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CONSTRUCTION OF SET-VALUED DUAL PROCESSES ON MANIFOLDS

MARC ARNAUDON, KOLEHE COULIBALY-PASQUIER, AND LAURENT MICLO

ABSTRACT. The purpose of this paper is to construct a Brownian motion X := (X¢)¢>0
taking values in a Riemannian manifold M, together with a compact valued process D :=
(D¢)¢=0 such that, at least for small enough .#P-stopping time 7 > 0 and conditioned
to ZP, the law of X is the normalized Lebesgue measure on D. This intertwining
result is a generalization of Pitman theorem. We first construct regular intertwined pro-
cesses related to Stokes’ theorem. Then using several limiting procedures we construct
synchronous intertwined, free intertwined, mirror intertwined processes. The local times
of the Brownian motion on the (morphological) skeleton or the boundary of D plays an
important role. Several example with moving intervals, discs, annulus, symmetric convex
sets are investigated.

KEYWORDS. Brownian motions on Riemannian manifolds, intertwining relations, set-
valued dual processes, couplings of primal and dual processes, stochastic mean curvature
evolutions, boundary and skeleton local times, generalized Pitman theorem.

MSC2010 primary: 60J60, secondary: 60J65, 60H10, 58J65, 53C44, 60J55, 35K93.

1. INTRODUCTION AND MAIN RESULTS

Let M be a d-dimensional complete Riemannian manifold. We fix a point o € M for
convenience. Denote respectively by p, 1 and y, the Riemannian distance, the Lebesgue
measure on M and the corresponding (d — 1)-Hausdorff measure. The main objective of
this paper is to construct intertwined processes and to solve Conjecture 6 in [6] in the case
of Brownian motion (X );>¢ and stochastic modified mean curvature flow (D;)¢>o. This
conjecture says that an intertwined construction in the sense of Definition 1.1 is always
possible.

Definition 1.1. We say that a Brownian motion X = (X})¢>¢ in M and a Markov process
D = (Dy)t=0, with values in subsets of M and continuous with respect to the Hausdorff
topology, are T-intertwined where 7 is a positive stopping time in the filtration .# P of
D if for all bounded .# P-stopping time 7’ smaller than 7, conditioned on .#2, X, has
uniform law in D,/ (and in particular X,/ € D.). We say that X and D are intertwined
if they are 7-intertwined, 7 being the lifetime of (X, D), assumed to be a.s. positive and
Z P _measurable.

This is a generic definition, below stronger topologies on subsets of M will be consid-
ered.

Our main results are Theorems 2.8, 3.5 and 4.1 presenting such joint constructions of
the primal Brownian motion (X})¢>0 and the dual domain-valued (D;);>¢ processes. The
coupling of Theorem 2.8 consists in the infinite-dimensional stochastic differential equa-
tion (2.10), based on a function f : (z,D) — f(x, D) which is a deformation of the
signed distance from z € M to the boundary of the domain D (see Assumption (2.2) for
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the precise requirements). Theorem 3.5 is obtained by specifying some approximating
functions f. Given the trajectory (X;):>o of the Brownian motion, we construct the do-
main evolution (D;);>¢ using the local time of (X}):>¢ on the skeletons of (D;);>0 and
the mean curvatures of the normal foliations of these domains (see (3.30)). Other approx-
imating functions f lead to Theorem 4.1, where the prominent role is played by the local
time at the boundary. This situation is in some sense opposite to the previous one, since
the driving Brownian motion is now independent from (X;);>o, while it was as correlated
as it can be in Theorem 3.5. These theoretical results are illustrated by the fundamental ex-
amples of Section 5. First we recover the intertwining relation between the real Brownian
motion and the three-dimensional Bessel process. Next we deal with rotationally sym-
metric manifolds. Finally we present the application of our results to symmetric convex
domains in the plane, even if the detailed proofs are deferred to a forthcoming paper.

A first motivation for such constructions comes from the quantitative investigation of
convergence to equilibrium of diffusions on manifold. Assume that X and D are 7-
intertwined, where 7 is the hitting time by D of the whole state space M. If furthermore
T is finite (typically true when M is compact), then the Riemannian measure can be nor-
malized into a probability and 7 is a strong stationary time for the Brownian motion X,
i.e. a stopping time such that 7 and X, are independent and X is uniformly distributed.
In this situation, the tail distributions of 7 provide quantitative estimates for the speed of
convergence of the Brownian motion toward equilibrium, in the separation sense, see Di-
aconis and Fill [7] for the general description of this approach, in the case of finite state
space. This probabilistic method is an alternative to the functional inequality approach, see
e.g. the book [3] of Bakry, Gentil and Ledoux, and is based on other geometric considera-
tions, as we will see in the sequel. Other motivations for the couplings of primal and dual
processes in the context of diffusions can be found in Machida [11] and [14].

2. INTERTWINED DUAL PROCESSES: EXISTENCE IN CONNECTION WITH STOKE’S
FORMULA

In this section we make a construction of intertwined processes X and D based on
the Stokes’ Formula (2.1) below. Consider a relatively compact domain D in M with C?
boundary. Let f : D — R a C? function such that V f|5p = NP the normal inward vector
on boundary. Then by Stoke’s formula, for any C? function g : D — R,

) — dy = Vf,—NPydu = Afd Vg,V du.
(2.1) LDgg LD9< fs )du Lg fu+fD< 9,V [)du

For a € (0,1), denote by 22+ the set of relatively compact connected open subsets D
of M with C?*® boundary.

Definition 2.1. For a given a € (0,1), € > 0, we denote by F* the set of D € #*+
such that
e D c B(o, R) the Riemannian ball centered at o with radius R = 1/¢;
e p(0D,S(D)) = e, where S = S(D) is the skeleton of D (see appendix A for
details);
e p(0D,S"(D)) = ¢, where S°"*(D) is the outer skeleton of D, i.e. the skeleton
of (D)°.
On F*f, (5t)te[0775] will be a diffusion associated to the generator Z defined in (2.12)
and 7. € (0, +o0] will be the exiting time from F . We extend the trajectory (ﬁt)te[oyfg]

by taking D, = 57.5 for any t > 7.. It amounts to imposing that .Z vanishes outside
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F @&, It is possible to define in the same way (lN)t)te[O’T) on D2+ (which coincides with
Ues0F %), where T is the exiting time from D2+, But it will be more convenient for
us to work with a process with an infinite lifetime (to be able to apply Proposition D.3 in
Appendix D) and whose set of values has a boundary which is well-separated from the
skeleton.

Let 3 € {0,a}. For Dy € D**# and § > 0 small enough, a -neighborhood of D is
defined as follow:
V(?%(Do) := {int(exp,p, (), f € C**P(0Dy), Iflc2+8apg) < 6},
where for f € C2*#(0Dy)

€XPsDy (f) = {expx(f(x)NDo (x)),l' € aD()}

(exp being the exponential map in M), and int(exp,p, (f)) is the interior of the hyper-
surface exp,p, (f), oriented by the orientation of Dy. Let (dDg) > 0 be the radius of
the maximal tubular neighborhood of 0Dy. Notice that 6 < 7(0Dy) garantees that all
elements of V?Jrﬁ (Dy) are regular deformations of Dy. Also notice that all elements D of
F*< have (D) > e.

We identify two domains D1, Dy € V§+ﬁ (Do) with the functions f1, fo € C?*8(0Dy)
such that D; = int{exp,p (f1)} and Dy = int{exp,p, (f2)} and we define a local dis-
tance

(2.2) dg.po (D1, D2) := | f1 = fal c2+8(aD0)-
Assumption 2.2.
e The function
fiMxF** >R
(z,D) — f(z,D) = f7(x)
is a C?* function in the two variables (the differential in D is in the sense of
Fréchet with respect to the above local Banach structure) satisfying
@3) [vsP], <1
and the functions f coincide to the signed distance to the boundary p:{D (positive
inside D) in a neighbourhood of dD. The functions f” have bounded Hessian,
uniformly in D € F*¢. Furthermore, we assume that the coefficients of the a-

Holderianity of Hess f? are uniformly bounded over F:€.
e There exists a positive integer m and a C'* map

Oc: M x F¥* > T(TM ® (R™)*)
(x,D) — o.(x,D) = o (x) e LR™, T, M)

where T'(TM ® (R™)*) is the set of sections over M of TM ® (R™)* and
L(R™, T, M) is the set of linear maps from R™ to T, M, such that the linear

map
O'D(.Z‘)ZRXRmHTxM
2.4) D D
(wo, w) = woV = (x) + o, (x)(w)

satisfies

(2.5) Vze D, oP(cP)*(x) = Idr, ur.
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Remark 2.3. The first condition of Assumption 2.2 implies that
V§Plop = (Voip)lop(= NP)  and
AfPlop = (Ap3p)lop(= —h").

where h” stands for the mean curvature on ¢D. It also implies that the functions f
are uniformly Lipschitz and have uniformly bounded Laplacian. Also, for fixed x € dD,
varying D successively along a field K normal to the boundary 0D and along N for the
second derivative:

(2.6)

(Vf(x,-), K)(x) = =(N" (), K(z)) and
Vdf(z,-) (NP, NP) =0

where Vdf (z, -) is the Hessian of f in the second variable.
The second condition of Assumption 2.2 implies that for all v € T,, M,

2.7)

(2.8) Jul> = Cu, VP (2))* + >, 08 () (e3))?
i=1
forey,...,e,, an orthonormal basis of R™. In particular, if z € 0D, takingu = VP (z) =
NP (x), we get since [NP(z)| = 1:
(2.9) 0=(VfPx),o(x)(es)), i=1,...m.

Proposition 2.4. Assumption 2.2 can always be realized, with any « € (0,1) and ¢ > 0.

Proof. We begin with remarking that for D € F*=, p(dD,S(D)) = e. In particular,
the distance to 0D is C?** on D, := {z € D, p(x,0D) < €}. Let h be a smooth
nondecreasing function from [0, o) to R, such that h.(r) = r for r € [0,e/2], h.(r) =
(3/4)e for r > ¢ and |hL| < 1. Then fP := h. o pJ}, satisfies all the requirements
of the first condition of Assumption 2.2. Then for constructing o2 we proceed as in [2],
Proposition 3.2 taking o; = V fP. The wanted regularity in D is easily checked. [

Let W; and W™ two independent Brownian motions with values respectively in R and
R™.
The equation we are interested in writes in Itd form for all y € 0Dy:
dXt = (Vth(Xt) th + O'CDt (Xt) thm)
doDi(y) = NP:(y) (AW, + (307 (y) + AP (Xy)) dt)

started at a relatively compact domain Dy with C?T“ boundary and X such that £ (X)) =
% (Dy), where % (Do) is the uniform probability measure on Dy. In fact, as in Defini-
tion 2.1, the evolution equation (2.10) is implicitly considered only up to the exit time 7.
of F* for some fixed a € (0,1), € > 0, after which the process is assumed not to move.

In (2.10), the processes (D;)+>0 and (X¢):>o are fully interacting, since the evolution of
one of them depends on the other one. In particular, they are not Markovian by themselves
in general.

Another subset-valued process (ﬁt)t>0 will be interesting for our purposes. It is solu-
tion to the evolution equation

(2.10)

~ ~ (1 5 2Dt (3D ~
(2.11) doD,(y) = NP (y) (th + <2th (y) — m) dt> , VYyeadD,
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where Wt is a real-valued BrowNnian motion.

Notice that the equation for D; does no longer depend of X4, so if the solution is unique,
(5t)t>(] will be Markovian. It is Equation (51) in [6]. Theorem 39 of [6] proves local
existence of a solution.

Theorem 2.5. Fix o € (0,1) and € > 0. Then (2.11) admits a unique global solution. In
particular the process (Dy)i>o is Markovian.

Proof. The proof is a consequence of Theorem 9 in [6]. It can be found in Appendix C. [J

To describe the generator .Z of (5:&)15;0 we must introduce the following notations. For
any smooth function k on M, consider the mapping F, on D%+ by

¥ D e D**, Fy(D) = f kdu
D
For any k, g € C*(M) and any D € D?*<, define
oD
07 _ opak770@D) 1 5p D
@1y TlREID) = | kdu| gde
oD oD

Next consider 2 the algebra consisting of the functionals of the form § := §(F,, ..., F%, ),
where n € Z, k1,....,kn € C*(M) and f : R — R is a C* mapping, with R an open
subset of R™ containing the image of D?** by (F},, ..., F, ). For such a functional g,
define

~

(2.14) ZI5) = > 0§(Fry, - Fi, ) L[ Fr,]
=1

n
+ > 0f(Frys ooy Fi )T [ Fiy, Fi ]
j,le[1,n]

To two elements of A, § = f(Fy,, ..., Fk,) and & := g(Fy,, ..., F,, ), we also associate

Q2.15) T3[5,6] = > Of(Frys oo Fi,)050(Fyy, o Fy, )T [ Fr, Fy |
le[n].je[m]

Remark 2.6. To see that the above definitions are non-ambiguous, since a priori they
could depend on the writing of § € 2l under the form f(Fy, , ..., F),, ) and similarly for &,
see Remark 2 of [6]. More generally, the forms of (2.14) and (2.15) are consequences of
the diffusion feature of ? , for more on the subject, see e.g. the book of Bakry, Gentil and
Ledoux [3].

Remark 2.7. In the above considerations, .:2\5 was defined on D2, but from now on, 55
will stand for the restriction of this generator to F ¢ and will be zero on D2+“\]~' € in
accordance with Definition 2.1. Similarly, all stochastic differential equations will be valid
only up to the stopping time ..

The interest of Assumption 2.2 comes from the following result:

Theorem 2.8. Let (v, D) — fP(z) and (z, D) — oP(x) satisfy Assumption 2.2. Then

equation (2.10) has a solution (X, Dy),, started at Dy € ¢, Xo ~ % (Dy). More-
over the processes (Xi),~ and (Dy),~ are T.-intertwined.
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Proof. We prove here the existence of solution to equation (2.10). The intertwining will
be a consequence of Proposition 2.11 below.

We begin to prove the existence of a diffusion with modified drift, and then we will get
the result by change of probability. The modified equation writes

= oDy
doDy(y) = NPe(y) (W, + (3hP(y) — ER ) at)
_ D, T (u®Pt(oDy) D,
(2.16) dX; = (Vf (Xt) [th (7M(Dt) +Af (Xt)) dt]
+aé)t(Xt)thm>

for 171\/,5 and W™ independent Brownian motions. Notice that the first equation is the same
as (2.11). Thus due to Assumption 2.5, (D;):> is a diffusion process with generator .Z.

Then given Dy, the equation for X,
u’P*(0Dy)

dbg AR )

dX, = (v P(Xy) [th - <
(2.17)

+ ol (Xy) dW;”)

can also be solved, since the coefficients in front of th and dW;* are Lipschitz,
oP(oP)*(x) = Idr, pr and AfP is bounded and uniformly Holder continuous (due to
Assumption 2.2). Notice that X; remains in Dy, since when X; € 0D;, we have, us-
ing (2.9) which yields on boundary (NPt (X;), o Pt (X;)dW™) = 0,

d(pfp, (X))

1
(2.18) = (Vplp,, dXe) = hP(Xy) dt = (dODy(X,), NP (X))

= (NP (X,),dX;) — %th (Xy) dt — {doDy(Xy), NP (X,)) = 0.
where we used (2.16) and (2.6). We also have no covariation since the martingale part of
ddDy acts on the normal flow only, and any normal flow
rw D(r):={xe M, pt(z) =1}
satisfies p; (. (€) = pap ) () — 1 for z € D(0) and |r| small, (see Appendix A).

Once we have a solution to (2.16), make by Girsanov theorem a change of probability
such that (W, W/™) is a Brownian motion where

= (" (p"P(oD
(2.19) Wy = Wt_J (M—I—AfDS(XS)) ds.
0 w(Ds)
We get a solution to (2.10) in the new probability. (]
Proposition 2.9. Let D; satisfy
1
(2.20) doDy(y) = NPt (y) <th + (2th (y) + bt> dt> , Yye oD,
for some Brownian motion Wy and some adapted locally bounded real-valued process by.
D,
Let iy = th be the Lebesgue measure on Dy and ji; = ﬁD‘ =U (D) = K . Denote

(D)
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oD,

by i, = u°P* the Lebesgue measure on 0Dy and i, = p°Pt = ji(D : Lotk be a smooth

p{Le
Sfunction of M. Then

1
and
_ - - B 1

(2.22) diun(k) = (=1,(k) + (k)2 (0Dy)) Wy — 5, (Cdk, NP*)) dt

+ (1, (0D¢) + be) (=i (k) + e (k) (0ODy)) dt
In particular, if by = —[i,(0D;) we get
(2.23) dite(k) = (= (k) + i (k) 12, (0Dy)) AW, — %Qt ((dk, NP)) .

Proof. For f a smooth function on M and r € R sufficiently close to 0 so that 0D(r)
(defined in (A.3) and (A.4)) is a smooth manifold without boundary, let

(2.24) F(rk) = f kdp.
D(r)

We have

(2.25) F(r,k) = f

oD

(J " b e B v ds) uw

with 7(y) the hitting time of S(D) by the inward normal flow started at y (defined in (A.1))
and ¢ (s)(y) = ¥(0,s)(y) = exp,(sN,) defined in (A.5). With this formulation we can
differentiate with respect to r, to obtain

(2.26) F(r,k) = — LD E(a(r, y))e*&’; hPt (3(s)(y) ds wu(dy).

Differentiating again we get

e B =~ [ a(r0) — (@G )) e 50 ),

In particular,
(2.28) F'(0,k) = —u(k) and F"(0,k) = u(kh — (dk, N).

This allows us to compute

(2.29) A(F(W,, k) = F'(Wy, k) dW, + %F”(Wt, k) dt

and then, since dW; and (doD;, NP+)(-) differ only by a finite variation process

Q30 dyuk) = [ —h)AID(), NP+ 5 (60—l NP) () i)
This yields

Q3D (k) = [ k) (W= bed) = Sk NP ()

which gives (2.21). In particular, taking f = 1 we obtain
(2.32) du(Dy) = p(0Dy) (—dWy — by dt) .
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Now we can compute

dpu (k)

-4(3iy)

_ ﬁDt)d,ut(k‘) - mczu(m + N’“zg'j))gd<u(z).)>t - ﬁd@.(k),uw.»t
_ @dut(kﬁ) - N’ztgf;? du(Dy) + u‘zt[()’:))g w(oD,)2dt — ﬁ,&(kwf(wt)dt

1
= —[i; (k) (dW; + by dt) — §Qt(<dk7 NPOYdt + [y (k) @, (0D;) (AW, + by dt)
+ ig (k) 11, (0Dy)? dt — [y (k)i (0Dy) dt.
This yields (2.22). [l

Denote 7. the exiting time of (D;);>¢ from F*=. As in Definition 2.1, we stop (Xy, Dy)i=0
at 7.

Proposition 2.10. Any solution of equation (2.10) stopped at 1. is a Markov process solu-
tion to a martingale problem associated to a generator £ acting in the following way: for
any g, k smooth functions on M and

(2.33) Fy(D) := f kd,
D

we have for (x, D) € M x F*<,
(2.34)

L(gF)(.D) = ~g(x) AP (@ P (k) ~ So@uP(TENP)) + L (D)Ag(@)
— P (k)(Vg, V) ().
Proof. From (2.10) and (2.21) with b, = A fP¢(X;) we have
(235 dF(Dy) = — 170 (k) (dW; + AfP(X,) db) —%,th ((Vk, NP3 dt.

This implies that

1
(236) L(F) (@, D) = =u™P (R)AFP (@) = Su™ ((VE,ND)),
and the covariation of g(X;) and Fy,(D;) is T (g, F](X¢, Dt) dt with
(2.37) Pzlg, Fi](w, D) = —uP (k)(Vg, V[P )(x).

Consequently, using
1
(238)  Z(gFk)(z, D) = g()Z(Fi)(z, D) + Fi(D)5A9(2) + T zg, Fi](z, D)
we get (2.34). [l

It is possible to extend the description of . to more general functions on M x F € (it
vanishes on its complementary set), by replacing Fj, in (2.34) by a mapping § from 2, as
presented before Theorem 2.8.

Let (£2;):>0 be the Markovian semi-group associated to the processes (X, D¢)i=0
solution to (2.10) stopped at 7. This semi-group is associated to .Z in the weak sense of
martingale problems, as described in Appendix D.
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Let (ﬁt)tzo be a diffusion process with generator .# stopped outside F*:¢, started at
Dy = Dy (due to Theorem 2.5, this process can be obtained as a solution to the evolution
equation (2.11)), 7, its law at time ¢ and

(2.39) vi(dD,dx) = 7,(dD)% (D)(dx).
Proposition 2.11. We have for all smooth functions g,k on M:
(2.40) O (gFy) = i (L (gFy)).

As a consequence, if (Do, Xo) has law vq then for all t = 0, the solution (D, X+) to equa-
tion (2.10) has law vy, implying that (X;)i>o and (Dy)i>o are To-intertwined. Moreover
Dy is a diffusion with generator L.

Proof. Integrating (2.34) in x with respect to the uniform law i” := % (D) in D yields
(2.41)

—iP (gAfP) 1P (k)—
By Stokes theorem,
(2.42) B2 (gAfP +(Vg, V7)) = p’P (¢(V P, -NP)) = =" (g),

so the expression (2.41) writes

S (P (T, NP))+ S F(D)EP (Ag)—u”P ()P (Y, T £7)).

1 R 1
243)  H(D):=p"(k)p"(g) - 5/1D(9)11"D(<Vk, NP)) + iFk(D)ﬂD(Ag)
On the other hand

(2.44) vi(gFx) = D[ [g] F]
which implies that
(2.45) awnlgFi) = o (B (9)Fi) = i (Z (87 (9) Fi) ) -
By (2.23),
-~ 1_,
(2.46) Z (1" (9)) = =587 Vg, N7)),

so, taking into account (2.13),
Z (ﬁDt (9)F)
= P () Z(Fy) + FuZ (7 (9)) + Tz [27 (9), Fi]

A

- %qu (F)a"P ((Vg, NP*)) + 5P (g)uP (k).

But it (Ag) =~ ((Vg, NP*)) and Fy(D;) = uPt(k), so
(2.47) H(D,) = Z (7P (9)Fy) ,

which together with (2.45) proves (2.40).
Let us now prove that for any ¢ > 0, & transports v into v;, where (%)= is the
semi-group introduced after the proof of Proposition 2.10. Consider the map

(2.48) G(g,k,t)(s) = vs (Pi—s(gFk)), s€][0,t].



10 M. ARNAUDON, K.A. COULIBALY-PASQUIER, AND L. MICLO

We compute

G(g,k,1)'(s) = (0svs) (P1-s(9Fk)) = vs (01215 (9Fk))

2.49
(2499 U (L Py (gFL) — vy (L Pro(gFh)) = O

where we used Proposition D.3 in Appendix D to justify the differentiations (as well as the
factthat £ P, (gFy) = P_sL(gF}) is bounded to be able to use differentiation under
the integral v;). So we get G(g, k, t)(0) = G(g, k, t)(t) which rewrites as

(2.50) v P (9Fk) = vi(9Fk),

More generally, by similar arguments, we can replace in this formula F} by any map-
ping § from L. This in turn implies that vy Z; = v;.

To finish, by iteration, we see that if Xy ~ uDU then (D;):>0 has the same finite time
marginals as (D, )=, proving that (D) is a diffusion with generator 2. d

3. INTERTWINED DUAL PROCESSES: A GENERALIZED PITMAN THEOREM

In this section we will consider the case where f© is the distance to boundary. It is
not covered by Section 2 since distance to boundary is not smooth, it is singular on the
skeleton of D. We will make an approximation of it, and then go to the limit in law.

Let Wt be a real-valued Browman motion and Dt be the solution of (2.11) started at
DO, with driving Brownian motion Wt

Assumption 3.1. Fix a € (0,1) and & > 0. Let Dy € F*<. There exists a closed bounded
subset F¢ of F°¢ in which the process (ﬁs)t;o a.s. takes its values, such that the map
D — S(D) is uniformly Lipschitz from F* with the C2 metric to K (M), the set of
compact subsets of M endowed with the Hausdorff metric. Moreover all skeletons S(D)
of elements D € F*< have uniformly bounded (d — 1)-Hausdorff measure, and their
regular part have uniformly bounded sectional curvature.

Conjecture 3.2. We conjecture that Assumption 3.1 is always realized, for any o € (0, 1),
€>0, Dye F*e.

All examples together with the study of the motion of the skeleton in Appendix B make
us believe that Conjecture 3.2 is true. However a better knowledge of skeletons is necessary
to solve it.

Let us begin with some preparatory results. To describe the approximation of p(z, 0D)
we are interested in, let us introduce some notations.

e Let (z,D) — {c(x,D) := (he o pap)(x) where h = 11in [0,e/2], he = 0 in
[3e/4,0) and h. is smooth and nonincreasing in [0, c0). When D is fixed by the context,
we will denote £ (x) := £.(x, D).

e For any 0 € (0,¢), let ¢s5 : Ry — R be a nonnegative function with support in [0, ¢],
such that the mapping R? 5 u — ¢4(|u|)is smooth and §,, ¢a(|ul) du = 1 (in the sequel,
| - | will stand for the usual Euclidean norm or for the Riemannian norm on any tangent
space of M, depending on the context) .

e Let g5 be a smooth, 1-Lipschitz and odd function defined on R, with gs(r) = r on
[0,6/4], 0 < gs(r) < rforany r > 0, and gs(r) = cs7 on [3¢/8, o0), for an appropriate
constant ¢s < 1 very close to 1 that will be defined below in (3.2). We write ps(x, D) =
95(pl,0D)).
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The approximation of p(x, 0D) we choose is
3.1)

f3(,D) = £e(e, Dyps(2.0D) + (1 (. D)) [ pal[ol)os(exp, (v).2D) do
(where dv stands for the Lebesgue measure on T, M).

Since we will need to differentiate fs, in particular with respect to the first variable
(the corresponding gradient will be denoted V), it is more convenient to replace the last
term of f5(x, D) by an integral over the fixed domain R?. More precisely, for any linear
isometry (an orthonormal frame) 7, : R — T, M, we have

j ea(lt)ps(exp, (v), D) dv = f a(lul) 3 (expy (12 (1)), 2D) du
T. M R4

In this purpose, for any x, z € M, let be given a linear isometry (an orthonormal frame)
lzo,x R? — T, M, smooth with respect to xo, , and such that V2, 2 |g—s, = 0. Define

e(d) = sup{[ldalexpy(tag,c (W) lo=ao]ll, @0 € B(o, R), ue B(0,6) « R’}

where || - || is the operator norm, when T, M is endowed with its Euclidean structure.
Recall that R = 1/¢ and that € is fixed as in Assumption 3.1. The previously mentioned
constant c; is given by

(3.2) cs = e H(8) (1= 6[Vile]w)

Notice that c5 does not depend on D and is as close as we want to 1.
More precisely, we have

Lemma 3.3. There exists two constants C1,CY > 0, depending only on e, such that for
0 > 0 sufficiently small,

Proof. The first inequalities are a consequence of V1, o|s—=sz, = 0 and of the proper-
ties of the exponential mapping. The second bound follows, since |[V14:]|o = |hL]s is
independent of D (and of order 1/¢). ([

From the second bound, we can and will assume that the function gs is furthermore
chosen so that gs(r) converges uniformly to r on compact sets of R, as well as the cor-
responding derivatives up to order 2 as § \, 0. In addition, we choose § > 0 sufficiently
small so that the map (z, y) — exp, ' (y) is well-defined and smooth in the §-neighborhood
the diagonal of B(o, R) x B(o, R). Then, for any xy € M, we can rewrite (3.1) under the
forms

(3.3)
fs(z, D) = Le(x, D)ps(x,0D) + (1 — Le(z, D)) J;@ @5 ([u]) ps(expyy 4 (120,2(1)), OD) du

= Lle(x, D)ps(x,0D)
+ (1 —Le(z, D)) fM 5 (| (exD, Oty,2) T (Y))ps (Y, OD) J (expy 0ty )~ (y)dy,

where J (exp,, 0t4,,.) " is the absolute value of the Jacobian of (exp,, 01y, ) '
The interest of all these preparations is:



12 M. ARNAUDON, K.A. COULIBALY-PASQUIER, AND L. MICLO

Proposition 3.4. For all § > 0, the function (x,D) — fs(x,D) := fP(z) has the
following properties

e fs satisfies the conditions of Assumption 2.2;
e there exists C; > 0 such that VD € F*¢ and x € D, we have

e the gradient and the Hessian of 5 with respect to the second variable D satisfy
VD e F*=, Yz € D\S(D), for all vector fields K normal to 0D:

(3.5 (Vafs(z,D),K) < Cy|K|e and |Vadyfs(x,D) (Nop, Nop)| < Ca
for a Cy not depending on x, D, ).

Proof. We first prove |V f5(z, D)| < 1. Fix z¢ € B(o, R) and differentiate with respect
to x at xg, we have

(3.6)
V1f§($, D) Ifa(aﬁ, D)vlp(S(xa aD)

# (1= (D) | sl Vaps{(exp, o100 (0).2D) d

+ Vile(z, D) fRd ps(|ul) (ps(x, 0D) = ps((exp,, Oty .2 ) (u), OD)) du.

If p(x,0D) < ¢/2 then £.(x, D) =1, VL. (2, D) = 0 and
IV1f5(z, D)| < Le(x, D)[Vips(z, OD)| < 1.

If p(z,0D) > ¢/2 then for § < /8, we have, for u € R? with |u| < 4, p(exp, 01y, ) (u), 0D) =
3e/8. It follows

IV1fs(@, D) <le(@)e™(8) (1 = 6] Vile]w)

(1= (o) | pallud)eal Va(exp, otsyo) ()] d

V@) [ osluidu
<1, wusing Vi, = 0.

It is easily checked that the function fs satisfies the other properties of Assumption 2.2.
Let us check that it also satisfies (3.4).

We have
3.7

fs(x, D)=ps(x,0D) = (1—Lc(x, D)) J]Rd s (lul) (ps(exp, (12,2 (w)), 0D) = ps(x, D)) du
which implies
|fs(z, D) = ps(x,0D)| < 0.
On the other hand
|p(x,0D) — ps(z,0D)| < (1 —e (8) (1 —¢s5)) 2R < CY'S

for some constant C'" > 0 (depending on ¢). This yields (3.4) with C; = 1 + C7".
For proving (3.5), we take a vector field K (y) = k(y)N(y), y € ¢D and compute

(3.8) (Vap(z,0D), K) = (=N (P(z)), K(P(x))) = —k(P(x))
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where P(z) is the projection of  onto ¢D, and
(3.9) Vadap(z,0D) (Nop, Nop) = 0.

Remarking that |Va/l.(z, D)| is bounded by |hL|, we get (3.5) via a straightforward
computation. O

Theorem 3.5. Fix Dy = Do € F*< and let X ~ U (Do). Under Assumption 3.1, there
exists a pair (X, Dy)1=0 of Tc intertwined processes in the sense of Definition 1.1, such
that the process (Dy )0 satisfies

(3.10)
doDy(y)

1 .
= N"(y) <<dXt7NDf (X)) + (Qth (y) = h™" (X») dt — 2sin(6% (X,)) dL" <X))
Here 05 (z) = m/2 — 5 (z), ©° () being the angle between the orthogonal line to S,
at x and any of the two minimal geodesics from 0Dy to x € S;. In other words 0%t (z) is

the smallest angle between S; and the geodesics. The process Lt is the local time of X,
at Sy := S(Dt)

(3.11) LY(X) = lim — | 1
0

S8 being the thickening of the regular part of S, in normal direction, of thickness B3 in both
directions.

Remark 3.6. e Compared to Section 2 with fP replaced by distance to boundary
poD, we have outside the skeleton Sb

(3.12) Vpop(x) = NP(z) and  Apsp(z) = —h"(z)
and we will see that on the moving skeleton S; = SP¢:

(3.13) “Apap, (X;) dt” = =2sin(0%(X,)) dLY (X).

Proof. Under Assumption 3.1, Proposition 3.4 allows us to construct for each § > 0,
intertwined processes (X7, D?);> started at (X3, DJ) = (Xo, Do), associated with the
functions fP, stopped at 72, the exit time from F*¢. We have from Equation (2.10)

(3.14) doDd (y) = N2 (y) (dwf n (;th (y) + AfP (XD )) dt)

for some Brownian motion Wf. On the other hand, from Proposition 2.11 and (2.1),
(3.15) (D)iz0 := (Df)izo
satisfies equation (2.11):

s B Df =56 1 Df _ M
(3.16) doD?(y) = NPt (y) (th + <2h (y) (D) dt

375 - 8 . .
where W is the .#,”" —Brownian motion

1P (oD})

(3.17) AW = dW} + AfP?(X,) dt + -
U(Dt)

dt.
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A remarkable fact about all (X, D9);>¢ is that their marginals are constant in law.
Notice that also ((DJ);=0, 70) is constant in law since 72 is a functional of (D?);~ inde-
pendent of 4. As a consequence, the family

(3.18) ((Xf,Df,Wf,WN/f,Wf’m)t;o,Tf)

is tight (in (3.18) the Brownian motions W} and Wf’m are the ones defined by equa-
tion (2.10)). Denote by

(3.19) (X0, Doy W, W, Wi™)iz0, 7.

a limiting point. Let us prove the intertwining. Using Proposition 2.11, for any smooth
functions g and k£ on M,

E[g(X})Fi(D})] = E[E[g(X])Fi (D) 7]
— E[% (D) (9)Fu(D})]

=Ry ™0

4
4

and passing to the limit yields the intertwining.
This property of (D2, W?);=0 being constant in law passes to the limit, and we have

(3.20) doDy(y) = NP (y) (dVIN/t + (;hD (y) — W) dt) .

We need to work with real-valued processes: we have from (2.32), for all § > 0,

" du(DY) ) '
(3.21) f R LS 118 ff A fs(XS,D?)ds.

o u(@g) ~ T ) Ml B
This together with (3.17) yields

5 du(D(s) 1. ps
22 doD?(y) = NP (y) [ - X+ —hPi(y) dt
62 1) = NP1 (~ 5 + 54
Again by constantness in law:
d

(3.23) d@Dt(y)=ND‘(y)< ‘Z{ng 7th( )dt>.

So to prove our result we only need to prove that

td,u(DS) _ ' D, o Ss Ss
(3.24) J;H(aDs) = -W; —&-L h (Xs)ds—i-fo 2sin (0% (X)) dL3*(X)

and that
(3.25) W, = f (NP:(X,),dX,).

Let us prove (3.25). In all this paragraph we consider M as isometrically embedded in
some Euclidean space. In particular we are allowed to integrate vectorial quantities. We
use the fact that d.X t‘s ®th5 converges in law to d X; ® dW; (where ® stands for bracket of
semimartingales). But dX ® dW} is equal to V1 f5(X?, D?) dt. Then by Lemma H.1 ap-
plied to V; f5(X?, D?) (which is uniformly bounded) and U = {(x,D), = ¢ S(D)}
defined in (H.3) we see that the integral of V;fs(X?, D?)dt converges to the one of
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NP:(X,)dt. But almost surely NP¢(X,) has norm 1 dt-a.e., implying that dW; =
(NP (X}),dXy).

Let us now establish (3.24). It will be a consequence of the convergence of (fs(X?, D?)):=0
to (p(Xy, 0D¢)¢>0-

Write the It formula for f5(X?, D?):

(3.26)
1
d (fs(X7, D) =(Vis(X7, D7), dX7) + S A1 f5(X7, DY) dt

1
+(Vafs(X], D7), doD}) + 5 Vada f5(X), DY) (d0D], doD7) dt
+ (Varfs(X{, Dy), doD} ® dX7).

From Proposition 3.4, possibly by extracting a subsequence,

(3.27) (f5(X7.DD) 00 -2 (P(X1,0D1)) 12 -
From (3.7) we get fori = 1, 2,
Vif(S(x) D) - viptS(‘ra aD)

(328) —Vile(x, D) JRd ws(|u]) (ps(exp, (24,2 (w)), dD) — ps(x, 0D)) du
+ (1 —4le(z, D)) fRd ws([ul) (Vips(expy (12,2 (u)), 0D) — Vips(x, D)) du

(where we use the same procedure as in the proof of Proposition 3.4: V; is not applied to
the first  of ¢, ;). From this we see that V; f5(-, D) converges, locally uniformly outside
S(D), to Vip(-,dD) with respect to the distance dy of Appendix H. We obtain, with
Lemma H.1, possibly by again extracting a subsequence, that

(3.29) (Lt<v1fa(X§,D§>,dX§>> i(Lt<v1p(Xs,aDs>,dXs>)
0

t= t=0

More precisely, we have a sequence of martingales converging in law to a martingale M,
which is a Brownian motion by Theorem 3 in [21]. For identifying the limiting martingale
we use the convergence of (V; f5(X?, D?%),dX?) ® dX? to dM, ® dX, obtained again
by Theorem 3 in [21] (here again we use an isometric embedding of M). But Lemma H.1
proves that the limit is equal to V1 p(Xs, 0Dy) ds, yielding (3.29).

Next we prove that

(330) (f<v2f5<xf DY) (| (Vap(Xo2Dy). @p,)
0 0 0

t> t=0

The argument is similar except that as we see with (3.14), the drift part of doD? is not well
controlled as X approaches the skeleton. So one cannot proceed exactly the same way.
But fortunately, for « outside a 3e/4-neighbourhood of dD and outside S(D), we have

(Vafs(x, D), Nlop)

B3, | ool (Plexpa 1 () N (Pl (1))t = —cs
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where c; is defined in (3.2). This together with (3.22) suggests to write

J.t<V2f6(Xg7 Dg), d@Dg} = <ft<v2f5<X§’ Dg)’ daDg> T cs Jt dM(Dg))
0 0

0 H(aDg)

Jt du(D3)

—cs e
0 ﬁ(aDs)

The second line clearly converges. The right hand side in the first line can be written

t
(3.32) f le(x,D){Vafs(X2,D%) + ¢;N|op,doD?)
0
with (z, D) — le(x,D) == (he o pop)(z) where he = 1in [0,3¢/4], he = 0 in [e, 0)
and h, is smooth and nonincreasing in [0, o).
With this last integral we can proceed as for (3.29)
Similarly we obtain the two following convergences for the second derivatives.

t
( [ wadasstxs, piy(aens. aoo; >)

0 t=0

(3.33) .
Z, (J Vadop(Xs, 0D;) (N (PP (X,), N(P?P+(X,)) ds) =0
0

t=0

where PP+ (X,) is the orthogonal projection of X on D, (which is defined ds-almost
everywhere),

( f t<V2d1fa(X§ ,D?),doD] ® de>>>
0

=

since dyp(Xs,0D;) = —(NPs(X,),-) which implies that the covariant derivative in the
second variable with respect to NP+ is equal to 0. On the other hand, by Ito6-Tanaka
formula, see Proposition F.1 in Appendix F, using that p(z, ¢D) is almost everywhere the
minimum of two smooth functions, we have

(3.35)
1
d(p(Xt,0Dy)) =(V1p(X¢,0Dy), dX¢) — ith (X;) dt + (Vap(Xs,0Dy),doDy)

t=0

(3.34)

t
f (Vadi1p(Xs,0Ds),d0Ds ® dXé>) =0
0 t=0

+0+0—sin (0% (X;)) dLY* (X).
Using (3.26), (3.27), (3.29), (3.30), (3.33), (3.34), (3.35) we obtain that
(3.36) ) )
t
(J Alf(;(Xf,Dg)ds> =, (J —hDS(Xs)dsff 2sin (05 (X)) des(X))
0 t=0

0 0 t=0

=

It remains to pass in the limit as § goes to zero in (3.21), to deduce (3.24). O

Remark 3.7. From (3.35), it can be deduced that
(3.37)

d(p(Xy,0Dy)) = = (WP1(X,) — P (PPP1(Xy))) dt + sin (05 (X,)) dLP*(X).

1
2
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Indeed, (3.25) implies that
(Vip(Xy,0Dy),dXy) = dW,
and due to (3.30), we have

<VQ[)(X1§, 6Dt), d(?Dt>
= lim(Vap(X7,0D7), doD7)

. 1
=t =) — (Aafs (PP X0), )+ 5 (P D) )

where we used (3.21) in conjunction with (3.22).
Taking into account (3.36), we identify the last limit with

—dW, + (th (¢) + 2sin (05 (X)) dL7*(X) — %h(Pan (Xt))) dt

4. INTERTWINED DUAL PROCESSES: DECOUPLING AND REFLECTION ON BOUNDARY

In this section we consider another canonical and extremal situation, the case where
fP vanishes almost everywhere. More precisely, it is the limiting situation where f* is
constant outside a e-neighbourhood of the boundary. This situation is completely opposite
to the one of Section 3 where the coupling is maximal.

Theorem 4.1. There exists a pair (X, Dy)i>0 of T.-intertwined processes in the sense of
Definition 1.1 satisfying

1
@D A eng = NP (W + 0P )t - L))

where X; is a M-valued Brownian motion started at uniform law in Dy, Wy is a real-
valued Brownian motion independent of Xz, Lf Dy (X) is the local time of X on the moving
boundary 0D:.

Remark 4.2. Equation (4.1) can be considered as a limiting case of (2.10). Here Assump-
tion 3.1 is not needed since the morphological skeleton of D does not play a role, and the
map D — 0D is already sufficiently regular.

Proof. The proof is quite similar to the one of Theorem 3.5, but with another family of
functions £, namely fP := hso pop where hs is defined in the proof of Proposition 2.4:
hs is a smooth nondecreasing function from [0, ) to Ry such that hs(r) = r for r €
[0,0/2], hs(r) = (3/4)6 for r > § and ||h}|lc < 1. But here, as ¢ is fixed, we will
let 6 \, 0. Again we construct for each § > 0, an intertwined processes (X7, D?)=0
stopped at 70. Again all (X7, D?);> are tight, and a limiting process (X¢, D;);>0 stopped
at 7. provides an intertwining. The proof of (4.1) goes along the same lines as the one
of (3.10). O

We end this section with another canonical construction, where the functions f(? ap-
proximate —psp.
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Theorem 4.3. Under assumption 3.4, there exists an intertwining (X, Dy)>0 stopped at
Te, satisfying

doDy(y) =N"*(y) <— (dX;, NP (X)) + (;h“ (y) + h"" (Xt)) dt
(4.2)
+ 2sin(0 (X)) AL (X)) — 2dLIPt (X))

Proof. 1t is completely similar to the ones of Theorems 3.5 and 4.1. (]

5. SOME FUNDAMENTAL EXAMPLES

5.1. Real Brownian motion and three-dimensional Bessel process. We come back to
the case where M = R. Assume that the Brownian motion X starts from O (to respect
rigorously the above framework, X should start from the uniform distribution on Dy :=
[—¢, €] and next we should let € go to 0,). Due to the invariance by symmetry of (3.10),
for any ¢t > 0, D; remains a symmetric interval, let us write it [—R;, R;]. In this simple
setting, we have NP¢(-) = —sign(-) on R\{0}, hP* = 0 and S; = {0}, for any ¢t > 0.
Thus (3.10) writes

(51) th = sign(Xt)dXt + 2st

where L := (L;);>0 is the local time of X at 0. Namely we get that

Vt=0, R

t
J sign(Xs) dXs + 2L,
0

= | X¢|+ Ly

by Tanaka’s formula. It is well-known that R := (R;);>¢ is a Bessel process of dimension
3 (cf. e.g. Corollary 3.8 of Chapter 6 of Revuz and Yor [17]). In particular, we get that with
the notation introduced in (A.4),

Vix= 0, p;Dt (Xt) = min(Xt + Rta Rt — Xt)

But except at time ¢ = 0, this quantity is always positive: a.s. X; never touch the boundary
of D, for t > 0. Indeed, if for some ¢ > 0 we have |X;| = R;, we deduce that L; = 0,
namely a contradiction, since Xy = 0.

In particular, we see that the intertwining coupling we have constructed is different from
the one proposed by Pitman [16], which is a.s. touching (the upper) boundary repeatedly.
Instead we end up with the intertwining dual constructed in [14] via stochastic flows. It is
mentioned there how to deduce the classical Pitman’s dual, via Lévy’s theorem.

Here is an alternative approach. While Equation (5.1) is obtained from approximating
x — |r — x| outside an e-neighbourhood of 0 when D = [—r, 7] by smooth functions f*
satisfying Assumption 2.2, we are able to recover Pitman theorem by rather approximating
x +— —x in D = [—r, r] outside the only e-neighbourhood of —r. In the limit of (2.10) as
€ goes to zero, on the one hand we have

(5.2) Lix,+rdR; = dX,,

on the other hand we have X; + R; = 0, so that X; + R; is the solution to the Skorohod
problem associated to 2.X;. We get

(53) Rt + Xt = 2Xt — 2 min Xs-

0<s<t
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which is equivalent to

(54) Rt = Xt — 2 min Xs-
0<s<t
The answer to the question: what would be a symmetric construction with local time

at the two ends of [— Ry, R;] is given by Theorem 4.3. We obtained intertwined processes
with

t
(5.5 R = ff sign(X,) dXs — 2LY(X) + 2LY(R — X) + 2LY(R + X).

0

5.2. Brownian motion and disks in rotationally symmetric manifolds. This is the most
simple example since the skeleton is never hit by the Brownian motion. Consider a com-
plete d-dimensional manifold with d > 2, rotationally symmetric around a point 0 € M.
Denote by (r, ©) polar coordinates with r(z) = p(o, ) and

(5.6) ds* = dr* + f*(r) d©?

the metric in polar coordinates. Then the radial Laplacian is

(5.7) A, = & + b(r)i with b= (d—1)(In f)’
’ " (or)? or B ‘

We will investigate set-valued processes D; = B(o, R;) where B(o,r) is the open
geodesic ball centered at o, with radius r. The skeleton of B(o, R;) is the point o.

Let X be a Brownian motion in M satisfying X ~ % (Dy) for some Dy = B(o,19).
Denote by p; := r(X;) the radial part of X;. Then

1
(5.8) dpy = dBy + Sb(p) dt,  po ~ %7 ((0,10))
where (3;):>0 is a real Brownian motion and
(5.9) 2 (dr) = g,
o f(s)ds

The evolution equation (3.10) for D; shows by symmetry that for all t > 0, D; =
B(0, R;) for some real-valued process R;. Moreover it writes

1
dpy = dp; + §b(pt) dt
(5.10) 1
Proposition 5.1. The system of equations (5.10) has a solution up to explosion time of R,
(5.11) P = inf{t > 0, R; ¢ (0,0)},
which satisfies for all t < 17,
(5.12) 0 < pr < R:.

The corresponding set-valued process Dy = B(o, Ry) is solution to equation (3.10), and
in particular, for all FP -stopping time T,

(5.13) L(X | FP)=w(D,) aswellas ZL(p.|FP)=%7((0,R,)).
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Proof. We only have to check (5.12). By (5.10),

(5.14) ARy~ pi) = 5 (o) — B(R)] d,

which vanishes on {R; = p;}, and since b is smooth, if pg < Ry, then p; < R, for all
times. ([l

5.3. Brownian motion and annulus in 2-dimensional rotationally symmetric mani-
folds. Let M be a complete 2-dimensional Riemannian manifold, rotationally symmetric
around a point 0o € M. Denote by (r, #) polar coordinates with r(z) = p(o, z) and

(5.15) ds® = dr? + f*(r) d6?

the metric in polar coordinates. Then the radial Laplacian is

(5.16) A, = o + b(r)ﬁ with b= (In f)
’ " (or)? or N '

fOo<r™ <rt,let
517 A,y ={ze M, r <r(x)<rt} if r~<rt, AQCrT,r7) =,

the open annulus delimited by the radius »~ and .
In the following we will investigate set-valued processes D; = A(R; , R;"). The skele-
ton of A(R; , R;") is the circle

1
(5.18) S; =C(o,R?) with RY:= 5(R; + R).

Let X; be a Brownian motion in M satisfying Xo ~ % (Dy) for some Dy = A(rg ,7g ).
Denote by p; := r(X;) the radial part of X;. Then

1 _
(5.19) dpe = dpy + Sb(pr) dt,— po ~ %I ((rg 7))
where (3; is a real Brownian motion and
(5.20) U ((rg,rd))(dr) = # dr.
§17 f(s)ds

The evolution equation (3.10) for D; shows by symmetry that for all ¢ > 0, D; =
A(R;, R}) for some real-valued processes R, < R;". Moreover it writes

. 1
dpy = sign(p; — R}) dW; + ib(pt) dt

1
dR; = dW,; + [—Qb(RZr) + sign(ps — R?)b(pt)] dt + QLF? (p)
(5.21) X )
ART = =Wt |~ 0(R7) = st — RO | 22

1
R} =5 (R, +R[)
and these equations imply

(5.22) dR? = f% [6(R)) + b(R;)] dt.
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Proposition 5.2. The system of equations (5.21) has a solution up to explosion time
(5.23) 7P = inf{t > 0, (R;, R}") ¢ (0,0)%},

which satisfies for all t < TP,

(5.24) Ry <pi < Rf.

The corresponding set-valued process Dy = A(R; , R}) is solution to equation (3.10),
and in particular, for all F P -stopping time T,

(525)  L(X,|FP)=w(D;) aswellas ZL(p-|FP) = %' (R, R))).

Proof. Fixe > 0and o € (0, 1). We will first solve the system of equations until the exit
time 7. and then lete \, 0. Let us construct functions f{ (z) which satisfies equation (3.1).
It will be easier here because there is no need of functions ¢, and gs.

For § € (0,¢), let 5 : R — R be the function with support equal to [—§/2,0/2],
satisfying for —§/2 < r < 6/2:

(5.26)
(1) = 1 @[ L)
r)i=——exp|———— with ¢ :=J exp | ———— s,
T e o\ (-
and let
signg : R — R
(5.27)

re——1+ QJ ©vs(s) ds.
—o

The functions ¢; and signg are both smooth and Lipschitz, and they respectively approxi-
1

mate &y and sign. For 0 < 7~ < r* satisfying 7+ —r~ > 2¢, defining r¥ := 5(1“_ +rh),

forze A(r—,rt) let

(5.28)

FATT ) @) = flarm,rt) = glr(@) with  g(r) = g(r,r7,rt) = f —sign;(s—r7) ds.
Clearly f(z,r—,r%) is 1-Lipschitz in the first variable. A computation shows that

0

(5.29) 5r+g(7’,7’7,7’+)=f ps(v)dv and ﬁrfg(r,rfﬂﬁ):—J ws(v) dv

showing that g and f are 1-Lipschitz. Then the vector N := Nj4(— ,+) is equal to
_]l{r(m):r+}ar+ + ]l{r(m)zr—}ar_ so that

(5.30) (Vf,Ny=1 and Vdf(N,N)=0.

This yields an elementary proof of the properties of Proposition 3.4. We can use Theo-
rem 3.5 to solve equation (5.21) until the stopping time 7.

We are left to prove that 7. /' 77 a.s. as € \, 0. This is a direct consequence of the fact
that the volume of A(R; , R;") is a time changed Bessel process of dimension 3 (by [6]
Theorem 5), proving that A(R; , R;") cannot collapse onto its skeleton. ]

Remark 5.3. After the hitting time of 0 by R, , the processes can continue to evolve under
the regime of Section 5.2.
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We recover from Proposition 5.2 a result from [13] stating that ([R;, R/ ])¢>0 is an
intertwining dual process for the real diffusion (p;);>0. In particular, we deduce that
if (p¢)¢=0 is positive recurrent and if +o0 is an entrance boundary, then ([R; , B} ])i=0
reaches [0, +00] in finite time and this finite time is a strong stationary time for (p¢)¢>0,
see [13] for more details.

5.4. Brownian motion and symmetric convex sets in R2. In this section we take M =
R? endowed with the Euclidean metric. Consider a smooth strictly convex bounded set
Dy ¢ M with smooth boundary, symmetric with respect to the horizontal and vertical
axes. Also assume that its skeleton is an horizontal interval S}, = [—z¢, zo] x {0}. An
example of such a set is the interior of an ellipse, the skeleton being the interval between
the two foci. Assume that X; is a Brownian motion in R? satisfying Xo ~ % (Dy). Let
us investigate the evolution of (X, D;). Notice that it is the first example where we really
have to deal with infinite dimensional processes. By conservation of the convexity by
the normal and mean curvature flows, D, will stay convex. It will also stay symmetric.
Propositions 5.4, 5.5 and 5.7 below will be proved in a forthcoming paper:

Proposition 5.4. The skeleton of D; always takes the form [—xt, x¢] x {0}.
Proof. This will be proved in [1] O

Denote by (2, 7) the canonical basis of R?, and X; = (Xt(l), Xt(Q)). In this notation, the
vector NP¢(X;) of Equation (3.10) writes

(5.31) NP (X)) = —sign(X") cos(60% (X,))r — sign(X?) sin(65 (X))

where 6 (z) is naturally extended to D; by being constant on lines normal to the boundary
(see [1]). Notice that z — 65 (z) is locally Lipschitz on D; and is equal to 0 on D; N
(=00, —x4] x {0} U [x4,00) x {0}). Also notice that the function h* is locally Lipschitz
on D \{(—x¢,0), (z,0)}. With these notations, equation (3.10) writes

(5.32)

doDy(y) = — NP+ (y) <sign(X§”) cos(05¢(X,)) dX Y + sin(05 (X,))sign(X?) dx ¥

+ (;th (y) e (Xt)> dt — 2sin(95t (Xt))st(X(Q))> .

Let us investigate the motion of the skeleton S, of the solution D; of equation (2.11)
(garanteed by Theorem 2.5).

Proposition 5.5. The process (Dt> takes its values in a closed subset F of F*=,
t

>
symmetric with respect to the horizontal and vertical axes, such that on F*°, the map
D — hP|;p is continuous from F*¢ (with the C*** metric) to C?(0D). Its skeleton S,
satisfies Sy = [—Z4, ] x {0} for some process .

Proof. This will be proved in [1] (]

In the next result we prove that the skeleton has finite variation and is monotonly de-
creasing.

Proposition 5.6. The right endpoint (i, 0) of the skeleton S, satisfies

dz, . pz((itao)ﬂjt) DIt~
(5.33) o f(h )" (),
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§i; being the point of D, in the horizontal line with the greatest abscissa, and the second
derivative being calculated with curvilign coordinates on 0 Dy. Notice that (hPt)" () < 0,
proving that the process S(D;) is monotonly decreasing.

Proof. Let us investigate the motion of a point in S; close to (Z4,0). This point has two
closest points in (?Dt, which we call 7, ; and @2 ¢, the first one having positive second
coordinate. We will use Theorem B.1 and (B.28). Call Z; the point in the skeleton cor-
responding to 31, and g ;. We have N1(Zy) = —cos8(Zy)r — sinb(Zy)y, Na(Zy) =
— cos 0(d)1+sin 0(i4)7, NP (&) = —7. Denote T(7, ¢) the tangent vector to 0Dy at 9,
corresponding to increasing of 6: T'(§1 ;) = — sin0(&,)2 + cos 6(Z;)y. Write b’ (g1 ¢) the
curvilign derivative of h(; ;) in the direction of T'(% ¢). Then the vector Ji-(1) of (B.28)

1
is equal to _5[)5(gl,t)h/(gl,t)T(th)- So we get from (B.28):

1 . o cos? 0(iy)
- 5ps(yu)h (U1,) (sm@(m) * W '

45

dt’

Ps(gl,t)h/(?jl,t)l
2sin 0(3¢)

2 (~ (s
Ps (1) (Y, L~ (1) ~
_ rs( 12t~)(2)( 1), with Be = 00, 72).

(5.34) =

Yt
In the limit, as gﬁ? goes to zero, we obtain the motion of Z; and using the symmetry
of the convex set, we have h/(7;) = 0 so that we can replace hli%)’t) by h”(%;). This
yields (5.33). e 0

In particular a Brownian motion X; will never meet the ends of St.
A solution to (5.32) can be found with the help of Theorem 3.5. The family of functions
fs(x, D) defined in (3.1) takes the form:

fs(x, D) = Le(2)ps(x,0D) + (1 — Le()) J @s(lz —yl)ps(y, 0D) dy
(5.35) R

= {.(x)ps(x,0D) + (1 — gs(x))f

» ws(|yl)ps(x — y,0D) dy.

Proposition 5.7. Equation (5.32) provides an intertwining with infinite lifetime

Proof. This will be proved in [1] O

APPENDIX A. AN INTEGRATION BY PARTS ON DOMAINS WITH BOUNDARY

Let M be a d-dimensional Riemannian manifold and D < M a compact and connected
domain with smooth boundary 0D. For y € 0D, let N(y) be the inward normal vector.
Denote by S’ the inward (morphological) skeleton of D: S’ is the set of points in D such
that the distance to 0D is not smooth with non vanishing gradient around them. Denote

(A.D) 7(y) = inf{t > 0, exp, (tN(y)) € S'}.

Let S be the set of regular points of S’, which we can describe as follows: if z € S, then
there exists a unique couple (y1, y2) of distinct points from ¢D such that

(A2) z = exp,, (T(y1)N(y1)) = exp,, (7(y2)N(y2)) -
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We have 7(y1) = 7(y2), and for i = 1,2, the differential at (7(y;),y;) of the map R, x
oD > (t,y) — exp, (tN(y)) is nondegenerate. The set S is a codimension 1 submanifold
of M and S\ S has Hausdorff dimension smaller than or equal to d—2. It is the union of the
focal set which is the set of points = = exp, (7(y) N (y)) such that (¢, y’) — exp,, (tN(y'))
is degenerate at (7(y), ), and the union of the sets defined like .S but withstrictly more than
two points y1, Y2, y3,... For r > 0, let

(A3) D(r) = {z € D\S', pop(z) = r}.

where p is the Riemannian distance. The set D(r) is a (possibly empty) manifold with
smooth boundary 0D(r) on which one can define an inward normal N (y) and an orienta-
tion by parallel transporting oriented basis of 0D along normal geodesics. So we have for
ally € D\S": N(y) = Vpap(y).

We will also need the sets D(r) for all r € R. We will let for r < 0
(A4) D(r)={ze M, pi,(z) = r}
where p7, is the signed distance to 0D, positive inside D, negative outside D.

Define for s,t € R

P(s,t) : 0D(s) — dD(t)
y — exp, ((t = 5)N(y))

and ¢ (t) = 1(0,t). We will indifferentely write ¢(t)(x) = (¢, z). The function (s, t)
is not defined for all points of 0D(s) because we ask (s, t)(y) € dD(t), nor is N(-).
However for |s| and |¢| small it is a map, defined for all y € 0D(s), and is is also a
diffeomorphism with inverse ¥ (¢, s).

We have for 0 < s < ¢, ¥(t) = ¢(s,t) o ¥(s), which implies
(A.6) det T (t) = det Top(s, t) x det T(s).
Notice that thanks to the orientation of the sets ¢D(r) we get an orientation of D\\S” by

adding N as first vector to oriented basis, consequently det 7' is well defined and always
positive. It is well-known that

(AS)

(A7) 4

., det Ty (s, t)(y) = —h(y)

where h(y) is the inward mean curvature of ¢D(s) (the minus sign of the r.h.s. of (A.7)
insures that h is non-negative on 0D(s) when D(s) is convex). This together with (A.6)
yields

(A8) il detTu®)w) = - <w(s>(y>> det T)(s)(v)

and consequently, using ¢(0) = id and det T4 (0

(A.9) det T (t)(y) = exp (‘[ —h (¢ ) ds ) .

Denote by p the volume measure of D and by u the volume measures of the manifolds
0D(s) and of S. Then

(A.10) uo) = | " L (@eD(r) dr

0
Butforr >0

(ALD) 1 (@D(r)) = L et TO(r)(y) )
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with convention det T'9(r)(y) = 0

ifr
a1 w06 = [ en(

oD

> 7(y). We get

| () (w) ds) Ly r ) 2(d)

0
which yields with (A.10)

w1 am)- [ ( | " e ( | :h<w<s7y>>ds) dr> u(dy).

More generally, for a measurable function g : D — R bounded below,

(A.14) JD gdu = LD (LT(y) 9 (¥(r,y)) exp < fo h(¥(s,y)) d8> d?") w(dy).

Applying this formula to the function gh which we assume to be bounded below or inte-
grable, we get by integration by parts

JD ghdp = J (JT(y) —g (¥(r, y))d%exp (— Jorh(w(s,y))d8> d?”) w(dy)
. (r,y) eXp< f h(¥(s,y))ds )];(y) w(dy)

Joo o
LD< T(y {dg, N (¥(r, ))exp( LT h(¢(5’y))d5) dr) w(dy)
gy

- f f g (r(y), y))e 55" M) du gy

oD
+| (g, Nydp.

+

Define the map
p:0D— 5
y = U(T(y),y).

For z = ¢(7(yi),y:) € S (i = 1,2) define 0(2)e (0, /2] the angle between N (¢(7(y;)—, yi))
and S. In the sequel we assume that §(z) £ 7/2 (the case §(z) = 7/2 is simpler to deal
with and Proposition A.l is always valid). Notice that this angle does not depend on ¢,
this is a consequence of z € S staying at the same distance to y; and yo by infinitesi-
mal variation. For later use, let also 6(z) = 0 when z € S’\S. Let us prove that for

z=9(T(yi),vi)) € S,
(A.16) det TY(7(y:), yi) = sin0(p(y;)) det Too(y;), i=1,2.

Sety = y;. Lete; = N(y), ef = N((7(y)—,y)), N¥(2) the normal to S at z such that
(N®(z2),efy > 0,lete” = (es,...,eq) be a family of orthonormal normalized vectors in

T, 0D such that letting ep = ||§Tgy§| (we have V7(y) # 0, since 0(z) £ 7/2), € :=

(e2,€”) is an orthonormal basis of T,0D, let (¢®)” = (e5,...,e5) be an orthonormal
basis of T, (Vect(e”)), let 5 such that (e%)’ := (e5,...,e5) is an orthonormal basis of
T.S. Finally let €5 € T, M be such that (€9, N(z)) < 0 (¢} and N*°(z) are not orthogonal,
since (z) + 7/2) and (e7, €5, (¢®)”) is an orthonormal basis of 7, M. Figure 1 shows

the configuration of 7, N°¥(2), e5 and e§ on an example of dimension 2. In the sequel we

(A.15)
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Ty(e2)
will denote for instance Tp(e') = : , so that (T'p(e’), (%)") will be the matrix

Tep(ea)
of all scalar products. We have

(Tp(e), (7))
= (dr, ¢ Yo (T(y), ), (%)) + (Tp(e), (%))
_ (<d7, e2)(0, €3 ) + (Ti(ez), e5) (T(ea), (es)”>)
(dr,e" )Xo, e5) + (T(e"), e3) (T(e"),(e%)"))
Let us simplify and make more explicit this expression. We have {(dr,e”) = 0. Also
ey L (e%)" and e5 L (e%)" so e5 € Vect(ef, e) and more precisely

(A17) e5 = cos(f(z))ef + sin(f(z))es.
On the other hand T (e’) L ef which implies
(A.18) (TY(e"), e3) = sin(0(2))T(€'), e3).

Also {041, e5) = cos(0(z)). We arrive at
det(Tp(e"), (€%)")

~ (T (ea), €z> (T(e"), ef) )
= sinf(z) det
9 (et (S coien X
<d7’, €2> >

(Tp(e2), (%)) (T(e"), (e%)")

= sin 0(z2) det T4 + cos 0(2){dT, e2) det<T7j;( ", (€3
For the last equation we used the fact that det Ty = det(T(e’), (eg, (€%)")), since €’
and (e$, (¢°)") are orthonormal bases. Note that by definition, (T (e”),e§) = 0, so we
also get det T = det(T)(e"), (e%)") x (T (ez), 5. On the other hand, we have
(A.20) {dr, e3> = (T1p(ez), €5 cot H(z).
Indeed, note that

(A.19)
+ cos 0(z) det <

0 = <T<,0(eg)7 NS>
(dr,e2){e7,N®) + (T¢(es), N®)
{dr,es)sin(0(2)) — cos(6(2)) <T1/J(62), eg>

where the last term is obtained by taking into account that 7% (ez) is parallel to €§. This is
the change of length of the geodesic needed to stay in .S. We obtain

det T = sin0(z) det T + cos 0(z) cot (z) det Ty
sin? 0(2) + cos? 0(z2)

= T.
sin 0(z) det Ty

This yields (A.16).
We arrived at

J ghdu = f 9(y) u(dy) — J g(W((y),y)) det T (7(y), y) u(dy)
D oD oD

(A21)
+ J {dg, N)dp.
D
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FIGURE 1. The vectors ef, N%(2), e5 and €

this yields with (A.16)

JD ghdp = LD g(y) u(dy) — LD 9(p(y)) sin0(p(y)) det To(y) w(dy)
(A.22)

+ JD<dg7 NYdy.

Using the change of variable y — (y) and the fact that all z € S is equal to ¢(y;),
1 = 1,2, we obtain the key formula
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Proposition A.1. With the above notations, for any smooth function g defined on D such
that gh is integrable or bounded below, we have:

(A23) fD ghdy = L o) ) 2 Lg<z> sinf(z) (dz) + Lfdg’ NYdp.

APPENDIX B. MOVING SETS

In this section we describe how to move a domain with smooth boundary by deformation
of its boundary. We will investigate the deformation of its skeleton The deformation we
will consider will have a general absolutely continuous finite variation part, together with
a very specific martingale part and singular finite variation part. First we introduce some
notation.

For a domain D with smooth boundary 0D, s € R, define

P (s) = P (0,5) : 0D — 0D(s)
y =P (s)(y) = vP(s,y) = exp, (sN”(y)) .

Here NP = N is the inward normal defined in Section A. Consider a moving domain
t — D;. Be careful not to confound D(¢) with D, since in general they are quite different
subsets. We first assume that the deformation is sufficiently regular so that for all 0 < s <
t, we can write D; as

(B.2) Dy = {42 (2P (). 70, )y). e D},

In particular, we must have S’ — D;. Notice that in the special case where the real valued
function ¢ — ZtD *(y) does not depend on y, for any 0 < s < ¢, then we have

(B.3) Dy = D,(ZP*) = Do(ZP"),  zPo = zP: 4+ zPo

(B.1)

where D(r) is defined in (A.3), replacing distance to 0D by signed distance with positive
sign inside D and negative sign outside. In this situation, the skeleton is not moving, at
least as long as 0D remains smooth (i.e. until dD; hits .S), or is too far outside Dy), and
t— ZtD ¢ can be allowed to be a semimartingale with singular continuous drift.

When ¢ — ZP+(y) depends on y the situation is a little bit more complicated. Start-
ing from (t,y) — ZP°(y) which is assumed to be defined on [0,¢) x @Dy, the sets
D, are defined for 0 < t < ¢, as well as the ZtDS (y), 0<s < t,y € D,s. In fact,
if (y,t) — ZP°(y) is C', then one can reconstruct all Z*(y) with the only knowl-
edge of ZPt(z), z € dD,. Let us do it for s = 0: the map (¢,y) — ¥P°(t,y) from
(—a,a) x 0Dy to M is a diffeomorphism on its range, for « > 0 sufficiently small.
Let us denote z — (79(2), o(2)) its inverse. Then a variation z + NPt (2)dZP* cor-
responds to a variation (79(2),0(2)) + (dro, Tepo) NPt (2)dZP* of the coordinates in
(—a, @) x dDy. But this is not convenient at all, since it is not intrinsic. Moreover, when
passing to stochastic processes and Stratonovich equations, it will involve second deriva-
tives of z — (79(2), po(z)). So we prefer to leave the reference to Dy and to always stay
at the level of the moving D,.

For all y € 0D, we define a stochastic process ¢t — Y;(y) representing the motion of
D; satisfying Yy (y) = y and the Itd equation in manifold with respect to the Levi Civita
connection V
(B.4)

dYi(y) = dVYi(y) = 0P (- Vi) (dZP (i) = NP (Yo(y)dZP" (Yi(y)-
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Recall that fomally dV'Y;(y) is a vector which writes in local coordinates (y!, ..., y?) with
the Christoffel symbols T , :

B i) = (a{ () + 50 4 ). YD) ) DY)

0
where D;(Y:(y)) is the vector a3 taken at point Y;(y). We will always assume that the
yl

martingale part dm; of dZtD ¢(y) does not depend on y. In this situation, the Itd equation is
equivalent to the Stratonovich one: indeed, using (B.3) the 1t6 to Stratonovich convertion
term is

1 1
ivNDt(Yt(y))dthDt(')dmt = ivNDt(Yt(y))NDt(')d<ma my; =0

since NPt (Y;(y)) is the speed at time a = 0 of the geodesic a — ¢ (a)(Y;(y)).
More precisely, we will let dZ”* (1)) be of the form

(B.6) dzP (y) = HP* (Yi(y)) dt + dz

where HP* is a smooth function on éD; (which later on will be chosen to be A /2, where
hPt is the mean curvature of D;) and (2¢)t=0 is areal valued continuous semimartingale.
We assume that Equation (B.4) has a strong solution up to some positive stopping time.
Moreover, since dY;(y) represents the motion of ¢D; and for small time the map y' —
Y:(y') is a diffeomorphism from ¢ Dy to 0Dy, writing Y;(y') = y, equation (B.4) rewrites
as

(B.7) doDy(y)=dYy(y') = NP (y) (H (y) dt + dz) .

Let us now investigate the motion of the skeleton .S; under this motion of D;. First
we remark that by local inversion theorem, at regular points of the skeleton, the variation
in Stratonovich sense is linear and the sum of all variations of the concerned point at the
boundary. As we already remarked, the motion dz; does not change S;, so this together
with the linearity just mentioned implies that we have a finite variation of the skeleton.

Recall the situation of (A.2) in Section A. We consider a domain D, x € S, y1,y2 the
two elements of 0D such that exp,, (7(y1)N(y1)) = exp,, (T(y2)N(y2)), with 7(y1) =
7(y2). For i = 1,2, we will consider a variation of the minimal geodesic from y; to z,
represented by a Jacobi field J; satisfying J;(0) € T, M, J1(1) = J2(1) € T, M,

(B.8) Ji(0) = XN (yi) + J;-(0),  JH(0) = AIN(y,) + (J;)'(0),

with J;i- orthogonal to N (y;). The motion of S corresponding to the motion of y; and y»
will be represented by Ji(1). Since S has a boundary, the observation of the orthogonal
part to S of J; (1) is not sufficient.

Let v; be the projection on M of J;. It is the geodesic in time 1 from y; to x (as
usual in the computations of Jacobi fields, the speed is not normalized). Denote N;(z) =
4i(1)/]4:(1)]|. Recall that the angle between N;(z) and TS is 6(x) € (0, 7/2]. We will
also let

B.9) NS (x) = %e()uv (z) - Na(a)).

Figure 2 shows the configuration of the points x, y1,y2 and the vectors Ni(x), Na(x),
N (z). The vector N{(x) is is the normal vector to S at point z, in the same side as
N; (z). We will consider variations of geodesics with same final value:

(B.10) Ji(1) = Ja(1) = ANY () + J{ (1)
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FIGURE 2. The points z,y;,y2 and the vectors Ny (), Na(z), N{ ()

for some \ € R, where J{ (1) € T,,S. Writing AN () = W)‘H(I)(Nl (x) — Na(z)) we
have

(1), Ny (@) = =

(B.11) 2sinf(x)

= Asinf(z) + (J{ (1), Ny (2))

(1 — cos(20(z)) + (JL (1), Ny(z))

and
A
51 ) Nel@)) = =5 2505
= —Asinf(z) + (J{ (1), Na(2))

(1 —cos(20(z)) + (JL (1), Na(z))

On the other hand we require that the variation of length of the two geodesics are the same.
This writes as

(B.13) (J1(1), Ni(z)) = (J1(0), N(y1)) = (J2(1), Na(z)) — (J2(0), N(y2))
(B.14)  Asinf(x) + (JL (1), Ni(2)) — A\ = —Asin0(z) + (JL (1), Na(z)) — Mg,

A1 — A2

which finally, with (J{ (1), N1(x) — No(z)) = 0, yields A = sm 0z

, so the normal
variation of .S is given by

Al — A
B.15 1), N3 (2))N5 (z) = ——2 N7 (x).
(B.15) ChD, N @DV () = S N )

Next we will compute the tangential displacement J7 (1) of z in S. As we will see later,
we will only need a Jacobi field .J; such that Ji-(0) and (Ji-)'(0) are known and

(B.16) J1(0) = M N(y1), ie. JE(0) =0.
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So we know Ji-(1): and
(B.17) Ji(1) = J (1,0, (J1)(0))

where J(1,u,v) is the value at time 1 of the Jacobi field J with J(0) = w and J'(0) = v.
From

Ji(1) = J{ (1) + (N1(1), NP (2)N7 (2)

(B.18) N
J1(1) = Jr (1) + (L(1), Ni(2))Ni ()

we get

B19)  JL(1) = JEQ) + (1), M@ N () = Ti(1), NF (@) NF (@),

On the other hand we have
(I (1), No(2)) = (Ji- (1), Na(2)) + (1 (1), Ny (2) XNy (2), Na(x))
(J1(1), Na(z)) = (J1(1), N1(z)) — (A1 — A2)

where the second equation is a direct consequence of (B.15). Substracting the second
equation to the first one yields

(B.21) (1 — cos(20(x))){J1 (1), Ny (2)) = (JiE(1), Na(x)> + A1 — Ae.

Replacing {J1(1), N1(z)) in (B.19) and after simplification, using (B.9) and (B.15), we
finally obtain the horizontal displacement
(B.22)

(J1)(1) = Ji(1)+

(B.20)

1
4sin® O(z)
We are now in position to write the motion of the skeleton S; when the motion of the
boundary is given by (B.7). For x € S; with corresponding points y; and y in 0Dy,

1

(B.23) dSt(z) = Y EIE) (HP*(y1) — HP* (y2)) Ny (x) dt
which has finite variation. Observe that, as already mentioned, the term dz; disappears.

Here we wrote dS;-(x) for the normal variation of the regular skeleton. But as we
already remarked, since S; is not a closed manifold, it can expand via the motion of its
boundary. So we have to investigate the horizontal motion dS7 (x).

Notice that .Ji-)'(0) is the perpendicular part of the time derivative of the speed at ; of
the geodesic in time 1 from y; to . So from equation (B.7) we deduce the rotation

(B.24) (J1)(0)dt = ps(y1)VeN P (y1) = —ps(y1) VH* (31) dt.

(in the r.h.s. the gradient corresponds to the tangential gradient on 0D, recall that HP* is
only defined on this hypersurface).
We conclude that the horizontal displacement of z is JI (1) dt

(2¢Ji (1), Na(@))N1(z) + (A1 = A2) (N1 (@) + Na(2))) -

JEQ)dt = JH(1) dt +

m <2<J1L(1)aN2Dt(93)>N1Dt($)

(B.25)
+ (HP' (y1) — HP* (2)) (N () + NJ* (w))> dt

where Ji-(1) = J(1,0, —ps(y1)VHP(y1)). Again the processus z; does not play a role.
To summarize, we have the following result for the evolution of .S;:
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Theorem B.1. When D, evolves as (B.7)

(B.26) doDy(y) = NP (y)(H"" (y) dt + dz),

the regular skeleton S; has the normal evolution (B.23)

_ HP(y) — HP (o)
4sin? 65¢ (z)

and the tangential evolution (B.25) which can be rewritten as

(B.27) dsSi(z)

(NlDf (z) — NP (m)) dt

ds/ (x)
oy <~ psUi()d
W), NP @) HP (1) = HP(12) ) o, t
* < 2 sin 65t () 45in> 05 () > (NlD (z) + NQD (z))dt

where pg denotes the orthogonal projectionon T'S, Ji-(1) = J(1,0, —ps(y1)VHP (y1)),
and y1, Yo are defined in Figure 2.

Remark B.2. The points y; and y2 do not play the same role in Theorem B.1. As for-
mula (B.27) is symmetric in y; and yo, formula (B.28) is not. The reason is that if we as-
sume the motion of y; to be normal to the boundary ¢ D; and to have speed given by (B.26),
the motion of y, has no reason to be normal to the boundary: J5-(0) does not vanish.

APPENDIX C. DOSS-SUSSMAN REPRESENTATION OF ITO’S EQUATION (2.11)

In this section we adapt the results of [6] to our notations. Let the stochastic mean
curvature flow be a solution of :

(C.1) Ytel0,7),Vael, doD¢(y) = (th + %hD" (y)dt) NP (y)

where Cy := 0Dy, starting at Dy.
Let 0G, be a solution of

(C2) Go = Do
’ Vitel0,¢),Vxe dGy, G = Ltase, w, ()N (z)
for some € > 0 small enough, where « is defined by
1
(C3) Vr>0,YDeD,, Vaxel, acr(z) = ih‘p(c’” (e r(x))

and ¥ (C, r) is the normal flow starting at C' at time .

Similarly to the proof of Theorem 9 from [6], we show that D; = ¥(G:, —W;) is a
solution of the stopped martingale problem associated to the generator (D, E) where for
feC®(M)andFs(D) = §, fdu,

LF (D) := LD<Vf, vydu =Fas(D).

Recall that the equation (C.2), is in fact a quasiparabolic equation with coefficients that
depend on trajectory of the Brownian motion (the meaning is trajectory by trajectory).
Similarly to Section 4.1 from [6], we show that the solution of (C.2) have a regularity
C'r2:2%e forall a < 1.

Proposition C.1. Let 0G; be a solution of (C.2). Then 0Dy = V(0G, —W,) is a solution
of (C.1) in the It6 sense.
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Proof. Letx € U(0G;, —W,), we have :
d\I!(aGh —Wt)(fb) =

d
= TI\II(aGt,th) (%662)(\11_1(663, —Wt)(.ﬁ) dt
(C.4) _ NYOEGLW (1)1,

= (—th + ;h‘l’(a’c“_w‘)(x)dt> NYEGH=Wa) (1),

where in the first equality we use the Itd formula, and the fact that ¢t — 0G is C'+%,
%\D(x,r) = 0, and in the second equality we used Lemma 13 in [6], i.e. 0Dy is a
solution in the It form :

doDy(z) = (—dW+ $h?P(z)dt)vep, ()
(CS) { Tr € ODt ’

O

Proposition C.2. Conversely, if 0Dy is a solution of (C.5) then Gy = ¥(0D;, — W) is a
solution of (C.2).

Proof. Letxz € 0¥ (0D, —Why)
d\I/(ﬁDt, —Wt)(.f)
= T1¥(op,,—w,)(doDy) () + NP W) (z)d B,

1
= ~T19(ap, —w,)(—dW; + §haD‘dt)N‘7D‘)(x)
(C.6) — NYEPEW () q W,

- (37 D W) )t

1 O
= 5J\r“/@Gt»—VVt)(\IJ(aGt, —W,)(x)) N (z)dt

where we use that the Stratonovich differential is equal to the Itd’s one, i.e. oddD;(x) =
doDy. So 0GYy is a solution of (C.2). O

By the uniqueness of the solution of (C.2) and the fact that it is adapted to the filtration
of B we deduce that the solution of (C.5) is unique and is a strong solution. Similarly we
have the uniqueness of the solution of

P 1(0Dy)
doDy(z) = | AWy + shPt(2)dt — = dt | NP (x).
) = (w07 e - B @)
Moreover, since we could also make a change of time in the Itd equation, Equation (2.11)
has a unique strong solution.

APPENDIX D. WEAK SEMI-GROUP THEORY IN THE MARTINGALE PROBLEM SENSE

This theory has been developed in several books, see for instance Stroock and Varadhan
[19] or Ethier and Kurtz [8]. Here we present a minimal version suitable for our purposes.

Let V be a measurable state space and consider (2 a set of trajectories from R to V.
The canonical coordinates on {2 are denoted by the X, for ¢ > 0: for w € , X;(w) is the
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position at time ¢ of w. The set €2 is endowed with the sigma-field generated by the X, for
t = 0. Our first assumption is that the mapping

OxRy 3 (w,t) —» Xi(w)eV

is measurable, which usually means that “( is not too big”.
For t > 0, we define

Fi = o(Xs:s€e[0,t])

For t > 0, we will also need the time shift ©; associating to any w € € the trajectory
O¢(w) defined by

Vs=0, X,(0/w) = Xen(w)

We assume that O;(€2) < .

A given family P := (IP;),ey of probability measures on (2 is said to be Markovian
if for any x € V and any ¢t > 0, the image by ©, of P, conditioned by F; is Px,. In
particular, it is assumed that IP has the regularity of a Markov kernel from V' to €.

From now on, we suppose that a Markovian family IP is given. Let B be the space of
bounded and measurable functions defined on V. The semi-group P := (P;);>( associ-
ated to P is the family of operators acting on B via

Vt=0,VfeB, VzeV, Pfl(z) = E.[f(X¢)]
The Markovianity of P implies at once the semi-group property
VS,tZO, PP, = Pt+s

and in particular the elements of P commute.
A subclass of “regular” functions that will be important for our purposes is R defined
as

R = {reBiveey. m PUE) - S}

Exceptionally in the above limit, we assumed that ¢ > 0 (i.e. not only that ¢ > 0), so that
by definition, forany f € Rand x € V, Py[f](z) = f(x).
Let us observe that R is left stable by the semi-group:

Lemma D.1. For anyt > 0, we have P;[R]| € R. Thus for any given f € R and x € V,
the mapping
Ry st — P[f](z)
is right continuous.
Proof. Indeed, fixt > 0 and f € R, we have forany x € V and s > 0,
PIPI@) = RIP@)
Eo[Ps[f1(X)]]

We have for any s > 0, | Ps[f]|., < |f|., (where ||-|_, stands for the supremum norm
on 3) and since f € R, we get everywhere

Jim PIFI(X) = f(X)
Dominated convergence implies that
Jim B[PGO = Elf(X0)]

Pl f]
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as desired. u

The generator L associated to P is the operator
L:DL) - R

defined in the following way: the space D(L) is the set of functions f € R for which there
exists a function g € R such that the process M9 := (Mtf’g)t;() defined by
t

VS0 MY ()= (X0 - | e ds

is a martingale under P, forall z € V.
Let us remark that g is then uniquely determined. Indeed, we have for any x € V and
t>=0,

B, 700 - ELA ()] - B | | tg<xs>ds] - 0

0
Using Fubini’s lemma (applicable due to our measurability requirement on §2) and tak-
ing into account the definition of P, we get

PIf1() - Polfl(x) j Plgl(x)ds = 0

namely, recalling that we required that g € R,

g9 = hlgl
1 t
_ tli%1+;LPs[g](x)ds
(D.1) _ t@&w

(we came back to the usual convention that ¢ > 0 in the above limit) and as a by-product,
we are assured of the existence of the latter limit.

We define L[f] := gand M7 := M7-9.

The differentiation property (D.1) can be extended into

Lemma D.2. Forany f € D(L), x € V and t = 0, we have
(D.2) P fl(z) = P[L[f]](z)
Proof. Forany f € D(L),z € V andt,s = 0, we have

Ex [Mtf+€ - Mtj] = Ex []E’C [Mtf-k—s - Mff|]:t]]
= 0
We compute that
t+s
Ml =M = fXe) - FX) - [ L) du
t

so that

S

B (M= Mf] = Pl - AL ~ | PeulZUe) du

Since L[f] € R, the mapping [0, s] 3 u — Pyy,[L[f]](x) is right continuous, accord-
ing to Lemma D.1, and the same argument as in (D.1) enables to conclude to (D.2). [l
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We can now come to the main goal of this appendix:
Proposition D.3. Foranyt > 0, D(L) is stable by P; and on D(L) we have LP;, = P, L.

Proof. Fix f € D(L) and « € V, the assertion of the lemma amounts to checking that the
process N := (N)s>0 defined by

(N)eso = (Pt[f](Xs)Pt[f](Xo)J

0

S

PILITI(X.) du>

s=0
is a martingale under IP,.. Consider s’ > s > 0, we have to prove that
(D.3) E.[Nsy — Ns|Fs] = 0

The Lh.s. is equal to

’
S

Eq

RUI(X.) - BLAG.) - f

S

PILIANX) du\fs]

E, [Pt[fuxsf_s 00, = P00 [ ALK, o0,) du(fsl

0
- E, [Pt[f](xsf_g ~ PIf(X0) f U BILIX) du]

where y = X ;. By Fubini’s lemma, the previous r.h.s. can be written

’

B, (A1) - By [P0 - | "B [RLLI(X.)] du
= Prvlfl) — PG j L)) du

Taking into account (D.2), the last integral is equal to

’

fﬁsaumu[f](y)du = Prvdlfw) - PLA®W)

0
which ends the proof of (D.3). [

The advantage of the above approach is that it is quite sable by optional stopping, as it
is the case for martingales. Let us succinctly give a simple example in the spirit of Section
2.

Assume that in the above framework, V' is a metric space, endowed with its Borelian
measurable structure, and that € is the set of continuous trajectories C(R,, V). Further-
more, we suppose that P is Fellerian, in the sense that it preserves C, (1), the set of
bounded and continuous real functions on V.

Let be given A — V a closed set. We consider 7 the hitting time of A:

T = inf{t=>0: X; e A} € Ry u{+w}
Define the “new” process X = ()?t)tgo via
Vi=> O, jzt = Xt/\T

andforz e V, let IF’x be the image of P, by X, itis still a probability measure on C(R4, V).
All notions corresponding to P := (P,).cv, which is still a Markovian family, receive a
tilde. It appears without difficulty that R is the set of functions f € B such that there exists



CONSTRUCTION OF SET-VALUED DUAL PROCESSES ON MANIFOLDS 37

f € R with f coinciding with f on V\A. The domain D(L) is the set of f € R such that
there exists f € D(L) with f coinciding with f on V\ A. In addition, we have

wev. Uiw = {0 e
This expression does not depend on the choice of f, due to the fact that P is a diffusion,
i.e. that Q = C(R,, V'), which implies that L is a local operator (see for instance Theorem
7.29 of Schilling and Partzsch [18], they are working with Euclidean spaces, but the result
can be extended to metric spaces).
According to (D.2) and Proposition D.3, we get

~ _ ~ ~

VfeD@L),VeeV,Vt=0 aB[fl@) = RL[f)(=) = LIB[f]](z)

Such relations are not so obvious if we had chosen to work in a Banach setting (cf. e.g.
the book of Yosida [20]), considering for instance semi-groups acting on the space Cy, (V)
(endowed with the supremum norm), since in general L would not naturally take values in

Co(V).
APPENDIX E. A MEASURE THEORY RESULT

This appendix is not used in this paper. However it could offer an alternative to Lemma H.1
if we were able to establish that for i = 1,2 and

(El) ((Xz’éana Wtiydawwftéa Wti’a’m)tZOng)
as in (3.18) such that

WY Sy ) )
(X; Wi W ) i=1,2,

)
t=0
are conditionally independent given ((Df , If/Iv/t‘;)tzo, Tg ) then the conditional indepen-

dence remains true in the limit. Conditioning with respect to ((D;S , I/IN/t‘S)t;O, 7o ) would

allow to work with finite dimensional processes and Lemma 4 in [21] would be sufficient
for the convergences required by Theorem 3.5, instead of resorting to Lemma H.1.

Consider V' and W two Polish spaces. Let x4 be a probability measure on V' and
(Kn)nenuiooy @ family of Markov kernels from V' to W. For any n € N 1 {c0}, define the
probability measure m,, on V- x W x W via

Vi(z,y,2) eV x W x W, my(de,dy,dz) = p(de)K,(z,dy)K,(z,dz)
We have the following result:

Proposition E.1. Assume that the sequence (my)nen weakly converges toward mqy, on
V x W x W. Then there exists a subsequence (n;)ien such that p-a.s. in x € V, the
sequence K, (x, ) weakly converges toward Ky (x,-) on W.

Proof. Fix f € C,(V') and g € Cp (W), where Cy, (V') (respectively Cy,(W)) stands for the
space of bounded continuous functions on V' (resp. W).
Consider the function i = f ® g ® 1y, where 1y is the mapping on W only taking
the value 1. We have h € C,(V x W?2), so we have
lim my[h] = mglh]
n—0o0
namely
(E.2) lim | fKn[glduy = JfKoo[g] dp

n—o0
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Let us extend this convergence to any f € L2(u).
Indeed, given € > 0, we can find f € Cy (V') such that

=7

For any n € N u {00}, we have

€

<
L2 ()

[rmatatan= [Freaad < [|r- 7t a
< |Kaloll, [|£ - 7] du
< ol |7 7],
< lole

where ||, stands for the supremum norm and where we used the Cauchy-Schwarz in-
equality.
It follows that

hmsupJfKn[g]d,u < e+ lim | fK,[g]dp

n—o0o n—o0

< e+ijoo[g] d

< 2t [ FRcloldn

Similarly, we deduce that

twsup [ faloldn > [ 5l du 2
n—o0
Since € > 0 can be chosen arbitrary small, we get the validity of (E.2), for any f € L2,
when g € C, (W) is fixed, namely the weak convergence of (K, [g])nen toward K [g] in
L2 ().
To transform this weak convergence into a strong convergence, it is sufficient to check
the convergence of the corresponding 1.2 (;1) norms, i.e. that

T [(Kafo)?du = [ (Kelo]) du

This is also a consequence of the weak convergence of (m,),en toward m, by consid-
ering the mapping Iy @ g®gonV x W x W.

Thus we have shown that for any given g € C, (W), the sequence (K ,,[g])nen converges
toward K [g] in (). As a consequence, there exists a subsequence (n;);ery such that
(K, [9])1en converges p-a.s. toward Ko [g].

A priori, this subsequence (n;);ey may depend on g, so we resort to a diagonal proce-
dure to avoid this difficulty. More precisely, let (gx)xen be a sequence of functions from
Cp, (W) characterizing the weak convergence on W. According to the above arguments, for
(k)

)
l

any k € N, there exists a subsequence (n,"’)en such that (K ) [gx])ien converges pi-a.s.

"l
toward K [gx]. Furthermore, these subsequences can be constructed iteratively: first we
(1)

)

find (nl(l))leN, next (nl@))leN is obtained as a subsequence of (1, )en, and so on, for any
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keN, (nl(Hl))leN is a subsequence of (nl(k))leN. Define the subsequence (n;);en via

VieN, n, = nl(l)

The sequence (n;)en is a subsequence of all the subsequences (nl(k) )ien, and so for any

k € N, (Ky,[gx])ien converges p-a.s. toward Ko [gr]|. Taking the union of the underly-
ing p-negligible sets, we get that u-a.s., for any k& € N, (K, [gr])ien converges toward
Ky [gr]- By choice of the sequence (g )ken, the desired result follows.

|

APPENDIX F. AN ITO-TANAKA FORMULA

Let M be a d-dimensional Riemannian manifold and D < M a compact and connected
domain with C? boundary 0D, and S be the regular skeleton of D, and pJ,, the signed
distance to 0D, which is positive inside D and negative outside D. The notations will be
the same as in Appendix A.

Proposition F.1. Let X; a Brownian motion in M. We have the following It6-Tanaka
formula :

dpip(Xy) = (NP(Xy),dX;) — %hD(Xt)dt —sin (6°(Xy)) dL} (X),

in the above formula, NP (z) = Vp1,(z) and —hP (z) = Ap},(x) forz ¢ S, and define
to be 0 elsewhere, LY (X) is the local time defined as in (3.11).

Proof. The formula is a consequence of the Itd formula outside the skeleton. Since the
non regular part of the skeleton has Hausdorff dimension smaller than or equal to d — 2, it
is not visited by the Brownian motion. So we only focus on the regular skeleton. For all
x € S, the distance to the boundary is the minimum of two C? functions f, g defined on
some neighborhood U of x in M. The function f (resp. ¢ ) is the distance function to a
piece of 0D containing y; (resp. y2) as in (A.2). We have locally,

1 1
pip=Ffnrg=5(f+9) —5If —gl.
Using It6 formula and Tanaka formula we have

1

Atp(X0) = 5 (507 + )Xot + (V( +9)(X),dX0))

— 5 (siEn((f — ) (X)(S ~ ) (X0) + L (F — 9)(X)):

where Ly ((f—=9)(X.)) = lim_o+ £ §5 Lo, (F =9) (X)) (f=9)(X), (f =9) (X))
Since locally S = {f — g = 0} and u(.S) = 0, we have
1

1
S xssDpln (X0t + Lxgs(Vplp (Xo),dXe) — AL (( = 9)(X)).

dpgD(Xt) =

After changing the role of f and g we get
(FE1)

1 1
dptp(Xy) = §1X1¢SAP39(Xt)df + 1x,gs{Vpip(X:), dX;) — idL?((f - 9)(X))),
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where

t

L9 = )(X)) = Jim | St (( = )XV = 0) () ds

e—0t

In Appendix A it is shown that for z € S, [V(f — g)(z)| = 2sin (6°(z)).

Using the flow %v(t) = 7% that starts at y € U, we get

9

lyeM, st |f—glly) <ej = {yeM, stlds(y) < 5 (05 (v(9(v))))

+o(e)},

where dg is the distance to S. On the other hand, using the minimal geodesic from S to
y e U we get

{ye M, st |ds(y)| <e} = {ye M, st |f —g|(y) < 2esin (05(P5(y))) + o(e)}.
Hence
dLY((f = 9)(X)) = 2sin (07(X)) L7 (X)).

Together with (F.1), this yield the Proposition. (I

APPENDIX G. UNIQUENESS IN LAW OF L DIFFUSION

Let us consider the following generator 2 of a stochastic modified mean curvature flow.
The action of this generator and its carré du champs on elementary observables are defined
as follows. For any smooth function & on M, consider the mapping I}, on D>+ defined
by

V D e D**, F.(D) = Jkdu
D
For any k, g € C*(M) and any D € D2+,

G ZIF(D) = —5uP((VE,NP)) = Fy (D)
L o[F, Fol(D) = §,pkduf,,gdp.

Note that - has the same carré du champs as the carré du champs associated to 2.
From now the generator .Z is defined as in (2.14).

Proposition G.1. The martingale problem associated Pis well-posed.

Proof. We have already shown the existence result in [6], so it remains to prove the unique-
ness in law. Let us first consider the two-dimensional Euclidean case, namely M = R2.

For all A € R and for any function k € vect(e*”, e*) we have 1 Aky(z,y) = )‘2—21€>\(m7 Y).
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Let fA((w,y), D) := kx(z,y)Fy, (D), for (x,y) € R? and D € D27, This function sat-
isfies the following property:

I
x5
>
—
}2
<
S
&l
>
nN

)\2
= ?k/’)\(l‘, y)Fk)\ (D)

1
= §Ak)\<xay)Fk/\ (D)

- SAA((,),D)

Let (X;);=0 be a R?-valued Brownian motion that starts at Xo = (z1,22) € R? and

(bt)t>0 a 2 diffusion that starts at Dy independent of (X;);>o. Even if we stop the
diffusion, we can assume that its lifetime is infinite and we add indicators as described in
Appendix D. For all 0 < s < ¢, we have

~ m 1 ~ ) ~ m
df)\(thsa Ds) = _iAf)\(thsa Ds)ds + gf)\(thsy Ds)ds =0.
Hence for all A € R we have
(G2) E[fA(X¢, Do)] = E[f(Xo, Dy)].

Since the left hand side of the above equation does not depend on the K% diffusion, we get
that for any . diffusion (D;):>0 that starts at D :

E[fx(Xo, Dy)] = E[f(Xo, Dy)],
and so
E[Fy, (Dy)] = E[Fy, (D))].

In order to apply Theorem 4.2 of [8], we have to show that the above equation char-
acterizes the law of the one-dimensional distribution, i.e. we have to show that (F}, ) is
separating in the space of probability measures on D2, This is equivalent to separate do-
mains. Let A, B € D?* such that Fy, (A) = F}, (B) for all A € R and ky € (%, V),
we have for all A:

L (o, y)dp = jB (e, y)dp.

After successive derivations in \ and evaluation at A = 0, we get for alln € N

j x"du =J x"dpu,

A B

J y"dp :J y"dp,
A B

i I Az ; 1AL
The above computations could be done also for kx, x, = e**+*2Y since 3Aky, x, =

2 2 ~
/\1;)‘2 kx, .2, and after derivations in A1, A2 and evaluating at (0,0) we get that for all

n,me N:
f "y dp :J "y dp,
A B
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hence, using the boundary regularity, we get A = B.

We could also apply Stone-Weierstrass’ theorem to the function algebra generated by
the mappings (z,%) — e and (z,y) — e*2¥.

The proof is the same for all Euclidean spaces.

If M is a compact manifold let

f)\z(XvD) = k)\z(X)Fkxl(D)v

where ); is an eigenvalue of %A and k; is the associated eigenfunction (respectively the
Neumann eigenvalue). By the same computation as above (G.2) is also valid for the bound-
ary reflecting Brownian motion), to get the conclusion we have to show that (Fk/\i ): sepa-
rates domains. Since (ky, ); is an orthonormal basis of L? (1) we get that if A, B € D**¢
be such that for all ¢,

Fkxi (A) = Fkxi (B)

ie{la,kxyrz = Ap,kx)r2, then 14 L 15 hence A = B.
For the complete manifold M, let ) be an exhaustion of M with a regular boundary
such that Dy — 2, and stop the . diffusion when it hit 2, and use the above result for

the manifold with boundary 2, we get the result by localization.
O

Proposition G.2. The martingale problem associated to £ is well-posed.

Proof. Let D, be a . diffusion that starts at Dy, defined on (2, F2, Q). We first recall
that there exist an enlargement of the probability space such that it carries a one dimen-
sional Brownian motion B such that for all k € C* (M)

(G.3) Fk(Dt) = Fk(DO) + JO g[Fk](DS) ds + J;) \/F_-g)[Fk,Fk](DS)dBS

where /T [ Fy, Fi](D) := Sa p Kk do, this is actually Proposition 53 in [6]. Note that this
procedure of enlargement (Theorem 1.7 chapter V in [17]) could be done by gluing the
same independent Brownian motion for each (€2, 7, Q). We denote by (€2, 7, Q) the

—

enlarged probability space. Since .Z is an h-transform of .Z namely

—~ I'o(F1, F
ZIF] = Z[F] + M’
Fy
equation (G.3) becomes in a differential form
- 0D D
(G4 dFy,(Dy) — L[ Fe](Dy)dt = (J kdo) (dBt + wdt).
oD (D)

Let

oD éDg 2
_ ot uPs oDy _ 1t (r97s(@Ds) .
M, = ¢ o ma 430 (Lot ) ds

)

P\r, = M;Q7,-

Using Girsanov transform, D; is solution of the K% martingale problem on the probability
space (€2, FP P). Since Q = M ~'P we get the uniqueness in law of the . diffusion by
Proposition G.1. (]
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APPENDIX H. CONVERGENCE IN LAW: A KEY LEMMA

This Appendix is devoted to the adaptation to some domain-valued sequences of pro-
cesses, of Lemma 4 in [21], which states stability of some time integrals under convergence
in law.

Lemma H.1. Let F := 7. We endow the set of continuous paths € ([O, 0), M x j)
with the two dissimilarity measures dg, 8 € {0, a}, defined as:

(H1)  dg((z',D"),(2*,D?) = jggp(wl(t), 22 (t)) + sup dg z(D'(t), D*(t)),

where for two domains D and D'

dﬂyD(Dv D/) A d57D/(D/, D) NE lf H(D, D/) <e€
€ otherwise.

H2)  dy (D, D) = {

Here H(D,D') is the Hausdorff distance between D and D' and the distance dg p is
defined in (2.2).
Let (X7, D}, 7™)s0 == (X2, D2, 7%"),50 a subsequence of (3.18) converging in
law to the limit defined in (3.19) for the product of d, and the Euclidean distance in R ;.
Let f, : (z,D) — fo(z,D)and f : (x,D) — f(x, D) be maps on M x F with

values in some Euclidean space, and U an open set in M x F for dy. Assume that:

0
(i) the random variables J | fr (X2, D)|P ds are uniformly bounded in probability
0

for some p > 1,

(ii) in the open set U, the functions f,, converge locally uniformly to f with respect to
do, and are dy-continuous,

(iii) fora.e. t =0, (Xy,D;) e U.

t t
Then (Xt"7 Df,f fu(XZ, DY) ds) converges in law to (Xt, Dt’J- f(Xs, Dy) ds)
0 >0

= 0 >
for (das| )
Remark H.2. In the applications we will always take
(H.3) U= {(x, DeMx 7, ae D\S(D)} ,

which is easily seen to be dy-open thanks to Assumption 3.1 on Z.
Proof. We will follow the proof of Lemma 4 in [21], but with several differences due to
infinite dimensional spaces. Set forn e N, ¢ > 0,

t
(H.4) f fo(X, DM ds, A, ;:J F(X,, D) ds.
0

Condition (i) implies that the processes A™ are tight. To get the conclusion il is sufficient
to show that all the converging subsequences have the same limit. So assume that

(H.5) (X{, Dy, AY) (Xt, Dy, ay)

and let us prove that (a;),~, = (At),~o- By Skorohod theorem we may realize all pro-
cesses

t=0 t=0 -

(H6) (X?,D?,A?,Xt,Dt,at)tzo
on the same probability space (2, %, P) in such a way that
(HT) (20 = (X, DI AD) g =5 (X0, Dy ar) g = (Z)e20
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This means that Z}* — Z; a.s. uniformly in ¢ > 0.
Fix w € . Lett > 0 be such that (X;(w), D;(w)) € U. For some ¢’ > 0 we have
(Xs(w), Ds(w)) € U forall s € [t — &,t + £]. The set

(H.8) S :={(Xs(w),Ds(w)), selt—¢ t+}
is d,-compact in M X Z,so it has a dq-neighbourhood V included in U of the form
(H.9) V= {(a:,D) e M x 7, do((z,D),8) < e”} .

for some small enough £” > 0. For n sufficiently large, (X (w), D7 (w)) € V forall s €
[t—e’,t+¢']. On the other hand V' is bounded for the distance d,. This implies by Arzela-
Ascoli theorem that it is compact for the distance dy. We have the two following facts, the
first one being an assumption on the f,, and f, the second one being a consequence of the
dp-compactness of V'

(@ fn — fasn — oo uniformly in (V, dy);

(b) f is uniformly continuous in (V, dy).

Then
sup ‘fn(X;L(w),D:(w)) _f(Xs(w)7Ds(w))|
se[t—e,t+e]
< sup |fu(X{ (W), DY (w)) = f(X{ (W), DY (w))]
se[t—e,t+e]
b s TG DI ~ () Do)

Both terms in the right converge to 0, the first one by (a) and the second one by (b). So we
have by (H.7) and the above calculation
(H.10)
{ (A? (w))se[t—s,t+s] (G’S( ))se t—e,t+e]
(A3 W) = fu(XE (W), DY (W) set—c,t4e) — (F(Xs(w ) (@) seft—e,t44]

both uniformly in s € [t —e, ¢+ ¢]. This implies that as(w) is differentiable in (t —e, t +¢€)
with derivative f(X;(w), Ds(w)) and in particular at .
We have that for all ¢ > 0, (X;(w), D¢(w)) € U a.s.. Soforall t > 0,

d

(Hll) %at< ) = f(Xt(W),Dt(W)) a.s..
This implies that w a.s.
d

(H.12) £at( w) = f(X¢(w), Dt(w)) forae. t.
On the other hand we know by [12] Theorem 10 that (a):>¢ is absolutely continuous :

t
(H.13) ar(w) = J ls(w) ds.

0
By Lebesgue theorem, w a.s., fora.e. £ > 0

1 t+e
(H.14) lim - L 16(w) )] ds = 0.
Equalities (H.12) and (H.13) imply that w a.s.
1 t+e

(H.15) lim - L () ds = J(Xi(w). D) forne .
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On the other hand
1 t+e 1 t+e
% Lis ls(w) — U (w)ds| < % Lie |€s(w) — £e(w)| ds
so (H.14) implies that w a.s. fora.e. ¢ > 0
1 t+e
H.1 lim — s = .
(H.16) lim, o L_E ls(w) ds = by (w)
Consequently, using (H.12) and (H.16), we get w a.s. fora.e. t = 0
(H.17) li(w) = f(X¢(w), Di(w))
Integrating we get w-a.s. forall ¢ > 0
t
(H.18) (W) = Ay(w) = J F(Xo(w), Da(w)) ds.
0
This together with (H.4) proves the lemma. (]
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