π

∫ ∞

−∞
dα(j )

q exp

⎧⎨
⎩−v

(j )
q

(
α

(j )
q

)2
2

− iα(j )
q β(j )

q

⎫⎬
⎭−

2m∑
j,j ′ = 1
j �= j ′

(ej ,A
±
mixej ′ )

8π2

∫ ∞

−∞
dαjdαj ′αjαj ′
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× exp

{
−vj (αj )2

2
− vj ′(αj ′ )2

2
− iαjβj − iαj ′βj ′

} 2m∏
k = 1

k �= j, k �= j ′

1

2π

∫ ∞

−∞
dαk exp

{
−vk(αk)2

2
− iαkβk

}

= 1

(2π )m

⎛
⎜⎜⎜⎝1 +

m∑
j=1

(ej ,A
±
mixej )[(βj )2 − vj ]

2(vj )2
+

2m∑
j,j ′ = 1
j �= j ′

(ej ,A
±
mixej ′ )βjβj ′

2vjvj ′

⎞
⎟⎟⎟⎠

2m∏
j=1

1√
vj

exp

{
− (βj )2

2vj

}
. (B3)

The last step consists simply of evaluating the Fourier transforms and grouping the terms. It must be stressed that, since this
basis is not symplectic, we cannot interpret the Wigner function in this form as a quasiprobability distribution on phase space.
Therefore, we require a basis-independent way of representing the function. This can be obtained by regrouping the terms and
observing that

m∑
j=1

(ej ,A
±
mixej )(βj )2

2(vj )2
+

2m∑
j,j ′ = 1
j �= j ′

(ej ,A
±
mixej ′ )βjβj ′

2vjvj ′

=
2m∑

j,j ′ = 1

(ej ,A
±
mixej ′ )βjβj ′

2vjvj ′
= 1

2

2m∑
j,j ′ = 1

βjβj ′ (ej ,V
−1A±

mixV
−1ej ′ )

= 1

2

⎛
⎝∑

j

βj ej ,V
−1A±

mixV
−1
∑
j ′

βj ′ej ′

⎞
⎠ = 1

2
(β,V −1A±

mixV
−1β), (B4)

where we use the linearity of the inner product and that V ej = vj ej . Similarly, we obtain

−
m∑

j=1

(βj )2

2vj

= − (β,V −1β)

2
, (B5)

−
m∑

j=1

(ej ,A
±
mixej )

2vj

= 1

2
tr{V −1A±

mix} (B6)

such that ultimately

W (β) = 1

2m+1πm
√

det V
[(β,V −1A±

mixV
−1β) − tr(V −1A±

mix) + 2]e−(β,V −1β)/2. (B7)

APPENDIX C: PHOTON ADDITION AND SUBTRACTION WITH DISPLACED STATES

The discussion in Sec. III B 3 requires an expression for the Wigner function for a displaced squeezed vacuum from (to)
which a photon is subtracted (added). In this appendix we go one step beyond this need and we derive the Wigner function for
photon subtraction or addition in a general displaced Gaussian state that need not be pure. Our derivation exploits the previously
obtained result (50) for the nondisplaced case.

Any displaced Gaussian state can be written as

ρξ = D(ξ )ρGD(−ξ ), (C1)

where ρG is a nondisplaced Gaussian state, characterized by a covariance matrix V . A photon-subtracted state can then be written
as

ρ = a(g)D(ξ )ρGD(−ξ )a†(g)

〈D(−ξ )n̂(g)D(ξ )〉G , (C2)

with n̂(g) the number operators in mode g. It is not hard to evaluate that

〈D(−ξ )n̂(g)D(ξ )〉G = 〈n̂(g)〉G + 1
4 [(ξ,g)2 + (ξ,Jg)2]. (C3)

We may now use that

D(ξ )a(g) = a(g)D(ξ ) − 1
2 (ξ,[1 + iJ ]g)D(ξ ),

D(ξ )a†(g) = a†(g)D(ξ ) − 1
2 (ξ,[1 − iJ ]g)D(ξ ) (C4)
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and focus on

a(g)D(ξ )ρGD(−ξ )a†(g) = D(ξ )a(g)ρGa†(g)D(−ξ ) + 1
4 [(ξ,g)2 + (ξ,Jg)2]D(ξ )ρGD(−ξ )

+ 1
2 (ξ,[1 − iJ ]g)D(ξ )a(g)ρGD(−ξ ) + 1

2 (ξ,[1 + iJ ]g)D(ξ )ρGa†(g)D(−ξ ). (C5)

Next we use that D(−ξ )D(2Jα)D(ξ ) = ei(ξ,α)D(2Jα) to write

χ (α) = tr{D(2Jα)ρ} = ei(ξ,α)

〈n̂(g)〉G + 1
4 (ξ,g)2 + (ξ,Jg)2]

(〈n̂(g)〉Gχ−(α) + 1
4 [(ξ,g)2 + (ξ,Jg)2]χG(α)

+ 1
2 (ξ,[1 − iJ ]g)tr{D(2Jα)a(g)ρG} + 1

2 (ξ,[1 + iJ ]g)tr{a†(g)D(2Jα)ρG}). (C6)

Now we use that (ξ,[1 − iJ ]g)a(g) = a([Pg + PJg]ξ ) and (ξ,[1 + iJ ]g)a†(g) = a†([Pg + PJg]ξ ) and that D(2Jα)a([Pg +
PJg]ξ ) = a([Pg + PJg]ξ )D(2Jα) − (ξ,[Pg + PJg][J + i1]α)D(2Jα), such that

(ξ,[1 − iJ ]g)tr{D(2Jα)a(g)ρG} + (ξ,[1 + iJ ]g)tr{a†(g)D(2Jα)ρG}
= tr{Q([Pg + PJg]ξ )D(2Jα)ρG} − (α,[−J + i1][Pg + PJg]ξ )χG(α) (C7)

and

χ (α) = ei(ξ,α)

〈n̂(g)〉G + 1
4 [(ξ,g)2 + (ξ,Jg)2]

(〈n̂(g)〉Gχ−(α) + g
{

1
4 [(ξ,g)2 + (ξ,Jg)2] − 1

2 (ξ,[Pg + PJg][J + i1]α)g
}
χG(α)

+ 1
2 tr{Q([Pg + PJg]ξ )D(2Jα)ρG}). (C8)

In order to proceed to evaluating the Wigner function, it remains to evaluate tr{Q[(Pg + PJg)ξ ]D(2Jα)ρG}. We set x =
(Pg + PJg)ξ and evaluate

tr{Q(x)D(2Jα)ρG} = tr{Q(x) exp{iQ(α)}ρG} = tr{Q(x)ρG} + itr{Q(x)Q(α)ρG}

− 1

2
tr{Q(x)Q(α)2ρG} − i

6
tr{Q(x)Q(α)3ρG} + · · · . (C9)

We observe that, because ρG is a nondisplaced state, all terms with an odd number of Q operators vanish. This leaves terms
proportional to

tr{Q(x)Q(α)2k+1ρG} = (2k + 1)(2k − 1)!!tr{Q(x)Q(α)ρG}tr{Q(α)2ρG}k = (2k + 1)(2k − 1)!![(x,V α) − i(x,Jα)](α,V α)k,

(C10)

where we use explicitly that ρG is a nondisplaced Gaussian state with covariance matrix V such that its correlations factorize.
This implies that

tr{Q(x)D(2Jα)ρG} = i

∞∑
k=0

(−1)k

(2k + 1)!
(2k + 1)!![(x,V α) − i(x,Jα)](α,V α)k

= i[(x,V α) − i(x,Jα)]
∞∑

k=0

1

k!

(−(α,V α)

2

)k

= i[(x,V α) − i(x,Jα)] exp

{−(α,V α)

2

}
. (C11)

This ultimately allows us to rewrite

χ (α) = ei(ξ,α)

〈n̂(g)〉G + 1
4 [(ξ,g)2 + (ξ,Jg)2]

(
〈n̂(g)〉Gχ−(α) + 1

4
[(ξ,g)2 + (ξ,Jg)2]χG(α)

+1

2
(ξ,{[Pg + PJg]J + i[Pg + PJg]V − [PJg + Pg][J + i1]}α) exp

{−(α,V α)

2

})
. (C12)

The Fourier transformation that leads to the Wigner function can be carried out straightforwardly in the basis where V is diagonal.
This leads us to

W−
ξ (β) = 1

〈n̂(g)〉G + 1
4 [(ξ,g)2 + (ξ,Jg)2]

(
〈n̂(g)〉GW−(β − ξ ) + 1

4
[(ξ,g)2 + (ξ,Jg)2]WG(β − ξ )

+1

2
(ξ,[Pg + PJg][1 − V −1][β − ξ ])

exp
{−(β−ξ,V −1β−ξ )

2

}
(2π )m

√
det V

)
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= WG(β − ξ )

2〈n̂(g)〉G + 1
2 [(ξ,g)2 + (ξ,Jg)2]

(
〈n̂(g)〉G{([β − ξ ],V −1A−

g V −1[β − ξ ]) − tr(V −1A−
g ) + 2}

+1

2
[(ξ,g)2 + (ξ,Jg)2] + (ξ,[Pg + PJg][1 − V −1][β − ξ ])

)
, (C13)

which is the final Wigner function for photon subtraction from a displaced state.
A completely analogous calculation can be performed for photon addition. Here the starting point is

ρ = a†(g)D(ξ )ρGD(−ξ )a(g)

〈D(−ξ )n̂(g)D(ξ )〉G + 1
. (C14)

Going through the same steps of calculation, while taking into account the changes in signs, leads us to

χ (α) = ei(ξ,α)

〈n̂(g)〉G + 1 + 1
4 [(ξ,g)2 + (ξ,Jg)2]

(
[〈n̂(g)〉G + 1]χ+(α) + 1

4 [(ξ,g)2 + (ξ,Jg)2]χG(α)

+ 1
2 (ξ,{[PJg + Pg][J + i1] − [Pg + PJg]J + i[Pg + PJg]V }α) χG(α)

)
. (C15)

This directly leads to a Wigner function of the form

W+
ξ (β) = WG(β − ξ )

〈n̂(g)〉G + 1 + 1
4 [(ξ,g)2 + (ξ,Jg)2]

( 〈n̂(g)〉G + 1

2
{([β − ξ ],V −1A+

g V −1[β − ξ ]) − tr(V −1A+
g ) + 2}

+ 1

4
[(ξ,g)2 + (ξ,Jg)2)] + 1

2
(ξ,[Pg + PJg][1 + V −1][β − ξ ])

)
. (C16)

With a little more rewriting, we find

W±
ξ (β) = WG(β − ξ )

tr[(V + ‖ξ‖2Pξ ± 1)(Pg + PJg)]
{‖(Pg + PJg)(1 ± V −1)(β − ξ )‖2

+ 2(ξ,[Pg + PJg][1 ± V −1][β − ξ ]) + tr[(Pg + PJg)(‖ξ‖2Pξ − V −1 ∓ 1)]}. (C17)
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