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Abstract. Parametric simulations of thermomechanical metal forming pro-
cesses still remain computational costly and difficult due to inherent strong
non-linearities. To this end, Reduced Order Models (ROMs) are introduced to
decrease the computational time in large scale models and provide near-optimal
solutions in acceptable times. ROMs based on the Proper Orthogonal Decom-
position (POD) are usually capable of accurately reproducing the dynamics of
high-fidelity FEM simulations and offer the potential for near real-time analysis.
However, ROMs are not robust with respect to parameter changes and must of-
ten be rebuilt for each parameter variation. This work aims to interpolate ROM
POD basis associated with a limited number of training points on Grassmann
manifolds, so as to obtain a robust ROM corresponding to a target parameter.
A novel Space-Time (ST) POD basis interpolation, where the reduced spatial
and time basis are separately interpolated on Grassmann manifolds, is proposed.
Good correlations of the ROM ST models with respect to their associated high-
fidelity FEM counterpart simulations are found. Hence, application of the ROM
adaptation method for near real-time metal forming simulations using off-line
computed ROM POD databases can be possible.

1 Introduction

Computational metal forming has been widely used in a variety of applications in academia
laboratories and manufacturing industry over the last decades. Simulations of such problems
are characterized by multiple sources of strong non-linearities, thereby are often prohibitively
expensive for an exhaustive design analysis of large scale models. Moreover, several core is-
sues are still of significant importance and development, among others, parallel computing,
adaptive meshing and remeshing, modeling of micro-structure evolution, multiscale model-
ing, optimization of processes or parameter identification, stochastic approaches and machine
learning (see a thorough review in [1, 2]). One of the key feature challenges mentioned in [1],
is the model order reduction methods to decrease computational time. Indeed, simulation of
complex configurations can be intractable since the computational cost can highly increase
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for a parametric analysis. ROMs via the POD have been chosen to reduce the problem di-
mensionality while maintaining solution accuracy. For solving a parametric problem, the
method starts by a training stage during which the problem is solved for a limited number
of parameters. The full-order field ‘snapshots’ are then compressed using the POD to gener-
ate a ROM that is expected to reproduce the most characteristic dynamics of its high-fidelity
counterpart solution. For a new parameter value, an interpolation method is proposed using
the underlying spanned subspaces of the POD basis [3]. Since these matrices are obtained
via the Singular Value Decomposition (SVD), they describe the optimal projection opera-
tors, which reduce the problem from the full space to a low dimensional subspace. POD
basis interpolation is performed using local maps on Grassmann manifolds by evaluating the
geodesic paths between the subspaces on this manifold, all this being done in the framework
of Riemannian geometry, which is a specific matter of differential geometry. In this context,
a novel non-intrusive Space-Time POD interpolation is proposed here allowing near-real time
predictions since no new ROM FEM models have to be solved, as required by the standard
POD approach.

The coupled thermomechanical analysis is based on the Rigid Visco-Plastic (RVP) for-
mulation using an implicit solution strategy. In RVP, the elasticity effects are completely
neglected due to the fact that elastic components of strain remain small as compared with
irreversible strains. Therefore, the RVP formulation turns out to be very similar of fluid flow
problems and it is also called as flow formulation. Although it is not possible to calculate the
residual stresses and the spring-back effect, the flow formulation presents outstanding advan-
tages. Unlike the elasto-plastic FEM, the RVP formulation, even though more approximate,
is simpler to be implemented in computer codes, more stable and can use relatively larger
time increments, thus improving the computational efficiency. A thorough overview of the
foundation of the theory can be found in [4]. In this work, RVP simulations are performed
using a mechanical FEM solver [5] and FEM solver for the thermal analysis in Matlab. A
staggered approach for the thermomechanical coupling is used.

2 Proper Orthogonal Decomposition and Grassmann Manifolds

Let us consider here some snapshot matrix obtained from a FEM solution of a RVP problem

S jk, 1 ≤ j ≤ 3Ns, 1 ≤ k ≤ Nt

with Ns the number of spatial points and Nt the number of time steps. Such matrix encodes
in fact Nt vectors uk := u(·, tk) ∈ Hspatial, and we write

S := [u1, . . . ,uNt ]

As a classical result [6], POD of mode p can be obtained from any singular value decompo-
sition so to define a projection matrix. Taking φ1, . . . , φk (k = min(n,Nt)) to be the spatial
vectors associated to the singular values σ1 ≥ σ2 ≥ . . . ≥ σk of S, POD of mode p is obtained
using

Sp := ΠpS, Πp := ΦpΦ
T
p , Φp :=

[
φ1, . . . , φp

]
∈ Matn,p(R).

so that the projection matrix Πp is defined using the matrix issued from vectors φi. A main
observation is that a projection matrix can be defined using any orthonormal basis v1, . . . , vp
of the vector spaceVp generated by φ1, . . . , φp.

Finally, POD of mode p is thus characterized by the p dimension subspace Vp of Rn

and not by the spatial vectors φ1, . . . , φp. Any interpolation made on POD translate into
interpolation made on p dimensional subspaces.
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Mathematically, the set of all p dimensional subspaces of Rn is known as a Grassmann
manifold G(p, n) which is also a Riemannian manifold. Thus, a POD of mode p made on a
snapshot matrix S leads to some point m in G(p, n), and any interpolation has to be done on
this curved manifold. This means that computations on G(p, n) can only be done using local
charts, and the Riemannian structure allows us to use normal coordinates obtained from an
exponential map defined using geodesics.

3 Space-Time Interpolation on Grassmann Manifolds

Consider a set of snapshot matrices S(1), . . . ,S(N) corresponding to parameters λ1, . . . , λN .
Any POD of mode p gives rise to points m1, . . . ,mN (resp. m′1, . . . ,m

′
N) in G(p, n) defined

from the spatial part (resp. the time part).
To address the question of interpolation for a target value λ̃, we have to make interpolation

on the Grassmannian manifold G(p, n). A strategy introduced in [3] make use of normal
coordinates, and thus the exponential and the logarithm map. This leads to the following, for
the spatial part (while the same is done from the time part):

• Step 1: Choose a reference point m0 ∈ {m1, . . . ,mN} ⊂ G(p, n). For each vector space mi,
take Yi to be the matrix associated to one of its orthonormal basis.

• Step 2 (the logarithm step): First compute thin SVD

Yi

(
YT

0 Yi

)−1
− Y0 = UiΣiVT

i

and define a tangent vector Zi := Uitan−1ΣiVT
i .

• Step 3: Make Lagrangian interpolation

Z̃ :=
N∑

i=1

∏
i, j

λ̃ − λ j

λi − λ j
Zi

• Step 4 (the exponential step): Take a thin SVD of Z̃ given by Z̃ = ŨΣ̃ṼT and define

Ỹ =
[
Y0Ṽ cos

(
Σ̃
)

+ Ũ sin
(
Σ̃
)]

ṼT (1)

A Space-Time (ST) interpolation is finally some ROM snapshot matrix S̃ obtained from
a spatial part Φ̃, a time part Ψ̃ (both obtained from previous algorithm), and a mixed part S̃∗
defined to be some square matrix of size p × p, so that

S̃ := Φ̃ S̃∗ Ψ̃T .

Remark 3.1. ST interpolation offers the advantage of reconstructing a ROM snapshot matrix
without relaunching ROM-FEM computations. Thus, it results into near-real time solutions
due to direct matrix multiplications.

4 Rigid-Viscoplastic FEM Formulation

Classical RVP problems consider the deformation of an isotropic body occupying a domain
Ω ⊂ R3 and its associated boundary ϑΩ, which represents the current configuration according
to the Updated Lagrangian formulation. A weak form is applied to obtain a solution that
satisfies the governing equations and the boundary conditions. The essence of the variational
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formulation is to calculate the total potential of a scalar quantity Π (functional) of the system,
and to invoke the stationarity of Π, i.e. δΠ = 0 with respect to arbitrary changes of the state
variables. The functional Π is defined by an integral form in accordance with the virtual
work-rate principle

Π(v) =

∫
Ω

σ̄ ˙̄εdV −
∫
ϑΩF

FividS (2)

where σ̄ is the effective stress, ˙̄ε is the effective strain rate and Fi denotes prescribed
surface tractions on the boundary surface ΩF . The first term in eq. (2) represents the internal
deformation work-rate, whereas the second term represents the work-rate done by the external
forces. The real velocity field gives to the functional Π a stationary value, which means
that the first order variation of Π vanishes. In order to meet the incompressibility constraint
condition ε̇v = ε̇kk = 0 on an admissible velocity field, a penalized form of incompressibility
is used

δΠ =

∫
Ω

σ̄δ ˙̄εdV +
1
2

∫
Ω

Kε̇vδε̇vdV −
∫
ϑΩF

FiδvidS = 0 (3)

where K is a large positive constant which penalizes the dilatational strain-rate.
For the thermal problem, a thermodynamically sound derivation is adopted based on the

conservation of energy

− ρc
ϑT
ϑt

+ k∇2T + ξσ̄ ˙̄ε = 0 (4)

where ρc is the volume specific heat of the material, ξσ̄ ˙̄ε represents the work heat rate
per unit volume due to plastic deformation, k is the thermal conductivity, T is the temperature
and ξ is a coefficient that presents the fraction of the deformation energy dissipated into heat.
Using the weak form and after the application of the divergence theorem, the energy balance
eq. (4) can be written

−

∫
Ω

ξσ̄ ˙̄εδTdV +

∫
Ω

k∇Tδ(∇T )dV +

∫
Ω

ρc
ϑT
ϑt
δTdV −

∫
ϑΩ

qnδTdS = 0 (5)

where qn = kϑT/ϑn is the heat flux across the boundary ϑΩ and n denotes the unit
normal vector to the boundary surface ϑΩ. The mechanical and thermal analysis can be
loosely coupled in such a way that plastic work and friction are considered as heat source in
the thermal analysis while the updated temperature field is used to determine the flow stress
behavior during the deformation analysis.

5 Numerical Investigations

To evaluate the performance of ST POD interpolation, a rectangular cross section bar is com-
pressed between two parallel flat dies under the conditions of constant shear friction factor
m at the die/workpiece interface. The initial workpiece has dimensions h = 20 mm in height
and w = 20 mm in width. Plane strain conditions are considered. Due to the symmetry of the
problem, only one quarter of the cross section is analyzed (Figure 1). The lower die is station-
ary while the upper die velocity is set to v = 1 mm/s. The workpiece is compressed till a 35%
reduction in height is achieved. The final state is accomplished in 7 time steps with a constant
time increment ∆t = 0.5 s. A 4-node quadrilateral element with bilinear shape functions and
four point integration is used. However, a reduced integration scheme which imposes the vol-
ume constancy over the linear element (one point integration) is used for the dilatational term
(second integral of the functional in eq. 3). A total number of 100 elements with 121 nodes
are used in the simulations. Considering the friction coefficient m as the investigated parame-
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(a) For m = 0.1 (b) For m = 0.3

(c) For m = 0.5 (d) For m = 0.9

Fig. 1. Deformation patterns of the benchmark metal forming example using different values
for the shear friction coefficient m represented by the variable λ.

ter, the following training points are selected, denoted by the variable λ ∈ Λtr = {0.1, 0.5, 0.9}.
A simple strategy for sampling the parametric space is used by equi-distribute the points over
the associated range. The target point is set to λ̃ = 0.3. For each parametric simulation, a
sequence of snapshots uniformly distributed over time using an increment of ∆t = 0.5 s is
extracted for all nodes of the workpiece. The space-time snapshot matrices S(λi) ∈ Rn×Nt of
size 242 × 7 are associated to nodal velocity fields. Using the POD/SVD, the ROM spatial
basis {mi}

N
i=1 and time basis {m′i}

N
i=1 are constructed for the training points λi. Then, the set of

the low-dimensional POD basis is interpolated on Grassmann manifolds using the algorithm
presented in section 3. ST interpolation is compared against the high-fidelity FEM solution.
Considering the interpolated and the HF-FEM snapshot matrices S̃ and SFEM, respectively,
the following error measure is defined

eL2 (S̃) =
‖ũi − uFEM

i ‖L2

‖uFEM
i )‖L2

, i = 1, . . . ,Nt (6)

where ui denotes the i-th column of the snapshot matrix S. The eigenvalue spectrum of
snapshot matrices Si corresponding to training points λi ∈ Λtr is shown in a log scale in
Figure 2. We can observe that the distance between the first and the last eigenvalue is of the
order of 105-106. The relative L2-error norm eL2 (S̃) between the interpolated and the HF-
FEM solution for various POD modes is shown in Figure 3. The relative error for all POD
modes lies within a range of 0.0175 up to 0.038. For this particular case, the interpolation
error is minimum with p = 2 and p = 3 POD modes. In general, it can be observed that
the interpolated ST POD solution delivers good accuracy and is reliable enough to predict
the velocity field for the investigated target point. Due to the fact that the online stage of ST
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POD interpolation consists solely of algorithmic matrix operations, it outperforms standard
POD methods which require a FEM solution for the new ROM. Thus, in ST POD, the com-
putational time can be several orders of magnitude lower than standard POD approaches, and
even more against the high-fidelity FEM counterpart solution making it specially tailored for
near real-time computations.
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Fig. 2. The eigenvalue spectrum of snapshot matrices Si corresponding to training points
λ ∈ Λtr = {0.1, 0.5, 0.9}.
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Fig. 3. Relative L2-error norm eL2 (S̃) for various POD modes; training points: m0(λ = 0.5)
(reference point); m1(λ = 0.1); m2(λ = 0.9); target point: m̃(λ = 0.3).
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