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Abstract— Theoretical results show that sparse off-the-grid
spikes can be estimated from (possibly compressive) Fourier mea-
surements under a minimum separation assumption. We propose
a practical algorithm to minimize the corresponding non-convex
functional based on a projected gradient descent coupled with
an initialization procedure. We give qualitative insights on the
theoretical foundations of the algorithm and provide experiments
showing its potential for imaging problems.

1 Introduction
In the space M of finite signed measures over Rd, we aim
at recovering a superposition of impulsive sources x0 =∑k
i=1 aiδti ∈M from the measurements

y = Ax0 + e, (1)

where δti is the Dirac measure at position ti, the operatorA is a
linear observation operator fromM to Cm, y ∈ Cm are the m
noisy measurements and e is a finite energy observation noise.
This inverse problem (called spike super-resolution [5, 2, 14, 7,
8]) models many problems found in geophysics, microscopy,
astronomy or even (compressive) machine learning [12]. For
l = 1, ..,m,

(Ax)l =

∫
Rd
αl(t) dx(t) (2)

where (αl)l is a collection of (weighted) Fourier measure-
ments: αl(t) = cle

−j〈ωl,t〉 for some chosen frequencies ωl ∈
Rd and frequency dependent weights cl ∈ R. Under a separa-
tion assumption on the positions of the Diracs, i.e when x0 is
in a set Σk,ε of sums of k ε-separated Diracs with bounded sup-
port, it has been shown that x0 can be estimated by solving a
non-convex problem as long as A is an appropriately designed
measurement process. This ideal non-convex minimization is:

x∗ ∈ argmin
x∈Σk,ε

‖Ax− y‖22, (3)

where

Σk,ε :=

{
k∑
r=1

arδtr : a ∈ Rk,

∀r 6= l, ‖tr − tl‖2 ≥ ε, tr ∈ B2(R)} ,

(4)

and B2(R) = {t : tr ∈ Rd, ‖t‖2 ≤ R} is the `2 ball of ra-
dius R centered in 0 in Rd. Stable recovery guarantees are
obtained for this minimization when the number of measure-
ments is sufficient. For example, recovery guarantees are ob-
tained when m ≥ O( 1

εd
) for regular low frequency Fourier

measurements [5] and when m ≥ O(k2d(log(k))2 log(kd/ε))
for random Fourier measurements [11].

First advances in this field proposed a convex relaxation of
the problem in the space of measures [5, 7]. While giving theo-
retical recovery guarantees, these methods are not convex with
respect to the parameters due to a polynomial root finding step.
They also rely on a SDP relaxation of a dual formulation squar-
ing the size of the problem (which becomes problematic as the
dimension d increases). Other methods based on greedy heuris-
tics (CL-OMP for compressive k-means [12]) have been pro-
posed. Nevertheless, they still lack theoretical justifications in
this context while having a good scaling properties with respect
to the number of parameters (amplitudes and positions) even if
some first theoretical results are emerging for some particular
measurement methods [9].

We propose a practical method to solve the non-convex min-
imization problem (3) (this abstract is a summary of [16] by the
authors). Based on insights from the literature on non-convex
optimization for low-dimensional models [3, 10, 17, 13, 4, 6].
Our method relies on two steps :

• Overparametrized spectral initialization: we propose a
spectral initialization step for spike estimation that permits
a good first estimation of the positions of the Diracs.

• Projected gradient descent algorithm in the parameter
space: from [15], the global minimizer of (3) can be re-
covered by gradient descent as long as the initialization
lies in an explicit basin of attraction of the global mini-
mizer. It was also shown that projecting on the separation
constraint improves the control on the Hessian of the func-
tion we minimize.

Parametrized formulation We consider the following
parametrization of Σk,ε:

∑k
i=1 aiδti = φ(θ) with θ =

(a1, .., ak, t1, .., tk) ∈ Rk(d+1). We define

Θk,ε := φ−1(Σk,ε), (5)

the reciprocal image of Σk,ε by φ. Note that any parametriza-
tion of elements of Σk,ε is invariant by permutation of the po-
sitions. This is not a problem in practice for the convergence of
descent algorithms. We define the parametrized functional

g(θ) := ‖Aφ(θ)− y‖22 (6)

and consider the problem

θ∗ ∈ arg min
θ∈Θk,ε

g(θ). (7)

Since the αl are smooth, g is a smooth function. Note that
performing the minimization (7) allows to recover the min-
ima of the ideal minimization (3), yielding stable recovery
guarantees when m ≥ O(k2d(log(k))2 log(kd/ε)) for ade-
quately chosen Gaussian random Fourier measurements and



m ≥ O( 1
εd

) for regular Fourier measurements. In [15], it has
been shown that the simple gradient descent converges (with-
out projection) to the global minimum of g as long as the ini-
tialization falls in an explicit basin of attraction of this global
minimum.

2 Projected gradient descent in the pa-
rameter space

For a user defined initial number of Diracs kin, we consider the
following iterations:

θn+1 = PΘkin,ε
(θn − τn∇g(θn)) (8)

where PΘkin,ε
is a projection on the separation constraint, (no-

tice that there may be several solutions in Θkin,ε) and τn is the
step size at iteration n. From [15], the Hessian of g is better
controlled in Σk,ε, this prompts us to add the projection step.

The projection PΘkin,ε
(θ) could be defined naturally as

a solution of the minimization problem inf θ̃∈Θkin,ε
‖φ(θ̃) −

φ(θ)‖K , where ‖·‖K is a metric measuring distance between el-
ements of Σk,ε. Unfortunately such optimization is not convex
in general. To avoid this, we propose a heuristic for PΘkin,ε

that
consists in greedily merging Diracs that are not ε-separated: at
each gradient descent iteration, merge Diracs that are within
balls of radius ε by taking their barycenter.

From [15], this algorithm will converge as soon as the ini-
tialization falls into a basin of attraction of a global minimum
of g. The basins of attraction get larger as the number of mea-
surements increases (up to a fundamental limit depending on
the separation ε and the amplitudes in x0).

Overparametrized spectral initialization The idea of spec-
tral initialization was used for non-convex optimization in the
context of phase recovery [17] and blind deconvolution [4]. As
we measure the signal x0 at some frequencies ωl, a natural way
to recover an estimation of the signal is to back-project the ir-
regular spectrum on a grid Γ that samples B2(R) at a given
precision εg . Given a vector of Fourier measurements y at fre-
quencies (ωl)l=1,m, we calculate

zΓ,i =
∑
l

yle
j〈ωl,si〉 (9)

for some weights dl to be chosen in the next section (the si ∈ Γ
are the grid positions). It is possible to show that when the
number of measurements increases and the grid for initializa-
tion gets finer, the original positions of Diracs get better local-
ized [16]. We then perform overparametrized hard thresholding
of the zΓ. We propose the initialization θinit defined by

φ(θinit) := xinit = Hkin(zΓ) (10)

where for |zΓ,j1 | ≥ |zΓ,j2 | ≥ ....|zΓ,jn |, we have Hkin(zΓ) =∑kin
i=1 zΓ,ji1ji .

3 Numerical Experiments
We experiment our algorithm in the noiseless 2d case to show
the feasibility of projected gradient descent for imaging appli-
cations. The Matlab code used to generate these experiments is
available at [1]. As a proof of concept we perform the recovery
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Figure 1: Result for a few spikes in 2d. Left: back-projection of measurements
on a grid. Right: Initialization, gradient descent and projected gradient descent
trajectories.

of 5 Diracs in 2 dimensions from m = 120 Gaussian random
measurements. The trajectories of 500 iterations of the gradient
descent and projected gradient descent are represented in Fig-
ure 1. We observe that the projection step greatly accelerates
the convergence pf gradient descent.

We recover 100 Diracs, with a separation 0.01 on the square
[0, 1] × [0, 1] from m = 2000 compressive Gaussian measure-
ments (we would need ≈ 10000 regular measurements to ob-
tain a separation 0.01). In practice, the grid Γ must be fine
enough to overparametrize the number of Diracs with a good
sampling of the ideal spectral initialization. If εg is too small,
the number of initial Diracs needed to sample the energy gets
larger, leading to an increased cost in the first iterations of
the gradient descent. In this example we use εg = ε and use
kin = 4k. We observe in Figure 2 that with these parameters
all the Diracs positions are well estimated after 500 iterations of
our algorithm. Similarly as our first example, we observe that
spikes that are not separated in the backprojection on the grid
(we observe three peaks) are well estimated by our algorithm.
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Figure 2: Result for 100 spikes in 2d. Left: back-projection of measurements
on a grid. Right: Initialization, and projected gradient descent trajectories.

4 Conclusion

We gave a practical algorithm to perform off-the-grid sparse
spike estimation in imaging applications, i.e. when the dimen-
sion d of the support is not to high (e.g. d = 2 or d = 3). Future
research directions are:

• Full theoretical convergence proof of the algorithm with
sufficient conditions on the number of measurements. One
of the main question is to determine if it is possible to have
a convergence guarantee without the computational cost
O((1/εg)

d) of the backprojection a grid.

• A study the algorithm stability to noise and to modeling
error with respect to the number of measurements.
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