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Abstract

We discuss recent research on quantum transport in complex materi-

als, from photosynthetic light harvesting complexes to photonic circuits.

We identify finite, disordered networks as the underlying backbone and

as a versatile framework to gain insight into the specific potential of non-

trivial quantum dynamical effects to characterize and control transport

on complex structures. We discriminate authentic quantum properties

from classical aspects of complexity, and briefly address the impact of

interactions, nonlinearities, and noise. We stress the relevance of what

we call the non-asymptotic realm, physical situations where neither the

relevant time and length scales, the number of degrees of freedom or

constituents tend to very small or very large values, nor do global sym-

metries or disorder fully govern the dynamics. While largely uncharted

territory, we argue that novel, intriguing and non-trivial questions for

experimental and theoretical work emerge, with the prospect of a uni-

fied understanding of complex quantum transport phenomena in diverse

physical settings.
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1. INTRODUCTION

“Quantum transport” expresses a specific view on the world of quantum phenomena, which

originates in condensed matter physics, and, to some extent, physical chemistry: An exci-

tation, an electron or a quasiparticle is to be shipped from input to output of a physical

sample to be characterized, possibly by macroscopic quantifiers like its resistivity (1) – or

to be transferred from some donor to some acceptor molecular unit, typically over meso-

scopic scales, to trigger chemical reactions (2, 3). As immediately apparent when defining

input and output state asymptotically, this view is intimately related to scattering theory

(with the transmission of a plane wave through a potential barrier as the elementary text

book example). In an alternative perspective, by its very construction, it defines one of

the standard scenarios for non-equilibrium quantum physics. While historically (and an-

thropomorphically) set in the spatial degree of freedom, transport can, of course, likewise

occur in arbitrary directions of phase space, as well as on the energy axis. Often, however,

a change of stage implies a change of research community and jargon: Quantum transport

on the energy axis (often the momentum axis in disguise) is witnessed and controlled, e.g.,

in the physics of light matter interaction (from strong to feeble electromagnetic fields), and

often comes under the alternative label “quantum dynamics” (4, 5). When decomposable

into finite numbers of two-level systems or elementary excitations, at a manageable level of

complication, “quantum simulation” as a specific brand of “quantum information” sets out

to mimic elementary quantum transport phenomena (6, 7).

The elementary ingredient of quantum transport is incarnated by Young’s double slit,

when taken to the granular level of the self-interference of a single particle: While, since

Feynman (8), this phenomenon is nowadays very well understood, from the underlying

dynamics to the emergence of the interference pattern upon integration over single par-

ticle events (9), it gives rise to a panoply of rather dramatic and not-yet-common-sense

quantum interference phenomena once the number of interfering amplitudes (and, pos-

sibly, particles) is increased. In particular, when we enter the realm of multiple scat-

tering1 phenomena (again: possibly, but not necessarily in configuration space), quan-

tum interference effects can prevail even upon averaging over a broad range of, randomly

chosen, physical realizations of the scattering potential,2 what, on a first glance, ap-

1Of a single particle on a complicated potential landscape, and/or of many particles.
2Defined, in an actual experiment, e.g., by different, macroscopically identically prepared sam-

ples; slow drifts of the microscopic sample structure or of externally applied fields; variations of the
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pears very counterintuitive when contemplating the fate of Young’s double slit interfer-

ence pattern upon independent averaging over the slits’ positions. Yet, the most promi-

nent such disorder-induced interference effects, weak (10), strong or Anderson (11) and,

in a Hamiltonian setting, dynamical (12) localization, bear very tangible macroscopic

manifestations, from enhanced back-scattering signals (first observed on Saturn’s rings

(13)) to by now well-defined and well-controlled metal-insulator quantum phase transitions

(14, 15, 16, 17, 18, 19, 20, 21, 12, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 10, 34, 35).

Most importantly, the truly amazing improvement of experimental diagnostic tools and

of the experimental control on composite, hybrid quantum systems nowadays allows, ar-

guably for the first time, to systematically explore the controlled transition from many-

to single-particle quantum transport and dynamical phenomena (36, 37, 38, 39, 40), on

potential landscapes which interpolate, possibly on a hierarchy of scales, between perfect

symmetries and disorder (41, 42, 43, 44, 45, 46) Beyond the experimental mimicry of well-

established theoretical models for extended solids or fields, the truly innovative potential of

these rather recent experimental progresses lies in charting the largely unknown territory

between single particle quantum dynamics and the thermodynamic limit (47, 48, 49, 50, 39),

which can be safely predicted to offer plenty of original research questions and surprising

answers. Apart from offering novel ways to control (quantum) transport properties which

ultimately define the efficiency of technological devices (51) (e.g., for light energy conver-

sion, such as LED or PV), such endeavour will almost certainly qualitatively improve

LED: Light Emitting

Diodes

PV: PhotoVoltaics

our understanding of the quantum-to-classical transition (52, 53, 38), as one of the very

fundamental open issues of quantum theory (and of its interpretation) to date.

A very useful and versatile scenario for the study of quantum dynamics in what we will

here call the non-asymptotic range are finite networks or graphs of variable topology, which

can mediate transport of one or more particles (54, 55, 56, 57, 58, 59, 60, 61). On the

one hand, the network’s topology allows a flexible transition from order to disorder, and,

on the other, it offers a broad choice of observables to characterize single- or many-particle

transport. The network can be connected to leads (supporting continua of scattering states),

such as to define a bona fide scattering problem (57, 62, 63, 64), and/or locally or globally

interfaced with incoherent environments, such as to incorporate dynamical rather than static

disorder – vulgo noise (which, on sufficiently long time scales, kills quantum interference)

(65).

The network’s topology (beyond, simply, its dimension) can be employed to control the

probability of particle encounter, and thus, through the particles’ indistinguishability and/or

their interaction strength, the structure of the quantum interference terms which control

its transport properties (43, 66). Furthermore, a network can be considered the natural

backbone of a multitude of physical transport problems, from regular or disordered lattices

in one, two or three dimensions, in configuration, phase, or energy space (54, 67, 68, 69, 70),

to molecular aggregates in functional materials or biological substrates (58, 71, 72, 73),

quantum algorithms (74), photonic circuits (75, 76), electromagnetic transmission lines,

multiple scattering media – e.g. cold atomic clouds and Rydberg gases (50, 77, 78) –

with slowly (with respect to a single, multiple scattering event) drifting conformations,

and many more. The present contribution will exploit this versatility, to illustrate the

rich phenomenology of quantum interference effects in the non-asymptotic range, between

symmetry and disorder, coherence and noise, distinguishability and discernability. We will

input state or channels; etc.
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STATIC VS. DYNAMICAL NOISE

There is an important distinction between disorder and noise: Disorder expresses our lack of knowledge

of the precise realization e.g. of a potential landscape. Disordered systems evolve unitarily, but to obtain

descriptions which are robust against variations of the microscopic hardwiring of the generating Hamiltonian,

a disorder average has to be performed. This in general leads to dephasing (or inhomogeneous broadening,

in spectroscopy jargon), which, however, can in principle be compensated for by spin echo techniques. In

contrast, noise stems from uncontrolled temporal fluctuations of the generating Hamiltonian, on time scales

which are shorter than the time scales of interest, and need to be averaged over. This leads to an irreversible

loss of information which cannot be recovered, and, in particular, induces decoherence.

import concrete examples from recent scientific debates on the role of quantum coherence in

biophysical contexts, and on controlled many-particle interference in photonic circuits, but

will also touch upon de facto closely related, while apparently distinct quantum transport

phenomena in other (sub-) fields.

2. EXCITATION TRANSPORT ON NETWORKS WITH CONSTRAINED
DISORDER

We start out with a paradigmatic single particle transport problem on finite networks, which

has received renewed interest in the interpretation of spectroscopic data, of unprecedented

quality, on photosynthetic functional units of plants, algae, and photosynthetic bacteria

(79, 80), as well as on photovoltaic blends useful, e.g., for organic photovoltaic devices

(81, 82). In the photosynthetic scenario, the energy carried by an incoming photon is

transformed into an electronic excitation, forming an exciton (83, 84), which then needs to

be transported to what is known as the reaction centre, a molecular structure where the

organism uses that incoming energy to create free charges which then feed the reservoir

of ATP as the chemical energy currency. The excitation transport from the absorbing

molecular site to the reaction centre is mediated by supramolecular structures which come

in very different architectures and with variable (but always clearly finite, in the sense

of being far from the thermodynamic limit) size in different species, with a coexistence

of symmetric and disordered structures on different (energy, length and time) scales, e.g.

in the LHII photosynthetic antenna protein of purple bacteria, or rather as completely

disordered 3D structures without apparent symmetries, e.g. in the FMO complex of green

ATP: Adenosine Tri
Phosphate

LHII: Photosynthetic

antenna protein

FMO: Fenna-

Matthews-Olson

light harvesting
complex

PC645: Phycocyanin

645

sulfur bacteria, or in the cryptophyte PC645 complex of marine algae (85). In general,

these supramolecular structures are relatively stiff and exhibit drifts only on time scales

much longer than the typical times required for the excitation transport to the reaction

centre. However, since these are transport phenomena in living organisms, they occur at

finite temperature and are certainly subject to some sort of noise, as well as, possibly, to

quasi-deterministic (and hitherto very poorly understood) re-conformations related to their

functional role on larger (time and length) scales (86).

By now quite firmly consolidated experimental evidence shows that, notwithstanding

(or, probably, because of) their intricate architectures and their embedding in a clearly

very noisy macro-structure, these supramolecular transport units indeed can sustain co-
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QUANTUM THEORY AND PHOTOSYNTHESIS

Ultrafast nonlinear spectroscopy (87) on molecular aggregates such as the FMO complex has revealed signa-

tures of coherent coupling between excitonic states, on transient time scales and at ambient temperatures.

This triggered an intense debate on the potential role of nontrivial quantum effects (i.e., quantum phenom-

ena which go beyond defining effective rates which can then be absorbed into effective evolution equations)

for the respective biological function. Current candidate scenarios are photosynthesis (79), avian navigation

in the Earth’s magnetic field (88) and olfaction (89), but conclusive evidence for any functional relevance is

missing to date.

herent superpositions of vibrationally dressed excitonic eigenstates, (90) 3 even at ambient

temperatures, on transient time scales, under laboratory conditions (90, 91, 92, 93, 81).

What remains, however, a completely open question is whether such quantum superposi-

tions, and the generically associated quantum interference effects, actually do occur in vivo

and whether they may be used (whether by nature or by – quantum – engineers) to foster

the supramolecular structure’s functional purpose.

That this undeniably highly intriguing question did hitherto not receive an answer has

essentially two fundamental reasons: On the one hand, given the intrinsic complexity of

the object under study, experimentalists have so far been unable to conceive tools of de-

liberate intervention to enhance or suppress coherences in the supramolecular dynamics,

and to unambiguously probe the impact thereof on macroscopic indicators of the transport

efficiency, such as, e.g., the quantum efficiency, i.e., the number of charges generated in

the reaction centre, per incoming photon. Note that such intervention to control radiation

transport in complex materials is at least in principle in reach, as has been experimentally

demonstrated with photonic nano-structures (94). On the other hand, theory is so far

unable to come up with quantitative predictions which are amenable to direct verification

by state of the art experiments, and distinctive enough to discriminate different transport

scenarios. Some approaches, based on very advanced computational physics (or chemistry)

with considerable computational overhead, consist in consistently reproducing experimen-

tal data (2, 3, 73), such as to extract effective rates etc, though do not offer quantitative

predictions which could be falsified by experiment, nor do they help to gain a better un-

derstanding of the decisive structural elements which guarantee the functional properties of

the molecular machines of interest. Another philosophy attempts to grasp those essential

structural or dynamical features, often with simple, strongly reductionist quantum dynami-

cal models (71, 72, 69, 95, 96). While this in principle allows to define specific and, possibly,

mutually exclusive transport scenarios, these models often lack sufficient detail to match

realistic experimental conditions, such that experimental data do not allow to unambigu-

ously discriminate between them. Hence, what is needed are more refined tools for targeted

experimental intervention, and more faithful, yet minimalistic theoretical models which al-

3The strength of the coupling between excitonic and vibrational degrees of freedom is, again,
widely variable from species to species. The debate on the prevalence of excitonic or vibrational co-
herence has however converged by now to some sort of consensus that neither one can be completely
neglected, and that one thus often witnesses vibronic coherences.

www.annualreviews.org • Quantum Transport on Disordered and Noisy Networks 5



low to integrate the diverse time, length and energy scales which need to be orchestrated

to achieve and quantify certain functional properties.

Nonetheless, the diverse theoretical approaches currently on the market already account

for a good part of the basic ingredients which determine the transport efficiency across the

light harvesting unit:

• coherent transport on short, transient time scales (58, 60, 69, 96, 95, 97);

• dominantly incoherent transport on asymptotic, long time scales (the traditional view

in chemical physics) (98);

• non-negligible coupling between excitonic and vibrational degrees of freedom (90), or,

to some extent equivalently;

• structured spectral densities of the environmental degrees of freedom coupled to the

excitonic manifold (99, 100);

• statistical variations of transport efficiencies upon sampling over different conforma-

tional realizations (58, 97, 96, 101).

Let us now describe an elementary network model which can accommodate these diverse

features, inspired by the phenomenology of the FMO unit.

2.1. Transport efficiencies across random networks

According to currently available structure data, the FMO is a three dimensional molecular

network composed of seven or eight molecular sites defined by the locations of its con-

stituent chlorophyll units (85). In the desire to faithfully represent the FMO’s excitonic

spectrum (which mediates the excitation transport), the chlorophylls are modelled as dipo-

lar molecules with two electronic (ground and excited) states, which are coupled to each

other through dipole-dipole interactions. The relative positions and orientations of the con-

stituent molecular dipoles, the on-site electronic energy levels and the inter-site coupling

strengths are tabulated in the literature (102, 103). Slight variations between different ref-

erences and the always relatively large error bars which garnish the tabulated numerical

values are an expression of the fact that these are, and, given the complexity of the object of

interest, ought to be effective descriptions, which imply strong coarse graining, i.e. an effec-

tive average over the many unresolved degrees of freedom of the supramolecular structure.

Indeed, these available effective descriptions are deduced by careful deduction of coupling

strengths etc from experimental data as well as from state of the art structure calculations.

In particular in an interdisciplinary context and discourse it is crucial to fully appreciate

this rather fundamental distinction between the experimental and theoretical analysis of

quantum dynamics in a physical chemistry or biophysics setting, in contrast to the, by

their very construction, highly controlled and engineered objects of quantum optical exper-

iments and theory.4 Furthermore, note that, while the chlorophyll molecules which define

the network’s sites are a priori identical, the onsite energies of the tabulated effective FMO

Hamiltonians are not identical, i.e., exhibit some non-trivial potential landscape, which is

due to the individual chlorophylls’ “local environments” (102, 103). In biophysics jargon,

this refers to shifts of the electronic eigenenergies through local couplings to background

degrees of freedom which, e.g., span the supramolecular conformation space.

4Where Hamiltonians are engineered as naked as they stand, with excellent control on the errors
incurred by neglect of weakly coupled, well-defined degrees of freedom (104).
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Hence, quantum transport of a single excitation across the FMO molecular network

is generated by an effective N -site Hamiltonian operating on an N -dimensional Hilbert

space. At present, it seems to be consensus that it is extremely unlikely that more than

one excitation at a time is injected into the network, what also eases dynamical simulations

very considerably (also see Sec. 3 below).5

Given the above, a natural and popular approach to modelling excitation transport

on the FMO network is by quantum dynamical simulation, which essentially propagates a

suitably chosen initial condition over relevant time scales (107). In general, this is done

by numerical solution of some effective evolution equation for the open system quantum

dynamics of the FMO Hamiltonian coupled to some environment with possibly structured

spectral density (71, 72, 73). The structured part of the environment’s spectral density ac-

counts for the possibly strong coupling to selected environmental degrees of freedom, which

may give rise to non-Markovian memory effects (108) in the open system time evolution

(99). An alternative to the description by a non-Markovian environment consists in in-

corporating the prominent environmental degrees of freedom (which cause the structured

component of the spectral density) into the system Hamiltonian (then no more a strictly

excitonic Hamiltonian representing one single effective degree of freedom, but “dressed” by

a background, e.g., vibrational coordinate, in close analogy to dressed state descriptions

of light-matter interaction, e.g. in quantum optics (104) and strong field physics (109)),

which then interacts with a Markovian (structure-less) bath (65). Finally, the environment

coupling may also incorporate the irreversible dissipation into a sink attached to a specific

network site, to account for the desired delivery of the excitation to the reaction centre

(110, 111).

Such quantum dynamical approach is indeed capable to qualitatively reproduce most

experimentally observed features – long-lived coherences between excitonic states, which

manifest, e.g., in a damped beating signal of suitably defined correlation functions, non-

Markovian effects induced by a structured (vibrational) environment, noise-induced trans-

port across a disordered network with excitonic eigenstates which are localized on a finite

subset of the molecular sites, and coherent transport mediated by vibrational dressing of

the excitonic manifold. If excitation transport units like the FMO compound have been op-

timized by evolution, e.g. for rapid and complete excitation transfer, this picture suggests a

carefully tuned interplay of coherent, incoherent and dissipative couplings, to delocalize ex-

citonic transport, bridge energy gaps, and induce directionality towards the reaction centre.

However, this is a conclusion based on the simulated dynamics generated by an averaged,

effective Hamiltonian, while individual complexes differ in their microscopic structures, giv-

ing rise to measurably different (91) dynamical evolutions. One needs to remember then

that, in general, the quantum dynamics on disordered systems is not self-averaging, i.e.

〈e−itH〉disorder 6= e−it〈H〉disorder , (1)

such that the above optimization argument ultimately hinges on the ambient noise over-

riding the Hamiltonian structure, to induce efficient diffusive, classical transport (112).

This is in line with the traditional view that, at ambient temperatures, all transport must

ultimately be driven by stochastic activation. Whether classical diffusive transport is com-

5This observation is also relevant for the discussion whether coherence effects can play a role in
vivo, when the sample is excited by sun light, i.e. an incoherent source, rather than by coherent
laser radiation (105, 106).
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WEAK AND STRONG LOCALIZATION

Weak and strong localization are well-defined concepts in condensed matter and mesoscopic transport theory

(1, 42). They describe the impact of disorder-induced quantum interference effects on the transmission

probability across disordered potential landscapes, which survive the disorder average and can be rather

dramatic. Often it is difficult to distinguish interference-induced (weak or strong) localization proper from

other mechanisms which impede transport, such as, e.g., (partial) phase space barriers or the somewhat

trivial confinement of an eigenstate to one or few local potential minima. Consequently, the terminology

tends to be used in a rather fuzzy manner in the literature beyond condensed matter and mesoscopics.

Weak localization phenomena

Weak localization consists in a reduction of the diffusion constant, hence of the transmission probability,

due to an enhanced return probability to a given point within the sample. The latter is a consequence

of the interference of time reversed multiple scattering paths, and also leads to (enhanced) coherent back

scattering of the injected probability flux. Weak localization is often considered to be a precursor of strong

localization, in the regime of weak disorder, i.e. for `k � 1, with ` the scattering mean free path and k the

transported particle’s wave vector.

Strong localization phenomena

Strong or Anderson localization consists in the vanishing of the diffusion constant, as a consequence of com-

plete, destructive interference upon transmission. It manifests differently in one, two and three dimensions

and is associated with a quantum phase transition from delocalized to exponentially localized eigenstates

on 3D disorder potentials, at `k ' 1. An analogous phenomenon in light-matter interaction at high spectral

densities, dubbed “dynamical localization”, leads to a suppression of the effective energy transfer from the

driving to the matter degree of freedom.

Control of localization phenomena

Due to the dramatic impact of localization phenomena on dynamical and spectral features, efforts are

recently made to exploit or manipulate these effects for the purpose of quantum control, e.g. by tailoring

inter-site couplings or by injecting nonlinearities (45, 94).

patible with experimentally observed time scales remains a matter of controversial debate

in the literature (113, 114, 115).

Another approach to revealing the potential of non-trivial quantum effects to enhance

the functionality of molecular networks à la FMO is statistical rather than dynamical in

spirit. In terms of the above, the object of interest is the statistical distribution of trans-

port coefficients as generated by e−itH , when sampling over the different physical real-

izations of H as present in the given organism. The underlying intuition stems from the

quantum transport theory of finite, disordered systems: Since disorder-induced quantum

interference effects as Anderson localization are a consequence of destructive multi-path

interference upon transmission, characteristic transport coefficients will exhibit strong fluc-

tuations from realization to realization (since each realization defines a different interference

condition), for a finite sample length (116). Indeed, in the Anderson case these fluctua-

8 Mattia Walschaers, Frank Schlawin, Thomas Wellens, and Andreas Buchleitner



tions are exponentially large, and define an unambiguous hallmark of quantum interference

(117). Consequently, in disordered, finite networks there must be finite probability for

strongly interference-enhanced transmission probabilities. At least on transient time scales

(on which, in a noisy environment, quantum coherence can at best survive), this will be

qualitatively unaffected by the ambient noise, which, however, will overtake on asymptotic

time scales (111).

While dipole-coupled networks as realized by the molecular aggregates we are here

interested in do not give rise to Anderson localization in a strict sense (since this type

of inter-site coupling does not induce exponentially localized eigenstates (78)), they still

give rise to multipath interference, with relative phases which must sensibly depend on the

specific conformation of the network. If we model the network Hamiltonian as

H =

N∑
i 6=j=1

vi,j |j〉〈i| , (2)

where the sum runs over all pairs of distinct N network sites6 and the inter-site dipole-

dipole coupling vi,j is determined by distance and relative dipole orientation, different

conformations will lead to different realizations of the Hamiltonian. Such Hamiltonians (2)

generate excitonic dynamics on a fully connected random network, where an excitation is

destroyed at site i and created at site j, mediated by the coupling strength vi,j . Energy is

transferred across the network alike a quasi-particle.

In contrast to the above quantum dynamical point of view, which considers the average

Hamiltonian structure as the actual structure generating the dynamics, one can now adopt

the somewhat complementary point of view and assume that the complex’ conformations

are randomly distributed, e.g. within a sphere where input (where the photon is absorbed)

and output (where the excitation is eventually delivered to the reaction centre) site are fixed

at north and south pole, respectively. Thus, random positioning of the intermediate chloro-

phyll sites induces a random distribution of the coupling matrix elements in (2), through

vi,j ∝ r−3
i,j (if the relative dipole orientations are neglected, which does not change the qual-

itative picture (58)), and thus gives rise to conformation dependent transport coefficients.

If the latter are defined by what has been baptized the transfer efficiency (69)

PH = max
t∈[0,TR)

∣∣∣〈out|e−iHt|φ(0)〉
∣∣∣2 , |φ(0)〉 = |in〉 , (3)

with TR a suitably defined benchmark time (see below), PH must exhibit strong fluctuations

under random changes of the network conformation, according to the above intuition, and

as indeed confirmed by numerical simulations as displayed in Fig. 1.

What becomes evident from these results is that, while the average transfer efficiency

over the entire statistical sample of Hamiltonians (2) is indeed low (approx. 5%), as expected

from common sense expectations on the localization properties of excitonic eigenstates on

random structures, there does exist a non-negligible sub-set of Hamiltonian realizations

which give rise to transfer efficiencies much above average, and in some cases close to unity

(somewhere between 50 and 100%). Since, under conditions of strictly unitary transport as

here assumed, the transfer efficiency is essentially given by the spectral decomposition of

6Including the input and output sites, |in〉 = |1〉 and |out〉 = |N〉.
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Figure 1

Excitation transfer efficiencies PH , as defined by (3), across random realizations of an N = 7 sites
random network (69). The latter is described by Eq. (2), with TR = π/20|V |, V = vin,out, input

and output site located at the north and south pole of a sphere, and the intermediate sites,
N = 2, . . . , 6, randomly distributed within the sphere, to randomize the coupling matrix elements

vi,j in Eq. (2). While the majority of network realizations gives rise to rather moderate transfer

efficiencies PH ' 5%, there is a finite sub-set of realizations which generate significantly more
efficient transport, up to values not too far from unity. Since the dynamics is purely coherent, this

is a result of constructive multi-path interference between the different transmission amplitudes

connecting input and output site.

the unitary generated by H,

|〈out|U(t)|in〉|2 = |
∑
j

〈out|ηj〉〈ηj |in〉 exp(−iEjt/~)|2 , (4)

such high transfer efficiencies imply the existence of at least one excitonic eigenstate |ηj〉
which exhibits an appreciable overlap with, both, |in〉 and |out〉.

2.2. Constraints to optimize transport across disordered networks

It now immediately comes to mind to optimize a given random Hamiltonian with respect

to the transfer efficiency, and, indeed, genetic algorithms (118) seeded with any one of the

Hamiltonians which give rise to typical transfer efficiencies in Fig. 1 rapidly converge into

strictly optimal Hamiltonians, which very quickly depopulate the input site, and coherently

feed all population into the output site, see Fig. 2 (58). But which are the specific features

which render such Hamiltonians optimal? When inspecting their spatial structure, no

apparent symmetries stand out, and the problem is in this sense somewhat reminiscent

of the optimal pulse shapes generated by genetic algorithms (119) or other optimization

strategies (120) for optimal coherent control: Also there, the generated optimal pulse shapes

are in general little telling on which underlying principle defines the optimal superposition of

paths in state space, to optimize the given target functional. However, the time dependence

of the different sites’ populations as displayed in Fig. 2 exhibits such sought-for symmetry,
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Figure 2

Populations of input (blue dashed), output (blue solid) and bulk (orange) sites, as a function of
time (in units of the benchmark time TR), for a N = 7 network optimized by a generic algorithm

seeded with a typical low-efficiency configuration as represented by low values of PH in Fig. 1

(58). Since the dynamics is purely coherent, the observed time evolution must be quasi-periodic.
Strikingly, the populations are indeed periodic, and (approximately) mirror-symmetric with

respect to a time t∗/2, i.e. |〈i | φ(t)〉|2 ' |〈Ji | φ(t∗/2− t)〉|2. The time evolution of input and

output site are strongly reminiscent of the dynamics of a wave packet in a double well potential.
The mirror symmetry on the time axis is suggestive of a centrosymmetric structure of the

underlying Hamiltonian, while the effective double well dynamics is indicative of a dominant

doublet in the spectral structure, with a weight α, see Eq. (6), which is determined by the relative
amplitudes of the input and output site populations as compared to that of the bulk states.

with the additional prominent feature that the input and output site’s populations largely

dominate over those of the intermediate sites (which, nonetheless, and importantly, remain

non-negligible). A sufficient condition to generate such symmetry on the time axis is the

centrosymmetry (121) of the underlying Hamiltonian, i.e. the property that H be symmetric

under mirroring with respect to its center, for some labelling of the network sites. More

formally speaking, this is tantamount of the commutation relation JH = HJ , with the

exchange operator Ji,j = δi,N−j+1, together with |in〉 = J |out〉. A possible measure of

centrosymmetry is then given by

ε =
1

N
min
σ
||H − J−1HJ || , (5)

where minimization is performed over permutations σ of the intermediate sites 2, . . . , N−1,

||.|| denotes the Hilbert-Schmidt-norm, and small values of ε correspond to pronounced cen-

trosymmetry, and vice versa. (5) now allows to inspect the correlation between centrosym-

metry and transfer efficiency, as done in Fig. 3: Indeed, the correlation is unambiguous,

and shows that centrosymmetry of H is a design principle which is very favourable to im-

prove the transport properties of the network. Yet, it is not sufficient, as the distribution

of transfer efficiencies for given ε still almost covers the entire interval [0; 1].

Here helps the second observation from above: Not only are the populations of the
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Correlation between the network’s centrosymmetry, quantified by ε as defined by (5) – the smaller
ε, the more centrosymmetric the network – and its transfer efficiency PH as defined by (3), in a

double logarithmic plot. The correlation is unambiguous and confirms that centrosymmetry much

favours the probability of efficient excitation transfer. Yet, centrosymmetry does not allow for a
safe bet. An additional design principle is needed. The observed correlation is a consequence of

quantum interference upon transmission across the network, and fades away under noise (97). The
white dot on the top left of the plot represents the optimized network configuration which

generates the time evolution displayed in Fig. 2.

network’s sites symmetric on the time axis, but also the populations of input and output site

dominate over the intermediate sites’ populations, at almost all times (except t ' t∗/2, see

Fig. 2). Furthermore, if taken alone, the time evolution of input and output site population

is almost a textbook example of the time evolution of the populations of a double well’s

right and left site when initiated, e.g., on the left. Therefore, what we are facing in the case

of optimal transport is an effective double well dynamics – in chemical jargon connecting

the donor and the acceptor site – with the intermediate sites simply adjusting the tunneling

barrier. Consequently, the eigenvectors |η̃j〉 of H are expected to exhibit a dominant doublet∣∣±̃〉 with weight

α = |〈±̃|±〉|2 � |〈η̃j |±〉|2 , ∀η̃j 6= ±̃ , (6)

where |±〉 = (|in〉 ± |out〉)/
√

2. (6) defines a second design principle, beyond the above

centrosymmetry.
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With this intuition gained from the simulation of excitation transport across random

networks of type (2), one can now formulate a transport theory for finite size random

Hamiltonians with a structure constrained by the above design principles (61). In order to

ease a (still rather non-trivial) analytical treatment, we however abandon the geometrical

construction of random Hamiltonians via randomized relative positions ri,j within a sphere,

and rather employ N × N Hamiltonians from the Gaussian Orthogonal Ensemble (122)

(GOE) of Random Matrix Theory (RMT).

GOE: Gaussian

Orthogonal
Ensemble

RMT: Random

Matrix Theory

For each realization, |in〉 and |out〉, fulfilling the constraint |in〉 = J |out〉, are associated

with those sites i and N−i+1 which exhibit the weakest direct coupling matrix element V =

mini |Hi,N−i+1|. A thus generated random Hamiltonian constrained by centrosymmetry and

the presence of a dominant doublet has the general structure

H =


E + V

〈
V+
∣∣∣∣V+

〉
H+
sub

E − V
〈
V−
∣∣∣∣V−〉 H−sub

 , (7)

with 〈±|H|±〉 = E±V , and
∣∣V±〉 random vectors with Gaussian distributed entries, which

mediate the coupling between the dominant doublet and the eigenstates of the GOE sub-

matrices H±sub. The Hamiltonian’s specific block-diagonal structure is inherited from its

representation in the centrosymmetry eigenbasis: Since HJ = JH, these operators share a

joint set of eigenstates, and the degeneracy of J thus induces the block-diagonal structure

of H. Phrased differently, the centrosymmetry introduces parity as a quantum number.

Note that the upper block of (7), indicated by “+”, represents the even parity eigenstates

of the network, while the block labeled by “−” depicts the odd parity subspace. The

representation in the centrosymmetry (or parity) eigenbasis is crucial for these structures

to emerge.

Since the dominant doublet weight α needs to be close to unity, by its very definition, the

coupling to the random states associated with the randomly coupled intermediate molecular

sites is weak, and can be accounted for perturbatively. Despite being weakly coupled, the

collective effect of the intermediate sites amounts to a shift of the doublet states which,

if garnished with the proper sign, can enormously enhance the unperturbed, direct tunnel

splitting V , even in the limit of vanishing direct coupling. Since the tunnelling time is

just the inverse of the effective tunnelling splitting, this amounts to a potentially strongly

accelerated tunnelling process, which possibly allows to prevail over the time scales of

competing loss processes (e.g. recombination of the excitation, not incorporated in the

above Hamiltonian), and, thus, to achieve what quantum opticians dub “strong coupling”

(104). Note that this scenario is an incidence of what has been conceived as chaos assisted

tunneling (CAT) (123) in the quantum chaos literature: If direct tunnelling between the

CAT: Chaos Assisted
Tunneling

potential wells of a symmetric double well in one degree of freedom is strongly suppressed,

the nonlinear coupling to a second degree of freedom may generate “chaotic” eigenstates

(124) which sensibly depend on a control parameter and are themselves weakly coupled

to the original tunnelling doublet. The resulting, effective tunnelling rate between the

wells can then be shown to exhibit very strong fluctuations under changes of the control

parameter, and may be enhanced by orders of magnitude, through the weak coupling to the

chaotic states. In our present example, the random positioning of the intermediate sites,

modelled by GOE matrices, mimics the chaoticity induced by the coupling to the additional

degree of freedom in the CAT scenario, which is perfectly adequate, in view of the to date
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Control of the distribution of transfer efficiencies (with TR = π/2|V |) of N = 8 site random

networks sampled from GOE matrices, through additional constraints. While the unconstrained

GOE ensemble gives rise to a broad distribution of transfer efficiencies with its center in the
vicinity of 20%, the centrosymmetry constraint (as quantified by Eq. (5)) generates the csGOE

ensemble with a still broad distribution of efficiencies, though with a maximum clearly shifted to

appreciable values around 80%. When those centrosymmetric networks are post-selected which on
top exhibit a dominant doublet with weight α = 0.9, see Eq. (6), the distribution narrows down

dramatically and allows for almost deterministic delivery of the excitation at the output site,

without control of the microscopic positioning of the bulk sites. Only the average density of states
in the bulk, the number of network sites, and the average coupling strength between bulk and in-

and output sites suffice to fix the distribution. An RMT treatment (96, 61) allows to predict a

lower bound for the maximum of the dominant doublet distribution, here marked by an arrow.

very well verified Bohigas-Giannoni-Schmidt conjecture (125). Indeed, as discussed earlier,

statistical scatter of the entries of the effective Hamiltonians of FMO like complexes is due

to changes of the local environment as defined by the molecular complexes’ conformational

structures, which amounts to nothing else but the coupling to other degrees of freedom

(e.g., of vibrational character). This statistical scatter is in the present statistical model

generated by random sampling over the GOE ensemble.

Given Eq. (7), it is possible to generalize the random matrix theory of CAT for our

present purposes, and to derive the distribution of excitation transfer times and efficiencies,

as well as the scaling behaviour thereof with the size of the network (either at fixed spectral

density or at fixed direct tunnelling coupling V ) (61). Here we only illustrate the effect of

the above design principles on the distribution of transfer efficiencies, in Fig. 4. While an

unconstrained GOE random network generates a broad distribution of transfer efficiencies
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with rather unsatisfactory average performance, centrosymmetry shifts this distribution to

larger average values, though without much narrowing. The dominant doublet requirement,

however, induces a dramatic sharpening of the distribution, which is sharply peaked above

PH > 2α− 1, thus leading to an almost deterministic transport from input to output site,

without precise knowledge of the positioning of the intermediate sites. Only coarse grained

quantities fix this dynamical behaviour: the average level density of the bulk states (es-

sentially controlled by the packing of the molecular sites), the average coupling strength of

in- and output site to the bulk, and the dominant doublet strength α. Note that, while it

may appear obvious that a doublet structure can guarantee deterministic transport from

donor to acceptor, the mechanism described above allows to embed such structure into a

random network of N sites, without appreciable change of the relevant properties of the

doublet’s eigenvectors, while strongly shortening the transfer times. No detailed knowledge

on the microscopic hardwiring of the entire structure is needed, except for the centrosym-

metry requirement. In particular, this mechanism allows for a robust implementation of

interference-induced enhancement of the transfer efficiency, since only the above-mentioned

coarse grained parameters need to be under control.

Let us stress that the above, CAT-inspired transport optimization scheme strictly relies

on constructive multipath quantum interference upon transmission across the network, and

cannot be reproduced by classically diffusive transport. This can be qualitatively verified

by adding, e.g., dephasing noise locally at each molecular site. Once the noise is strong

enough to induce approx. one incoherent event per coherent transfer time across the sample,

the above correlation between centrosymmetry and transfer efficiency fades away, and the

coherent tunnelling between donor and acceptor starts to be corrupted (97). Due to its

strictly coherent character, CAT optimization furthermore only induces rapid oscillations

of the excitation between donor and acceptor, and delivery to the sink – e.g. through

connection to a lead – is not incorporated into the model. However, it can be shown

that weak coupling to a sink will not qualitatively alter the dynamics but simply turn

the system’s excitonic eigenstates into resonances with small decay rates, the latter then

feeding the reaction centre through the sink (58, 111). This is a well established scenario

in mesoscopic physics and light matter interaction, where weak coupling to a continuum

allows to probe bound state dynamics without much perturbing it (126). Yet, it is presently

not well documented how excitations actually are fed into and extracted from FMO like

molecular networks. One may think of slow, directional leakage (occurring over many

near-coherent oscillations between donor and acceptor), what is easy to implement since it

only requires weak coupling between, e.g., the output site and the reaction centre, as well

as, at least in principle, of precisely timed extraction by molecular re-conformation when

the excitation arrives at the output site. The latter would require a much higher level of

orchestration of excitonic and conformational dynamics than the former, but given the in

many respects stunningly high degree of specialization of these biological functional units,

it may appear premature to fully exclude such a scenario.

2.3. State of affairs and directions to follow

Where do we stand? Beating signals from nonlinear spectroscopy on photosynthetic light

harvesting units gave us new, intriguing reasons to think anew about the interplay of disor-

der, interference and noise when it comes to describing and controlling quantum transport

on finite size networks embedded in noisy environments. As far as the transport of single
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excitations is concerned, it is now clear that constrained disorder allows rather impressive

and robust control of transport efficiencies on short time scales, while noise takes over on

long time scales, and overwrites the underlying Hamiltonian structures (by mixing the asso-

ciated eigenstates). If constraints like the ones suggested above are relevant for the observed

transfer efficiencies, then characteristic traits thereof must emerge from spectroscopic data

even upon averaging over different realizations of the microscopic network structure, and

some recent experimental findings could possibly be interpreted in favour of such hypothesis,

inasmuch as certain transition frequencies are robust against disorder averaging in recent

spectroscopic data (92). Also statistical spread of coherent transfer time scales has been

unambiguously observed in single molecule experiments (91), and thus appears to favour

the relevance of the distribution of microscopic Hamiltonian structures rather than noise en-

hanced transport on the averaged structure. On the other hand, producing large statistical

data sets on biological samples is a truly difficult experimental challenge, and a comparison

between theory and experiment is therefore uncertain7. Furthermore, given the immense

variety of light harvesting units implemented by nature, it appears at our present state of

knowledge inappropriate to discard any of the proposed mechanisms – be it classical, i.e.

noise-, or quantum, i.e. interference-induced – right away.

Still, neither one of these models is so far able to come up with distinctive and experi-

mentally verifiable predictions. On the experimental side, this is due to so far suboptimal

control of initial conditions, the lack of tools for selective intervention (such as controlled,

locally induced non-linearities (94) or a controlled admixture of noise (128)), and limitations

in resolution (note, however, STED (129), even given that its current version requires light

intensities which would damage the samples here under study). Somewhat worse, on the

STED: Stimulated
emission depletion

theoretical side, it is clear that purely dynamical approaches will be unfit to obtain a qual-

itative understanding of the working principles of biological functional units, simply due to

the underlying complexity and the concommittent statistical variation. Statistical and dy-

namical tools will need to be merged. Furthermore, models as the ones sketched above need

to be enlarged to explicitly incorporate those structures which feed the absorbed photon’s

energy into the molecular network, as well as the connection to and the charge separation

within the reaction center. This could define a first model of sufficient complexity to ac-

cess, perhaps even quantitatively, one of the decisive, experimentally accessible figures of

merit, the quantum efficiency, i.e. the number of charges produced per incoming photon. In

addition, such modelling would mimic transport and conversion dynamics on broadly dis-

tributed time scales (from fs to ns), with quantum effects certainly confined to the shorter

ones. Since much of the excitement about excitation transport in light harvesting machines

stems from the possible functional relevance of non-trivial quantum effects, this is likely

to be the ultimate challenge, as one needs to establish that the macroscopically observed

quantum efficiency sensibly depends on a quantum coherent feature on microscopic length

and time scales. At our present state of knowledge, quantum speed-up of excitation transfer

on the scale of molecular transport complexes like FMO, as e.g. provided by the above CAT

mechanism, would on large (length and time scales) just define a distribution of effective

transfer rates, with the distribution itself being truly quantum (since brought about by

quantum interference, somewhat similar to mesoscopic conductance fluctuations (130) or

Ericson fluctuations (131)). However, it is then to be shown that such specific (quantum)

type of distribution hardwires a functional advantage on large scales.

7But may be in reach (127).
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Finally, there are certain more or less tacit assumptions which await clarification. One

relevant and actually also fundamentally interesting issue is the difference between photons

coming from the sun as compared to those coming from a laser source in the lab (101, 113,

114, 105, 132, 106). When analyzing the steady state of an FMO like structure under solar

irradiation it is relatively straightforward to see that coherences cannot be sustained. On the

other hand, it is also clear that, if these molecular complexes process excitations one by one,

we are not talking about characterizing a non-equilibrium steady state, but rather about

coherences on transient time scales. Whether such transient coherences can be induced by

the absorption of a single photon remains to be analysed in detail (though all the technical

tools are available to do so). Another interesting issue, for the understanding but possibly

also for control of the debated transport processes is the role of nonlinearities, due, e.g., to

double excitations (133). Can such events, even if rare, affect the transport efficiency, and

can deliberately induced double excitations be used as an experimental diagnostic tool?8

3. MANY-PARTICLE TRANSPORT ON RANDOM NETWORKS

Above, we inspected quantum transport of a single excitation, across a finite, disordered

network, and analyzed the impact of additional constraints on the statistics of a charac-

teristic transport quantifier. In closing, we did also remark that one of the open questions

to be addressed is the influence of non-linearities on the transport properties. One pos-

sibility to create non-linearities is by feeding more than one excitation or particle into

the network. Indeed, the quantum dynamics of interacting many particle systems, on

regular or disordered lattices, is a long-standing, multi-facetted, and highly non-trivial re-

search area (136, 137, 138, 139). It recently enjoys some renewed interest, not least due

to the availability of experimentally controlled many-particle systems of diverse nature

(140, 141, 142, 143, 144, 145, 146). Depending on the system’s size and on the physi-

cal nature of its constituents, different theoretical toolboxes are employed, and blended in

the different communities’ jargon. However, in substance, the relevant unsolved questions

remain:

• How do many-particle interactions or non-linearities affect quantum transport phe-

nomena (49) – on regular as well as on disordered lattices?9

• How do statistically robust, macroscopic observables emerge from the microscopic

description of many-particle quantum systems of increasing complexity, in equilibrium

and out of equilibrium? What is, eventually, the specific role of interactions/non-

linearities (52, 48)?

• What is the potential of controlled nonlinearities as a means to control quantum

transport (94), in particular in complex structures?

Rather than following this line of thought, which arguably merits an independent review,

we will here take one step back, and acknowledge another feature which automatically comes

8Compare, e.g., Coulomb and Rydberg blockade effects in mesoscopics (134) and quantum optics
(135).

9Note that, on the level of the fundamental equations, nonlinearities in interacting cold matter
systems have many similarities to well-known phenomena in nonlinear optics, and that nonlinearities
impact, actually in a similar, maybe universal manner, on quantum transport in a priori very distinct
physical settings, from light matter interaction over condensed, possibly soft matter and mesoscopic
physics to quantum simulations!
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into play when injecting more than one particle, which is fundamentally quantum in its very

nature – rather than the perfectly classical notion of interactions –, and prevails also in the

absence of the latter: the indistinguishability of identical particles. Even in the absence

of particle-particle interaction does the indistinguishability multiply the alternatives which

mediate transport from input to output of some device or network. Consequently, the

amplitudes associated with these alternatives need to be summed up coherently to infer

the probability of a certain transmission event. In other words, now Young’s double slit

is no more the only elementary building block, as in the previous chapter, since not only

single particle amplitudes will interfere with each other, but also many-particle amplitudes.

This generates some rather unexpected effects, even in the absence of interactions, for

relatively small particle numbers, and on small, regular networks (38, 43, 147, 37, 148, 149).

Furthermore, the number of interfering alternatives grows very rapidly with the particle

number and thus defines an interesting incident of indistinguishability-induced “complexity”

(149, 150).

3.1. Mapping many-particle input on many-particle output states

Let us thus consider our transport problem under a slightly different perspective now, in

second quantized form. The network be described by a unitary matrix U which maps input

channels i on output channels o, via

a†i →
∑
o

Ui,ob
†
o , (8)

where the physical nature of the indistinguishable particles (fermions or bosons) is implied

through the (anti-) commutation relations of the creation and annihilation operators a†i , b
†
o

and ai, bo respectively. The symmetries and/or irregularities of the network are determined

by the complex-valued entries of U . If we prepare an input state |in〉 by distributing N

particles over M ≥ N input channels, such that at most one particle is injected into a

channel (this allows for a direct comparison of fermionic and bosonic transport), i.e.,

|in〉 = a†i1 . . . a
†
iN
|Ω〉 , ij 6= ik∀j 6= k , (9)

with |Ω〉 the M -channel vacuum state, then, by virtue of (8), the M -channel output state

reads

|out〉 = U|in〉 =

M∑
o1...oN=1

Ui1,o1b
†
o1 . . . UiN ,oN b

†
oN |Ω〉 . (10)

This also defines U , the unitary operator on Fock space which implements the map (8).

For the minimal scenario with M = N = 2 and U representing a balanced beam splitter,

a†1 → (b†1 + b†2)/
√

2 , a†2 → (b†1 − b†2)/
√

2 , (11)

with one photon (thus, bosonic commutation rules) injected into each of the input modes,

this induces the following mapping from input to output state:

|1, 1〉 = a†1a
†
2|Ω〉 →

1

2

(
(b†1)2 − b†1b†2 + b†2b

†
1 − (b†2)2

)
=

1

2

(
(b†1)2 − (b†2)2

)
=

1

2
(|2, 0〉 − |0, 2〉) ,

(12)

with vanishing probability for the coincident output event |out〉 = |1, 1〉, where one photon

is detected in each output mode. This is a consequence of the destructive interference
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of the two two-particle transmission amplitudes a†1a
†
2 → b†1b

†
2 and a†1a

†
2 → b†2b

†
1 in (12),

known as the “Hong-Ou-Mandel (HOM)” (or “Shih-Alley”) effect (151, 152), and the second

fundamental building block which complements Young’s double slit when considering many-

particle transport.

HOM:
Hong-Ou-Mandel or

Shih-Alley effect

Note that the prediction of (12) differs dramatically from the prediction for distinguish-

able (classical) particles, where the coincident output event would occur with probability

1/2. Also note that, notwithstanding this completely different probability distribution

for two-particle output events, the single mode particle density expectation values 〈b†obo〉
are identical (unity) for classical particles or bosons. This highlights the fact that many-

particle interference effects cannot be witnessed on the level of single-channel observables,

but require a correlation measurement (such as the measurement of the coincident event’s

probability) between distinct output ports (148).10 Consequently, we can expect that, for a

general unitary U and arbitrary M ≥ N , quantum transport across the sample represented

by U will exhibit dramatic signatures of the particles’ indistinguishability, in multi-channel

correlation functions measured on output. Mutatis mutandis, as the particles loose their

indistinguishability, e.g. by adding an additional degree of freedom which allows for the

distinction of sub-groups of particles (in the language of decoherence theory, this is tanta-

mount of providing Welcher Weg information, now in the space of many-particle trajecto-

ries), these signatures of many-particle interferences must fade away. This has indeed been

demonstrated experimentally, though with the further subtlety that many-particle inter-

ference signals do in general exhibit a non-monotonous distinguishability transition, if the

latter is controlled by a single continuous parameter (38).

3.2. Many-particle transport across large, disordered networks

This brings us back to our overarching theme of disordered networks. When injecting

an indistinguishable many particle state of type (9) into a disordered network described

by a unitary U , see Fig. 5, we expect strong signatures of many-particle interference on

output, according to our above considerations. At a first glance, this is reminiscent of the

interference-induced transmission fluctuations which we described in the previous chapter,

since, the larger the network, the larger the number of interfering transmission amplitudes.

In the present multi-particle case, however, a severe additional problem kicks in: Not only

does the number of transmission amplitudes proliferate, but now also the dimension of

the space of output states increases exponentially with the particle number. Indeed, the

computational effort to evaluate the transition probability between some many-particle

input state |in〉 and another many-particle output state |out〉 amounts to evaluating

• the permanent of a real matrix, for distinguishable particles;

• the determinant of a complex matrix, for fermions;

• and the permanent of a complex matrix, for bosons.

While efficient algorithms (in the sense of algorithmic complexity theory) are able to ef-

ficiently simulate distinguishable particles and fermions, simulation of the bosonic case is

considered to be computationally hard (150).

10Nowadays, HOM has become a diagnostic tool in photonics, when the indistinguishability of
photons needs to be certified. The vanishing of the coincident event probability is a sensitive –
interference-based – test of the precision of the two-photon state’s preparation.
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MANY-PARTICLE INTERFERENCE WITH/OUT DISTINCTIVE DEGREES OF FREEDOM

Additional degrees of freedom can be added by structuring the single-particle Hilbert space H = Hmodes ⊗
Hinternal, where Hmodes represents the mode structure of the main text and Hinternal represents all additional

degrees of freedom. In order to correctly populate Fock space, one defines new, non-orthogonal, creation

and annihilation operators: [ai(φ), a†j(ψ)] = 〈φ | ψ〉δij , where |φ〉, |ψ〉 ∈ Hinternal and i and j label the

modes. Since these additional degrees of freedom are assumed to be untouched by the propagation through

the network, applying this to the HOM setup, results in

a†1(φ)→
(
b†1(φ) + b†2(φ)

)
/
√

2 , a†2(ψ)→
(
b†1(ψ)− b†2(ψ)

)
/
√

2 . (13)

When performing a measurement, one typically does not consider the internal degrees of freedom and,

therefore, the probability P1,1 to measure the particles in different modes is given by

P1,1 =
1

4

∑
k,l

∣∣∣〈Ω|b1(ηk)b2(ηl)
(
b†1(φ) + b†2(φ)

)(
b†1(ψ)− b†2(ψ)

)
|Ω〉
∣∣∣2 =

1

2

(
1− |〈φ | ψ〉|2

)
, (14)

where {ηi} form a basis ofHinternal. The result for distinguishable particles is recovered whenever |〈φ | ψ〉|2 =

0. On the other hand, when the particles cannot be distinguished by this internal degree of freedom, we

obtain the result for pure, indistinguishable bosons.

BOSON SAMPLING

Complexity is a widely used term, which is attributed somewhat different – community-dependent – flavours.

In the natural sciences, complexity is associated with chaos, disorder, pattern formation, and the (compu-

tational or experimental) overhead to fully characterise a complex system’s state. In computer sciences,

it is the complexity of algorithms which is assessed. Though rather distinct fields, the physics of complex

systems and computational complexity theory recently met in the Boson Sampling problem: It is shown

that sampling from the output probability distribution, as generated via complex transport (scattering) of

non-interacting bosons through a random medium, is computationally hard – i.e., a full characterization

of the output state requires an experimental overhead which increases exponentially with the system size.

Consequently, the efficient simulation of many-boson interference implies a collapse of the polynomial hi-

erarchy to the third level (150), what challenges many well established aspects of algorithmic complexity

theory. In turn, under the perspective of many-particle transport theory, BosonSampling sheds light on

rather fundamental aspects of the quantum statistical implications for many-particle dynamics.

In other words, the exhaustive quantitative characterization of |out〉 very quickly ex-

hausts any computational device, as well as a dedicated experimentalist, and thus ren-

ders a statistical treatment imperative, much as in the case of classical thermodynamics:

We need to identify statistically robust signatures of the many-particle transport, which

can be read off from experimental observables with a measurement overhead which scales

in a benign way with the size of the problem. Note that this also defines a somewhat
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Input Output

C
orrelators

U

Figure 5

Many-particle transport scenario across a random network represented by a unitary random
matrix U sampled over the Haar measure. Particles of variable quantum statistical nature –

distinguishable, fermionic, bosonic – are prepared in the input state |in〉, defined by (9), and
injected at the red input sites, with no more than one particle per site (to allow for a direct

comparison of fermionic and bosonic transport properties). Since the computational overhead may

grow exponentially with the number of particles and the size of the system, an exhaustive
characterization of the many-particle output state is in general prohibitive (see text). For a

statistical characterization, two-point correlation functions (18) between all pairs of distinct

output sites are sampled over, to build the C-data set, which then can be characterized by its
lower statistical moments (19).

paradigmatic incident of quantum simulation and of the associated certification problem

(153, 154, 155, 156, 157, 158, 159): A photonic circuit which implements U and prepares

|in〉 will produce output states which cannot be generated computationally, and, in this

sense, simulates a problem out of reach for computers. However, for the very same reason,

it is virtually impossible to certify that the device constructed by the experimentalist does

indeed implement U and operates on |in〉, at least if the only way of certification consisted

in the – experimental or computational – verification of the complete output state.

Depending on the unitary U to be implemented, and on the input state |in〉 to be

prepared, the certification problem can have different concretisations. If U exhibits some

symmetries, these in general (also see our earlier considerations in this review) must manifest

themselves in suitably chosen transport quantifiers. Furthermore, to fully characterize the

sample, a single input state will in general not suffice, due to the weights 〈Ej |in〉 (see (4)),
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HAAR MEASURE

Probability measures occur in many forms and with many structures, some more natural than others.

Perhaps the most natural of all is the uniform distribution that appoints the same weight to all elements

in the set under consideration. A type of sets which is often treated in measure theory and has particular

relevance in physics are compact topological groups. It can be shown (161) that, for any compact topological

group G, there exists a unique measure µ, called the Haar measure, with properties

µ(G) = 1, (15)

µ(O) > 0 for every nonempty open set O ⊂ G, (16)

µ(gM) = µ(Mg) = µ(M) for all g ∈ G and every measurable set M⊂ G. (17)

Due to the last property, this measure can be interpreted as the uniform distribution on such groups. In

quantum transport theory and quantum chaos, one often considers the group of all N ×N unitary matrices,

U(N), on which a Haar measure can be constructed. In Random Matrix Theory, the set of unitary matrices

equipped with its Haar measure is also referred to as the Circular Unitary Ensemble (122).

where |Ej〉 are the eigenvectors of U , which (implicitly) enter (10). Thereby, only that part

of the spectrum of U is probed which is selected by the local density of states |〈Ej |in〉|2.11

Consequently, one needs to seek certification on the basis of quantities which are obtained

by taking averages over the realization of U (and hence of U) or/and over |in〉.
In the following, we elaborate on the case of random U taken from the Haar measure,

such as to mimic a completely unstructured random network, and input states of type (9).

We seek to certify the specific dynamical signature of the injected particles’ quantum

statistics by characteristic interference structures in the many-body transmission signal.

As we saw above at the elementary example of the HOM set-up, the quantum statistical

nature impacts strongly already on the level of two-point correlation functions. While we

assume that M and N be significantly larger than two in our present case, we will indeed

build a statistical data set from two-point correlation functions evaluated on |out〉. Beyond

the intuition gained from HOM, another reason why this can be expected to bear a clear

signature of the interfering particles’ nature (with the interfering amplitudes defined by

the specific choice of U) is the different number of interfering many-particle amplitudes

for different particle species, as expressed by the above-mentioned, distinct mathematical

structures of the transition probabilities from |in〉 to |out〉: The number of interference

terms is largest in the bosonic case, and this should, in a sense to be quantified, produce

the “most structured” transmission signal. Our statistical quantity to sample is thus chosen

11Only if a “generic” input state, i.e. a state sufficiently different from an eigenstate of U and
not too close to the edge of the spectrum, has an essentially flat local density of states, under a
suitable average, a single input state will suffice. This condition is largely equivalent to requiring
that U be generated by a random Hamiltonian chosen from a random matrix ensemble, or that an
underlying classical phase space exhibit strictly hyperbolic structure. More recently, this property
is being re-discussed under the key word “eigenstate thermalization” (160).
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Figure 6

Statistical certification of the transmitted particles’ specific scattering dynamics, as determined by
the scattering matrix U and the particles’ quantum statistical nature. Quantifiers are the

normalised mean, NM, and the coefficient of variation, CV, of the C-data set generated by

sampling the correlation function Ci,j , see (18), over all output ports i 6= j of the network (see
Fig. 5), for N = 3 particles fed into an array of M = 13 input ports. The coloured scattered data

points result from direct numerical simulation, for one single random unitary and variations of the

input ports populated by the N -particle input state (9). Mean values thereof are indicated by the
open circles, which coincide with the analytical RMT prediction (153) (given by rather bulky

rational expressions in N and M). This latter agreement implies yet another confirmation of the
Bohigas-Giannoni-Schmidt conjecture.

to be the two-point correlator

Ci,j = 〈ninj〉 − 〈ni〉〈nj〉 , i 6= j ∈ [1;M ] , ni = b†i bi , (18)

to provide us with the C-data set. Given M , N , and a realization of U , (18) as well as its

lower statistical moments can be evaluated analytically, to finally obtain closed expressions

(slightly bulky, but trivially evaluable rational functions of N and M) for the normalized

mean NM, the coefficient of variation CV, and the skewness S of the C-data set, defined as

NM =
EU (C)M2

N
(19)

CV =

√
EU (C2)− EU (C)2

EU (C)
,

S =
EU (C3)− 3EU (C)EU (C2) + 2EU (C)3

(EU (C2)− EU (C)2)3/2
,

with EU the average over the unitary group under the Haar measure. Fig. 6 clearly demon-

strates, for N = 6, M = 13, respectively, that the different particle species are statistically

perfectly well discernable, and that the RMT prediction derived from (19) perfectly fits the

numerically generated data.

We thus succeeded to devise a set of statistical, easily computable and measurable quan-

tifiers which unambiguously certify the transmitted particle species – through the charac-

teristic features of many-particle interference signals generated by random unitaries (153).

When the underlying dynamics exhibits additional structure or symmetries, we expect cer-

tification to be eased (159), and thus have here sketched how to deal with some sort of
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worst case scenario. Blending structural and disorder features will be the next natural step

to further refine our understanding of the dynamical consequences of indistinguishability.

SUMMARY POINTS

1. Quantum transport on finite disordered networks is dominated by strong,

interference-induced fluctuations.

2. The statistics of characteristic transport coefficients can be controlled by imposing

coarse grained constraints, while maintaining disorder on the microscopic level.

By construction, this defines a robust, statistical control strategy for transport on

disordered networks.

3. The dynamics of multiple excitations on a network gives rise to characteristic

many-body interference effects (to be distinguished from simple bunching or anti-

bunching!), indicative of the quantum statistical nature of the interfering particles,

on the level of multi-point correlation functions on output.

4. A statistical analysis of the characteristic interference structures imprinted on low-

order correlation functions evaluated on the many-particle output state allows the

unambiguous distinction between fermionic, bosonic, and distinguishable particle

dynamics, with moderate experimental and computational overhead.

FUTURE ISSUES

1. Embedding finite disordered networks into superstructures as characteristic, e.g.,

of the photosynthetic apparatus of algae and plants or also of organic photovoltaic

devices, will allow to assess the potential advantage of quantum transport on mi-

croscopic scales for the overall functionality.

2. Experimental tools need to be developed which allow to select and possibly knock-

out specific coherent transition amplitudes,

3. Observables need to be defined which distinguish bunching effects from bona fide

bosonic many particle interference contributions.

4. Partial distinguishability (162, 163) of the particles can be accounted for by intro-

ducing an additional continuous degree of freedom which may convey Welcher Weg

information on the level of many-particle transition amplitudes. This will allow to

incorporate unavoidable experimental imperfections for boson sampling certifica-

tion schemes, but also opens novel perspectives for the decoherence theory of many

particle quantum systems.
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Krueger, Richard Cogdell, Bruno Robert, Tönu Pullerits, Harald Kauffmann, Dominique

Delande, Shaul Mukamel, Graham Fleming, Birgitta Whaley for many, and often nicely

engaged controversial debates on the possible role of quantum effects for biological func-

tionality. Furthermore, we would like to give credit to Juan-Diego Urbina, Jack Kuipers

and Klaus Richter for the fruitful cooperation on Boson Sampling and related issues. M.W.

and F.S. acknowledge financial support by the German National Academic Foundation.

References

1. Imry Y. 2009. Introduction to mesoscopic physics. Oxford: Oxford University Press

2. May V, Kühn O. 2011. Charge and energy transfer dynamics in molecular systems. Weinheim:

Wiley-VCH, 3rd ed.

3. Nitzan A. 2006. Chemical dynamics in condensed phases: relaxation, transfer and reactions in

condensed molecular systems. Oxford graduate texts. Oxford ; New York: Oxford University

Press

4. d’Arcy MB, Godun RM, Summy GS, Guarneri I, Wimberger S, et al. 2004. Phys. Rev. E

69:027201

5. Wimberger S, Guarneri I, Fishman S. 2004. Phys. Rev. Lett. 92:084102

6. Johnson TH, Clark SR, Jaksch D. 2014. EPJ Quantum Technol. 1:1–12

7. Schneider C, Porras D, Schaetz T. 2012. Rep. Prog. Phys. 75:024401

8. R. Feynman R. Leighton MS. 2013. The feynman lctures on physics. vol. III, Quantum Me-

chanics. California Institute of Technology

9. Englert BG. 2013. Eur. Phys. J. D 67:1–16

10. Albada MPV, Lagendijk A. 1985. Phys. Rev. Lett. 55:2692–2695

11. Anderson PW. 1958. Phys. Rev. 109:1492–1505

12. Casati G, Guarneri I, Shepelyansky D. 1988. IEEE Journal of Quantum Electronics 24:1420–

1444

13. Mishchenko MI. 1993. The Astrophysical Journal 411:351–361

14. Moore FL, Robinson JC, Bharucha C, Williams PE, Raizen MG. 1994. Phys. Rev. Lett.

73:2974–2977

15. Schelle A, Delande D, Buchleitner A. 2009. Phys. Rev. Lett. 102:183001

16. Ringot J, Szriftgiser P, Garreau JC, Delande D. 2000. Phys. Rev. Lett. 85:2741–2744
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