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COUPLINGS OF BROWNIAN MOTIONS WITH SET-VALUED DUAL
PROCESSES ON RIEMANNIAN MANIFOLDS

MARC ARNAUDON, KOLEHE COULIBALY-PASQUIER, AND LAURENT MICLO

ABSTRACT. The purpose of this paper is to construct a Brownian motion X := (X¢)¢>0
taking values in a Riemannian manifold M, together with a compact valued process D :=
(D¢)¢=0 such that, at least for small enough .#P-stopping time 7 > 0 and conditioned
by ZP, the law of X is the normalized Lebesgue measure on D. This intertwining
result is a generalization of Pitman theorem. We first construct regular intertwined pro-
cesses related to Stokes’ theorem. Then using several limiting procedures we construct
synchronous intertwined, free intertwined, mirror intertwined processes. The local times
of the Brownian motion on the (morphological) skeleton or the boundary of D plays an
important role. Several examples with moving intervals, discs, annulus, symmetric convex
sets are investigated.

KEYWORDS. Brownian motions on Riemannian manifolds, intertwining relations, set-
valued dual processes, couplings of primal and dual processes, stochastic mean curvature
evolutions, boundary and skeleton local times, generalized Pitman theorem.

MSC2020 primary: 60J60, secondary: 60J65, 60H10, 5865, 53E10, 60J55, 35K93.

1. INTRODUCTION AND MAIN RESULTS

Markov intertwinings were introduced by Rogers and Pitman [23] to give a direct proof
of the famous relation between the Brownian motion and the Bessel-3 process due to Pit-
man [21]. These relations were next used by Yor and his coauthors (see e.g. [26, 6]) to
get identities in law and by Diaconis and Fill [10] to construct strong stationary times. For
a historical account of the subsequent development of the Markov intertwining technique,
consult for instance Pal and Shkolnikov [20].

At an algebraic level, a Markov intertwining relation is a (directed) weak similar re-
lation, from a Markov semi-group (P; )0 on a measurable state space (M, M) to another
Markov semi-group (P;);>0 on a measurable state space (M, M), consisting of a Markov
kernel (called the link) A from (M, M) to (M, M) such that

(1.1) Vt=0, BPA = AP

in the sense of the composition of Markov kernels. Depending on non-degeneracy proper-
ties of A, such a relation is more or less strong. Especially when Markov semi-groups are
described by their generators, (1.1) is often replaced by

(1.2) LA = AL

where L and L are respectively the generators of (P;)¢>o and (P;);=0. But then one has to
be more careful with the meaning of generators (e.g. in the sense of martingale problems)
and their domains, in particular the domains are transported via (1.2).
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To be more useful from a probabilist point of view, it is convenient to convert (1.2)
into a coupling between X := (X;)¢>0 and X := (X;)¢>0, two Markov processes respec-
tively associated to L and L (called the dual and primal processes), so that the following
relations hold for the conditional laws:

(1.3) Vt=0,  L(X|Xpsg) = AXe)

In addition, one asks that (X;);>0 can be constructed from (X;);>¢ in an adapted way,
meaning

(1.4) Vi=0, L(XpglX) = L(Xpoq

X10,)

Yor was wondering about such couplings between some piecewise linear Markov pro-
cesses and squared Bessel processes, in order to simplify his approach to certain properties
of the former processes similar to those of the latter, see the end of the introduction of [26].

Such couplings are crucial for the constructions of strong stationary times, as explained
by Diaconis and Fill [10] in a discrete time and finite setting. More precisely, in this
situation X is an ergodic Markov chain with invariant probability 7 and X is a Markov
chain absorbed in a unique point. A strong stationary time 7 for X is a finite stopping
time for X (and some independent randomness) such that 7 and X are independent and
X is distributed according to 7. Taking into account (1.3) and (1.4), one can see that the
absorption time for X is a strong stationary time for X .

Strong stationary times are important for two reasons (cf. Diaconis and Fill [10]):

- They enable to sample exactly the invariant probability 7, contrary to the usual ap-
proximations provided by Monte Carlo techniques.

- They provide a probabilistic alternative to functional analysis approaches for the quan-
titative investigation of convergence to equilibrium. More precisely, for any strong station-
ary time 7, we have

Vit=0, s(L(Xy), ™) < Plr >t

where the separation discrepancy s(u, ) between two probability measures p and 7 is
defined by

s(u, ™) = esssup (1 - d,u)

. dm

(where dyu/dr is the Radon-Nikodym density). The separation discrepancy dominates the
total variation norm and gives positivity properties of ;1 with respect to 7. In the context of
convergence to equilibrium, it is very difficult to estimate the discrepancy of s(L(X), 7)
via functional inequality techniques (see e.g. the book [5] of Bakry, Gentil and Ledoux).

In the objective of constructing strong stationary times via intertwining duality, there
are particular dual processes X which are taking values in V, the set of measurable subsets
of M, but in general V is only a subset of V, consisting in some regular subsets. The
absorption set is the whole set M. The heuristic goal of intertwining duality is then to
construct random subsets X; — V such that X is already at equilibrium in X,, for all
t > 0, in such a way that X is itself Markovian and ends up covering the whole state space
M.

In the diffusion context, set-valued intertwining dual processes started to be constructed
in Fill and Lyzinski [12] and [17]. In [9], set-valued dual processes for diffusions on
Riemannian manifolds were identified as stochastic perturbations of mean-curvature flows.
But the coupling of primal and dual processes were not considered in [9] and this is our
present goal, mainly for Brownian motions on Riemannian manifolds. As we will see,
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there are numerous ways to construct such couplings (this is true in more general contexts,
see [18] for the diversity of such couplings in a finite framework), but none of them is
immediate and they are related to fine geometric features of the evolving subsets, such as
their skeletons. We are thus to consider synchronous intertwined, free intertwined, mirror
set-valued intertwined dual processes.

The reader must be warned that, as it stands now in the context of multidimensional
diffusions, the set-valued dual processes are not defined up to the absorption time (except
in symmetric settings), and as a consequence the same will be true for our couplings, which
will be defined only up to some positive stopping times. We hope to investigate this point
in future works, to end the construction of strong stationary times for Brownian motion on
compact Riemannian manifolds, which remains our remote motivation. Other motivations
for the couplings of primal and dual processes in the context of diffusions can be found in
Machida [15] and [18].

Let us now present more precise definitions. Here the state space M is a d-dimensional
complete Riemannian manifold. Denote respectively by p, p and p, the Riemannian dis-
tance, the Lebesgue measure on M and the corresponding (d — 1)-Hausdorff measure.
The main objective of this paper is to construct couplings of primal diffusions processes
with their set-valued dual intertwined processes. This will partially solve Conjecture 6
in [9] in the case of Brownian motion (X;);>o and stochastic modified mean curvature
flow (Dy)=0 (which were generically denoted (X;)¢>o above). This conjecture says that
an intertwined construction in the sense of Definition 1.1 is always possible.

Definition 1.1. Consider a Markov process D = (D¢)se[o,-], With values in compact
subsets of M and continuous with respect to the Hausdorff topology, and where 7 is an
a.s. positive stopping time in the filtration .# P of D, serving as a lifetime for D. We say
that a Brownian motion X = (X;)¢>0 in M and D are intertwined when for all bounded
7P _stopping time 7/ smaller than 7, conditioned on ﬁg , X, has uniform law in D,/
(and in particular X, € D,,). More generally, for any .% P-stopping time 7 smaller than
7, we say that X and D are 7-intertwined when X and (D;)¢[o,7] are intertwined.

This is a generic definition, below stronger topologies on subsets of M will be consid-
ered. Note that the above lifetime is not necessary the explosion time, i.e. the exit time
from all compact sets for the considered topology. In the infinite dimensional state space
of D, compactness does not seem an appropriate notion.

Our main results are Theorems 2.8, 3.5 and 4.1 presenting such joint constructions of
the primal Brownian motion (X;);>0 and the dual domain-valued (D;);>¢ processes. The
coupling of Theorem 2.8 consists in the infinite-dimensional stochastic differential equa-
tion (2.10), based on a function f : (x,D) — f(x, D) which is a deformation of the
signed distance from = € M to the boundary of the domain D (see Assumption (2.2) for
the precise requirements). Theorem 3.5 is obtained by specifying some approximating
functions f. Given the trajectory (X;):>o of the Brownian motion, we construct the do-
main evolution (D;);>¢ using the local time of (X;)¢>o on the skeletons of (D;);>0 and
the mean curvatures of the normal foliations of these domains (see (3.30)). Other approx-
imating functions f lead to Theorem 4.1, where the prominent role is played by the local
time at the boundary. This situation is in some sense opposite to the previous one, since
the driving Brownian motion of (D;):>¢ is now independent from (X;);>0, while it is as
correlated as it can be in Theorem 3.5. These theoretical results are illustrated by the fun-
damental examples of Section 5. First we recover the intertwining relation between the real
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Brownian motion and the three-dimensional Bessel process. Next we deal with rotation-
ally symmetric manifolds. Finally we present the application of our results to symmetric
convex domains in the plane, even if the detailed proofs are deferred to a forthcoming
paper.

To come back to our initial motivation, assume that X and D are intertwined, where the
lifetime 7 is the hitting/covering time by D of the whole state space M. If furthermore 7 is
finite (typically true when M is compact), then the Riemannian measure can be normalized
into a probability (called the uniform distribution, which is invariant and reversible for
the Brownian motion X) and 7 is a strong stationary time for X. In this situation, the
tail distributions of 7 provide quantitative estimates for the speed of convergence of the
Brownian motion toward equilibrium, in the separation sense. These estimates will need
geometric ingredients such as Ricci bounds and it will be interesting to see how they will
enter the game.

The needs for couplings between primal and dual processes of a Markovian intertwining
relation is illustrated by [3], where strong stationary times 7,, are constructed for the n-
dimensional sphere (when the subset-valued dual is starting from a singleton), satisfying

In(n)

E[7,] ~

and for any r > 0,

lim P [rn > (1+7) ln(”)] — lim P [rn <(1- r)ln<”)] —0.

n—0o0 n n—0o0

2. INTERTWINED DUAL PROCESSES: EXISTENCE IN CONNECTION WITH STOKE’S
FORMULA

In this section we make a construction of intertwined processes X and D based on the
Stokes” Formula (2.1) below. Consider a compact domain D in M with C? boundary. Let
f: D — R aC? function such that V f|;p = NP the normal inward vector on boundary.
Then by Stoke’s formula, for any C' 2 function g:D—>R,

) — dp = Vf,—NPydu = Afd Vg,V du.
2.1) LDgg LD9< fs ) du Lg fu+fD< 9, Vf)du

For a € (0,1), denote by 2% the set of compact connected subsets D of M with
C?*% boundary. It will be more convenient to work with this state space (endowed with its
natural topology) than with the larger one considered in Definition 1.1. Let us even restrict
it further:

We fix a point o € M for convenience.

Definition 2.1. For a given a € (0,1), € > 0, we denote by F* the set of D € #*+
such that

e D < B(o,1/¢) the Riemannian ball centered at o with radius 1/¢;

e p(0D,S(D)) = ¢, where S = S(D) is the skeleton of D (see appendix A for
details);

e p(0D,S°" (D)) > €, where S°"*(D) is the outer skeleton of D, i.e. the skeleton
of (D)°.

o the coefficients of the a-Holderianity of the second fundamental form of 0D are
bounded by 1/e.
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The set F*-* will serve as the state space of the set-valued process (ﬁt)te[o’&] and 7. €
(0, +o0] will be the exiting time from F*:¢. This process will be a diffusion, i.e. a Markov
process with continuous trajectories (for the topology inherited from 22+<), and its gen-
erator .Z will be defined later in (2.12). We extend the trajectory (Bt)te[o,fg] by taking
l~)t = ZNDTE for any ¢ > 7.. It amounts to imposing that % vanishes outside . It is
possible to define in the same way (ZN)t)tE[OyT) on D?*¢ (which coincides with U o F ),
where 7 is the exiting time from D2+, But it will be more convenient for us to work with
a process with an infinite lifetime (to be able to apply Proposition D.3 in Appendix D) and
whose set of values has a boundary which is well-separated from the skeleton.

Let 8 € {0,a}. For Dy € D**# and § > 0 small enough, a -neighborhood of Dy is
defined as follow:

V§+ﬂ(Do) := {int(exp,p, (), f € C*TP(0Dy), Iflc2+8opg) < 6}
where for f € C?*8(0Dy)

eXpap, (f) = {eXpm(f@?)NDO (z)),x € 0Dy}

(exp being the exponential map in M), and int(exp,p, (f)) is the interior of the hyper-
surface exp,p, (f), oriented by the orientation of Dy. Let (dDg) > 0 be the radius of
the maximal tubular neighborhood of 0Dy. Notice that 6 < 7(0Dg) garantees that all
elements of V?Jrﬁ (Dy) are regular deformations of Dy. Also notice that all elements D of
F*< have (D) > e.

We identify two domains D1, Dy € V§+ﬁ (Do) with the functions f1, fo € C?*8(0Dy)
such that Dy = int{exp,p (f1)} and Dy = int{exp,p, (f2)} and we define a local dis-
tance

(2.2) dp.py (D1, D2) := | f1 — falc2+5(aDy)-

Assumption 2.2.
e The function

f:MxF** >R
(¢,D) = f(z,D) = f(x)
is a C2*“ function in the two variables (the differential in D is in the sense of

Fréchet with respect to the above local Banach structure defined by the distances
dq,p)- The functions [P satisfy

(2.3) VP, <1,

and coincide with the signed distance to the boundary p:{D (positive inside D and
negative outside) in a neighbourhood of dD. The functions f” have bounded
Hessian, uniformly in D € F*°. Furthermore, we assume that the coefficients of
the a-Holderianity of Hess f” are uniformly bounded over F*:=.

e There exists a positive integer m and a C'* map

oc: M x F*° > T(TM® (R™)*)
(z,D) — o.(x,D) = 0P (z) e L(R™, T, M)

where I'(TM ® (R™)*) is the set of sections over M of TM ® (R™)* and
L(R™, T, M) is the set of linear maps from R™ to 7, M, such that the linear
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map
oP(z) : R x R™ — T, M
(2.4) b b
(wo, w) = woV 7 () + 0 (x)(w)
satisfies
(2.5) Vee D, oP(oP)*(x) = Idp,ur.

Remark 2.3. The first condition of Assumption 2.2 implies that

V§Plop = (VpZp)lap(= NP) and

AfPlop = (Apfp)lon(= —h").

where h? stands for the mean curvature on 0D. It also implies that the functions fP
are uniformly Lipschitz and have uniformly bounded Laplacian. Also, for fixed x € 0D,

varying D successively along a field K normal to the boundary D and along N for the
second derivative:

(2.6)

(Vf(z, ), K)() = ~(NP(x), K(z)) and
2.7)
Vdf(z,) (NP,NP) =0

where Vdf (z, -) is the Hessian of f in the second variable.
The second condition of Assumption 2.2 implies that for all u € T,, M,

m

(2.8) lull? = Cu, VP (@))% + D (w02 () ()
i=1
fores, ..., e, an orthonormal basis of R™. In particular, if z € 0D, takingu = VP (z) =
NP (z), we get since [NP (z)] = 1:
(2.9) 0=(VfPx),o(x)(e;)), i=1,...m.

Proposition 2.4. Assumption 2.2 can always be realized, with any a € (0,1) and £ > 0.

Proof. We begin with remarking that for D € F*¢, p(dD, S(D)) = e. In particular, the
distance to 0D is C*** on D, := {x € M, p(z,0D) < €}. Let h. be an odd smooth
nondecreasing function from R to R, such that h.(r) = 7 for r € [0,e/2], he(r) =
(3/4)e for r > ¢ and ||hL|o < 1. Then fP := h. o p}, satisfies all the requirements
of the first condition of Assumption 2.2. Then for constructing o” we proceed as in [4],
Proposition 3.2 taking o1 = V f. The wanted regularity in D is easily checked. (]

Let W, and W™ two independent Brownian motions with values respectively in R and
: '1;he equation we are interested in writes in Itd form for all y € 0D;:
dX, = (VfP(Xy)dW, + oDt (X,) dW™)
{ doDy(y) = NP:(y) (dW; + (3hP (y) + AfPH(Xy)) dt)
started at a compact domain Dy with C?* boundary and X, such that £ (X,) = % (Do),
where 7% (D) is the uniform probability measure on Dy. The notation ddD;(y) stands for

an infinitesimal move of the boundary 0D at point y and is rigorously presented in Ap-
pendix B, see (B.7). In fact, as in Definition 2.1, the evolution equation (2.10) is implicitly

(2.10)
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considered only up to the exit time 7. of F*° for some fixed « € (0,1), € > 0, after which
the process is assumed not to move.

In (2.10), the processes (D );>0 and (X} )= are fully interacting, since the evolution of
one of them depends on the other one. In particular, they are not Markovian by themselves
in general.

Another subset-valued process (l’\jt)tgg will be interesting for our purposes. It is solu-
tion to the evolution equation

Vit<7T, Vye oDy,

D = D, W 1 D, _M
211)  doDi(y) = N"*(y) (thJr(Zh (y) B )dt>,

where Wt is a real-valued Brownian motion and where T is the exit time from F*:€.
Notice that the equation for D; does no longer depend of X4, so if the solution is unique,

(5t)t>0 will be Markovian. It is Equation (44) in [9] (up to a time scaling by 2). Theo-

rem 40 of [9] (where (44) has been rewritten as (79)) proves local existence of a solution.

Theorem 2.5. Fix o € (0,1) and € > 0. Then (2.11) admits a unique global solution. In
particular the process (Dy)i=o is Markovian.

Proof. The proof is a consequence of Theorem 22 in [9]. It can be found in Appendix C.
|

To describe the generator . of (ﬁt)t>0 we must introduce the following notations. For
any smooth function k on M, consider the mapping F, on D+ by

Y DeD***  F.(D) = J kdu
D

For any k, g € C*(M) and any D € D?>%, define
oD

0 u(0D) L op D

(2.12) ZL[F(D) = uPk)y=—Z — —uPVE,N

[Fr](D) uo (k) D) a3 (« ))
@1y TREID) = | kdu| gde

oD oD

Next consider 2 the algebra consisting of the functionals of the form § := §(Fy,, ..., F%, ),
where n € Z, ki,....,k, € C*(M) and §f : R — R is a C* mapping, with R an open
subset of R™ containing the image of D2t by (Fi,, ..., F, ). For such a functional §,
define

(2.14) 28] = 3 i(Frys s Fr ) Z1Ey]
=1
+ Z ajylf(Fkla"'aFk,l)F‘}Z[FkﬂFkl]
j,le[1,n]
To two elements of A, § = f(F,, ..., Fx,) and & := g(Fy,, ..., F,, ), we also associate
Q2.15) T3[F,6] = > af(Frys o Fr,)050(Fyy s o Fy, )T [ Fry, Fy |
le[n],jel[m]

Remark 2.6. To see that the above definitions are non-ambiguous, since a priori they
could depend on the writing of § € 2 under the form f(F%, , ..., F), ) and similarly for &,
see Remark 2 of [9]. More generally, the forms of (2.14) and (2.15) are consequences of
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the diffusion feature of -Z , for more on the subject, see e.g. the book of Bakry, Gentil and
Ledoux [5].

Remark 2.7. In the above considerations, .:27 was defined on D2+, but from now on, }
will stand for the restriction of this generator to F ¢ and will be zero on D2+a\}" € in
accordance with Definition 2.1. Similarly, all stochastic differential equations will be valid
only up to the stopping time 7. (which was defined after Definition 2.1) or 7. (defined after
(2.11)).

The interest of Assumption 2.2 comes from the following result:

Theorem 2.8. Let (v, D) — fP(z) and (z, D) — oP(x) satisfy Assumption 2.2. Then
equation (2.10) has a solution (X, Dy),-, started at Dy € F %<, Xo ~ % (Dy). More-
over the processes (Xt), and (D), are T.-intertwined.

Proof. We prove here the existence of solution to equation (2.10). The intertwining will
be a consequence of Proposition 2.11 below.

We begin to prove the existence of a diffusion with modified drift, and then we will get
the result by change of probability. The modified equation writes

— 2Dy (oD,
doDy(y) = NPu(y) (W, + (3P (y) — ErR ) dt)
_ Dy W, _ (&P @Dy) D,
2.16) X = (Vf (X0) [, — (M55 + AFP (X)) dt
J’_O-CDt (Xt) thm)

for W, and W;™ independent Brownian motions. Notice that the first equation is the same

as (2.11). Thus due to Theorem 2.5, (D;):>o is a diffusion process with generator 2.
Then given Dy, the equation for X,

woP(oDy)

dX, = (W’Dt (Xt) [dﬁft - < w(Dy)

+ AfP (Xt)> dt]
(2.17)

+ P (Xy) dW{”)

can also be solved, since the coefficients in front of th and dW/* are Lipschitz,
oP(oP)*(x) = Idr,a and AfP is bounded and uniformly Hélder continuous (due to
Assumption 2.2). Notice that X; remains in Dy, since when X; € dD,, we have, us-
ing (2.9) which yields on boundary (NPt (X}), 0Pt (X,)dW;™) = 0,

d(pgpt (X))

1
(218) = <Vpth,dXt> — §th (Xt) dt — <d8Dt(Xt), NDt (Xt)>

= (NP« (X}),dX,) — %th (X,) dt —{doD(X;), NPt (X)) = 0.

where we used (2.16) and (2.6). We also have no covariation since the martingale part of
d0d Dy acts on the normal flow only, and any normal flow
r— D(r):={xe M, pt(z) =1}

satisfies pgD(T) (z) = pZID(O) (z) — r for x € D(0) and |r| small, (see Appendix A).
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Once we have a solution to (2.16), make by Girsanov theorem a change of probability
such that (W, W/™) is a Brownian motion where

t s oD
= w7 (0Ds) D,
(2.19) W, ::W—J <+A (Xs) | ds.
e gy AT
We get a solution to (2.10) in the new probability. (]
Proposition 2.9. Ler D; satisfy
1
for some Brownian motion Wy and some adapted locally bounded real-valued process by.
D,
Let pi; = uPt be the Lebesgue measure on Dy and fiy = it = U (Dy) = /ZD ¥ Denote
/i(?Dt R
by p, = 1Pt the Lebesgue measure on 0Dy and n, = gaDt = (D) Let k be a smooth
t
function of M. Then
1
221) dpun(k) = —1y(R) AWy — o (b () + sy (b, NP*))) dt
and

Aie(K) = (~,(K) + o (K), (D)) AW, — S, (b, NP) i
+ (24 (OD¢) + by) (=1 (k) + e (k) iz, (0Dy)) di
In particular, if by = —[1,(0D;) we get

(2.22)

(2.23) diig(k) = (=g, (k) + e (k) iz, (0Dy)) dWy — %Qt (<dk»ND">) dt.

Proof. Let us first work at fixed time ¢ > 0. Denote D = D; and adopt the corresponding
notations presented in Appendix A. For k£ a smooth function on M and r € R sufficiently
close to 0 so that 0D(r) (defined in (A.3) and (A.4)) is a smooth manifold without bound-
ary, let

(2.24) F(r,k) = f kdp.
D(r)

We have

(2.25) F(r, k) = J <
oD

with 7(y) the hitting time of S(D) by the inward normal flow started at y (defined in (A.1))
and ¢ (s)(y) == ¥(0,5)(y) = exp,(sN,) defined in (A.5). The mapping h” is defined in
(A.7) and is an extension of the mean curvature on the boundary ¢D: it corresponds to the
mean curvature for the foliation induced by the 0D(r), r € R sufficiently small. With this
formulation we can differentiate with respect to 7, to obtain

226) F(r k) = = f (e OO )

7(y) . D
f k ($(s)(y)) e B " @@ d ds) u(dy)

r

Differentiating again we get

(227) F//(Tv k) = J”D (<dk7 5r1/1(”ﬁ y)> - (kh) (¢(7"7 y))) e b W@ (s)w)) ds L"(dy)'
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In particular,
(2.28) F'(0,k) = —u(k) and F"(0,k) = p(kh — {dk, N)).

This allows us to compute
1
(2.29) d(F(Wy, k) = F'(Wy, k) dW, + §F”(Wt7 k) dt

and then, since dW; and (d0D,, NP+)(-) differ only by a finite variation process

2300 diu(k) = | ~K(u)d0ODi (), NP (w)) + 5 (" = b, NP) (5) ).

oD,
This yields
1
@30 dalh) = [ b (Wi = bedt) = SR N ),
Dy
which gives (2.21). In particular, taking £ = 1 we obtain
(2.32) dp(Dy) = p(0Dy) (—dWy — by dt) .
Now we can compute
diu (k)
pie (k) )
=d
(M(Dt)
1 it (k) e (k) 1
= ———du (k) — du(D d{u(D.)y, — —=d{u.(k D.
,U(Dt) lu‘t( ) M(Dt)Q ,U,( t)+/.t(Dt)3 <N’( )>f M(Dt)Q <,U,( )ﬂ,u’( )>t
1 pe (k) e (k) 2 1
= ———du (k) — du(D 0Dy)*dt — ————p, (k) (0Dy)d
N(Dt) /’Lt( ) ,U'(Dt)Q /’L( t)+ ’u(Dt)go@( t) t H(Dt)zgt( )Mt( t) t

1
= —p, (k) (dW; + by dt) — §gt(<dk, NP dt + (k) (0Dy) (AW + by dt)
+ i (k) iy (0Dy)? dt — i, (k) i, (ODy) dt.
This yields (2.22). U

Denote 7. the exiting time of (D;):>o from F*=. As in Definition 2.1, we stop (X¢, Dt )t>0
at 7.

Proposition 2.10. Any solution of equation (2.10) stopped at 7. is a Markov process solu-
tion to a martingale problem associated to a generator £ acting in the following way: for
any g, k smooth functions on M and

(2.33) Fu(D) := f kdp,
D

we have for (x, D) € M x F*€,
(2.34)

(), D) = ~g(@)AF (@ (k) ~ 59(0)u’(Vk, NP)) + S F(D)Ag(a)
— 1P (k)(Vg,V ().
Proof. From (2.10) and (2.21) with b, = A fP¢(X;) we have

(235)  dF(Dy) = — p®P (k) (dW, + AfPH(Xy) dt) %;jf’f ((Vk,NP) dt.
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This implies that

(2.36) 2(F) (D) =~ (AT (@) — 2u™” (Vk,NP)),
and the covariation of g(X;) and Fy(D;) is T ¢[g, F](X¢, Dt) dt with
(2.37) Lzlg, Fi](w, D) = —u"P (k)(Vg, V 7 )(x).

Consequently, using
1
238)  Z(gFk)(z, D) = g(2)Z (Fi)(z, D) + Fi(D)5A9(2) + T zlg, Fi](z, D)
we get (2.34). (I

It is possible to extend the description of . to more general functions on M x F¢¢ (it
vanishes on its complementary set), by replacing F}, in (2.34) by a mapping § from 2, as
presented before Theorem 2.8.

Let (P;):>0 be the Markovian semi-group associated to the processes (X, D:)i=0
solution to (2.10) stopped at 7.. This semi-group is associated to .Z in the weak sense of
martingale problems, as described in Appendix D.

Let (ﬁgtzo be a diffusion process with generator . stopped outside F ¢, started at
Dy = Dy (due to Theorem 2.5, this process can be obtained as a solution to the evolution
equation (2.11)), 7y its law at time ¢ and let

(2.39) v(dD,dx) := v (dD)% (D)(dx).
Proposition 2.11. We have for all smooth functions g,k on M:
(2.40) O (gFy) = vi(ZL(gFy)).

As a consequence, if (Dy, Xo) has law vy then for all t > 0, the solution (Dy, X;) to equa-
tion (2.10) has law vy, implying that (X;)i=o and (Dy)i>o are To-intertwined. Moreover

Dy is a diffusion with generator L.

Proof. Integrating (2.34) in 2 with respect to the uniform law i” := % (D) in D yields
(2.41)

i (gAFP) w7 ()~ 5P ()P (Tk, NP))+ S (D)l (Ag) ()" (Vg 7).

By Stokes theorem,
(2.42) AP (gAfP +(Vg,V[?)) = 5P (V7. —NP)) = =" (9).
so the expression (2.41) writes
1 3 1 _
243)  H(D):=u"P (k) (9) - 5/1D(9)MD(<V1€7 NP + §Fk(D)MD(A9)

On the other hand

(2.44) vi(gFx) = D[P [g] Fi]

which implies that

(2.45) owi(gFy) = o (B (9)F) = (? (P (g)Fk)) .
By (2.23),

~

(2.46) Z (17(9)) = f%rf[’f ((Vg, NP)),
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s0, taking into account (2.13),

= iP(9) 2 (Fy) + FZ (i (9)) + T [ (9), Fi]

{H(‘)Dt(k)gaD,, (aDt) - %ﬁaDt (<Vki, NDt>)} _ %MDt(k)QaDt (<Vg,NDt>)
(
(

P (g)u’Pr ((Vk, NPy) — %qu(k)B‘aDt ((Vg, NP) + 5P (g)uPr (k).
But it (Ag) = " ((Vg, NP*)) and Fi(Dy) = pP* (k), so

(2.47) H(Dy) = Z (5 (9)F)

which together with (2.45) proves (2.40).
Let us now prove that for any ¢ > 0, & transports vq into vy, where (2% )= is the
semi-group introduced after the proof of Proposition 2.10. Consider the map

(2.48) G(g,k,t)(s) = vs (Pi—s(9Fk)), se][0,1].
We compute

G(g,k,1)(s) = (Osvs) (P15 (9Fk)) — vs (0:P1—s(9Fk))

(2.49) =vs (LP,_s(gFy)) — vs (L P_s(gFy)) =

where we used Proposition D.3 in Appendix D to justify the differentiations (as well as the
factthat £ P, (gFy) = P_s.L(gF}) is bounded to be able to use differentiation under
the integral v;). So we get G(g, k, t)(0) = G(g, k, t)(t) which rewrites as

(2.50) vo Py (9Fk) = ve(gFy),

More generally, by similar arguments, we can replace in this formula F} by any map-
ping § from 2A. This in turn implies that vy &, = v;.

To finish, by iteration, we see that if Xy ~ 20 then (D;);>0 has the same finite time
marginals as (D;);0, proving that (D;) is a diffusion with generator Z. O

3. INTERTWINED DUAL PROCESSES: A GENERALIZED PITMAN THEOREM

In this section we will consider the case where f is the distance to boundary. It is
not covered by Section 2 since distance to boundary is not smooth, it is singular on the
skeleton of D. We will make an approximation of it, and then go to the limit in law.

Let Wt be a real-valued Brownlan motion and Dt be the solution of (2.11) started at
DO, with driving Brownian motion Wt

Assumption 3.1. Fix a € (0,1) and € > 0. There exists a closed bounded subset Foe
of < in which the process (D), a.s. takes its values, such that the map D — S(D)
is continuous from F*¢ with the C2 metric to KC(M), the set of compact subsets of M
endowed with the Hausdorff metric. Moreover Brownian motions with probability one
never hit the singular part of S(D,).

Conjecture 3.2. We conjecture that Assumption 3.1 is always realized, for any o € (0, 1),
€>0, Dye F*e.
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Notice that Theorem 1.1 in [1] proves the first part of the conjecture, i.e. the continuity
of D + S(D), in the case where M = R? endowed with a possibly varying Riemannian
metric. All examples together with the study of the motion of the skeleton in Appendix B
make us believe that Conjecture 3.2 is true. However a better knowledge of skeletons is
necessary to solve it. We believe that the process (S(D;));>0 takes its values in a set of
regular stratified spaces, and that it has absolutely continuous variation in this space.

Let us begin with some preparatory results. To describe the approximation of p(z, dD)
we are interested in, let us introduce some notations.

o Let (x,D) — {L.(x,D) := (he o psp)(x) where hy = 11in [0,¢/2], h. = 0 in
[3e/4,0) and h,. is smooth and nonincreasing in [0, c0). When D is fixed by the context,
we will denote /. (x) := £ (x, D).

e For any 6 € (0,¢), let 95 : R, — R be a nonnegative function with support in [0, §],
such that the mapping R? 5 u — ¢;(|u|) is smooth and §, ¢5(|u|) du = 1 (in the sequel,
| - | will stand for the usual Euclidean norm or for the Riemannian norm on any tangent
space of M, depending on the context) .

e Let g5 be a smooth, 1-Lipschitz and odd function defined on R, with gs(r) = r on
[0,e/4], 0 < gs5(r) < r forany r = 0, and gs(r) = csr on [3¢/8, 00), for an appropriate
constant ¢s < 1 very close to 1 that will be defined below in (3.2). We write ps(z, 0D) =
95(p(x. 2D)).

The approximation of p(x, 0D) we choose is

(3.1

f5(@, D) = tu(z, D)ps(z,0D) + (1 Lo(x, D))f 25([v])ps(exp, (v), 2D) dv

T.M

(where dv stands for the Lebesgue measure on T, M).

Define

e(d) = sup{|(Vexp)(w)]|l, z € B(o,1/¢), ue By(0,6) = T, M}

where Vexp(u) : T,M — Texp, (u)M is the covariant derivative of exp with respect to
the base point, || - || is the operator norm, when 73, M and Tey,, ()M are endowed with

their Euclidean structures, and B, (0, ) is the open ball in T, M with center 0 and radius
0. Recall that ¢ is fixed as in Assumption 3.1. The previously mentioned constant c; is
given by

(3.2) cs = e 1(0) (1 =0[Vile]w)

Notice that c5 does not depend on D and is as close as we want to 1.
More precisely, we have

Lemma 3.3. There exists two constants C,Cy > 0, depending only on ¢, such that for
0 > 0 sufficiently small,

0<ed)—1 < C10
‘C5—1| < Cfé

Proof. The inequalities of the first line are well-known properties of the exponential map-
ping. The second bound follows, since |V1l: | = [|hL]« is independent of D (and of
order 1/¢). O

From the second bound, we can and will assume that the function gs is furthermore
chosen so that gs(r) converges uniformly to r on compact sets of R, as well as the cor-
responding derivatives up to order 2 as 6 N\, 0. In addition, we choose & > 0 sufficiently



14 M. ARNAUDON, K.A. COULIBALY-PASQUIER, AND L. MICLO

small so that the map (x, y) — exp; *(y) is well-defined and smooth in the J-neighborhood
the diagonal of B(o,1/¢) x B(o,1/¢). Then, for any x € M, we can rewrite (3.1) under
the form

f(;(l‘,D) = EE(J?,D)pg(JI,aD)

(3.3) +(1—t.(z,D)) JM @s(lexp, ' (y)])ps(y, OD) J exp; * (y)dy,

where J exp; ! is the absolute value of the determinant of the Jacobian of exp; !(-).
The interest of all these preparations is:

Proposition 3.4. For all 6 > 0 sufficiently small, the function (x,D) — fs(x,D) :=
féD (x) has the following properties

o fs satisfies the conditions of Assumption 2.2;
e there exists C'1 > 0 such that VD € F*¢ and x € D, we have

e the differential and the Hessian of fs with respect to the second variable D satisfy
VD e F*=, Yo € D\S(D), for all vector fields K normal to 0D:

(3.5)  {dafs(z,D),K) < Cy||K|on and |Vadafs(x, D) (Nop, Nop)|| < Cu

for a Cy not depending on x, D, §. The second term is the second derivative along
the inward normal flow on D.

Proof. We first prove |dy fs(x, D)| < 1, dy denoting the differential with respect to the
first or the z variable. For « € B(o0,1/¢) we have

difs(z, D) =Lc(z, D)dyps(x,0D)

(3.6) + (1= Le(z, D))dy (J @5 (|ul)ps(exp,,(u), 0D) du)

x

it D) | eallul) (s(, D) ~ ps(exp, (), 2D)) du.

Ty M

Notice that if 2’ is close to = and 1p,z Ty M — T M is the parallel transport along the
minimal geodesic from x to 2/, then

f o5 (ul)ps(exp, (), OD) du = f 5 (ul)p5(€xDs (1,20 (1), 2D) s
T, M T, M

Taking the differential with respect to 2’ at ' = x and using V|z/—z2, 5+ = 0 by defini-
tion of parallel transport yields

i ([ eatibosteny).oD)an) = [ goulos(( exp)u). D) du

If p(z,0D) < €/2 then £ (x, D) =1, Vl.(x, D) = 0 and

ldyfs(x, D)| < Le(x, D)|drps(x, OD)| < 1.
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If p(z,0D) = e/2 then for 6 < /8, we have, foru € T,, M with |u| < 4§, p(exp, (u),0D) =
3e/8. It follows

|1 fs(x, D)|| <le(x)e™(8) (1 — 8dile]o0)

£ (- L(2) f polul)eal (V exp) (u) | du

Ty

T be(@) o f esllu)id

x

<L

It is easily checked that the function fs satisfies the other properties of Assumption 2.2.
Let us check that it also satisfies (3.4).

We have
(3.7
fs(z, D)= ps(x,0D) = (1—L(z, D)) L Ny @s(|ul) (ps(expy (u), D) — ps(x,0D)) du

which implies
|f6(x7 D) - pg((E, aD)| < 0.
On the other hand
2 3e

|p(,0D) - ps(,0D)] < (1 — ¢5) max ( 8) <oy
€

for some constant C}’ > 0 (depending on ¢). This yields (3.4) with Cy = 1 + CY".
For proving (3.5), we take a vector field K (y) = k(y)N(y), y € ¢D and compute

(3.8) (d2p(x,0D), K) = (=N (P(2)), K(P(z))) = —k(P(z))
where P(z) is the projection of « onto dD, and
(39) nggp(x, 6’D) (N,}D, N(}D) = 0.

Remarking that |d2l.(x, D)| is bounded by |hL|w, we get (3.5) via a straightforward
computation. ]

Theorem 3.5. Fix Dy = Dy € F¢ and let Xo ~ % (Dy). Under Assumption 3.1, there
exists a pair (X, Dy)i=0 of T intertwined processes in the sense of Definition 1.1, such
that the process (D¢)iq satisfies

(3.10)

40Dy () = N (y) <<dxt, NP(X0) + (3P ()~ 1P (X5, (X0 ) d

— 2sin(0% (X)) dL* (X)>

Here 0%t (x) = /2 — ¢°* (), ¢ (x) being the angle between the orthogonal line to S;
at x and any of the two minimal geodesics from 0Dy to x € Sy (recall Sy is the regular
skeleton of Dy, see Appendix A). In other words 05¢(x) is the smallest angle between S;
and the geodesics. The process Lt is the local time of X; at Sy := S(Dy):

1 t
S .
(3.11) Ly (X) = Tim ﬁfo Lix,es2y ds,
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S E being the thickening of the regular part of S in normal direction, of thickness (3 in both
directions.

Remark 3.6. Compared to Section 2 with f? replaced by distance to boundary psp, we
have outside the skeleton S

(3.12) Vpop(z) = NP(z) and Apsp(z) = —hP(z)
and we will see that on the moving skeleton S; = SP¢:
(3.13) “Apop,(X;)dt” = —2sin(0%(X,)) dL7* (X).

Proof. £Under Assumption 3.1, Proposition 3.4 allows us to construct for each 6 > 0,
intertwined processes (X 7D )t>0 started at (XO,D(S) = (Xo, Dy), associated with the
functions fP 5 » stopped at T , the exit time from F®¢. We have from Equation (2.10)

1 5
(14)  doDi(y) = N7 (y) (de + (2th (v) + Af" (XE)) dt)
for some Brownian motion Wt‘s. On the other hand, from Proposition 2.11 and (2.1),

(3.15) (D))i=0 := (D?)i=0

satisfies equation (2.11):
~ ez b
3.16)  doDi(y) = NP3 (y) (dwg N (;th () — (Sf?) dt)
t

where I/IN/f is the Z#P * _Brownian motion
aD ' (oD?)
(D7)
A remarkable fact about all (X7, D?);> is that their marginals are constant in law.

Notice that also ((D?);>0,7°) is constant in law since 72 is a functional of (D?);>¢ inde-
pendent of §. As a consequence, the family

3.17) AW = aw? + AFPY (X)) dt + & dt.

=

(3.18) ((Xf,Df,WEWE,WSW)M,T;S)

is tight (in (3.18) the Brownian motions W;s and Wt‘s"m are the ones defined by equa-
tion (2.10)). Denote by

(3.19) ((Xt,Dt,WtWt,WZ")t;ome)

a limiting point. Let us prove the intertwining.
Using Proposition 2.11, for any smooth functions g and k on M,

E[g(X?)F.(D)] = E[E[g(X])F.(D))| . FP ]
— E[% (D})(9)Fy(D})]

(9
- [FlgD‘;; (D )]

and passing to the limit yields the intertwining.
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This property of (D?, Wt‘s)@o being constant in law passes to the limit, and we have

(3.20) doD,(y) = NP (y) (dVIN/t + (;hD (y) — %) dt) .

We need to work with real-valued processes: we have from (2.32), for all § > 0,

" dp(DY) '
(3.21) J sl W — | ALfs(XC, D) ds.
0 H(UDg) ‘ 0 1fa )

This together with (3.17) yields

R )
(3.22) doD?(y) = NPi (y) < dp(Ds) + 1th (v) dt>

" u(oDd) 2

Again by constantness in law:

(3.23) doDy(y) = NPt (y) (— du(Ds) | Ly dt) .

w@éDs) 2

So to prove our result we only need to prove that

"du(Dy) "D, " o sin (65 s,
(3.24) JO (@D = -W; +L h (Xs)ds+L 2sin (0% (X)) dLS*(X)

and that
t

(3.25) W, = f (NP:(X,),dX,).
0

Let us prove (3.25). In all this paragraph we consider M as isometrically embedded in
some Euclidean space. In particular we are allowed to integrate vectorial quantities. We
use the fact that d.X f ®th‘5 converges in law to d X; ® dW; (where ® stands for bracket of
semimartingales). But dX ® dW} is equal to V1 f5(X?, D?) dt. Then by Lemma G.1 ap-
plied to V; f5(X?, D?) (which is uniformly bounded) and U = {(x,D), = ¢ S(D)}
defined in (G.3) we see that the integral of V;fs(X?, D?)dt converges to the one of
NPt(X;)dt. But almost surely NP¢(X;) has norm 1 dt-a.e., implying that dW;, =
(NP (Xy),dXy).

Let us now establish (3.24). It will be a consequence of the convergence of (fs(X?, D?)):=0
to (P(Xh 8Dt)t;0.

Write the Ito formula for f5(X7?, D?):

(3.26)
1
d (f5(X7, DY) =(da fs(X7, D7), dX7) + S A1 f5(X7, D7) dt
1
+{dafs(X], DF),dOD}) + 5 Vada f5(X], D7) (d0D], doD]) dt
+(Vadi f5(X7, DY), dOD} ® dX7).

From Proposition 3.4, possibly by extracting a subsequence,

(3.27) (fs(X7, D)) oy =5 (p(X4,0D1)) 12 -
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From (3.7) we get for¢ = 1, 2,
dif5(x7 D) - dipé(mv aD)

= —dife(%D)J @s([ul) (ps(exp, (u)), 0D) — ps(x, D)) du

(3.28) T, M

+ (1~ t.(2,D)) j es(Jul) (dips(exp, (u)),6D) - dips(z,éD)) du
WM
From this we see that d; f5(-, D) converges, locally uniformly outside S(D), to d1p(-, dD)
with respect to the distance dy of Appendix G. We obtain, with Lemma G.1, possibly by
again extracting a subsequence, that

(3.29) (Lt<d1f5(X§7Di>,de>> 0£><Lt<d1p(xs,aDs>,dXs>)

t= t=0

More precisely, we have a sequence of martingales converging in law to a martingale M,
which is a Brownian motion by Theorem 3 in [28]. For identifying the limiting martingale
we use the convergence of (d; f5(X?%, D%),dX%) ® dX? to dM, ® dX, obtained again
by Theorem 3 in [28] (here again we use an isometric embedding of M). But Lemma G.1
proves that the limit is equal to V1 p(X, 0D;) ds, yielding (3.29).

Next we prove that

(3.30) (f<d2f5<X§,D§>,daD§>> i( f<d2p(xs,aDs>,daDs>)
0 0 0

t= t=0

The argument is similar except that as we see with (3.14), the drift part of daDg is not well
controlled as X? approaches the skeleton. So one cannot proceed exactly the same way.
But fortunately, for x outside a 3¢/4-neighbourhood of 0D and outside S(D), we have

<d2f5(x7D)7N|0D>

P a | eslulN (Plexp, () N (Plexp,(w)ydu =~
To M

where c; is defined in (3.2). This together with (3.22) suggests to write
t t t s
[ <aasxt. D aonsy = ([ arsitxs. 9,00y + s [ vetaopd))
0 0 0
¢
- qj (NP doD?.
0
The second line clearly converges. The right hand side in the first line can be written
t
(3.32) f (X3, D)) <d2f5(X§ ,D%) + csNP%, daD§>
0
with (z, D) — le(x,D) == (he o pop)(x) where he = 1in [0,3¢/4], he = 0 in [e, )
and h, is smooth and nonincreasing in [0, c0).
With this last integral we can proceed as for (3.29), after passing to the limit, and since

lims_,gcs = 1, we get (3.31).
Similarly we obtain the two following convergences for the second derivatives.
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t
( [ wadasstxs, piy(aens. aoo; >)

0 t=0

(3.33) \
N (J Vadop(Xs, 0D;) (N (PP (X,), N(P?P+ (X)) ds> =0
0

t=0

where PP+ (X,) is the orthogonal projection of X on D, (which is defined ds-almost
everywhere),

( f t<V2d1f<s(X§7 D?),doD] ® de>))
0

t=0

t
EN ( J <V2d1p(Xs,0DS),d0Ds®dXs>> =0
0

t=0

(3.34)

since dyp(X,,0D;) = +(NPs(X,),-) which implies that the covariant derivative in the
second variable with respect to NP+ is equal to 0. On the other hand, by Ito6-Tanaka
formula (see Proposition E.1 in Appendix E using that p(x, ¢D) is almost everywhere the
minimum of two smooth functions) together with Assumption 3.1 which allows to only
consider the regular skeleton, together with Theorem B.1 which says that the latter has
absolutely continuous variation (useful for the term de (X)), we have

(3.35)
1
d ([)(Xt, 5Dt)) :<d1p(Xt, (7Dt), dXt> — ith (Xt)]]-Dt\St (Xt) dt + <d2p(Xt, @Dt), daDt>
+0+0—sin (05(X,)) dL7* (X).
Using (3.26), (3.27), (3.29), (3.30), (3.33), (3.34), (3.35) we obtain that

(3.36)

¢ t ¢
U Ay f5(X?2, DY) ds) =, <f —hPs (X )p.s. (Xs) ds — f 2sin (05 (X,)) dL5 (X)>

0 =0 0 ' 0 =0
It remains to pass in the limit as § goes to zero in (3.21), to deduce (3.24). O
Remark 3.7. From (3.35), it can be deduced that
(3.37)

1 5 .

d(p(X¢,0Dy)) = 3 (hP (Xe)lps, (X¢) — KDt (PPP4(Xy))) dt+sin (est (X1)) dLy* (X).

Indeed, (3.25) implies that
{d1p(Xt,0Dy),dXy)y = dW
and due to (3.30), we have
{dop(X¢,0Dy),dODy)
= lim{d>p(X7,0D7),d0OD7)

. 1 J oD?¢
=t = (AP, DF) 4 (PP ) )

where we used (3.21) in conjunction with (3.22).
Taking into account (3.36), we identify the last limit with

—dW, + (th (X)) Lpas, (Xi) — %h(PaDt (Xt))> dt + 2sin (05 (X,)) dLJ*(X)
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4. INTERTWINED DUAL PROCESSES: DECOUPLING AND REFLECTION ON BOUNDARY

In this section we consider another canonical and extremal situation, the case where
fP vanishes almost everywhere. More precisely, it is the limiting situation where f is
constant outside a e-neighbourhood of the boundary. This situation is completely opposite
to the one of Section 3 where the coupling is maximal.

Theorem 4.1. There exists a pair (X;, Dy)>0 of Te-intertwined processes in the sense of
Definition 1.1 satisfying

4.1) doDy(y) = NPt (y) (th + %th (y)dt — dLIP (X))

where Xy is a M-valued Brownian motion started at uniform law in Dy, Wy is a real-
valued Brownian motion independent of X, Lf De (X)) is the local time of X on the moving
boundary 0D;.

Remark 4.2. Equation (4.1) can be considered as a limiting case of (2.10). Here Assump-
tion 3.1 is not needed since the morphological skeleton of D does not play a role, and the
map D — 0D is already sufficiently regular.

Proof. The proof is quite similar to the one of Theorem 3.5, but with another family of
functions f, namely fP := hso psp where hs is defined in the proof of Proposition 2.4:
hs is a smooth nondecreasing function from [0, ) to Ry such that hs(r) = r for r €
[0,0/2], hs(r) = (3/4)6 for r > § and ||h}|lc < 1. But here, as ¢ is fixed, we will
let 5 N\, 0. Again we construct for each § > 0, an intertwined processes (Xt‘S , Df )t=0
stopped at 70. Again all (X?, D?);~ are tight, and a limiting process (X¢, D;);>0 stopped
at 7. provides an intertwining. The proof of (4.1) goes along the same lines as the one
of (3.10). O

We end this section with another canonical construction, where the functions f 5D ap-
proximate —psp.
Theorem 4.3. Under assumption 3.4, there exists an intertwining (X, Dy)1>0 stopped at
Te, satisfying

4.2)

doDy(y) =N"*(y) (‘ {dXy, NP (Xe)) + (;th (y) + P (Xt)1p,\s, (Xt)> dt

+ 2sin(0% (X)) dL* (X) — 2d L7 (X)>

Proof. Tt is completely similar to the ones of Theorems 3.5 and 4.1. [

5. SOME FUNDAMENTAL EXAMPLES

5.1. Real Brownian motion and three-dimensional Bessel process. We come back to
the case where M = R. Assume that the Brownian motion X starts from O (to respect
rigorously the above framework, X should start from the uniform distribution on Dy =
[—¢, €] and next we should let € go to 0,). Due to the invariance by symmetry of (3.10),
for any ¢t > 0, D; remains a symmetric interval, let us write it [—R;, R;]. In this simple
setting, we have NP¢(-) = —sign(-) on R\{0}, hP* = 0 and S; = {0}, for any ¢ > 0.
Thus (3.10) writes

(5.1) dR; = sign(X;)dX; + 2dL,
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where L := (L;);>0 is the local time of X at 0. Namely we get that

V=0, R

t
J sign(X,) dXs + 2L,
0

= |X¢| + Ly

by Tanaka’s formula. It is well-known that R := (R;);>¢ is a Bessel process of dimension
3 (cf. e.g. Corollary 3.8 of Chapter 6 of Revuz and Yor [22]). In particular, we get that with
the notation introduced in (A.4),

Vit=0, pth (X¢) = min(Xy+ Ry, Ry — X4)

But except at time ¢ = 0, this quantity is always positive: a.s. X; never touch the boundary
of D, for t > 0. Indeed, if for some ¢ > 0 we have | X;| = R;, we deduce that L; = 0,
namely a contradiction, since X = 0.

In particular, we see that the intertwining coupling we have constructed is different from
the one proposed by Pitman [21], which is a.s. touching (the upper) boundary repeatedly.
Instead we end up with the intertwining dual constructed in [18] via stochastic flows. It is
mentioned there how to deduce the classical Pitman’s dual, via Lévy’s theorem.

Here is an alternative approach. While Equation (5.1) is obtained from approximating
x — |r — x| outside an e-neighbourhood of 0 when D = [—r, 7] by smooth functions f
satisfying Assumption 2.2, we are able to recover Pitman theorem by rather approximating
x +— —x in D = [—r,r] outside the only e-neighbourhood of —r. In the limit of (2.10) as
€ goes to zero, on the one hand we have

5.2) Iix,+r ARy = d Xy,
on the other hand we have X; + R; > 0, so that X; + R; is the solution to the Skorohod
problem associated to 2.X;. We get

(5.3) R + Xy =2X; — 2 min X,.

0<s<t

which is equivalent to

5.4 Ry = X; — 2 min X,.

0<s<t

The answer to the question: what would be a symmetric construction with local time
at the two ends of [— Ry, R;] is given by Theorem 4.3. We obtained intertwined processes
with

t
55 R = —f sign(X,) dX, —2LY(X) + 2LY(R — X) + 2LY(R + X).
0

5.2. Brownian motion and disks in rotationally symmetric manifolds. This is the sim-
pler example since the skeleton is never hit by the Brownian motion. Consider a complete
d-dimensional manifold with d > 2, rotationally symmetric around a point o € M. Denote
by (r, ©) polar coordinates with r(z) = p(o, z) and

(5.6) ds* = dr? + f*(r) d©?

the metric in polar coordinates. Then the radial Laplacian is

02 0
5.7 A, = b(r)=— with b= (d—1)(Inf)".
6 e HU 5 Wit b= (=1 )
We will investigate set-valued processes D; = B(o, R;) where B(o,r) is the open

geodesic ball centered at o, with radius 7. The skeleton of B(o, R;) is the point o.
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Let X be a Brownian motion in M satisfying X ~ % (Dy) for some Dy = B(o,19).
Denote by p; := r(X;) the radial part of X;. Then

1
(5.8) dp; = dB¢ + §b(Pt) dt, po ~ %f«oaTO))
where (f3t)¢>0 is a real Brownian motion and
(5.9) (@) = = ar.
0 f(s)ds

The evolution equation (3.10) for D; shows by symmetry that for all ¢ > 0, D; =
B(0, R;) for some real-valued process (R;);. Moreover it writes

1
(5.10) )
th = dﬁt + [—2b(Rt) + b(pt):| dt.

Proposition 5.1. The system of equations (5.10) has a solution up to explosion time of
(Re)e

(5.11) P = inf{t > 0, R; ¢ (0,0)},
which satisfies for all t < 77,

The corresponding set-valued process Dy = B(o, R;) is solution to equation (3.10), and
in particular, for all F P -stopping time T,

(5.13) L(X | FP)=w(D,) aswellas ZL(p.|FP)=%7((0,R,)).
Proof. We only have to check (5.12). By (5.10),

1
(5.14) d(Ri — pt) = 3 [b(pt) — b(R)] dt,
which vanishes on {R; = p;}, and since b is smooth, if py < Ry, then p; < R; for all
times. ([l

5.3. Brownian motion and annulus in 2-dimensional rotationally symmetric mani-
folds. Let M be a complete 2-dimensional Riemannian manifold, rotationally symmetric
around a point o € M. Denote by (r, #) polar coordinates with r(z) = p(o, z) and

(5.15) ds* = dr* + f*(r) do*
the metric in polar coordinates. Then the radial Laplacian is
82

(5.16) A, = + b(r)a—i with b= (In f)".

(or)?
fo<r™ <rt,let
517 Al ,rT)i={ve M, r~ <r(x)<rt} if 7~ <rt, AQr,rh) =@,

the closed annulus delimited by the radius »~ and 7.
In the following we will investigate set-valued processes D; = A(R; , R;"). The skele-
ton of A(R; , R/") is the circle

1
(5.18) S, = C(o,RY) with RY:= §(Rt‘ + R,
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Let X; be a Brownian motion in M satisfying Xo ~ % (Dy) for some Dy = A(rg ,rg).
Denote by p; := r(X;) the radial part of X;. Then

1 _
(5.19) dpe = dfy+ Sb(pr) dt,— po ~ U ((rg,77))
where (3; is a real Brownian motion and
(5.20) U ((rg,rd))(dr) = # dr.
57 f(s)ds

The evolution equation (3.10) for D; shows by symmetry that for all ¢ > 0, D; =
A(R;, R}) for some real-valued processes R, < R;". Moreover it writes

. 1
dp; = sign(p; — RY) dW; + ib(pt) dt

1 0
ARG = AW, + |~ bRy + (o — BE)b(p0) | dt+ 2L o)
(5.21) . )
dR;, = —dW, + [_Qb(Rt) — sign(p; — R?)b(pt)] dt — 2Lf‘ (p)

1
RY =2 (Ry +RY)
and these equations imply
1
(5.22) dR? = -5 [6(R)) + b(R; )] dt.

Proposition 5.2. The system of equations (5.21) has a solution up to explosion time
(5.23) P = inf{t = 0, (R, , R)) ¢ (0,0)?},

which satisfies for all t < TP,

(5.24) Ry <pt <R.

The corresponding set-valued process Dy = A(R; , R} is solution to equation (3.10),
and in particular, for all F P -stopping time T,

(525)  L(X,|FP)=%(D;) aswellas ZL(p:|FP) = U ((R;,R))).

Proof. Fix e > 0 and o € (0,1). We will first solve the system of equations until the exit
time 7. and then let € N\, 0. Let us construct functions f (;D () which satisfies equation (3.1).
It will be easier here because there is no need of functions ¢. and gs.

For § € (0,¢), let o5 : R — R be the function with support equal to [—§/2,6/2],
satisfying for —6/2 < r < §/2:
(5.26)

, . . 5/2 1
ws(r) = m exp (—W> with  ¢(0) := J_5/2 eXp <_(g)2_82> as,

and let
signg : R - R

5.27 "
(>-27) 7“'—>—1+2f ©vs(s) ds.
—0o0
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The functions ¢ and signg are both smooth and Lipschitz, and they respectively approxi-

mate & and sign. For 0 < v~ < 7+ satisfying r* —r~ > 2¢, defining r° := 5(7"_ +r7),

forxz e A(r—,r%) let

(5.28) .

FACTT () = Fla, e, rt) = g(r(z))  with g(r) = g(r,r,rt) = f —signg(s—r") ds.

T

Clearly f(x,7~,r") is 1-Lipschitz in the first variable. A computation shows that

0

T 154
(529 Oprg(r,r—,rt) = J ps(v)dv and 0,-g(r,r—,rt) = ff s (v) dv
—e r—r0
showing that g and f are 1-Lipschitz. Then the vector N := Nj4(— ,+) is equal to
—]l{r(w)zr+}(3r+ + ]l{r(w)zr—}ar— so that

(5.30) (Vf{Ny=1 and Vdf(N,N)=0.

This yields an elementary proof of the properties of Proposition 3.4. We can use Theo-
rem 3.5 to solve equation (5.21) until the stopping time 7.

We are left to prove that 7. " 77 a.s. as € \_ 0. This is a direct consequence of the fact
that the volume of A(R; , R;") is a time changed Bessel process of dimension 3 (by [9]
Theorem 5), proving that A(R; , R;") cannot collapse onto its skeleton. g

Remark 5.3. After the hitting time of 0 by R, , the processes can continue to evolve under
the regime of Section 5.2.

We recover from Proposition 5.2 a result from [17] stating that ([R; , R/ ])¢>0 is an
intertwining dual process for the real diffusion (p;);>0. In particular, we deduce that
if (p¢)¢=0 is positive recurrent and if +o0 is an entrance boundary, then ([R; , R} ])i=0
reaches [0, +00] in finite time and this finite time is a strong stationary time for (pt)¢>0,
see [17] for more details.

5.4. Brownian motion and symmetric convex sets in R2. In this section we take M =
R? endowed with the Euclidean metric. For any integer n > 2, let G,, the group of

. . . 27 .
isometries of R? generated by the rotation of angle —— and the symmetry with respect

to the horizontal axis. Consider a smooth strictly convex bounded set Dy < M with
smooth boundary, stable by the action of G,,. Also assume that its skeleton has the form
So = GpHy, Hy being an horizontal interval Hy = [0, zq] x {0} for some x5 > 0. An
example of such a set when n = 2 is the interior of an ellipse, the skeleton being the
interval between the two foci. Assume that X, is a Brownian motion in R? satisfying
Xo ~ % (Dy). Let us investigate the evolution of (X, D;). Notice that it is the first
example where we really have to deal with infinite dimensional processes. By conservation
of the convexity by the normal and mean curvature flows, D; will stay convex. It will also
stay symmetric. All the results of this subsection will be proved in the forthcoming paper

[2]:

Proposition 5.4. The skeleton of Dy always takes the form Sy = G, Hy with Hy = [0, 2] x
{0} an horizontal interval.

Proof. See [2] O
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Denote by (1, 7) the canonical basis of R?, and X; = (Xt(l), Xt(Q)). In this notation,
when —7/n < 05¢(X;) < 7/n, the vector NPt (X};) of Equation (3.10) writes

(5.31) NP (X)) = —sign(XM) cos(05 (X,))1 — sign(X?) sin(05 (X))

where §°¢ (z) is naturally extended to D; by being constant on lines normal to the boundary
(see [2]). Notice that zz — 05 (z) is locally Lipschitz on D; and is equal to 0 on D; N
([xs,00) x {0}). Also notice that the function hP* is locally Lipschitz on D;\S;. With
these notations, equation (3.10) writes (again when —7/n < 0% (X;) < 7/n)

(5.32)

doDy(y) = — NPt (y) <sign(X§1>) cos(05¢ (X)) dXV + sin(65 (X;))sign(X?) dx?

' (;hD W (X’f)> dt = 2sin (0 (Xt»st(X@))).

This equation written for —m/n < 6°¢(X;) < 7/n is enough to describe the whole cou-
pling, thanks to the symmetry properties of D;.

Let us investigate the motion of the skeleton S, of the solution D; of equation (2.11)
(garanteed by Theorem 2.5).

Proposition 5.5. The process (Dt) takes its values in a closed subset F of F*=,

t=0
invariant by G, such that on F*<, the map D — hP|;p is continuous from F*< (with
the C**% metric) to C*(0D). Its skeleton Sy satisfies Sy = G, ([0,7] x {0}) for some
process Ty.

Proof. See [2] O

In the next result we prove that the skeleton has finite variation and is monotonly de-
creasing.

Proposition 5.6. The right endpoint (I, 0) in the horizontal axis of the skeleton S, satis-

fies

diy — p*((#6,0),9) . By
5.33 = = L I (RP)
(533 - I Py,
Y being the point of 0Dy in the horizontal line with the greatest abscissa, and the second
derivative being calculated with curvilinear coordinates on 0 Dy. Notice that (hP+)" () < 0,

proving that the process S (Dt) is monotonly decreasing.

Proof. Let us investigate the motion of a point in S; close to (Z¢,0). This point has two
closest points in ﬁﬁt, which we call ¢, ; and ¥» ¢, the first one having positive second
coordinate. We will use Theorem B.1 and (B.28). Call &, the point in the skeleton cor-
responding to 31, and Y. We have N1 (Z;) = —cosO(Zy)r — sinf(3y)y, Na(iy) =
—cosO(i)e + sin (i), N2(2;) = —j. Denote T(J1,) the tangent vector to 0D, at
1.¢, corresponding to increasing of 0: T'(y1¢) = — sin 0(&4)1 + cos (&) 7. Write b/ (1,1)
the curvilinear derivative of h(7; ) in the direction of T'(7; ;). Then the vector Ji-(1)
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1
of (B.28) is equal to —3ps (T1,6)R (§1.4)T(F1.4). So we get from (B.28):

d. 1 . . R cos? 0(iy)
%xt = §pS(yl,t>h (71,¢) <Sln9(l’t) + m 1
~ ps(@,)h (1)
(5.34)  2sinf(dy)

2 [~ (7
P (Y1) 0 (11, ith 7 U.ir ¥
_ S(;N)(Q)(t)@ with 41, = (?A,lt)’ ft))

1,

In the limit, as ﬂﬁ) goes to zero, we obtain the motion of z; and using the symmetry

(g
of the convex set, we have h/(9;) = 0 so that we can replace % by h"(g;). This
Yt

yields (5.33). ]

In particular a Brownian motion X, will never meet the ends of St.
A solution to (5.32) can be found with the help of Theorem 3.5. The family of functions
fs(x, D) defined in (3.1) takes the form:

f3(. D) = £.(x)ps(z, 2D) + (1 - fe<x>>f os(lz — yl)ps(y, D) dy
(5.35) R2

~ (()ps(e,2D) + (1~ @) [ osllups(e ~ v.0D) dy.
R

The investigation of the lifetime of the solution to (5.32) is not easy. In [2] we prove that
the lifetime is the time when D; meets its skeleton S;. So it is enough to investigate the
time 7 when D, meets its skeleton .S;. We have no example where this happens. The next
proposition yields examples where the lifetime is infinite, together with nice properties
related to the symmetry group G,,.
1P (2Dy)

1(Dy)
(2) when §0 is Gp-symmetric with n = 3, then the entropy process (E}Fct)

Proposition 5.7. (1) the process ( ) is a supermartingale;
0<t<7

ost<t
defined as the integral of plog p with respect to the curvilinear abscissa in oD, p
being the curvature ofﬁﬁt, is a supermartingale;

(3) when Sy is G -symmetric withn = 7, then T = o a.s. Consequently, when S, is
G,-symmetric with n = 7, Equation (5.32) provides an intertwining with infinite
lifetime.

Proof. See [2] U

APPENDIX A. AN INTEGRATION BY PARTS ON DOMAINS WITH BOUNDARY

Our goal here is to obtain an extension of Stokes’s formula on a domain with a smooth
boundary, for functions which degenerate on the skeleton. We take the opportunity to recall
this notion, as well as related geometric concepts.

Let M be a d-dimensional Riemannian manifold and D < M a compact and connected
domain with smooth boundary 0D. For y € 0D, let N(y) be the inward normal vector.
Denote by S’ the inward (morphological) skeleton of D: S’ is the set of points in D such
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that (i) the distance to 0D is not smooth and (ii) there are points around them where the
distance to 0D is smooth with a non vanishing gradient. Denote

(A1) 7(y) = inf{t > 0, exp, (tN(y)) € S'}.

Let S be the set of regular points of S’, which we can describe as follows: if x € S, then
there exists a unique couple (y1, y2) of distinct points from ¢D such that

(A2) z = exp,, (T(y1)N(y1)) = exp,, (T(y2)N(y2)) -

We have 7(y1) = 7(y2), and for ¢ = 1, 2, the differential at (7(y;), y;) of the map R, x
oD > (t,y) — exp,(tN(y)) is nondegenerate. The set S is a codimension 1 submanifold
of M and S\ S has Hausdorff dimension smaller than or equal to d—2. It is the union of the
focal set which is the set of points = = exp, (7(y) N (y)) such that (¢, y’) — exp,, (tN(y'))
is degenerate at (7(y), ), and the union of the sets defined like .S but withstrictly more than
two points y1, Y2, ¥3,... For r = 0, let

(A3) D(r) = {z € D\S', pop(z) = r}.

where p is the Riemannian distance. The set D(r) is a (possibly empty) manifold with
smooth boundary 0D(r) on which one can define an inward normal N (y) and an orienta-
tion by parallel transporting oriented basis of 0D along normal geodesics. So we have for
ally € D\S": N(y) = Vpap(y).

We will also need the sets D(r) for all » € R. We will let for » < 0
(A4) D(r) ={z€ M, p,(z) =r}
where p:;D is the signed distance to 0D, positive inside D, negative outside D.

Define for s,z € R

P(s,t) : 0D(s) — dD(t)
y — exp, ((t —s)N(y))

and ¢ (t) = 1(0,t). We will indifferentely write ¢(t)(x) = (¢, z). The function (s, t)
is not defined for all points of 0D(s) because we ask (s, t)(y) € dD(t), nor is N(-).
However for |s| and |¢| small it is a map, defined for all y € 0D(s), and is is also a
diffeomorphism with inverse ¥ (¢, s).

We have for 0 < s < ¢, 9(t) = 9(s,t) o 1(s), which implies
(A.6) det Ty (t) = det T (s, t) x det T(s).
Notice that thanks to the orientation of the sets ¢D(r) we get an orientation of D\S’ by

adding [V as first vector to oriented basis, consequently det 7'y is well defined and always
positive. It is well-known that

(A.5)

(A7) Sl et T 06 = -h)

t=s
where h(y) is the inward mean curvature of 0D(s) (the minus sign of the r.h.s. of (A.7)
insures that h is non-negative on 0D(s) when D(s) is convex). This together with (A.6)
yields

(A®) S Te0w) = —h )W) et TY(5) )

and consequently, using ¢(0) = id and det T (0) = 1,

(A9) derTu(o) = (| R W) is).

0
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Denote by p the volume measure of D and by p the volume measures of the manifolds
0D(s) and of S. Then

(A.10) (D) = L " L@en(r) dr.

Butforr > 0

(A1) 1(@D(r)) = f det Ty (r)(y) u(dy)

with convention det Ty (r )( )=0ifr = 7(y). We get

1D w@pe) = [ ew (= [ ) ds) 1yeriy )

which yields with (A.10)

(A.13) n(D) = LD (JOT(y) exp (— L Th(w(s,y))d8> d?“) w(dy).

More generally, for a measurable function g : D — R bounded below,

wid) [ gdu-| ( | " ) e (— j hw(s,y))ds) dr) u(dy).

Applying this formula to the function gh which we assume to be bounded below or inte-
grable, we get by integration by parts

RZE f ( [ ot oo (- [ s as) dr) w(dy)

e (~ [ bluts.0) ds>]T(y) uldy)

0

Juol ot
( T(y)<dg’N> (1(r,y)) exp (— fh(iﬁ(S,y))dS) dr) w(dy)
gy

0

d) = LD g (r(y), y))e 55" M) du gy

Define the map

p:0D— 5

y = 9(7(y),y)-

For z = ¢(7(yi),y:) € S (i = 1,2) define 0(2)e (0, w/2] the angle between N (¢(7(y;)—, yi))
and S. In the sequel we assume that §(z) £ 7/2 (the case §(z) = 7/2 is simpler to deal
with and Proposition A.l is always valid). Notice that this angle does not depend on ¢,
this is a consequence of z € S staying at the same distance to y; and yo by infinitesi-
mal variation. For later use, let also 6(z) = 0 when z € S’\S. Let us prove that for
z=9(7(y:),¥:)) € S,
(A.16) det Ty (7(yi), yi) = sin (o (y:)) det Top(ys), i=1,2.

Sety = y;. Lete; = N(y), ef = N(¥(7(y)—,y)), N°(2) the normal to S at z such that
(N%(2),ef) > 0,lete” = (es,...,eq) be a family of orthonormal normalized vectors in

(A.15)
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Ty 0D such that letting ep = % (we have V7(y) # 0, since 6(z) + 7/2), € :=
(e2,€") is an orthonormal basis of T,0D, let (¢®)” = (e5,...,e5) be an orthonormal
basis of T, (Vect(e”)), let e5 such that (e%)’ := (5, ..., ) is an orthonormal basis of

T.S. Finally let e§ € T, M be such that (e, N (z)) < 0 (e§ and N“(z) are not orthogonal,
since 0(z) + 7/2) and (e7, €4, (¢®)”) is an orthonormal basis of 7, M. Figure 1 shows
the configuration of e, N¥(2), e5 and e§ on an example of dimension 2. In the sequel we

Tp(e2)
will denote for instance T'p(e’) = , so that (T'p(e’), (%)") will be the matrix

To(ea)
of all scalar products. We have
(Tp(e"), (%))
= (dr, &YX (T(y), ), (%)) + (Tp(e), (%))

_ (<dT» e2){0u), €3) + (TP(e2), €3) <Tw(62),(€s)”>)
(dr,e")0np,e3) +<T(e"),e5) (Ty(e"), (%))

Let us simplify and make more explicit this expression. We have (dr,e”) = 0. Also
e L (e%)" and e5 L (e5)" so e5 € Vect(ef, ef) and more precisely

(A.17) e5 = cos(0(z))ef + sin(0(z))e.

On the other hand T4 (e’) L ey which implies

FIGURE 1. The vectors ef, N°(z), 5 and €§

(A.18) (Tip(e'), e5) = sin(0(2))(T(e"), €5).
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Also (011, 5y = cos(6(z)). We arrive at
det(Tep(e'), (%))

. (Tp(ez),e5) — (Tip(e"), )
_Slne(z)det <<T¢(62) ( 2),,> <T¢ // 652) />)

(A.19)
+ cos 0(z) det < (dr, e2>

(T(ea), (%)) (Tw(e") 65 )"
= sin 0(z) det Ty + cos 0(z){dr, e2) det<T7j; e, (e

For the last equation we used the fact that det Ty = det(Ty(e’), (62, (€%)")), since €’
and (€9, (%)) are orthonormal bases. Note that by definition, (T (e”),e5) = 0, so we
also get det T¢p = det(T)(e"), (e%)") x (T (ez), €5). On the other hand, we have

(A.20) {dr, ep) = (T1p(ez), €5 cot H(z).

Indeed, note that

o
I

<T<,0(eg)7 NS>
{dr,eq)y <ef, NS> + <Tw(eg), NS>
= {dr,ezysin(f(z)) — cos(f(z)) <T¢(eg), eg>

where the last term is obtained by taking into account that T'¢)(ez) is parallel to €§. This is
the change of length of the geodesic needed to stay in S. We obtain

det T'p = sin 6(z) det T + cos 0(z) cot 8(z) det Ty
_ sin®0(z) + cos? 0(2)
B sin 6(z)

det T'.

This yields (A.16).
We arrived at

fghdu: j o(y) w(dy) — f 90 (), ) det T(r(y), y) u(dy)
D oD oD
+ JD<dg, N)dpu.

this yields with (A.16)

(A21)

J ghdu=f o(y) w(dy) — f 9(o()) sin 6(p(y)) det Tp(y) (dy)
D oD oD

(A.22)
+ J {dg, N)dp.
D

Using the change of variable y — ¢(y) and the fact that all z € S is equal to v(y;),
1 = 1,2, we obtain the key formula

Proposition A.1. With the above notations, for any smooth function g defined on D such
that gh is integrable or bounded below, we have:

(A23) fD ghdy = L o) ) 2 Lg<z> sinf(z) (dz) + Lfdg’ NYdp.
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APPENDIX B. MOVING SETS

In this section we describe how to move a domain with smooth boundary by deformation
of its boundary. We will investigate the deformation of its skeleton The deformation we
will consider will have a general absolutely continuous finite variation part, together with
a very specific martingale part and singular finite variation part. First we introduce some
notation.

For a domain D with smooth boundary 0D, s € R, define

¥P(s) = YP(0,5) : 2D — 2D(s)
y =P (s)(y) = ¥P(s,y) = exp, (sN"(y)) .

Here NP = N is the inward normal defined in Section A. Consider a moving domain
t — D;. Be careful not to confound D(t) with D, since in general they are quite different
subsets. We first assume that the deformation is sufficiently regular so that for all 0 < s <
t, we can write D; as

(B.2) Dy = {42 (2P (). 70.() ). ye D},

(B.1)

In particular, we must have S’ — D;. Notice that in the special case where the real valued
function ¢ — ZtD *(y) does not depend on y, for any 0 < s < ¢, then we have

(B.3) Dy = D,(ZP#) = Do(ZP?), zPo — zPs 4 zPo

where D(r) is defined in (A.3), replacing distance to 0D by signed distance with positive
sign inside D and negative sign outside. In this situation, the skeleton is not moving, at
least as long as dD; remains smooth (i.e. until dD; hits S|, or is too far outside D), and
t— ZtD ¢ can be allowed to be a semimartingale with singular continuous drift.

When ¢ — ZP+(y) depends on y the situation is a little bit more complicated. Start-
ing from (t,y) — ZP°(y) which is assumed to be defined on [0,e) x @Dy, the sets
D, are defined for 0 < t < ¢, as well as the ZtDS (y), 0<s < t, y € D;. In fact,
if (y,t) — ZP°(y) is C', then one can reconstruct all Z*(y) with the only knowl-
edge of ZPt(z), z € dD,. Let us do it for s = 0: the map (¢,y) — ¥P°(t,y) from
(—a,a) x 0Dy to M is a diffeomorphism on its range, for « > 0 sufficiently small.
Let us denote z — (79(2), o(2)) its inverse. Then a variation z + NPt (2)dZP* cor-
responds to a variation (79(2),0(2)) + (dro, Teo) NPt (2)dZP* of the coordinates in
(—a, @) x dDy. But this is not convenient at all, since it is not intrinsic. Moreover, when
passing to stochastic processes and Stratonovich equations, it will involve second deriva-
tives of z — (79(2), po(z)). So we prefer to leave the reference to Dy and to always stay
at the level of the moving D,.

For all y € 0D, we define a stochastic process ¢t — Y;(y) representing the motion of
D; satisfying Yy (y) = y and the Itd equation in manifold with respect to the Levi Civita
connection V

B.4)
dYi(y) = dVY(y) = 000" (. i) (dZ" (Yi(y))) = NP (Ya(y))dZ{" (Ya(y)).
Recall that fomally dV'Y;(y) is a vector which writes in local coordinates (y', ..., y?) with

the Christoffel symbols T ; :

®5) Vi) = (Y0) + 3T K (). V) ) DilYio)
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0
where D;(Y:(y)) is the vector p taken at point Y;(y). We will always assume that the
yl

martingale part dm; of dZtD t(y) does not depend on y. In this situation, the Itd equation is
equivalent to the Stratonovich one: indeed, using (B.3) the It6 to Stratonovich convertion
term is

1 1
3 VNe: voydm N7 ()dmy = 3 Vo Ve NP ()d(m,my, = 0

since NPt (Y;(y)) is the speed at time a = 0 of the geodesic a — P (a)(Y;(y)).
More precisely, we will let dZtD ¢(y) be of the form

(B.6) dZPt(y) = HP (Y, (y)) dt + dz

where HP* is a smooth function on dD; (which later on will be chosen to be A+ /2, where
hP¢ is the mean curvature of 0D,) and (2¢)t=0 is areal valued continuous semimartingale.
We assume that Equation (B.4) has a strong solution up to some positive stopping time.
Moreover, since dY;(y) represents the motion of ¢D; and for small time the map ¢y’ —
Y:(y') is a diffeomorphism from ¢ Dg to 0Dy, writing Y;(y') = y, equation (B.4) rewrites
as

(B.7) dODy(y):=dY,(y') = NP (y) (H""(y) dt + dz) .

Let us now investigate the motion of the skeleton .S; under this motion of D;. First
we remark that by local inversion theorem, at regular points of the skeleton, the variation
in Stratonovich sense is linear and the sum of all variations of the concerned point at the
boundary. As we already remarked, the motion dz; does not change S, so this together
with the linearity just mentioned implies that we have a finite variation of the skeleton.

Recall the situation of (A.2) in Section A. We consider a domain D, x € S, y1,ys the
two elements of 0D such that exp,, (7(y1)N(y1)) = exp,, (T(y2)N(y2)), with 7(y1) =
7(y2). For i = 1,2, we will consider a variation of the minimal geodesic from y; to x,
represented by a Jacobi field J; satisfying J;(0) € T, M, J1(1) = J2(1) € T, M,

(B.8) Ji(0) = XN (yi) + J;-(0),  JH(0) = AIN(ys) + (J;)'(0),

with J;i- orthogonal to N (y;). The motion of S corresponding to the motion of y; and y»
will be represented by Ji(1). Since S has a boundary, the observation of the orthogonal
part to .S of .J; (1) is not sufficient.

Let ~y; be the projection on M of J;. It is the geodesic in time 1 from y; to = (as
usual in the computations of Jacobi fields, the speed is not normalized). Denote N;(x) =
4i(1)/|4:(1)]|. Recall that the angle between N;(z) and 7S is 6(x) € (0,7/2]. We will
also let

1

(B.9) NP (x) = W(M(w) — Na(z)).

Figure 2 shows the configuration of the points x,y1, y2 and the vectors Ni(x), Nao(x),
N7 (z). The vector Ni(x) is is the normal vector to S at point x, in the same side as
Ni(z). We will consider variations of geodesics with same final value:

(B.10) Ji(1) = Ja(1) = AN (2) + J{ (1)
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FIGURE 2. The points z,y;,y2 and the vectors Ny (), Na(z), N{ ()

for some \ € R, where J{ (1) € T,,S. Writing AN () = W)‘H(I)(Nl (x) — Na(z)) we
have

(1), Ny (@) = =

(B.11) 2sinf(x)

= Asinf(z) + (J{ (1), Ny (2))

(1 — cos(20(z)) + (JL (1), Ny(z))

and
A
51 ) Nel@)) = =5 2505
= —Asinf(z) + (J{ (1), Na(2))

(1 —cos(20(z)) + (JL (1), Na(z))

On the other hand we require that the variation of length of the two geodesics are the same.
This writes as

(B.13) (J1(1), Ni(z)) = (J1(0), N(y1)) = (J2(1), Na(z)) — (J2(0), N(y2))
(B.14)  Asinf(x) + (JL (1), Ni(2)) — A\ = —Asin0(z) + (JL (1), Na(z)) — Mg,

A1 — A2

which finally, with (J{ (1), N1(x) — No(z)) = 0, yields A = sm 0z

, so the normal
variation of .S is given by

Al — A
B.15 1), N3 (2))N5 (z) = ——2 N7 (x).
(B.15) ChD, N @DV () = S N )

Next we will compute the tangential displacement J7 (1) of z in S. As we will see later,
we will only need a Jacobi field .J; such that Ji-(0) and (Ji-)'(0) are known and

(B.16) J1(0) = M N(y1), ie. JE(0) =0.
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So we know Ji-(1): and
(B.17) Ji(1) = J (1,0, (J1)(0))

where J(1,u,v) is the value at time 1 of the Jacobi field J with J(0) = w and J'(0) = v.
From

Ji(1) = J{ (1) + (N1(1), NP (2)N7 (2)

(B.18) N
J1(1) = Jr (1) + (L(1), Ni(2))Ni ()
we get
B19)  JL(1) = JEQ) + (1), M@ N () = Ti(1), NF (@) NF (@),

On the other hand we have
(I (1), No(2)) = (Ji- (1), Na(2)) + (1 (1), Ny (2) XNy (2), Na(x))
(J1(1), Na(z)) = (J1(1), N1(z)) — (A1 — A2)

where the second equation is a direct consequence of (B.15). Substracting the second
equation to the first one yields

(B.21) (1 — cos(20(x))){J1 (1), Ny (2)) = (JiE(1), Na(x)> + A1 — Ae.

Replacing {J1(1), N1(z)) in (B.19) and after simplification, using (B.9) and (B.15), we
finally obtain the horizontal displacement
(B.22)

(J1)(1) = Ji(1)+

(B.20)

1
4sin® O(z)
We are now in position to write the motion of the skeleton S; when the motion of the
boundary is given by (B.7). For x € S; with corresponding points y; and y in 0Dy,

1

(B.23) dSt(z) = Y EIE) (HP*(y1) — HP* (y2)) Ny (x) dt
which has finite variation. Observe that, as already mentioned, the term dz; disappears.

Here we wrote dS;-(x) for the normal variation of the regular skeleton. But as we
already remarked, since S; is not a closed manifold, it can expand via the motion of its
boundary. So we have to investigate the horizontal motion dS7 (x).

Notice that .Ji-)'(0) is the perpendicular part of the time derivative of the speed at ; of
the geodesic in time 1 from y; to . So from equation (B.7) we deduce the rotation

(B.24) (J1)(0)dt = ps(y1)VeN P (y1) = —ps(y1) VH* (31) dt.

(in the r.h.s. the gradient corresponds to the tangential gradient on 0D, recall that HP* is
only defined on this hypersurface).
We conclude that the horizontal displacement of z is JI (1) dt

(2¢Ji (1), Na(@))N1(z) + (A1 = A2) (N1 (@) + Na(2))) -

JEQ)dt = JH(1) dt +

m <2<J1L(1)aN2Dt(93)>N1Dt($)

(B.25)
+ (HP' (y1) — HP* (2)) (N () + NJ* (w))> dt

where Ji-(1) = J(1,0, —ps(y1)VHP(y1)). Again the processus z; does not play a role.
To summarize, we have the following result for the evolution of .S;:
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Theorem B.1. When D, evolves as (B.7)
(B.26) doDy(y) = NPt (y)(HP* (y) dt + dz,),
the regular skeleton Sy has the normal evolution (B.23)
HP (y1) — HP (y2) ( D D
NP () — NP ) dt
T Pi(z) - NP (a)

and the tangential evolution (B.25) which can be rewritten as

(B.27) dSit(z) =

dsy’ (x)
B2y —psti(D)di
(Jir(1),NP(z))  HP (y1) — H (y2) ) )
<_ 2 sin 05 () 45in? 65 (z) ) (N (2) + Ny () dt

where pg denotes the orthogonal projection on T'S, Ji-(1) = J(1,0, —ps(y1)VHP* (1)),
and 1, Yo are defined in Figure 2.

Remark B.2. The points y; and y» do not play the same role in Theorem B.1. As for-
mula (B.27) is symmetric in y; and yo, formula (B.28) is not. The reason is that if we as-
sume the motion of y; to be normal to the boundary 0 D; and to have speed given by (B.26),
the motion of y, has no reason to be normal to the boundary: J5(0) does not vanish.

APPENDIX C. D0OSS-SUSSMAN REPRESENTATION OF ITO’S EQUATION (2.11)

In this section we adapt the results of [9] to our notations. Let the stochastic mean
curvature flow be a solution of :

(C1) Vtel0,7),VyeCy,  doDi(y) = <th + %th (y)dt> NP (y)

where C; = 0Dy, starting at Dy.
Let 0G; be a solution of
C2) Go = Dy
’ Vtel[0,€),VzedGy, or = aog,—w, ()N ()

for some € > 0 small enough, where « is defined by
1
(C.3) Vr>0,VDeD,, YVxel, acr(z) = ih‘p(c’” (Yo r(x))

and U (C, r) is the normal (exterior) flow starting at C' at time r (c.f. Chapter 3 and 4 of
[9] for notations).

Similarly to the proof of Theorem 17 from [9], we show that D; = U(G;,—W;) is a
solution of the stopped martingale problem associated to the generator (D, E where for
feC®(M)andF¢(D) = SD fdu, v =—N is the exterior normal

EIFf J (Vfvydp = ]F1Af(D)

Recall that the equation (C.2), is in fact a quasiparabolic equation with coefficients that
depend on trajectory of the Brownian motion (the meaning is trajectory by trajectory).
Similarly to Section 4.1 from [9], we show that the solution of (C.2) have a regularity
Ctte2te forall o < 1.

Proposition C.1. Let dG; be a solution of (C.2). Then 0Dy = V(0G, —W4) is a solution
of (C.1) in the It6 sense.
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Proof. Letx € U(0G;, —W,), we have :
d\II(&’Gt, —Wt)(l‘) =

d _
= Tll:[/(aGt}_Wt)(%aGt)(\I/ 1(5Gt,—Wt)($) dt
— YOG (1) aw,

1
- (th + th’(aaf’wt)(a:)dt> NYECGL=Wa) (),

(C4)

where in the first equality we use the Itd formula, the fact that t — 0G, is C'+%,
%\I!(x,r) = 0, and in the second equality we used Lemma 13 in [9], i.e. 0Dy is a
solution in the It form :

doDy (CC) = (th + 130D, (x)dt)N(?Dt (l‘)
(C.5) { + < oD 3

]

Proposition C.2. Conversely, if 0Dy is a solution of (C.5) then 0G; = UV (0D, W) is a
solution of (C.2).

Proof. Letx € 0U (0D, Wy)
d\I/(an, Wt)(x)
=1V (op, w,)(0ddDy)(z) + v¥ P W (z)dW,

1, 5
= Tl\I/(aDth)((th + §hODtdt)N0Dt’)(l')

(C.6) _ N\I/(aDhWt)(x)th
= (;haDt(\ll‘l(o“Dt, W) (z)) NGt (x)dt)
= SRV (B0, W) () N7 ()t

where we use that in this case, the Stratonovich differential is equal to the It6’s one (c.f.
2

Appendix B), i.e. oddD;(z) = doDy, and - VU(z,r) = 0. So 0G, is a solution of

(C.2). O

By the uniqueness of the solution of (C.2) (c.f. Theorem 22 in [9]) and the fact that it is
adapted to the filtration of B we deduce that the solution of (C.5) is unique and is a strong
solution. Similarly we have the uniqueness of the solution of

H(ODy)
p(Dy)

Moreover, since we could also make a change of time in the Itd equation, Equation (2.11)
has a unique strong solution.

doDy(x) = (th + %haDt (z)dt — dt) NP ().

APPENDIX D. WEAK SEMI-GROUP THEORY IN THE MARTINGALE PROBLEM SENSE

This theory has been developed in several books, see for instance Stroock and Varadhan
[25] or Ethier and Kurtz [11]. Here we present a minimal version suitable for our purposes.

Let V be a measurable state space and consider (2 a set of trajectories from R to V.
The canonical coordinates on {2 are denoted by the X, for ¢ > 0: for w € , X;(w) is the
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position at time ¢ of w. The set €2 is endowed with the sigma-field generated by the X, for
t = 0. Our first assumption is that the mapping

OxRy 3 (w,t) —» Xi(w)eV

is measurable, which usually means that “( is not too big”.
For t > 0, we define

Fi = o(Xs:s€e[0,t])

For t > 0, we will also need the time shift ©; associating to any w € € the trajectory
O¢(w) defined by

Vs=0, X,(0/w) = Xen(w)

We assume that O;(€2) < .

A given family P := (IP;),ey of probability measures on (2 is said to be Markovian
if for any x € V and any ¢t > 0, the image by ©, of P, conditioned by F; is Px,. In
particular, it is assumed that IP has the regularity of a Markov kernel from V' to €.

From now on, we suppose that a Markovian family IP is given. Let B be the space of
bounded and measurable functions defined on V. The semi-group P := (P;);>( associ-
ated to P is the family of operators acting on B via

Vt=0,VfeB, VzeV, Pfl(z) = E.[f(X¢)]
The Markovianity of P implies at once the semi-group property
VS,tZO, PP, = Pt+s

and in particular the elements of P commute.
A subclass of “regular” functions that will be important for our purposes is R defined
as

R = {reBiveey. m PUE) - S}

Exceptionally in the above limit, we assumed that ¢ > 0 (i.e. not only that ¢ > 0), so that
by definition, forany f € Rand x € V, Py[f](z) = f(x).
Let us observe that R is left stable by the semi-group:

Lemma D.1. For anyt > 0, we have P;[R]| € R. Thus for any given f € R and x € V,
the mapping
Ry st — P[f](z)
is right continuous.
Proof. Indeed, fixt > 0 and f € R, we have forany x € V and s > 0,
PIPI@) = RIP@)
Eo[Ps[f1(X)]]

We have for any s > 0, | Ps[f]|., < |f|., (where ||-|_, stands for the supremum norm
on 3) and since f € R, we get everywhere

Jim PIFI(X) = f(X)
Dominated convergence implies that
Jim B[PGO = Elf(X0)]

Pl f]
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as desired. u

The generator L associated to P is the operator
L:DL) - R

defined in the following way: the space D(L) is the set of functions f € R for which there
exists a function g € R such that the process M9 := (Mtf’g)t;() defined by
t

VS0 MY ()= (X0 - | e ds

is a martingale under P, forall z € V.
Let us remark that g is then uniquely determined. Indeed, we have for any x € V and
t>=0,

B, 700 - ELA ()] - B | | tg<xs>ds] - 0

0
Using Fubini’s lemma (applicable due to our measurability requirement on §2) and tak-
ing into account the definition of P, we get

PIf1() - Polfl(x) j Plgl(x)ds = 0

namely, recalling that we required that g € R,

g9 = hlgl
1 t
_ tli%1+;LPs[g](x)ds
(D.1) _ t@&w

(we came back to the usual convention that ¢ > 0 in the above limit) and as a by-product,
we are assured of the existence of the latter limit.

We define L[f] := gand M7 := M7-9.

The differentiation property (D.1) can be extended into

Lemma D.2. Forany f € D(L), x € V and t = 0, we have
(D.2) P fl(z) = P[L[f]](z)
Proof. Forany f € D(L),z € V andt,s = 0, we have

Ex [Mtf+€ - Mtj] = Ex []E’C [Mtf-k—s - Mff|]:t]]
= 0
We compute that
t+s
Ml =M = fXe) - FX) - [ L) du
t

so that

S

B (M= Mf] = Pl - AL ~ | PeulZUe) du

Since L[f] € R, the mapping [0, s] 3 u — Pyy,[L[f]](x) is right continuous, accord-
ing to Lemma D.1, and the same argument as in (D.1) enables to conclude to (D.2). [l
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We can now come to the main goal of this appendix:
Proposition D.3. Foranyt > 0, D(L) is stable by P; and on D(L) we have LP;, = P, L.

Proof. Fix f € D(L) and « € V, the assertion of the lemma amounts to checking that the
process N := (N)s>0 defined by

(N)eso = (Pt[f](Xs)Pt[f](Xo)J

0

S

PILITI(X.) du>

s=0
is a martingale under IP,.. Consider s’ > s > 0, we have to prove that
(D.3) E.[Nsy — Ns|Fs] = 0

The Lh.s. is equal to

’
S

Eq

RUI(X.) - BLAG.) - f

S

PILIANX) du\fs]

E, [Pt[fuxsf_s 00, = P00 [ ALK, o0,) du(fsl

0
- E, [Pt[f](xsf_g ~ PIf(X0) f U BILIX) du]

where y = X ;. By Fubini’s lemma, the previous r.h.s. can be written

’

B, (A1) - By [P0 - | "B [RLLI(X.)] du
= Prvlfl) — PG j L)) du

Taking into account (D.2), the last integral is equal to

’

fﬁsaumu[f](y)du = Prvdlfw) - PLA®W)

0
which ends the proof of (D.3). [

The advantage of the above approach is that it is quite sable by optional stopping, as it
is the case for martingales. Let us succinctly give a simple example in the spirit of Section
2.

Assume that in the above framework, V' is a metric space, endowed with its Borelian
measurable structure, and that € is the set of continuous trajectories C(R,, V). Further-
more, we suppose that P is Fellerian, in the sense that it preserves C, (1), the set of
bounded and continuous real functions on V.

Let be given A — V a closed set. We consider 7 the hitting time of A:

T = inf{t=>0: X; e A} € Ry u{+w}
Define the “new” process X = ()?t)tgo via
Vi=> O, jzt = Xt/\T

andforz e V, let IF’x be the image of P, by X, itis still a probability measure on C(R4, V).
All notions corresponding to P := (P,).cv, which is still a Markovian family, receive a
tilde. It appears without difficulty that R is the set of functions f € B such that there exists
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f € R with f coinciding with f on V\A. The domain D(L) is the set of f € R such that
there exists f € D(L) with f coinciding with f on V\ A. In addition, we have

e me = {0

This expression does not depend on the choice of f, due to the fact that P is a diffusion,
i.e. that Q = C(R,, V'), which implies that L is a local operator (see for instance Theorem
7.29 of Schilling and Partzsch [24], they are working with Euclidean spaces, but the result
can be extended to metric spaces).

According to (D.2) and Proposition D.3, we get

VieD@),VreV,Vt=0 &B[flz) = BL[f@) = LIAf()

Such relations are not so obvious if we had chosen to work in a Banach setting (cf. e.g.
the book of Yosida [27]), considering for instance semi-groups acting on the space Cy, (V)
(endowed with the supremum norm), since in general L would not naturally take values in

(V).

APPENDIX E. AN ITO-TANAKA FORMULA

Let M be a d-dimensional Riemannian manifold and D < M a compact and connected
domain with C? boundary 0D, and S be the regular skeleton of D, and pJ,, the signed
distance to 0D, which is positive inside D and negative outside D. The notations will be
the same as in Appendix A.

Proposition E.1. Let X; a Brownian motion in M. We have the following It6-Tanaka
formula :

Apdp(X0) = (NP (X0),dX0) — ShP(X,)dt —sim (6°(X,) dLE(X),

in the above formula, NP (z) = Vp2,(z) and —hP (x) = Apk,(x) forz ¢ S, and define
to be 0 elsewhere, L7 (X) is the local time defined as in (3.11).

Proof. The formula is a consequence of the Itd6 formula outside the skeleton. Since the
non regular part of the skeleton has Hausdorff dimension smaller than or equal to d — 2, it
is not visited by the Brownian motion. So we only focus on the regular skeleton. For all
x € S, the distance to the boundary is the minimum of two C? functions f, g defined on
some neighborhood U of = in M. The function f (resp. g ) is the distance function to a
piece of 0D containing y; (resp. y2) as in (A.2). We have locally,

1 1
pip=Tng=5f+9)—5lf =9l
Using It6 formula and Tanaka formula we have
" 1/1
dpip(Xe) = 5 (30 +9)(X0)dt + V(] + 9)(Xe), dXo))

— 5 (siEn((f — ) (X))(S ~ ) (X0) + L (F — 9)(X)):
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where L{"™ (£ —9)(X.)) = lim. g+ £ {110, ((f =9) (X)) (f=9)(X), (f =) (X))s-
Since locally S = {f — g = 0} and u(.S) = 0, we have

1 1
dp3p(Xi) = §1Xt¢sAPa+D(Xt)dt + 1x,¢5(Vpip(Xys), dXs) — §dL?’+((f —9)(X))).

After changing the role of f and g we get

(E.1)
1 1
dpyp(Xt) = 5]1Xt¢SAp(;rD(Xt)dt +1x,¢5{Vpip(Xy),dX;) — §dL?((f - 9)(X)),
where

t

I = )()) = Jim | St (= )XV = 0) () ds

e—0t

In Appendix A it is shown that for z € S, [V (f — g)(z)| = 2sin (6°(z)).

Using the flow £(t) = —% that starts at y € U, we get

13
2m (05 () |7

where dg is the distance to S. On the other hand, using the minimal geodesic from S to
y e U we get

{ye M, st. |ds(y)| <e} c{ye M, st |f — g|(y) < 2esin (GS(PS(y))) + o(e)}.

{ye M, st |f —gly) <e} c{ye M, st |ds(y)| <

Hence
dL{((f = 9)(X.)) = 2sin (0% (X)) L7 (X))
Together with (E.1), this yield the Proposition. O

APPENDIX F. UNIQUENESS IN LAW OF /j DIFFUSION

Let us consider the following generator .Z of a stochastic modified mean curvature flow.
The action of this generator and its carré du champs on elementary observables are defined
as follows. For any smooth function & on M, consider the mapping F}, on D>+ defined
by

Y DeD***  F.(D) = J kdu
D
For any k, g € C*(M) and any D € D?*<,
. DIRAD) = —1uP(VhNPY) = Fy (D)
Lo[Fe, Fgl(D) = §,pkdufspgdu

Note that -Z has the same carré du champs as the carré du champs associated to 2.
From now the generator . is defined as in (2.14).

Proposition F.1. The martingale problem associated Pis well-posed.

Proof. We have already shown the existence result in [9], so it remains to prove the unique-
ness in law. Let us first consider the two-dimensional Euclidean case, namely M = R2.

For all A € R and for any function k € vect(e*”, e*) we have 1 Aky(z,y) = )‘2—21€>\(m7 Y).
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Let fA((w,y), D) := kx(z,y)Fy, (D), for (x,y) € R? and D € D27, This function sat-
isfies the following property:

I
x5
>
—
}2
<
S
&l
>
nN

)\2
= ?k/’)\(l‘, y)Fk)\ (D)

1
= §Ak)\<xay)Fk/\ (D)

- SAA((,),D)

Let (X;);=0 be a R?-valued Brownian motion that starts at Xo = (z1,22) € R? and

(bt)t>0 a 2 diffusion that starts at Dy independent of (X;);>o. Even if we stop the
diffusion, we can assume that its lifetime is infinite and we add indicators as described in
Appendix D. For all 0 < s < ¢, we have

~ m 1 ~ ) ~ m
df)\(thsa Ds) = _iAf)\(thsa Ds)ds + gf)\(thsy Ds)ds =0.
Hence for all A € R we have
(F2) E[fA(X¢, Do)] = E[f(Xo, Dy)].

Since the left hand side of the above equation does not depend on the K% diffusion, we get
that for any . diffusion (D;):>0 that starts at D :

E[fx(Xo, Dy)] = E[f(Xo, Dy)],
and so
E[Fy, (Dy)] = E[Fy, (D))].

In order to apply Theorem 4.2 of [11], we have to show that the above equation char-
acterizes the law of the one-dimensional distribution, i.e. we have to show that (F}, ) is
separating in the space of probability measures on D2, This is equivalent to separate do-
mains. Let A, B € D?* such that Fy, (A) = F}, (B) for all A € R and ky € (%, V),
we have for all A:

L (o, y)dp = jB (e, y)dp.

After successive derivations in \ and evaluation at A = 0, we get for alln € N

j x"du =J x"dpu,

A B

J y"dp :J y"dp,
A B

i I Az ; 1AL
The above computations could be done also for kx, x, = e**+*2Y since 3Aky, x, =

2 2 ~
/\1;)‘2 kx, .2, and after derivations in A1, A2 and evaluating at (0,0) we get that for all

n,me N:
f "y dp :J "y dp,
A B
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hence, using the boundary regularity, we get A = B.

We could also apply Stone-Weierstrass’ theorem to the function algebra generated by
the mappings (z,%) — e and (z,y) — e*2¥.

The proof is the same for all Euclidean spaces.

If M is a compact manifold let

f)\z(XvD) = k)\z(X)Fkxl(D)v

where ); is an eigenvalue of %A and k; is the associated eigenfunction (respectively the
Neumann eigenvalue). By the same computation as above (F.2) is also valid for the bound-
ary reflecting Brownian motion), to get the conclusion we have to show that (Fk/\i ): sepa-
rates domains. Since (ky, ); is an orthonormal basis of L? (1) we get that if A, B € D**¢
be such that for all ¢,

Fkxi (A) = Fkxi (B)

ie{la,kxyrz = Ap,kx)r2, then 14 L 15 hence A = B.
For the complete manifold M, let ) be an exhaustion of M with a regular boundary
such that Dy — 2, and stop the . diffusion when it hit 2, and use the above result for

the manifold with boundary 2, we get the result by localization.
O

Proposition F.2. The martingale problem associated to £ is well-posed.

Proof. Let D, be a . diffusion that starts at Dy, defined on (2, F2, Q). We first recall
that there exist an enlargement of the probability space such that it carries a one dimen-
sional Brownian motion B such that for all k € C* (M)

(E.3) Fk(Dt) = Fk(Do) + JO g[Fk](DS) ds + J;) \/Fg[Fk,Fk](DS) dBg

where /T [ Fy, Fi](D) := Sa p Kk do, this is actually Proposition 53 in [9]. Note that this
procedure of enlargement (Theorem 1.7 chapter V in [22]) could be done by gluing the
same independent Brownian motion for each (€2, 7, Q). We denote by (€2, 7, Q) the

—

enlarged probability space. Since .Z is an h-transform of .Z namely

—~ I'o(F1, F
ZIF] = Z[F] + M’
Fy
equation (F.3) becomes in a differential form
- 0D D
(F.4) dFy,(Dy) — L[ Fe](Dy)dt = (J kdo) (dBt + wdt).
oD (D)

Let

oD éDg 2
_ ot uPs oDy _ 1t (r97s(@Ds) .
M, = ¢ o ma 430 (Lot ) ds

)

P\r, = M;Q7,-

Using Girsanov transform, D; is solution of the K% martingale problem on the probability
space (€2, FP P). Since Q = M ~'P we get the uniqueness in law of the . diffusion by
Proposition F.1. (]
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APPENDIX G. CONVERGENCE IN LAW: A KEY LEMMA

This Appendix is devoted to the adaptation to some domain-valued sequences of pro-
cesses, of Lemma 4 in [28], which states stability of some time integrals under convergence
in law.

Lemma G.1. Let F := 7. We endow the set of continuous paths € ([O, 0), M x j)
with the two dissimilarity measures dg, 8 € {0, a}, defined as:

(G.1)  dg((z',D"),(2*,D?) = jggp(wl(t), 22 (t)) + sup dg z(D'(t), D*(t)),

where for two domains D and D'

dﬂyD(Dv D/) A d57D/(D/, D) NE lf H(D, D/) <e€
€ otherwise.

G2)  dy5(D, D)= {

Here H(D,D') is the Hausdorff distance between D and D' and the distance dg p is
defined in (2.2).
Let (X7, D}, 7™)s0 == (X2, D2, 7%"),50 a subsequence of (3.18) converging in
law to the limit defined in (3.19) for the product of d, and the Euclidean distance in R ;.
Let f, : (z,D) — fo(z,D)and f : (x,D) — f(x, D) be maps on M x F with
values in some Euclidean space, and U an open set in M x F for dy. Assume that:

(i) the random variables J | fr (X2, D)|P ds are uniformly bounded in probability
0

for some p > 1,

(ii) in the open set U, the functions f,, converge locally uniformly to f with respect to
do, and are dy-continuous,

(iii) fora.e. t =0, (Xy,D;) e U.

t t
Then (Xt"7 Df,f fu(XZ, DY) ds) converges in law to (Xt, Dt’J- f(Xs, Dy) ds)
0 >0

= 0 >
for (das| )
Remark G.2. In the applications we will always take
(G.3) U= {(x, DeMx 7, ae D\S(D)} ,

which is easily seen to be dy-open thanks to Assumption 3.1 on Z.
Proof. We will follow the proof of Lemma 4 in [28], but with several differences due to
infinite dimensional spaces. Set forn e N, ¢ > 0,

t
(G.4) f fo(X, DM ds, A, ;:J F(X,, D) ds.
0

Condition (i) implies that the processes A™ are tight. To get the conclusion il is sufficient
to show that all the converging subsequences have the same limit. So assume that

(G5) (X7, D, AD)ymg ~2> (Xe, Dy, a)

and let us prove that (a;),~, = (At),~o- By Skorohod theorem we may realize all pro-
cesses

t=0 t=0 -

(G6) (X?,D?,A?,Xt,Dt,at)tzo
on the same probability space (2, %, P) in such a way that
GT) (Z)ezo = (XP, DI AD) g =5 (Xe, Dy ar) g = (Z)e20
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This means that Z}* — Z; a.s. uniformly in ¢ > 0.
Fix w € . Lett > 0 be such that (X;(w), D;(w)) € U. For some ¢’ > 0 we have
(Xs(w), Ds(w)) € U forall s € [t — &,t + £]. The set

(G.3) S :={(Xs(w),Ds(w)), selt—¢ t+}
is d,-compact in M X Z,so it has a dq-neighbourhood V included in U of the form
(G.9) V= {(a:,D) e M x 7, do((z,D),8) < e”} .

for some small enough £” > 0. For n sufficiently large, (X (w), D7 (w)) € V forall s €
[t—e’,t+¢']. On the other hand V' is bounded for the distance d,. This implies by Arzela-
Ascoli theorem that it is compact for the distance dy. We have the two following facts, the
first one being an assumption on the f,, and f, the second one being a consequence of the
dp-compactness of V'

(@ fn — fasn — oo uniformly in (V, dy);

(b) f is uniformly continuous in (V, dy).

Then
sup ‘fn(X;L(w),D:(w)) _f(Xs(w)7Ds(w))|
se[t—e,t+e]
< sup |fu(X{ (W), DY (w)) = f(X{ (W), DY (w))]
se[t—e,t+e]
b s TG DI ~ () Do)

Both terms in the right converge to 0, the first one by (a) and the second one by (b). So we
have by (G.7) and the above calculation
(G.10)
{ (A? (w))se[t—s,t+s] (G’S( ))se t—e,t+e]
(A3 W) = fu(XE (W), DY (W) set—c,t4e) — (F(Xs(w ) (@) seft—e,t44]

both uniformly in s € [t —e, ¢+ ¢]. This implies that as(w) is differentiable in (t —e, t +¢€)
with derivative f(X;(w), Ds(w)) and in particular at .
We have that for all ¢ > 0, (X;(w), D¢(w)) € U a.s.. Soforall t > 0,

d

(Gll) %at< ) = f(Xt(W),Dt(W)) a.s..
This implies that w a.s.
d

(G.12) £at( w) = f(X¢(w), Dt(w)) forae. t.
On the other hand we know by [16] Theorem 10 that (a):>¢ is absolutely continuous :

t
(G.13) ar(w) = J ls(w) ds.

0
By Lebesgue theorem, w a.s., fora.e. £ > 0

1 t+e
(G.14) lim - L 16(w) )] ds = 0.
Equalities (G.12) and (G.13) imply that w a.s.
1 t+e

(G.15) lim - L () ds = J(Xi(w). D) forne .
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On the other hand
1 t+e 1 t+e
% Lis ls(w) — U (w)ds| < % Lie |€s(w) — £e(w)| ds
so (G.14) implies that w a.s. fora.e. ¢ = 0
1 t+e
.1 lim — s = .
(G.16) lim, o L_E ls(w) ds = by (w)
Consequently, using (G.12) and (G.16), we get w a.s. fora.e. t = 0
(G.17) li(w) = f(X¢(w), Di(w))
Integrating we get w-a.s. forall ¢ > 0
t
(G.18) (W) = Ay(w) = J F(Xo(w), Da(w)) ds.
0
This together with (G.4) proves the lemma. (]
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