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Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable
quantum information protocols. We focus on mode-selective photon addition and subtraction as
experimentally promising processes to create multimode non-Gaussian states. Our approach is based
on correlation functions, as is common in quantum statistical mechanics and condensed matter physics,
mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the
subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate
entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition
for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an
experimentally generated multimode Gaussian state.
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Introduction.—Even though the first commercial imple-
mentations of genuine quantum technologies are lurking
around the corner [1–5], much remains uncertain about
the optimal platform for implementing quantum functions
[6–8]. However, it is clear that optics will play a major role
in real-world implementations of these technologies [6].
Optical setups have the major advantage [9] of being highly
robust against decoherence while also manifesting high
clock rates.
In an all-optical setting, there are various approaches to

quantum information protocols, grouped in two classes
according to the way information is encoded. Setups which
use a few photons, and therefore also rely on single-photon
detection to finally extract information, are referred to as
discrete variable approaches. On the other hand, the con-
tinuous variable (CV) regime [10] resorts to the quadratures
of the electromagnetic field, ultimately requiring a homo-
dyne detection scheme [11]. The major advantage of the
latter is the deterministic generation of quantum resources,
e.g., entanglement between up to millions of modes [12].
Such multimode entangled states, however, remain
Gaussian, which implies that their CV properties can be
simulated using classical computational resources [13,14].
Hence, if a quantum information protocol is to manifest a
quantum advantage, it requires non-Gaussian operations.
Here, we focus on two specific non-Gaussian operations:

photon addition and subtraction [15–18]. In the single-
mode case, these processes are described and understood in
a reasonably straightforward way (see, e.g., [19]). Even
though multimode scenarios prove to be much more
challenging [20], mode-selective coherent photon subtrac-
tion is gradually coming within range [21]. In two-mode
setups, these states have proven their potential, e.g., in the
context of entanglement distillation [22–24]. However, the
quantum properties of general multimode photon-added
and -subtracted states remain unclear.

In this Letter, we present an exact and elegant expression
for Wigner functions of the state obtained from the addition
or subtraction of a single photon to a general multimode
Gaussian state. We derive the conditions for achieving
negativity in this Wigner function, which are needed for the
states to potentially manifest a quantum advantage [25].
Moreover, we explain how the multiple modes in an
experimental setup [26] can be entangled through mode-
selective coherent photon addition or subtraction. For pure
states, this entanglement is inherent in the sense that it
cannot be destroyed by passive linear optics.
Optical phase space.—The modal structure of light is

essential throughout this work. In classical optics, a mode
uðr; tÞ is simply a normalized solution to Maxwell’s
equations. Multimode light is thus a sum of electric fields
with complex amplitudes,

P
jðxj þ ipjÞujðr; tÞ, associated

with a specific mode basis fujðr; tÞg. For each mode in
this decomposition, the real and imaginary part of the
electric field are, respectively, the amplitude and phase
quadratures. Thus, light comprised ofmmodes is described
by 2m quadratures which are represented by a vector
f ¼ ðx1;…; xm; p1;…; pmÞt ∈ R2m.
The same light can be represented in different mode bases,

which boils down to changing the basis ofR2m. This implies
that any normalized vector f ∈ N ðR2mÞ can be associated
with a single mode [27]. However, the fact that quadratures
always come in pairs induces additional structure on our
space. This is described by a matrix J that connects phase to
amplitude quadratures and induces a symplectic structure.
For this matrix, we have that J2 ¼ −1 and ðJf1; Jf2Þ ¼
ðf1; f2Þ, for all f1, f2 ∈ N ðR2mÞ, where (.,.) denotes the
inner product inR2m. Becauseof this symplectic structure,we
now refer toR2m as the optical phase space. Furthermore, the
space generated by f ∈ N ðR2mÞ, and its symplectic partner
Jf, is itself a phase space associated with a single mode.
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The optical phase space is a basic structure from classical
optics which must be quantized to study problems in
quantum optics. To do so, we associate a quadrature
operator QðfÞ to every f ∈ N ðR2mÞ. To be compatible
with different mode bases, Qðx1f1 þ x2f2Þ ¼ x1Qðf1Þ þ
x2Qðf2Þ must hold for any x1, x2 ∈ R and f1, f2 ∈
N ðR2mÞ such that x21 þ x22 ¼ 1. In addition, they also obey
the canonical commutation relations [28,29]:

½Qðf1Þ; Qðf2Þ� ¼ −2iðf1; Jf2Þ; ð1Þ
which are scaled to set the shot noise to one.Moreover, these
quadrature operators are narrowly connected to the creation
and annihilation operators a†ðgÞ¼½QðgÞ−iQðJgÞ�=2 and
aðgÞ ¼ ½QðgÞ þ iQðJgÞ�=2, respectively. Note that g ∈
N ðR2mÞ denotes the mode in which a photon will be added
or subtracted. One directly sees that aðJgÞ ¼ iaðgÞ, relating
the action of photon creation or annihilation on different
quadratures of a two-dimensional phase space to different
phases.
Truncated correlations.—We use the density matrix ρ to

represent the quantum state and deduce the statistics of
quadrature measurements. This Letter focuses on multi-
mode Gaussian states ρG, with expectation values denoted
by h:iG, which are de-Gaussified through the mode-
selective addition or subtraction of a photon. These
procedures induce new states given by

ρþ ¼ a†ðgÞρGaðgÞ
hn̂ðgÞiG þ 1

and ρ− ¼ aðgÞρGa†ðgÞ
hn̂ðgÞiG

; ð2Þ

for addition and subtraction, respectively. The latter process
has already been implemented experimentally [21] follow-
ing the recipe of Ref. [20]. In line with these experiments,
we will first assume that hQðfÞiG ¼ 0, such that the initial
Gaussian state is not displaced. The remainder of this Letter
will deal with the characterization of these quantum states.
Our initial tool to do so is the truncated correlation
function, recursively defined as

hQðf1Þ…QðfnÞiT ¼ trfρQðf1Þ…QðfnÞg
−
X
P∈P

Y
I∈P

hQðfI1Þ…QðfIrÞiT; ð3Þ

where we sum over the set P of all possible partitions P of
the set f1;…; ng. In short, the n-point truncated correlation
subtracts all possible factorizations of the total correlation.
Hence, the truncated correlation functions are a multimode
generalization of cumulants. These functions are the perfect
tools to characterize Gaussian states, since they have the
property that hQðf1Þ…QðfnÞiT ¼ 0 for all n > 2 and all
f1;…; fn ∈ N ðR2mÞ. On the other hand, this implies that
non-Gaussian states must have nonvanishing truncated
correlations of higher orders.
Through the linearity of the expectation value, we first

calculate that the two-point correlation of photon-added
(“þ”) and -subtracted (“−”) states is given by

hQðf1ÞQðf2Þi� ¼ hQðf1ÞQðf2ÞiG þ ðf1; A�
g f2Þ; ð4Þ

where hQðf1ÞQðf2ÞiG¼ðf1;Vf2Þ− iðf1;Jf2Þ, with V the
Gaussian state’s covariance matrix. The imaginary part of
hQðf1ÞQðf2ÞiG is directly inherited from (1), whereas the
final term in (4) is a consequence of the photon-subtraction
process. A straightforward calculation identifies

A�
g ¼ 2

ðV � 1ÞðPg þ PJgÞðV � 1Þ
trfðV � 1ÞðPg þ PJgÞg

; ð5Þ

where Pg is the projector on g ∈ N ðR2mÞ, such that Pg þ
PJg projects on the two-dimensional phase space associated
with mode g. However, the two-point correlations (4) do
not offer direct insight in the non-Gaussian properties of
the state. Measuring higher-order truncated correlations
immediately shows a more refined perspective. Indeed,
after some combinatorics, we obtain [30] that, for all k > 1,

hQðf1Þ…Qðf2k−1Þi�T ¼ 0; ð6Þ
hQðf1Þ…Qðf2kÞi�T ¼ ð−1Þk−1ðk − 1Þ!

×
X

P∈Pð2Þ

Y
I∈P

ðfI1 ; A�
g fI2Þ; ð7Þ

where Pð2Þ is the set of all pair partitions [31]. The
prevalence of these correlations is immediately the first
profoundly non-Gaussian characteristic of these single-
photon-added and -subtracted multimode states.
Wigner function.—While the truncated correlations

themselves may provide good signatures of non-
Gaussianity, they do not directly allow us to extract quantum
features such as negativity of theWigner function. However,
they are directly connected to the Wigner function via the
characteristic function χðαÞ ¼ trðeiQðαÞρ�Þ, for any point
α ∈ R2m in phase space [32]. It can be shown [29] that this
function can be written in terms of the cumulants:

χðαÞ ¼ exp

�X∞
n¼1

in

n!
hQðαÞniT

�
: ð8Þ

We then combine (8) with (6) to obtain the Wigner function
as the Fourier transform of χ, which leads to a particularly
elegant expression, and the key result of this Letter (see [30]
for technical details):

W�ðβÞ¼1

2
½ðβ;V−1A�

g V−1βÞ− trðV−1A�
g Þþ2�W0ðβÞ; ð9Þ

where β ∈ R2m can be any point in the optical phase
space. W0ðβÞ¼ð2πÞ−mðdetVÞ−1=2exp½−ðβ;V−1βÞ=2� is the
initial Gaussian state’s Wigner function.
Entanglement.—With the Wigner function (9), we have

the ideal tool at hand to study the quantum properties of
multimode photon-added and -subtracted states. First, we
use it to investigate their separability under passive linear
optics transformations. We will refer to a state as passively
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separable whenever we can find a mode basis where the
state is fully separable, i.e., where the Wigner function can
be written as

WðβÞ¼
Z

dλpðλÞWð1Þ
λ ðβð1Þx ;βð1Þp Þ…WðmÞ

λ ðβðmÞ
x ;βðmÞ

p Þ; ð10Þ

with pðλÞ a probability distribution and λ a way of labeling
states. The βðjÞq are the coordinates of the vector β in the
symplectic basis where the state is separable. If no such
symplectic basis exists, the state can never be rendered
separable by passive linear optics, and we refer to it as
inherently entangled.
We approach this question, starting from the initial

Gaussian state ρG, which generally is mixed, characterized
by the covariance matrix V. This implies [33] natural
decompositions of the form V ¼ Vs þ Vc, with Vc and Vs
interpreted as covariance matrices: Vs is associated with a
pure squeezed vacuum ρs, to which we add classical
Gaussian noise given by Vc. There are many possible
choices for such Vs and Vc, which all allow for a rewriting
of the Gaussian state in the form

ρG ¼
Z
R2m

d2mξDðξÞρsD†ðξÞ exp ð−
ðξ;V−1

c ξÞ
2

Þ
ð2πÞm ffiffiffiffiffiffiffiffiffiffiffiffi

detVc
p ; ð11Þ

where DðξÞ ¼ exp½iQðJξÞ=2� is the displacement operator.
When we insert (11) in (2), we can now rewrite the photon-
added or -subtracted Gaussian mixed state as a statistical
mixture of photon-added or -subtracted displaced Gaussian
pure states. After a cumbersome calculation invoking the
commutation relations between creation, annihilation, and
displacement operators, we find the following convex
decomposition of the Wigner function (9):

W�ðβÞ ¼
Z
R2m

d2mξW�
ξ ðβÞp�

c ðξÞ; ð12Þ

where

p�
c ðξÞ ¼

tr½ðVsþ∥ξ∥
2

Pξ � 1ÞðPg þ PJgÞ�e−
ðξ;V−1c ξÞ

2

tr½ðV � 1ÞðPg þ PJgÞ�ð2πÞm
ffiffiffiffiffiffiffiffiffiffiffiffi
detVc

p ð13Þ

is a classical probability distribution. Indeed, it is straight-
forwardly verified that it is positive and normalized. In
addition, the Wigner function for a displaced photon-added
(þ) or -subtracted state (−) is found to be equal to [34]

W�
ξ ðβÞ ¼

Wsðβ − ξÞ
tr½ðVsþ∥ξ∥

2

Pξ � 1ÞðPg þ PJgÞ�

× f∥ðPg þ PJgÞð1� V−1
s Þðβ − ξÞ∥2

þ 2(ξ; ðPg þ PJgÞð1� V−1
s Þðβ − ξÞ)

þ tr½ðPg þ PJgÞð∥ξ∥
2

Pξ − V−1
s ∓ 1Þ�g: ð14Þ

Ws denotes the Wigner function of the squeezed vacuum
state with covariance matrix Vs. Because W�

ξ ðβÞ is the
Wigner function for a pure state, passive separability
follows from the existence of a mode basis where
W�

ξ ðβÞ is factorized.
Since W�

ξ ðβÞ represents the initial Gaussian state multi-
plied by a polynomial, it can be factorized only in the basis
where WsðβÞ is factorized. The polynomial is fully gov-
erned by the vector ðPg þ PJgÞð1� V−1

s Þðβ − ξÞ, which is
contained in the two-dimensional phase space associated
with the addition or subtraction mode. Hence, W�

ξ ðβÞ
factorizes if and only if the photon is added or subtracted
to one of the modes that factorizes WsðβÞ. In other words,
when we consider a pure Gaussian state in the mode basis
where it is separable, we can induce entanglement by
subtracting (or adding) a photon in a superposition of these
modes. Moreover, it is impossible to undo the induced
entanglement by passive linear optics. This induced entan-
glement is thus of a different nature than Gaussian
entanglement and is potentially important for quantum
information protocols.
Furthermore, because (12) is valid for every possible

choice of Vs, we obtain that the state is passively separable
whenever the subtraction or addition takes place in a mode
which is part of a mode basis for which the initial Gaussian
state is separable. For mixed initial states, it is unclear that
subtraction or addition in a mode which is not part of such a
mode basis automatically leads to inherent entanglement,
because also convex decompositions which are not of the
form (12) must be considered. Note that alternative methods
exist to assess the entanglement of general CV states
[35,36]. However, these methods are not appropriate to
gain an analytical understanding of a whole class of states.
To illustrate the pure state result, we resort to an

entanglement measure which is easily calculated from
the Wigner function, the purity of a reduced state [37].
We study the entangling potential of photon subtraction and
addition from a pure Gaussian state derived from an
experimentally generated 16-mode covariance matrix
Vexp [26]. We use the Williamson decomposition to
separate Vexp into a pure multimode squeezed state Vp

exp

and thermal noise and ignore this thermal contribution [38].
The squeezed mode basis of Vp

exp is referred to as the basis
of supermodes. The single photon is added or subtracted in
a random superposition of supermodes characterized by a
random g ∈ N ðR2mÞ.
In Fig. 1, we investigate the entanglement of mode g to

the rest of the system. We obtain the reduced state’s Wigner
function W�

ðgÞðβ0Þ (where β0 ∈ spanfg; Jgg) by integrating

out all modes but the one associated with g. We then find
the purity μ by evaluating [37]

μ ¼ 4π

Z
R2

d2β0jW�
ðgÞðβ0Þj2: ð15Þ

PRL 119, 183601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 NOVEMBER 2017

183601-3



The smaller the value of μ, the more strongly the mode g is
entangled to the remainder of the system. However,
because we consider the entanglement of a superposition
of supermodes to the remainder of the system, the mode g
will already be entangled in the initial Gaussian state.
Therefore, we also evaluate the purity μ0 obtained when the
initial Gaussian stateW0ðβÞ is reduced to mode g. We see in
Fig. 1 that both the addition and subtraction of a photon
lower the purity of the reduced state, hence increasing the
entanglement between the mode of subtraction or addition
and the other 15 modes, a multimode generalization of
what was observed for two modes [23]. Importantly, it is
shown that photon subtraction typically leads to lower
purities and thus distills more entanglement, which is in
agreement with other recent work [39].
Wigner function negativity.—Entanglement alone is,

however, insufficient to reach a potential quantum advan-
tage; we also require Wigner functions which are negative
for certain regions of phase space [25]. In pursuit of this
goal, it is directly seen that the Wigner function (9)
becomes negative if (and only if) ðβ; V−1A�

g V−1βÞ −
trðV−1A�

g Þ þ 2 < 0 for some values of β. Because
ðβ; V−1A�

g V−1βÞ ≥ 0, we can derive a particularly elegant
necessary and sufficient condition for the existence of
negative values of the Wigner function:

ðg; V−1gÞ þ ðJg; V−1JgÞ > 2 for subtraction;

ðg; V−1gÞ þ ðJg; V−1JgÞ > −2 for addition: ð16Þ

Through the combination of condition (16) with (5), we
obtain a predictive tool that can be used to determine to
(from) which modes g ∈ N ðR2mÞ a photon can be added

(subtracted) to render the Wigner function negative. Note,
moreover, that inequality (16) for photon addition always
holds, implying that the Wigner functions of a single-
photon-added state is always negative.
We can now study the condition (16) for the exper-

imental state, characterized by Vexp in the case of photon
subtraction, where the Wigner function is not guaranteed to
be negative. In Fig. 2, we subtract a single photon from a
supermode, which leads to negativity only if the super-
mode is sufficiently squeezed (this is the case for merely
three modes). Nevertheless, Fig. 3 shows that subtraction
from a coherent superposition of supermodes has an
advantage regarding the state’s negativity. For 54% of the
randomly chosen superpositions, i.e., random choices of
g ∈ N ðR2mÞ, the Wigner function has a negative region.
This underlines the potential of mode-selective photon
subtraction to generate states with both a negative Wigner
function and inherent entanglement.

FIG. 1. Purities (15) μ of Wigner functions for the reduced
state, with all modes but mode g, in which addition or subtraction
takes place, integrated out, compared to purities μ0 of the same
mode’s reduced state before photon addition or subtraction (i.e.,
μ0 is obtained from the initial pure Gaussian state). Each point
is a different realization of a random choice for g ∈ N ðR2mÞ,
generated by choosing components from a standard normal
distribution and subsequently normalizing g. The red line
indicates the cases where μ ¼ μ0. Lower purities imply higher
entanglement.

Negative Wigner function

FIG. 2. Test of negativity condition (16) for an experimentally
obtained [26] Gaussian state, with simulated photon subtraction
in a supermode (points), as obtained through the Bloch-Messiah
decomposition. For points falling in the red zone, photon
subtraction in the associated supermode (see the main text) leads
to a negative Wigner function. The squeezing of the supermodes
is indicated on the horizontal axis.
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FIG. 3. Test of negativity condition (16) for an experimentally
obtained [26] Gaussian state, with simulated photon subtraction
in a random superposition of supermodes. Realizations falling in
the red zone (≈54% of the realizations) have negative Wigner
functions.
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Conclusions.—We obtained the Wigner function (9)
which results from the mode-selective, pure addition or
subtraction of a single photon to a nondisplaced Gaussian
state by exploiting truncated correlations (6).We showed that
subtraction and addition in a mode for which the initial
GaussianWigner function takes the form (10) leaves the state
passively separable; i.e., any entanglement can be undone by
passive linear optics. For a pure state, subtraction and addition
of a photon in any other modes leads to inherent entangle-
ment. It remains an open question whether this result can be
generalized tomixed states.Moreover,weused the form(9) to
derive a practical witness (16) to predict whether the sub-
traction process induces negativity in the Wigner function
(see also Figs. 2 and 3). Particularly relevant to current
experimental progress is our conclusion that subtraction from
a superposition of supermodes can produce inherently
entangled states with nonpositive Wigner functions, thus
paving the road to quantum supremacy applications.
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