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Abstract

This study presents a method for constructing a surrogate localization model for a
periodic microstructure, or equivalently, a unit cell, to efficiently perform micro-macro
coupled analyses of hyperelastic composite materials. The offline process in this
approach is to make a response data matrix that stores the microscopic stress
distributions in response to various patterns of macroscopic deformation gradients,
which is followed by the proper orthogonal decomposition (POD) of the matrix to
construct a reduced order model (ROM) of the microscopic analysis (localization) with
properly extracted POD bases. Then, response surfaces of the POD coefficients are
constructed so that the ROM can be continuous with respect to the input datum,
namely, the macroscopic deformation gradient. The novel contributions of this study
are the application of the L2 regularization to the interpolation approximations of the
POD coefficients by use of radial basis functions (RBFs) to make the response surfaces
continuous and the combined use of the cross-validation and the Bayesian
optimization to search for the optimal set of parameters in both the RBFs and
L2regularization formula. The resulting model can be an alternative to microscopic
finite element (FE) analyses in the conventional FE2 method and realizes FEr with
1 < r << 2 accordingly. Representative numerical examples of micro-macro coupled
analysis with the FEr are presented to demonstrate the capability and promise of the
surrogate localization model constructed with the proposed approach in comparison
with the results with high-fidelity direct FE2.

Keywords: Micro-macro coupled analysis, Proper orthogonal decomposition, Radial
basis function interpolation, L2 Regularization, Hyperelastic composites

Introduction
As a counterpart of theoretical mechanics for heterogenous media [1], which was devel-
oped for design support of composite materials since 1950s, mathematical theory of
homogenization [2–4] was developed in applied mathematics around mid 70s as an area
of variational methods and functional analysis. In the field of computational mechanics,
a class of methods based on the homogenization theory is referred to as computational
homogenization and is known to be a key technology to realize two-scale, or equivalently,
micro-macro analyses; see, for example, [5–8]. In particular, the most distinctive feature
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is the set of “homogenization” and “localization” processes, in which we carry out numer-
ical analyses to evaluate macroscopic material responses with microscopic ones being
input data and microscopic structural responses with macroscopic ones being input data,
respectively [9,10].
Although there are a variety of methods of two-scale analyses based on homogenization

theory, a periodicmicrostructure (unit cell) is in common associated with amaterial point
in themacrostructure.Also, the unit cell is identifiedwith a representative volume element
(RVE) introduced inmicromechanics, which is the domain for taking the volume averages
of microscopic stress and strain to evaluate the macroscopic ones. Because of this simple
structure, computational homogenization enables us to easily obtain the relationship
between macroscopic stress and strain with the help of a friendly discretization method
such as the finite element method (FEM). However, the obtained relationship is just as a
numerical or discrete data set and thus function forms of the macroscopic constitutive
equations are never provided except for linear problems. Having an eye on this feature,
Terada andKikuchi [11] proposed themethodofmicro-macro coupled two-scale analyses,
by which themacroscopic boundary value problem (BVP) is solvedwithout amacroscopic
constitutive law, but with the macroscopic constitutive response obtained as a numerical
solution of the microscopic BVP in a unit cell, which is located at each calculation point
of the macrostructure. While the macro- and microscopic BVPs were not fully implicitly
solved in their solution algorithm, a consistent method of micro-macro coupled two-
scale analyses was proposed by Feyel et al. [12,13] and subsequently referred to as FE2

in reflection of the nested structure of micro- and macroscopic FE analyses. At the same
time, Terada and his co-workers [14,15] presented the formulations adherent to the
mathematical homogenization elaborated with the theory of generalized and/or two-
scale convergence [16]. However, these original developments of FE2 is too expensive and
impractical as commonly recognized, even though parallel computing is employed [17].
For a solution to emerge, Terada and Kikuchi [11] practiced the use of a database

storing macroscopic stress components in the macroscopic strain space, which can be
constructed by carrying out a series of numerical material tests (NMTs) on a unit cell.
However, its linear interpolation with those data points was not suitable for implicit solu-
tion methods to solve macroscopic BVPs and could not meet subsequent deployments.
Along this line, Yvonnet et al. [18,19] took another database approach, in which the outer
product decomposition, called PARAFAC, is applied to determine a numerically explicit
potential (NEXP) of the macroscopic strain energy by use of spline functions. Since the
NEXP has a smooth function form, it can be directly utilized for themacroscopic analyses.
Their more recent work has adopted neural network to more accurately construct NEXP,
which carries the advantage over the use of PARAFAC in determiningmore than ten inde-
pendent parameters in the three-dimensional (3D) potential function form [20]. These
can be regarded as data-driven approaches for two-scale analyses, as a database storing
macroscopic responses is developed in advance, or equivalently, offline, by a number of
high-fidelity computations to solve a microscopic BVP.
In this context, recent years have seen a renewal of interest in the use of data scientific

techniques to construct reduced order models (ROM) of high-fidelity computations in
two-scale computational homogenization. Especiallywith a view toFE2-typemicro-macro
coupled analyses, a pioneering work was presented by Yvonnet andHe [21] who proposed
a ROM-based offline-online computational framework. In their method, a database of
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microscopic displacements constructed by performing NMTs on a unit cell of hyperelas-
tic composite materials and proper orthogonal decomposition (POD) is applied to it to
extract basis vectors characteristic of the microscopic mechanical behavior. Owing to the
resulting ROM,microscopic linearized equations are solved in the dimensionally reduced
space so that the computational cost in solving microscopic BVPs in a FE2 calculation
can be significantly reduced. An effort on improving computational efficiency for offline
computations has also recently made by Fritzen and Kunc [22], who applied POD to the
data set of microscopic fluctuation strains obtained by a limited number of NMTs and
then solved minimization problems to effectively construct the above-mentioned NEXP.
Other noteworthy contributions have been presented by Fritzen and co-workers [23–

25], who developed the potential based reduced basis model order reduction (pRBMOR)
by extending the Non-uniform Transformation Field Analysis (NTFA) [26] developed for
inelastic composite materials. They applied POD to the microscopic plastic strain field
to construct a ROM and determined its coefficients by solving the extremal problem of
the relevant macroscopic incremental potential; see also References [27–30]. An eariler
study by Oskay and Fish [31] is also worth specific mention as an effort to reduce the
computational cost for microscopic analyses in FE2 by combined use of Transformation
Field Analysis (TFA) and homogenization theory. However, most of these ROM-oriented
researches have strived to ‘reduce’ the computational cost in solving a microscopic BVP
for more effective FE2 computations, but not to ‘replace’ a microscopic analysis, or equiv-
alently localization, by its surrogate model.
This study proposes a surrogate localization model to perform micro-macro coupled

analyses of hyperelastic composite materials with unit cells, for which microscopic analy-
ses to be conducted at each macroscopic calculation point are replaced by a sort of ROM
constructed by the application of POD to the response data set consisting of microscopic
stresses. The response data matrix is created by conducting a series of microscopic anal-
ysis in response to various patterns of macroscopic deformation gradient and, therefore,
the resulting ROM is for “localization” in the sense that the macroscopic deformation
is localized in a unit cell. In order that the ROM can be continuous with respect to the
input datum, namely, the macroscopic deformation gradient, we construct the response
surfaces of the POD coefficients of the ROM using RBFs. Additional contributions of this
study are the application of the L2 regularization to the interpolation approximations of
POD coefficients by use of radial basis functions (RBFs) to make the response surfaces
continuous and the combined use of the cross-validation and the Bayesian optimization
to search for both the optimal set of parameters in the RBFs and the L2regularization
formula. The resulting model replaces microscopic finite element (FE) analyses in the
conventional FE2 method and can be termed FEr with 1 < r << 2 accordingly. Then,
representative numerical examples ofmicro-macro coupled analyses with the FEr are pre-
sented to demonstrate the capability and promise of the proposed surrogate localization
model in comparison with the results with high-fidelity direct FE2.

Two-scale boundary value problem
A two-scale boundary value problem (BVP) is summarized in a general setting. Although
an arbitrary constitutive law can be employed for constituents in a periodicmicrostructure
(unit cell) in nature, we confine ourselves to hyperelastic compositematerials in this study.
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In the formulation, field variables like •̃ indicatemacroscopic ones and thosewithout tildes
are microscopic ones if not otherwise specified.

Two-scale kinematics

Let us consider a quasi-static equilibrium problem of a heterogeneous material with peri-
odic microstructures, i.e., unit cells, whose overall domain is denoted by Ωε ∈ R

ndim , in
the initial configuration. Here, ndim is the spatial dimension. Along the lines of mathe-
matical theory of homogenization with relevant assumptions [2–4], we denote macro-
and micro-scales by X and Y , the latter of which is introduced to measure fine scale
mechanical behavior in a single unit cell. According to the consequence of generalized
convergence theory [16], the domain Ωε can be separated into the macroscopic domain
of an equivalent homogeneous material, Ω̃0, and that of a unit cell, Ω0, located at each
macroscopic material point X ∈ Ω̃0. In what follows, all the field variables are assumed
to be periodic with respect to Y , i.e., Y-periodic.
The macro- and microscopic deformation gradients, F̃ (X) and F (X ,Y ), are given,

respectively, as

F̃ (X ) = ∇X ũ (X ) + 1, (1)

F (X ,Y ) = F̃ (X ) + ∇Yu′ (X ,Y ) , (2)

where ũ (X ) is the macroscopic displacement, u′ (X ,Y ) is the fluctuation displacement at
the micro-scale and 1 is the 2nd order identity tensor. Here, ∇X and ∇Y , are differential
operators with respect to the macro- and micro-scales, respectively. Also, the fluctuation
displacement satisfies the following constraint condition to ensure the existence of the
solution for the microscopic equilibrium problem [2–4]:

∫
Ω0

u′ (X ,Y ) dY = 0. (3)

In terms of the microscopic displacement denoted by w (X ,Y ) at Y ∈ Ω0, the micro-
scopic deformation gradient can also be represented as

F (X ,Y ) = ∇Yw (X ,Y ) + 1. (4)

Thus, the microscopic displacement is obtained as

w (X ,Y ) = (F̃ (X ) − 1) · Y + u′ (X ,Y ) = H̃ (X) · Y + u′ (X ,Y ) , (5)

where H̃ (X ) is the macroscopic displacement gradient and the vector of integration con-
stants have been neglected without loss of generality. It can be easily confirmed from Eqn.
(2) that the volume average of the microscopic deformation gradient over the unit cell is
equal to the macroscopic one as

F̃ (X ) = 1
|Ω0|

∫
Ω0

F (X ,Y ) dY, (6)

because the fluctuation displacement is Y-periodic. Here, |Ω0| is the volume of the unit
cell.
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Due to the Y-periodicity of the fluctuation displacement, the following constraint con-
ditions are imposed on the unit cell boundaries ∂Ω

[±J ]
0 :

u′[+J ] (X ,Y ) − u′[−J ] (X ,Y ) = 0, (7)

where superscripts [±J ] indicate the evaluation on the boundaries ∂Ω
[±J ]
0 . Here, we have

assumed that the unit cell is a rectangle or rectangular parallelepiped in case of ndim = 2
or ndim = 3, respectively. Combining this with Eqn. (5), the microscopic displacement is
constrained as

w[+J ] (X ,Y ) − w[−J ] (X ,Y ) = H̃ (X) · L[J ] = (F̃ (X ) − 1) · L[J ], (8)

where L[J ] is the vector connecting a pair of material points on the boundary surfaces
∂Ω

[±J ]
0 and is defined as L[J ] := Y |

∂Ω
[+J ]
0

− Y |
∂Ω

[−J ]
0

[32].

Microscopic BVP

The microscopic displacementw (X ,Y ) is the solution of the following equilibrium equa-
tion:

∇Y · P (X ,Y ) = 0 in Ω0, (9)

where P (X ,Y ) is the microscopic 1st Piola-Kirchhoff (PK) stress that can be determined
an arbitrary set of constitutive equations. In this study, we confine ourselves to composite
materials without inelastic deformations so that the following form can be adopted:

P (X ,Y ) = ∂ψ (F )
∂F , (10)

where ψ (F ) is a strain energy function. Together with the boundary conditions in Eqn.
(8), these equations consist of the microscopic BVP.

Macroscopic BVP

The equilibrium equation in terms of the macroscopic 1st PK stress P̃ is given as

∇X · P̃ (X ) + b̃ = 0 in Ω̃0, (11)

which has to be solved for themacroscopic displacement ũ (X) along with Eqn. (1) and the
relevant relationship between P̃(X) and F̃ (X). Here, b̃ is the body force, but is dispensable
for the sake of simplicity in the subsequent sections.
Although no specific function form of P̃(X ) is provided in mathematical homogeniza-

tion, the following relationship must be satisfied along with Eqn. (6):

P̃ (X ) = 1
|Ω0|

∫
Ω0

P (X ,Y ) dY . (12)

That is, the macroscopic stress is equal to the volume average of the microscopic stress
over the unit cell. Therefore, the macroscopic 1st PK stress that satisfies the macroscopic
equilibriumequation (11) can be determined through Eqn. (12), forwhich themicroscopic
BVP has to be solved with the macroscopic deformation gradient F̃ = H̃ + 1 being data.
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Solution scheme: FE2

As can be seen from the formulation above, the micro- and macroscopic BVPs comple-
ment each other, or equivalently, coupledwith each other via the relationships (6) and (12).
Thus, the set of these problems referred to as two-scale BVP. The corresponding solution
method by use of the finite element method (FEM) is called FE2, since FE analyses have to
be carried out to solve the microscopic BVPs with input data of the macroscopic defor-
mation gradients that have been evaluated at all the calculation points in the FEmodel for
the macroscopic BVP. In the case of implicit solution methods with the Newton-Raphson
iterative procedure, the microscopic stress satisfying the microscopic equilibrium equa-
tion is referred at every iterative process and time step to solve the macroscopic BVP.
Therefore, the computational cost is tremendously high when practical problems are to
be solved. Although there are some remedies to reduce the cost such as parallel com-
putations [17] and the decoupling [32–34] or mixing [26,35] schemes, the present study
takes the reduced-order approach based on the proper orthogonal decomposition, which
is the subject of the next section, by partially following the previous developments in the
literature.

Order reduction by proper orthogonal decomposition
This section is devoted to a brief summary of the proper orthogonal decomposition (POD),
which was first utilized by Lumley [36] in 1967 to extract the flow structures characteristic
of turbulent flows for the purpose of model order reduction (MOR).
First, let us define anNs-dimensional response-data vector in response to a certain input

datum f i as

φi := φ
(f i) = {φ1i,φ2i, . . . ,φNsi

}T ∈ R
Ns , (13)

where i ranges from1 toNc that is the number of input data. By standardizing the response
data vectors by their mean φ := 1

Nc

∑Nc
i=1 φi ∈ R

Ns , we define the following response data
matrix:

Q =
[
φ1 − φ,φ2 − φ, . . . ,φNc − φ

]
∈ R

Ns×Nc , (14)

We also define the sample covariance matrix as

C := 1
Nc − 1

Q QT. (15)

It is known that the maximization problem of the variance of the response data vectors
reduces to the eigenvalue problem of the sample covariance matrix as [36]

Csj = λjsj , (16)

where λj are the eigenvalues and sj ∈ R
Ns are the normalized eigenvectors that are

orthogonal to each other. Also, the index “j” indicates the number of spatial dimension,
in which the eigenvalues are aligned to descending order

(
λ1 > . . . > λj > . . . > λNc

)
. If

the sample covariance matrix is defined as
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C ′ := 1
Nc − 1

QT Q, (17)

the corresponding eigenvalue problem becomes

C ′vj = λjvj (18)

along with the following set of relationships:

vj := v′
j/
∣∣∣
∣∣∣v′

j

∣∣∣
∣∣∣, σj :=

∣∣∣
∣∣∣v′

j

∣∣∣
∣∣∣ =

√
(Nc − 1) λj , and v′

j := QTsj ∈ R
Nc . (19)

Here, || • || denotes the Euclidean norm. Since the eigenvalue problems, (16) and (18), are
equivalent via these relationships, we can choose either of them according to the magni-
tude relationship between Ns and Nc [37]. Thus, the dimension of the sample covariance
matrix is set at n := min(Ns, Nc) depending on the situation.
On the other hand, the singular value decomposition of Q is given as

Q = S�VT, (20)

where we have defined the constituent matrices as

S := [s1, s2, . . . , sn] , V := [v1, v2, . . . , vn] and � := diag [σ1, σ2, . . . , σn] . (21)

By use of these components, the POD of the response data vector in response to input
datum f i can be expressed as

φi =
n∑

j=1
Vijσjsj + φ =

n∑
j=1

αijsj + φ. (22)

Here, we have defined the POD coefficients as αij := Vijσj and, in turn, sj are referred to
as POD bases [38].
In order to extract the significant eigenmodes, we define the following contribution rate

of mode j as a quantitative index of content rate of the information about the original
data:

θj = λj∑Nc
k=1 λk

. (23)

Also, introducing a threshold δ to measure the information loss with respect to the
cumulative contribution rate, we determine the number of modes to be extracted,
Nr ≤ n := min(Ns, Nc), such that

θ total =
Nr∑
j=1

θj > 1 − δ. (24)

With this number of POD bases, the response data vector can be approximated as

φi ≈
Nr∑
j=1

αijsj + φ. (25)
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This realizes the model order reduction (MOR) of the original response data set, because
the dimension of the space spanned by the POD bases has been reduced from either Ns
or Nc to Nr . The procedure of the MOR is summarized in Box 1.

Interpolation approximation of POD coefficients
The POD coefficients αij in the approximation (25) obtained by the MOR are discrete
numbers corresponding to input data f i, but each of them can be regarded as the value
of a certain continuous scalar-valued function evaluated at data point f i. In this section,
we construct such a function by the interpolation with radial basis functions (RBFs) and
present a method to make the overall function form smooth.

RBF interpolation

The RBF interpolation [39] is a method to construct an approximate function Φ(f ) that
takes known values ϕi at a data point f i ∈ R

N . Due to the nature of the RBFs, the function
Φ(f ) thus interpolated necessarily becomes continuous.
Let us first define the following Euclidian norm that represents the distance between an

independent variable f and a data point f i:

ri(f ) :=
∣∣∣∣f − f i

∣∣∣∣ (i = 1, · · · ,M), (26)

A RBF is a certain type of function with this distance function being an independent
variable. In this study, we employ the following Gaussian functions:

ψ (ri(f )) = exp
[
−
( ri(f )

β

)2
]
. (27)

Using these as bases, we construct a continuous function such that

Φ (f ) =
Nc∑
i=1

ωiψ (ri(f )) , (28)
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where β is a parameter revealing a correlation with the distribution density of f i. Here,
the coefficients ωi of ψ (ri(f )) are called weights and can be determined in the following
way:
We evaluate Eqn. (28) at the k-th input point f k as

ϕk := Φ
(f k) =

Nc∑
i=1

ωiψ
(
ri(f k )

)
:=

Nc∑
i=1

ψkiωi. (29)

Then, the system of linear equations can be obtained as

ϕ = ψω, (30)

where we have defined the vectors ϕ and ω as

ϕ := [ϕ(f 1), . . . ,ϕ(f Nc )
]T and ω := {ω1, . . . ,ωNc

}T . (31)

Also, the coefficient matrix ψ, which is referred to as kernel matrix, has been defined as

ψ :=

⎡
⎢⎢⎣

ψ11 . . . ψ1Nc
...

. . .
...

ψNc1 . . . ψNcNc

⎤
⎥⎥⎦ , (32)

which is regular in most cases. Thus, the weights can be obtained as ω = ψ−1ϕ.

Smoothing response surfaces

When the weights obtained by the above-mentioned procedure used in Eqn. (28), their
response surfaces are continuous with respect to the independent variable f , but often
become rugged as will be seen later. Also, the undulations of their derivatives become
prominent and, therefore, inadequate as functions representing physical quantities. In
order to suppress such undulations, or equivalently, to smooth the response surfaces of
Eqn. (28), we replace the system of linear equations (30) by

ω = (ψ + ηI )−1ϕ, (33)

where η is a smoothing parameter. This process is called the L2 regularization [40] and
has been utilized to mitigate the ill effect of over-training in the area of machine learning.
However, since the function (28) with the weight with the L2 regularization in the data

point f k does not necessarily reproduce ϕk , the most appropriate value of parameter η

must be chosen so that the profile of the response surface and the accuracy of interpolation
approximation canbeoptimized simultaneously. In addition,when theGaussian functions
(27) are employed as bases, Gaussian parameter β is also influential on the smoothing
process. Therefore, the theoretical determination of the optimal set of parameters (η,β)
is almost impossible, while a try-and-error process must be inefficient. In this study,
we propose to apply the cross-validation [41] combined with the Bayesian optimization
[42,43] in terms of the difference between the data points and the corresponding values
of the approximation function.
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In the cross-validation, Nc data are divided into two groups; test data ϕ′ ∈ R
NTest
c for

error estimation of trained results and training data ϕ′′ ∈ R
NTraining
c . By use of the training

data only, we obtain weightsω ∈ R
NTraining
c by solving Eqn. (33). Then, using these weights,

we evaluate the approximation function Eqn. (28) at theNTest
c corresponding data points,

with Nc being replaced by NTraining
c , and calculate the error of training in comparison

with the test data. To avoid the bias due to an arbitrarily selected test data, we define the
‘average’ error by taking average of the errors calculated with Ncv different patterns of
division.
Parametersβ , η have to be determined so as tominimize the average error computed this

way. Although there might be some possible optimization methods for the minimization,
we employ the Bayesian optimization [42,43] in view of its preferable features for the
present purpose. In fact, the Bayesian optimization is known to search for the solution
closely in domains with smaller errors and sometimes in domains with low exploration
frequencies to avoid lapsing into a local solution. Also, it is known that it provides a global
optimum solution for the continuous approximate function with the smaller number of
trials than other possible methods such as a grid search.
Figure 1 shows the schematic diagram to search for the optimal set of parameters

(η∗,β∗) by the combined use of the cross-validation and Bayesian optimization. With an
initial set of parameters (η0,β0) suitably selected, a trial cycle of average error estimation
and optimization process is repeated some times. The iterative process is terminated if
the error variation becomes sufficiently small. The concrete procedure in the context of
micro-macro coupled analysis will be demonstrated later in the representative numerical
example. Finally, the procedure of RBF interpolation along with the parameter optimiza-
tion is summarized in Box 2.

FEr method
Following the above-explained procedure to construct continuous and smooth POD coef-
ficients, we propose a method of micro-macro coupled analysis with a POD-based surro-
gate localization model as an alternative to FE2. Since the surrogate localization model,
which is a ROM of microscopic analysis, significantly reduces the computational cost of
FE2, the method is referred to as FEr where 1 < r << 2 in this study.
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Traning dataTest data1st test

 All data

Traning dataTest data2nd test

Traning data Test datath test

error 1
error 2

error

Average error

1. If [Best error] > [Average error], updata best parameter set 

2. Choose next parameter set            by Bayesian optimization       

Candidate parameter set

Cross-validation

Fig. 1 Cross-validation combined with Bayesian optimization

Offline computations

In the proposed method, data points f i and response data vectors φi in Eqn. (13) corre-
spond to themacroscopic deformation gradients F̃ in Eqn, (8) and themicroscopic stresses
P at all the calculation points in a unit cell’s FE model prepared for solving microscopic
equilibrium problem (9), respectively. Thus, in the offline process in the proposed FEr , the
response datamatrix corresponding to Eqn. (14) is first prepared by carrying out a series of
localization analyses with various patterns ofmacroscopic deformation gradients F̃ . Then,
applying POD to produce the ROM of the localization, we construct continuous approx-
imate functions of the resulting POD coefficients by use of RBFs. Finally, the parameter
tuning is conducted by the combined use of the cross-validation and Bayesian optimiza-
tion in the L2 regularization. In the subsequent section, these offline computations are
explained in order.
First, various patterns of the macroscopic deformation gradients are prepared on the

assumption of plane strain states. Here, the patterns are chosen so that the microscopic
mechanical behavior can be well characterized. In this study, data points are throughly
selected in the four dimensional space of macroscopic deformation gradients such that

F̃ i =
⎡
⎢⎣

γ
(i)
11 + 1 γ

(i)
12 /2 0

γ
(i)
21 /2 γ

(i)
22 + 1 0

0 0 1

⎤
⎥⎦ ; γ

(i)
jk ∈ {F̃min

jk − δjk ; F̃max
jk − δjk}, (34)

where δjk is the Kronecker’s delta symbol. Here, F̃min
jk and F̃max

jk are the minimum and
maximum values of the macroscopic deformation gradient for localization analyses, and
have to be set in consideration of the range of deformation in the macroscopic analysis.
The total number of the data points is denoted by Nc for later use.
Second, localization analyses are carried out with theNc patterns of macroscopic defor-

mation gradients and the response data vectors are constructed as

φi := φ(F̃ i) = {Pi1,Pi2, . . . ,PiNe×Ng
}T (35)

where Pil is the microscopic 1st PK stress in Voigt form at calculation point l in element
e and have Np ( = 4 in case of plane strain problems) components. Since the calculation
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points commonly corresponds to Gaussian integration points in FEA, the calculation
point number is identified with l := (e− 1)×Ng + k whereNg is the number of Gaussian
integration points per element e and k stands for the element number. Thus, each response
data vector consists of Ns = Ne × Ng × Np components.
Third, with reference to Box 1, POD is applied to the response data matrix that is the

collection of the data vector constructed above. Studying the magnitude relationship of
the contribution rates corresponding to the PODmodes, we extractNr modes to construct
the ROM of microscopic analysis with F̃ i being input data point such that

φi ≈
Nr∑
j=1

αij(F̃ i)sj + φ, (36)

where the POD coefficients αij and the mean response data vector φ have been defined
respectively as

sj = {ŝ1j , ŝ2j , . . . , ŝNe×Ng j
}T and φ =

{
φ̂1, φ̂2, . . . , φ̂Ne×Ng

}T
. (37)

Here, the order of components in each of these vectors is in accordance with that of POD
bases sj and Eqn. (35). Furthermore, •̂ is a value at each microscopic Gaussian point.
Fourth, by applying RBF interpolation approximation, we construct the response sur-

faces of the POD coefficients αij , which have been obtained as discrete values. It is hence
assumed that each of these coefficients associated with the j-th POD basis sj is the value
of a continuous functionAj(F̃ ) evaluated at data point F̃ i such that

αij := Aj(F̃ i). (38)

Then, identifying this functionAj(F̃ ) withΦ (f ) in Eqn. (28), we construct its approxima-
tion function by use of the Gaussian RBFs such that

Aj(F̃ ) =
Nc∑
i=1

ωijψ
(
ri(F̃ )

)
, (39)

where ri(•) and ψ (ri(•)) have been defined in Eqns. (27) and (28), respectively. Following
the procedure presented in Box 2, we can easily calculate the weights as ωj = ϕ−1αj .
Asmentioned in the previous section, the direct use of the weights obtained as solutions

of Eqn. (30) is known to cause a highly oscillatory response surface ofAj(F̃ ). In fact, when
L2 regularization is not applied and, for example, RBF function parameter is set at β = 2.0,
the surfaces of the 1st and 2nd POD coefficients are obtained as shown in Fig. 2, which are
obviously inadequate to the material behavior. Therefore, the fifth step is devoted to the
smoothing the response surface with the help of the L2 regularization combined with the
cross-validation accompanied by the Bayesian optimization as described before. Finally,
with the determined optimal set of parameters (η∗,β∗), themicroscopic stress values at all
the calculation points can be represented by the following ROM of microscopic analysis:

φ(F̃ ) =
Nr∑
j=1

Aj(F̃ )sj + φ. (40)
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Fig. 2 Example of RBF interpolation without L2 regularization and parameter tuning

Here, since the order of the components of this response vector in Eqn. (40) is defined in
accordance with Eqns. (35) and (37), the l (:= (e − 1) × Ng + k)-th microscopic 1st PK
stress tensor (in Voigt form ) at calculation point k in element e in a unit cell’s FE model
is expressed as

P̆l(F̃ ) =
Nr∑
j=1

Aj(F̃ )ŝlj + φ̂l . (41)

where •̆ is a value at each microscopic Gaussian point calculated by the surrogate local-
ization model.
Once the ROM in the form of Eqn. (40) is determined, we obtain the approximate solu-

tion of Eqn. (9) in response to an arbitrary macroscopic deformation gradient without
carrying out a FE analysis for localization as far as it does not exceed the range prelim-
inarily set in the first step of the offline process. Thus, the ROM in Eqn. (40) is worthy
of being called “surrogate localization model” along the lines of mathematical theory of
homogenization.

Online computation

The online process is to solve the macroscopic BVP consisting of Eqns. (1), (11) and
(40) that is the surrogate localization model obtained in the offline process along with
relevant boundary conditions. According to the homogenization theory presented in the
second section, the macroscopic 1st PK stress is computed with Eqn. (12). Substituting
the surrogate localization model (41) to Eqn. (12) and applying the Gaussian quadrature
rule, we obtain the surrogate macroscopic constitutive law as
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P̃(F̃ )≈ 1
|Ω0|

Ne∑
e=1

Ng∑
k=1

P̆(e−1)×Ng+k (F̃ )W(e,k), (42)

whereW(e,k) is the weight at integration point k multiplied by the Jacobian associated with
area transformation for element e.
For the implicit solution method with the Newton-Raphson iterative procedure in solv-

ing themacroscopic BVP, the tangentmoduli ∂P̃(F̃ )
∂F̃ are needed. Since the surrogatemacro-

scopic 1st PK in Eqn. (42) is an explicit function of the macroscopic deformation gradient
F̃ , the 1st tangent moduli tensor can easily be computed as

∂P̃(F̃ )
∂F̃ ≈ 1

|Ω0|
Ne∑
e=1

Ng∑
k=1

Nr∑
j=1

∂Aj(F̃ )
∂F̃ ŝljWek . (43)

It should be noted that P̃(F̃ ) and ∂P̃(F̃ )
∂F̃ respectively in Eqns. (42) and (43) can be easily

obtained by computing the unit cell volume/area average of the POD bases in advance as
follows:

Sj = 1
|Ω0|

Ne∑
e=1

Ng∑
k=1

ŝ(e,k)jW(e,k), S′ = 1
|Ω0|

Ne∑
e=1

Ng∑
k=1

φ̂(e,k)W(e,k), (44)

P̃(F̃ ) ≈
Nr∑
j=1

Aj(F̃ )Sj + S′, ∂P̃(F̃ )
∂F̃ ≈

Nr∑
j=1

∂Aj(F̃ )
∂F̃ Sj . (45)

Here, in view of Eqns. (39) and (27), the derivatives of the POD coefficients are evaluated
as

∂α(j)(F̃ )
∂F̃ =

Nc∑
i=1

ω
(j)
i

2
β2 exp

⎡
⎣−

(
ri(F̃ )

β

)2
⎤
⎦ (46)

The procedure of the proposed FEr is summarized in Box 3. While a microscopic BVP,
which is governed by (9) (2), (10) and (8), has to be solved at each calculation point of
the FE model of a macrostructure in the standard FE2, the evaluation of the macroscopic
stresses in response to themacroscopic deformation gradient F̃ is done with the surrogate
localization model followed by the numerical integration in Eqn. (42). Thus, exponent ‘2’
in FE2 characterizing the computational cost yields ‘r’ that is greater than 1, but much
smaller than 2.
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Representative numerical example
A simple, but illustrative numerical example is presented in the two-dimensional (2D)
setting. Figure 3 shows the unit cell’s FE model under consideration, which is composed
of a single hyperelastic material. To performmicro-macro coupled analyses, we prepared
two macrostructures shown in Fig. 4. To verify the performance of the proposed method
of FEr , the numerical results are comparedwith those obtained by the conventional FE2. It
should be noted that the volume used in the numerators in Eqns. (42) and (43) to evaluate
the volume averaged quantities is replaced by that of the extended domain of the unit cell,
�0′ = �0 ∪ ϑ , where ϑ is the domain of the void in this particular numerical example.
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Fig. 4 FE models of macro-structures with boundary conditions

Offline computation: microscopic analyses

The following energy function for a compressible neo-Hookean hyperelastic material is
employed for the constituent of the unit cell:

ψ = μ

2
[tr (C) − 3] − μ ln J + λ

2
(ln J )2 (47)

where C is the right-Cauchy-Green deformation tensor, μ, λ are Lamé constants, and
J := det F is the Jacobian to measure volumetric deformation. Specific values of Young’s
modulus and Poisson’s ratio are set at E = μ(3λ + 2μ)/(λ + μ) = 4000 [MPa] and
ν = λ/{2(λ + μ)} = 0.25.
In this study, the components of F̃ in Eqn. (34) are set at Fmin

ij = F̃min
c = 0.9 and

Fmax
ij = F̃max

c = 1.5. Also, γij = 0 is included to the data point and the intervals of γij are
commonly set to be 0.2. Therefore, 44 + 1 = 257 patterns of macroscopic deformation
gradient are prepared as data points to evaluate the same number of sets of response data
vectors, each of which contains microscopic 1st PK stresses at all the calculation points
in the unit cell model.
After the series of microscopic analyses, or equivalently, localization, have been carried

out, POD is applied to the obtained response data matrix in the form of Eqn. (14). Fig. 5
shows the relationship between the ID’s of POD bases and the calculated contribution
rates.As canbe seen from this figure, the common logarithmof the calculated contribution
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Fig. 5 Contribution rate of POD basis

rates exponentially decreases for small ID’s, but gradually varies with linear decrease as
the POD ID number increases. In this study, the threshold value δ in Eqn. (24) is set to
be 10−6 and then Nr(= 46) modes are extracted, namely, 46 sets of POD bases and the
corresponding coefficients will be utilized to realize the ROM of microscopic analyses .
It should be noted that a threshold value, which determines the number of POD modes
to be extracted, has to be chosen in consideration of the outcome of reproducibility of
the resulting ROM for the original response data. However, we have confirmed that slight
difference in number of POD modes from the adopted value little affects the results.
Next, let us obtain continuous functions of the POD coefficients by the application of

RBF interpolation and make their function forms be smooth with the aid of L2 regular-
ization that can be accomplished by the combined use of cross-validation and Bayesian
optimization as explained before. Specifically, the smoothing parameters η and parameter
β in Eqn. (27) are determined to minimize the following error function:

error(η,β) = 1
Ncv

Ncv∑
p=1

Nr∑
j=1

θj||A(j)(p, η,β) − α(j)(p)||
||α(j)(p)|| (48)

where the vectors of j-th POD coefficients, α(j) and A(j), are weighted by their contri-
bution rates θj . Also, α(j) ∈ R

NTest
c and A(j) ∈ R

NTest
c are the vectors consisting of the

original POD coefficients and those of the values of the RBF-interpolated POD coefficient
function evaluated atNTest

c test data points, respectively. Here, the RBF-interpolated POD
coefficient function has been constructed by use of NTraining

c training data. In addition,
Ncv is the number of division cases for cross-validation and the choice of test and training
data is changed for each division case as illustrated in Fig. 1.
By setting Ncv = 6, we have obtained the set of parameters as η∗ = 1.3019 × 10−4 and

β∗ = 0.5180, which minimizes the error function (48). Figure 6a shows the convergence
history in terms of the error function (48) in the Bayesian optimization process. As can
be seen, the process converges quickly to a certain value; about 100 trials seems to be
sufficient in this particular case. Figure 6b shows the distribution of errors taken in the
cross-validation with the Bayesian optimization process. Here, since the region with small
errors is located in the middle of this figure, it is safe to conclude that the determined
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set of parameters η∗ and β∗, which is indicated by the starred marker in the figure, is
optimal. In addition, it has been confirmed that there is little difference when Ncv > 6.
To confirm the effectiveness the L2 regularization accompanied by the combined use of
cross-validation and Bayesian optimization, let us examine the resulting response surfaces
of the POD coefficients with the optimal set of parameters η∗ and β∗. Given the patterns
of macroscopic deformation gradient with some components being fixed as

F̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pattern 1:

⎡
⎢⎣

γ11 + 1 0.05 0
0.05 γ22 + 1 0
0 0 1

⎤
⎥⎦

Pattern 2:

⎡
⎢⎣

γ11 + 1 γ12/2 0
0.05 1.1 0
0 0 1

⎤
⎥⎦

(49)

γij ∈ {−0.1, 0.5} (50)

the response surfaces of the POD coefficients with the 1st to 3rd largest contribution
rates are shown in Figs. 7a and 8a, respectively, in which the black-colored markers are
the discrete values of the original POD coefficients. Furthermore, the undulated response
surfaces without L2 regularization are shown in Fig. 7b and 8b, respectively. As can be
seen, both of the surfaces have little undulation and are fairly smooth. It should be noted
here that the L2-regularizedPODcoefficient functionno longer pass through those points.
Nevertheless, this feature has no small effect on the variation of the error with respect to
data points and the number of POD bases as will be discussed later.

Online computation: FEr

Using the surrogate localization model with the L2-regularized POD coefficient function
obtained in the offline process, we solve the macroscopic problems posed in Fig. 4 and
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Fig. 7 Responce surfaces and original POD coefficients (Pattern 1)

compare the analysis results with those obtained by the application of FE2. In Problem A
whose conditions are shown in Fig. 4a, the left and bottom edges are fixed in the x1 and
x2-directions and a displacement of U = 6.0[m] is imposed in increments on the right
edge in the x1-direction. On the other hand, the macrostructure for Problem B, depicted
in Fig. 4b, is clamped at the left end subjected to a forced displacement in the x2-direction
of U = 21.0[m] on the node at the top-right end.
First of all, let us discuss the computational efficiency of the present approach in com-

parisonwith the FE2. The same PC equippedwith 16 CPUs of Intel(R) Xeon(R) E5-2687W
(3.10GHz) and RAM of 256GB is used for all the computations. The approximately esti-
mated computing times are presented in Table 1, in which the breakdown is provided for
the FEr analyses. For both of the macroscopic analyses, MPI-based parallel computations
were carried out. Predictably, FE2 required much more time in evaluating macroscopic
stresses than FEr , because each of them was calculated as a volume average of micro-
scopic stress that was calculated through microscopic FE analysis. On the other hand,
all the offline computations in the FEr were carried out with a single CPU, but the com-
puting times presented here are reduced as if they were done with 16 CPUs. Here, the
‘Localization’ row in the FEr section contains the total time required for Nc = 257 cases
of microscopic analyses (localization) to construct a response data matrix containing
microscopic stresses at all calculation points in the unit cell’s FE model. Also, the ‘Data
analysis’ row contains the combined time of the following three processes: 1) POD of the



Hatano et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:39 Page 20 of 28

F12 F11 F12
F11

F12 F11

i1 i2 i3

F12 F11 F12
F11 F12 F11

i1 i2 i3

a optimized set of parameters ( η* = 1.3019×10-4, β*= 0.5180)

b without L2 regularization ( η* = 1.0×10-14, β*= 0.5180)

Fig. 8 Responce surfaces and original POD coefficients (Pattern 2)

response data matrix, 2) Parameter search with cross-validation and Bayesian optimiza-
tion, and 3) Calculation of weights for RBF interpolation to determine POD coefficient
functions. Here, the computing times for all of these offline computations must be the
same, because the construction of the surrogate localization model is made just once for
the online computations for both of the macroscopic analyses. Aa can be seen from this
comparative table, the proposed approach could reduce about 95% of the computation
time necessary for FE2. Nevertheless, it took more time than expected to carry out the
offline computations. This is probably due to the fact that the convexity of the corre-
sponding macroscopic energy function is not necessarily guaranteed, even though the
microscopic Kirchhoff stress, instead of the 1st PK stress, is adopted to the surrogate
localization model. The problem is left unsolved at this time. It should be noted that the
dominant factor in total computation time is the number of microscopic analyses Nc,
because denseNc ×Nc-ordermatrices have to be dealt with in solving eigenvalue problem
in Eqn. (18) and inverse matrix calculation in Eqn. (33). To reduce the computing cost
for these, Eqn. (16) is used instead of Eqn. (18) if Ns < Nc. In the propose FEr , however,
Nc is supposed to be much smaller than Ns. This implies that the number of data points
must be made small as much as possible. But, at the same time, a complicated unit cell
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Table1 Comparison of computing times of FEr and FE2 calculations (unit : second)

– Problem A Problem B

FEr Localization 320

Data analysis 13.3

Online 496 322

Total time 829.3 655.3

FE2 16884 17857

Speed-up ratio 95.1% 96.3%

1200
[MPa]

598.04.0

FEr FE2

0.06760.03380.00

b Error map

0.5270.2640.00

0.1820.0910.00

a 1st PK stress distribution for each component

353
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13387.0

 FE²
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[MPa]

55590
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FEr

P12

P22

P11

Fig. 9 Microscopic stress distributions in unit cell located in Element A of Problem A

geometry that requires a large number of elements for localization analyses does not have
much influence on the computing time put in the ‘Data analysis’ row in Table 1.
Secondly, to verify the performance of the surrogate localization model developed in

this study, we compare the results of microscopic analyses at the last step of the FE2 and
FEr . Figs. 9 and 10 show the microscopic stress distributions and error maps in the unit
cells located in Elements A and B of Problem A, respectively. Here, the error measure for
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Fig. 10 Microscopic stress distributions in unit cell located in Element B of Problem A

Table2 Comparison between FEr and FE2 (Maximummicroscopic 1st-PK stress)

Element Components:Pij FEr (MPa) FE2 (MPa) Error (%)

A 11 1163 1200 3.08

22 352.9 237.7 48.5

12 478.4 482.1 0.747

B 11 514.4 515.9 0.291

22 127.5 112.8 13.0

12 182.1 185.8 1.99

the microscopic 1st PK stress component in each element is defined as

ePij = |PFE2
ij − PFEr

ij |
max(|PFE2

ij |)
. (51)

Also, themaximum values in these distributions are provided in Table 2. As can be seen,
they are in close coincidence. Thus, it seems reasonable to conclude that the surrogate
localization model is capable of reproducing the FE solution of the microscopic problem
with a certain degree of accuracy. In other words, the surrogate localizationmodel enables
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Fig. 11 Macroscopic analysis results of FEr and FE2 and error map (ProblemA)
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Fig. 12 Macroscopic analysis results of FEr and FE2 and error map (ProblemB)

us to carry out the real time simulation of microscopic behavior in response to an an
arbitrary macroscopic deformation gradient. Reflecting such a capability, the results of
themacroscopic analyses in the FEr are expected to be in fairly good agreement with those
of the FE2.
Requisitely, the third study is made on the comparison between the macroscopic stress

responses of FEr and FE2. Figures 11 and 12 show the macroscopic von-Mises stresses
distributions and error maps obtained for Problems A and B, respectively. Here, the error
measure for the macrosocpic von-Mises stress is defined as

eq = |q̃FE2 − q̃FEr |
max(|q̃FE2 |) . (52)

As can be seen from these figures, the results with the FEr are almost identical with
those of the FE2. Here, it has been confirmed that, in each of the results, the maximum
value of the macroscopic deformation gradient falls within the range prescribed above. In
order to make quantitative comparison, we show in Figs. 13 and 14 the evolutions of the
macroscopic stresses and the corresponding errors in the two specific elements indicated
in Fig. 4. Here, the error measure is defined as
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eσij = |σ̃ FE2
ij − σ̃ FEr

ij |
|σ̃ FE2

ij |
, (53)

where each macrosocpic stress component σ̃ FE∗
ij is the arithmetic mean of the values at

four integration points in the target element. As can be seen from the left sides of Figs. 13
and 14, although the stresses obtained in the FEr gradually deviate from, they are fairly
in good agreement. On the other hand, the evolutions of the error, plotted in Figs. 13
and 14, do not exhibit monotonic variations. These fluctuations depending on the level
of macroscopic deformation are probably made by the L2 regularization, which allows
the response surfaces of the POD coefficients data to deviate from their original values
calculated in the POD process. Nevertheless, the errors fall within a certain range for both
of the cases, although those tend to be large at the initial stages of deformation due to the
small values of stresses at the beginning of the macroscopic analyses.
Finally, the effect of the number of POD bases,Nr , is examined. Conducting both offline

and online computations for different values of Nr , we calculate the following cumulated
error:

ēij(Nr) =
Nstep∑
s=1

|σ̃ FE2
ij, (s) − σ̃ FEr

ij, (s)(Nr)|, (54)

where each macroscopic stress component is the arithmetic mean of the values at four
integration points in the target element.
Figure 15 shows the relationships between Nr and the errors of the stress components

with a focus on Element A of Problem B. In general, the accuracy of the standard ROMs
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Fig. 15 Relationship between number of POD bases and cumulated error with a focus on Element A of
Problem B

constructed by the application of POD is improved as the number of POD bases are
increased. However, as can be seen from this figure, the curves reveal no correlations. In
other words, accuracy improvement cannot be expected as the number of POD bases is
increased. The reason for this is probably due to the fact that different RBF interpolations
with L2 regularization are conducted for different number of POD bases and that the
optimal set of parameters, η and β , are changed accordingly. Although there is some
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room for further investigation, the fact that the error falls within a certain range can be a
favorable feature at least within the scope of the present study.

Conclusion
We have proposed a method of constructing a POD-based surrogate localization model
to perform micro-macro coupled analyses effectively. Since the surrogate localization
model replaces microscopic FE analyses in the conventional FE2 method, we have coined
FEr with 1 < r << 2 accordingly. The response data matrix consists of microscopic
1st PK stresses at all the calculation point in a unit cell’s FE model in response to data
points, namely, macroscopic deformation gradients. POD is applied to the response data
matrix to make a discrete version of surrogate localization model. Also, to solve macro-
scopic BVP effectively, POD coefficients have been made continuous with respect to
data points by the application of RBF interpolation. Then, the novel contributions are
the application of the L2 regularization to the interpolation approximations of POD
coefficient with RBFs to smooth the corresponding response surfaces and the com-
bined use of the cross-validation and the Bayesian optimization to search for both
the optimal parameter in the RBFs and the optimal smoothing parameter in the L2
regularization.
The capability and promise of the proposed method is demonstrated in the represen-

tative numerical examples. The 2D porous unit cell with a hyperelastic material is taken
for the sake of simplicity, while two macroscopic problems are considered to examine the
performance of the surrogate localization model, which is a ROM of microscopic analy-
sis. It was confirmed that the proposed surrogate model can reproduce the FE solution
of the microscopic problem with a certain degree of accuracy. Also, since it can signifi-
cantly reduce the computational cost of micro-macro coupled analyses in the context of
computational homogenization, the resulting method of FEr can be an alternative to the
conventional FE2 method. Since the combined use of the cross-validation and Bayesian
optimization made the smoothed response surfaces of POD coefficient functions deviate
from the original response data, the variations of analysis errors of FEr did not reveal
a correlation with the number of extracted POD modes. Although harmful effects by
this feature did not emerge, further insight into this aspect is left to future work. In
addition, the extension of the present method to inelastic deformations remains a major
challenge.

Acknowledgements
The authors acknowledge the invitation by the organizers (Professors Paul Steinmann and Andrew McBride) to CMCS
2019 (The international ECCOMAS Thematic Conference) took place on 1-4 October 2019 in Glasgow, UK. Thanks to this
conference, their work is invited for the special issue “Computational Modeling of Complex Materials across the Scales
(CMCS)”. The authors would like to show their greatest appreciation to Prof. Marc Geers, who was one of the co-chairs of
CMCS 2019, for his patient encouragement of our submission.

Authors’ contributions
The first four authors (RH, SM, S M and KT) participated in the development of the method, while the last author (JY) read
the manuscript thoroughly and provided some valuable comments and suggestions to improve the quality of the
manuscript. The corresponding author is responsible for completing it. All authors read and approved the final
manuscript.



Hatano et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:39 Page 27 of 28

Funding
The submission fee is fully covered by CSMA “Computational Structural Mechanics Association”.

Competing interests
The authors declare that they have no competing interests.

Author details
1International Research Institute of Disaster Science, Tohoku University, 468-1 Aza-aoba, Aoba-ku, Sendai 980-8572,
Japan, 2Department of Mechanical Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603,
Japan, 3Université Paris-Est, 5 bd Descartes, Marne-la-Vallée 77454, France.

Received: 7 November 2019 Accepted: 6 September 2020

References
1. Nemat-Nasser S, Hori M. Micromechanics: overall properties of heterogeneous materials. Amsteldam: North-Holland;

1993.
2. Lions J, Papanicolaou G, Bensoussan A. Asymptotic analysis for periodic structures. New York: North-Holland; 1978.
3. Sanchez-Palencia E. Non-homogeneous media and vibration theory. Berlin: Springer; 1980.
4. Lions J. Some methods in the mathematical analysis of systems and their control. New York: Science Press; 1981.
5. Kanouté P, Boso D, Chaboche J, Schrefler B. Multiscale methods for composites: a review. Arch Comput Methods Eng.

2009;16(1):31–75.
6. GeersM, Kouznetsova V, BrekelmansW.Multi-scale computational homogenization: trends and challenges. J Comput

Appl Math. 2010;234(7):2175–82.
7. Matouš K, Geers M, Kouznetsova V, Gillman A. A review of predictive nonlinear theories for multiscale modeling of

heterogeneous materials. J Comput Phys. 2017;330:192–220.
8. Geers M, Kouznetsova V, Matous K, Yvonnet J. Homogenization methods and multiscale modeling: nonlinear prob-

lems. In: Stein E, de Borst R, Hughes T, editors. Encyclopedia of computational mechanics. Solids and structures. 2nd
ed. New York: Wiley; 2017. p. 1–34.

9. Suquet P. Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A, editors.
Homogenization techniques for composite materials. Berlin: Springer; 1987. p. 193–278.

10. Guedes J, Kikuchi N. Preprocessing and postprocessing for materials based on the homogenization method with
adaptive finite element methods. Comput Methods Appl Mech Eng. 1990;83(2):143–98.

11. Terada K, Kikuchi N. Nonlinear homogenization method for practical applications. Comput Methods Micromech.
1995;212:1–16.

12. Feyel F. Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput Mater Sci. 1999;16(1–4):344–54.
13. Feyel F, Chaboche J. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti

composite materials. Comput Methods Appl Mech Eng. 2000;183(3–4):309–30.
14. Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Methods

Appl Mech Eng. 2001;190(40–41):5427–64.
15. Terada K, Saiki I, Matsui K, Yamakawa Y. Two-scale kinematics and linearization for simultaneous two-scale analysis of

periodic heterogeneous solids at finite strain. Comput Methods Appl Mech Eng. 2003;192(31–32):3531–63.
16. Allaire G. Homogenization and two-scale convergence. SIAM J Math Anal. 1992;23(6):1482–518.
17. Matsui K, Terada K, Yuge Y. Two-scale finite element analysis of heterogeneous solids with periodic microstructures.

Comput Struc. 2004;82(7–8):593–606.
18. Yvonnet J, Gonzalez D, He Q. Numerically explicit potentials for the homogenization of nonlinear elastic heteroge-

neous materials. Comput Methods Appl Mech Eng. 2009;198(33–36):2723–37.
19. Yvonnet J, Monteiro E, He Q. Computational homogenization method and reduced database model for hyperelastic

heterogeneous structures. Int J Multiscale Comput Eng. 2013;11(3):201–25.
20. Le B, Yvonnet J, He Q. Computational homogenization of nonlinear elastic materials using neural networks. Int J

Numer Methods Eng. 2015;104(12):1061–84.
21. Yvonnet J, He Q. The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic

media at finite strains. J Comput Phys. 2007;223(1):341–68.
22. Fritzen F, Kunc O. Two-stage data-driven homogenization for nonlinear solids using a reduced order model. Eur J

Mech A/Solids. 2018;69:201–20.
23. Fritzen F, Leuschner M. Reduced basis hybrid computational homogenization based on a mixed incremental formu-

lation. Comput Methods Appl Mech Eng. 2013;260:143–54.
24. Fritzen F, Marfia S, Sepe V. Reduced order modeling in nonlinear homogenization: a comparative study. Comput

Struct. 2015;157:114–31.
25. Leuschner M, Fritzen F. Reduced order homogenization for viscoplastic composite materials including dissipative

imperfect interfaces. Mech Mater. 2017;104:121–38.
26. Michel J, Suquet P. Nonuniform transformation field analysis. Int J Solids Struct. 2003;40(25):6937–55.
27. Michel J, Suquet P. A model-reduction approach in micromechanics of materials preserving the variational structure

of constitutive relations. J Mech Phys Solids. 2016;90:254–85.
28. Sepe V, Marfia S, Sacco E. A nonuniform TFA homogenization technique based on piecewise interpolation functions

of the inelastic field. Int J Solids Struct. 2013;50(5):725–42.
29. Fritzen F, HodappM, Leuschner M. GPU accelerated computational homogenization based on a variational approach

in a reduced basis framework. Comput Methods Appl Mech Eng. 2014;278:186–217.
30. Fritzen F, Hodapp M. The finite element square reduced (FE2R) method with GPU acceleration: towards three-

dimensional two-scale simulations. Int J Numer Methods Eng. 2016;107:853–81.



Hatano et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:39 Page 28 of 28

31. Oskay C, Fish J. Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous mate-
rials. Comput Methods Appl Mech Eng. 2007;196(7):1216–43.

32. Terada K, Kato J, Hirayama N, Inugai T, Yamamoto K. A method of two-scale analysis with micro-macro decoupling
scheme: application to hyperelastic composite materials. Comput Mech. 2013;52(5):1199–219.

33. Watanabe I, Terada K. A method of predicting macroscopic yield strength of polycrystalline metals subjected to
plastic forming by micro-macro de-coupling scheme. Int J Mech Sci. 2010;52(2):343–55.

34. Fleischhauer R, Thomas T, Kato J, Terada K, Kaliske M. Finite thermo-elastic decoupled two-scale analysis. Int J Numer
Methods Eng. 2019;2019:8.

35. Bleier N, Mosler J. A hybrid variationally consistent homogenization approach based on Ritz’s method. Int J Numer
Methods Eng. 2013;94(7):625–47.

36. Lumley J. The structure of inhomogeneous turbulent flows. Atmosph Turbul Wave Propag. 1967;1967:166–78.
37. Sirovich L. Turbulence and the dynamics of coherent structures. I-Coherent structures. II-Symmetries and transforma-

tions. III–dynamics and scaling. Q Appl Math. 1987;10(45):561–71.
38. Tatsumoto K, Nobuhara M, Tanigawa H, Hirata K. Thermal convection inside an oscillating cube analysed with proper

orthogonal decomposition. Mech Eng J. 2015;2(2):15–00018.
39. Buhmann M. Multivariate cardinal interpolation with radial-basis functions. Construct Approx. 1990;6(3):225–55.
40. Hoerl A, Kennard R. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12:55–67.
41. Stone M. Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Series B. 1974;36(2):111–47.
42. Mockus J. On Bayesian Methods for Seeking the Extremum. In: Proceedings of the IFIP Technical Conference. London:

Springer; 1974. p. 400–404.
43. Mockus J. On Bayesian Methods for Seeking the Extremum and their Application. In: IFIP Congress. 1977. p. 195–200.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	FEr method with surrogate localization model for hyperelastic composite materials
	Abstract
	Introduction
	Two-scale boundary value problem
	Two-scale kinematics
	Microscopic BVP
	Macroscopic BVP
	Solution scheme: FE2

	Order reduction by proper orthogonal decomposition
	Interpolation approximation of POD coefficients
	RBF interpolation
	Smoothing response surfaces

	FEr method
	Offline computations
	Online computation

	Representative numerical example
	Offline computation: microscopic analyses
	Online computation: FEr

	Conclusion
	References




