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7 Observatoire de Paris/GEPI, PSL University, 61 av. de l’Observatoire, 75014 Paris, France

Received 2 August 2019 / Accepted 27 September 2020

ABSTRACT

We use simulations to study the growth of a pseudobulge in an isolated thin exponential stellar disc embedded in a static spherical
halo. We observe a transition from later to earlier morphological types and an increase in bar prominence for higher disc-to-halo mass
ratios, for lower disc-to-halo size ratios, and for lower halo concentrations. We compute bulge-to-total stellar mass ratios B/T by fitting
a two-component Sérsic-exponential surface-density distribution. The final B/T is strongly related to the disc’s fractional contribution
fd to the total gravitational acceleration at the optical radius. The formula B/T = 0.5 f 1.8

d fits the simulations to an accuracy of 30%, is
consistent with observational measurements of B/T and fd as a function of luminosity, and reproduces the observed relation between
B/T and stellar mass when incorporated into the GalICS 2.0 semi-analytic model of galaxy formation.

Key words. galaxies: evolution – galaxies: formation

1. Introduction

According to the standard theory of galaxy formation, the dis-
sipative infall of gas in the gravitational potential wells of
dark-matter (DM) haloes forms discs (Fall & Efstathiou 1980);
elliptical galaxies are formed by mergers (Toomre & Toomre
1972). Semianalytic models (SAMs) of galaxy formation build
on this theory and describe a galaxy as the sum of two compo-
nents: a disc and a bulge. Observers perform a similar decom-
position when they fit galaxies with the sum of an exponential
and a Sérsic (1963) profile to compute quantitative morpholo-
gies (Simard et al. 2011; Meert et al. 2015, 2016; Dimauro et al.
2018).

This simplification brushes over the complexity and diversity
of galactic morphologies, for example, the distinction between
normal and barred spirals (Hubble 1926). Gadotti (2009),
Weinzirl et al. (2009), Salo et al. (2015), and Erwin (2018, 2019)
have considered more detailed models that decompose galax-
ies into three components: a disc, a bulge, and a bar if present.
Despite the clear merit of such decompositions, this approach
is possible only for relatively small samples of a few thousand
nearby galaxies, such as the Spitzer Survey of Stellar Structure
in Galaxies (S4G; Sheth et al. 2010). It would be much more dif-
ficult to perform the same analysis on large samples, such as the
Sloan Digital Sky Survey (SDSS), or on high-redshift data with
even poorer spatial resolution1.

1 Erwin (2018) compared the frequency of bars in the S4G and the
SDSS. He finds that SDSS-based studies underestimate the fraction of
barred galaxies at low masses because of poor spatial resolution and the
correlation between bar size and stellar mass.

Explaining the broad statistical properties of galaxies in large
surveys is the main purpose of SAMs. If the goal is a detailed
study of the morphological structure of galaxies, then hydrody-
namic simulations are a much better tool. If the observations that
we aim to explain cannot distinguish between different types of
bulges, then it makes sense to compute the bulge-to-total mass
ratio B/T in such a way that any stellar surface-density excess
above an exponential fit is assigned to the bulge component,
independently of its origin, structure, and kinematics. That is not
to say that all bulges are the same.

Many spiral bulges ressemble miniature ellipticals, espe-
cially those in galaxies with stellar mass M? & 1011 M�
(Fisher & Drory 2011). They are called classical bulges. This
similarity suggests a common formation mechanism. In the ear-
liest SAMs (for example, Kauffmann et al. 1993), all bulges
were formed through mergers. Some of them never accreted any
gas. We call them elliptical galaxies. Others regrew a disc and
became spiral galaxies (Baugh et al. 1996).

In this picture, most spirals should be bulgeless because
mergers make a negligible contribution to the mass growth of
galaxies with M? < 1011 M� (Cattaneo et al. 2011). Bulgeless
galaxies are observed (Kormendy et al. 2010), but they do not
constitute the majority of the spiral population unless we include
dwarf galaxies. Fisher & Drory (2011) find that the fraction of
galaxies in which a bulge is detected increases smoothly from
∼20% at M? = 109 M� to ∼100% at M? = 1010.7 M�.

Most of the bulges in spirals with M? < 1011 M� are
pseudobulges with different kinematics than elliptical galax-
ies and do not follow the fundamental plane (Kormendy
1982; Kormendy et al. 1993; Kormendy & Kennicutt 2004). To
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explain these systems, SAMs began to incorporate a sec-
ond formation mechanism: disc instabilities (Cole et al. 2000;
Hatton et al. 2003; Shen et al. 2003).

Self-gravitating thin discs are dynamically unstable (Hohl
1971; Kalnajs 1972). The observation of disc galaxies despite
such instability has been one of the historical arguments for
DM (Ostriker & Peebles 1973). Morphological features, such
as spiral arms, bars, peanut-shaped boxy pseudobulges, rings,
and ovals, show that haloes do not completely stabilise discs,
however.

Combes & Sanders (1981) used N-body simulations to study
the stability of a truncated Toomre (1963) disc and demonstrated
that, if the mass of the disc was larger than the mass of the DM
within its maximum radius, a persistent bar developed quickly
and, after some time, took a more or less pronounced peanut
shape when seen edge-on. Observations of peanut-shaped pseu-
dobulges confirm that they are connected with bars and owe
their origin to them (Kormendy & Kennicutt 2004). The stronger
conclusion that peanut-shaped pseudobulges are nothing more
nor less than bars seen edge-on (Combes & Sanders 1981;
Combes et al. 1990; Pfenniger & Friedli 1991; Berentzen et al.
1998; Athanassoula & Misiriotis 2002; Athanassoula 2003) is
less straightforward from an observational standpoint, but obser-
vations of galaxies such as NGC 7582, where the bar is very
flat and three times longer than the pseudobulge (Quillen et al.
1997), are consistent with a picture in which the peanut is the
vertical extension of a longer, flatter bar (Athanassoula 2005;
Wegg et al. 2015).

The literature above demonstrates that classical bulges and
pseudobulges are different entities. GalICS 2.0 (Cattaneo et al.
2017) has been the first (and to date only) SAM to treat them
as separate components. More detailed investigations aimed at
separating pseudobulges from bars or at distinguishing different
types of pseudobulges2 are beyond the scope of SAMs3.

Efstathiou et al. (1982, ELN) extended the analysis by
Combes & Sanders (1981) to the more realistic case of an expo-
nential disc and found a condition for the circular velocity Vc
at 2.2 exponential scale-lengths, where the rotation curve of a
self-gravitating exponential disc peaks (Freeman 1970). A thin
exponential stellar disc embedded in a static spherical DM halo
becomes unstable and develops a bar if

Vc(2.2Rd) < ε

√
GMd

Rd
, (1)

where Md is the disc mass, Rd is the exponential scale-length and
ε = 1.1. Christodoulou et al. (1995) used analytic arguments to
conclude that a similar criterion with ε = 0.9 should apply to
gaseous discs.

2 Not all pseudobulges are peanut-shaped. Some are nuclear spirals
and they are as flat as discs (Carollo et al. 1998; Kormendy & Kennicutt
2004). However, the distribution of Sérsic index, ellipticity and B/T
is similar for pseudobulges in barred, oval, and normal galaxies, sug-
gesting that the difference between classical bulges and pseudobulges
is more important than the one between different types of pseudobulges
(Fisher & Drory 2008). Moreover, Athanassoula (2005) has shown that
disc-like bulges result from the dissipational inflow of gas into the cen-
tral regions of spiral galaxies. Hence, it is reasonable for us to neglect
them in an article that is about stellar discs.
3 We acknowledge that a bar and a bulge are different dynamical enti-
ties, and that it is possible to separate in a morphological decomposi-
tion (Gadotti 2009; Weinzirl et al. 2009; Salo et al. 2015; Erwin 2018,
2019). We merely state that SAMs are not an appropriate tool for such
decomposition.

Since Mo et al. (1998) and van den Bosch (1998, 2000), the
ELN criterion (Eq. (1)) has provided the standard description
of disc instabilities that all current SAMs adopt (Galacticus:
Benson 2012; GalICS 2.0: Cattaneo et al. 2017; Morgana:
Lo Faro et al. 2009; Sag: Gargiulo et al. 2015; SantaCruz:
Porter et al. 2014; ySAM: Lee & Yi 2013; Galform:
Gonzalez-Perez et al. 2014; Lgalaxies: Henriques et al. 2015;
Sage: Croton et al. 2016).

More realistic simulations (Athanassoula 2008) found that,
even in cases where the criterion predicts stability, a bar can still
form if resonances destabilise the disc by transferring angular
momentum to the halo (ELN’s assumption of a static halo pre-
vents this possibility in their simulations). Moreover, in cases
where the ELN criterion predicts instability, the disc can still
be stabilised by random motions, which ELN did not consider
because of the assumption of thin discs.

Several reasons explain why SAMs have kept using the ELN
criterion despite these criticisms:

– The goal of SAMs is to explain the global properties of
galaxies (such as the trend of B/T with M?) in a cosmological
context. A detailed description of galactic dynamics is beyond
their scope.

– SAMs separate the formation of haloes from the evo-
lution of baryons within haloes. In reality, baryons affect the
radial distribution of subhaloes within groups (Libeskind et al.
2010) as well as the density profiles (Pontzen & Governato
2012; Macciò et al. 2012; Teyssier et al. 2013; Di Cintio et al.
2014; Tollet et al. 2016), spins, and shapes (Bryan et al. 2013)
of DM haloes, and the clustering of galaxies on scales as large
as ∼1 Mpc (van Daalen et al. 2014). Assuming a static halo
is a simplification, but it is consistent with the semi-analytic
approximation.

– From the perspective of SAMs, the ELN criterion is first
and foremost a criterion for the ratio of the disc mass Md to
the halo mass Mvir. This ratio is largely determined by feedback
processes (Dekel & Silk 1986; Silk & Rees 1998; Brook et al.
2012; Anglés-Alcázar et al. 2017; Tollet et al. 2019) that can-
not be modelled accurately. Disc sizes are based on the crude
assumption (Kimm et al. 2011; Stewart et al. 2013; Jiang et al.
2019) that angular momentum is conserved (Mo et al. 1998) and
they, too, affect the circular velocity in Eq. (1). The errors from
these uncertainties are likely to be more significant than those
from the modelling of disc instabilities themselves.

– A thick-disc component with higher velocity disper-
sion makes discs more stable (Toomre 1964) and there
is observational evidence that thick discs are ubiquitous
(Yoachim & Dalcanton 2006; Comerón et al. 2011), but what is
their origin? If it is secular heating of the thin disc (Villumsen
1985; Villalobos & Helmi 2008; Schönrich & Binney 2009;
Steinmetz 2012), then it is logical that simulators should not put
in their inititial conditions the effects of processes they want to
simulate. If it is interactions with satellites (Quinn et al. 1993;
Abadi et al. 2003), then it is legitimate to neglect them in a
model for the evolution of isolated galaxies that have not experi-
enced any merger. A third possibility is that thick discs are relics
from gas-rich, turbulent, clumpy discs at high redshift and that
thin discs formed later (Brook et al. 2004; Bournaud et al. 2009).
The problem is that there is no SAM to compute disc scale-
heights (but see Efstathiou 2000 for an attempt in this direction).
In absence of physical arguments for one scale-height or another,
the simplest assumption (thin discs) is the most reasonable.

The main problem is another. The ELN criterion tells us
whether a disc is likely to become unstable but not the mass of the
bar or pseudobulge that is likely to form because of that instability.
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To compute this mass, SAMs must incorporate additional assump-
tions. Cole et al. (2000; also see Gonzalez-Perez et al. 2014 and
Gargiulo et al. 2015) considered an extreme model in which discs
evolve into bulges whenever the instability criterion in Eq. (1)
is satisfied. Hatton et al. (2003) and Shen et al. (2003) proposed
a more conservative model in which matter is transferred from
the disc to the bulge so that Md decreases until the disc becomes
stable again. In discs where Vc(2.2Rd) falls just slightly short of
the critical value required for stability, the results obtained with
the two methods vary wildly. A galaxy for which B/T = 1 in
the first model may have B/T = 0.1 in the second one. There-
fore, even if the ELN criterion were fully reliable, its impli-
cations for galactic morphologies would still be considerably
uncertain.

In this article, we present a series of simulations in which we
follow the evolution of a thin exponential stellar disc embedded
in a static spherical Navarro et al. (1997, NFW) halo. Our com-
putational set-up is very similar to the one by ELN, although
we explore a larger space of parameters and have better reso-
lution. Unsurprisingly, our simulations confirm ELN’s previous
findings, but that is not the purpose of our research. Our question
is: as different SAMs make very different predictions for B/T
even if they are all based on the ELN criterion, which approach
(if any) agrees better with the values of B/T measured in the
simulations used to establish the ELN criterion?

As any approximations in the simulations are passed on to
SAMs through the ELN criterion, the agreement of a SAM with
the simulations is no guarantee of its being a correct description
of disc instabilities, but, at least, it proves self-consistency (the
SAM faithfully reproduces any biases of the simulations). On
the contrary, lack of agreement indicates that the SAM is adding
biases of its own on top of those already present in the simula-
tions. This is why it is high time for a sanity check and, possibly,
new prescriptions that may improve those used to calculate B/T
in SAMs.

The structure of the article is as follows. In Sect. 2, we
describe our initial conditions, which are entirely specified by
three parameters (the ratio rd = Rd/Rvir of the disc scale-length
Rd to the virial radius Rvir, the ratio md = Md/Mvir of the disc
mass Md to the total mass Mvir within the virial radius, and
the concentration c of the DM halo), the explored parameter
space and the computational strategy (we use the adaptive-mesh-
refinement [AMR] code ramses; Teyssier 2002). In Sect. 3, we
present our findings for the dependence of B/T on rd, md, and c.
In Sects. 4 and 5, we compare our results with previous models
and the observed morphology–luminosity relation, respectively.
In Sect. 6 we explore the effects of incorporating our findings
into the GalICS 2.0 SAM and their implications for galactic
morphologies. Section 7 discusses our results and summarises
the conclusions of the article.

2. Computational set-up

2.1. Initial conditions

We make our problem dimensionless by expressing all lengths
in units of the virial radius Rvir, all masses in units of the
virial mass Mvir and all speeds in units of the virial velocity
Vvir =

√
GMvir/Rvir. Owing to the axial symmetry of our initial

configuration, we adopt cylindrical coordinates (r, z, φ), where z
is the direction of the disc’s rotation axis. Here and throughout
this article, upper and lower-case letters refer to dimensional and
dimensionless quantities, respectively. As Mvir is the total mass

−4 −3 −2 −1 0 1 2 3 4

x/rd

−2.0
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z/
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Fig. 1. Initial conditions and refinement regions. The black, blue, violet,
green, yellow, and red curves show the isodensity contours that contain
90%, 80%, 70%, 60%, 50%, and 40% of the disc mass at t = 0, respec-
tively. The black, blue, violet, green, yellow, and red dashed lines show
the cylinders within which the cell size equals 1/8, 1/16, 1/32, 1/64,
1/128, and 1/256 of the disc exponential scale length, respectively.

within Rvir, md = Md/Mvir and 1 − md are the dimensionless
masses of the disc and the DM halo, respectively.

The dimensionless mass of the DM within a sphere of radius
r is given by:

mDM(r) = (1 − md)
f (cr)
f (c)

, (2)

where f (x) = ln(1 + x) − x/(1 + x) and c is the concentration of
the NFW profile.

We assume that the disc is exponential and isothermal in
the vertical direction (for example, Villumsen 1985; Efstathiou
2000). These assumptions give the density distribution:

ρ(r, z) =
1
2h

sech2
( z
h

) md

2πr2
d

e−
r

rd , (3)

where h is disc’s vertical scale-length (all quantities in Eq. (3)
are adimensional). As our goal is to study the stability of
thin discs (discussion in Sect. 4), we run all our simulations
for h/rd = 0.044. This value is small but not unrealistic.
Bland-Hawthorn & Gerhard (2016) find that the Milky Way has
a thin-disc vertical scale-height of 220–450 pc and an exponen-
tial scale-length of ∼2.5 kpc. Hence, for the Milky Way, h/rd is
in the range 0.088–0.18. Figure 1 shows the isodensity contours
that contain 40%, 50%, 60 %, 70%, 80%, and 90% of the disc
mass for our initial configuration.

Equation (3) is used to generate random coordinates for a
million stellar particles within the optical radius ropt = 3.2rd that
contains 83% of the mass of the disc (Fujii et al. 2011 demon-
strated that numerical heating through close encounters becomes
negligible when the disc is resolved with at least a million par-
ticles). All stellar particles have equal mass. This article is on
stellar discs, but our discs contain a small amount of gas to pave
the way for a second article on the formation of bulges in discs
with gas. We use a gas fraction of 2% because in massive low-
redshift galaxies the gas fraction varies from close to zero to
a few percent and is rarely larger than 5–10% (for example,
Combes et al. 2013), but we also ran four simulations without
gas to check the impact that even a small gas fraction could have
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on our results. The gas in our simulations is isothermal at 104 K
and is not allowed to form stars. The total mass of the stellar
particles is 0.98 × 0.83 md in dimensionless virial units.

The circular velocity vc(r) is the speed that a star must have
to be on a circular orbit of radius r. Its value is the sum in quadra-
ture of the contributions from the disc and the halo:

v2
c = v2

d + v2
h, (4)

where vd(r) is computed as in Freeman (1970) and

v2
h =

mDM(r)
r

. (5)

Stars have velocity dispersion:

σ2(r) = πh
md

2πr2
d

e−
r

rd (6)

determined from Eq. (3) through the requirement that our initial
condition should be in equilibrium (albeit unstable). Hence, their
velocities:

v = vrot + ∆v (7)

will be the sum of an ordered rotational component (oriented as
êφ) and a random deviate from a Maxwellian distribution with
velocity dispersion σ. The assumption of an isotropic velocity
dispersion is motivated by simplicity, but it is not unreasonable,
since the radial and vertical velocity dispersions in the Solar
Neighbourhood are (35 ± 5) km s−1 and (25 ± 5) km s−1, respec-
tively (Bland-Hawthorn & Gerhard 2016).

The rotation speed vrot(r) = 〈vφ(r)〉 equals the circular veloc-
ity vc(r) only for σ = 0. For σ > 0, vrot and vc are linked by the
condition:

〈(vrot + ∆vφ)2〉 = v2
c , (8)

which gives:

v2
rot = v2

c − σ
2, (9)

since 〈∆vφ〉 = 0 and 〈∆v2
φ〉 = σ2.

Our rotation speeds and thus our particle velocities are com-
puted using Eq. (9) everywhere except in a small central region
where we set vrot = 0 because vc < σ. This central region has
r � rd by construction, since the normalisation of σ(r) is deter-
mined by the disc scale-height (Eq. (6)) and we have assumed
that h � rd. However, the fact that σ is computed considering
the vertical equilibrium only and that 3σ2 > v2

c at r . 0.07 rd
implies that the central region will expand a little bit when the
initial conditions are allowed to relax.

The global stability of our initial conditions is explored
through the simulations presented in this article (Sect. 3). Their
local stability is a different problem. The discussion of how local
disc instabilities can affect the final B/T of globally unstable
discs is postponed to Sect. 4.

2.2. Parameter space

Having fixed the disc scale height h = 0.044 rd and the gas frac-
tion fgas = 0.02, our initial conditions are entirely determined by
three parameters: rd, md, and c.

The dimensionless radius of a thin exponential disc of
dimensionless mass md embedded in an NFW halo with con-
centration c,

rd =
λ∫ ∞

0 e−xvcx2 dx
, (10)

(Cattaneo et al. 2017) is completely determined by the disc’s
spin parameter

λ =
Jd

MdRvirVvir
, (11)

which is identical to the halo’s spin parameter if we follow
Mo et al. (1998) and we assume that the disc and the halo have
the same specific angular momentum (for Jd/Md = Jvir/Mvir,
Eq. (11) corresponds to the Bullock et al. 2001 definition of the
spin parameter).

Equation (10) implies that we can use the spin distribu-
tion of DM haloes from cosmological N-body simulations to
derive plausible values for rd. This is true even if conservation
of angular momentum is a crude approximation (Kimm et al.
2011; Stewart et al. 2013; Jiang et al. 2019) because the model
by Mo et al. (1998) reproduces the correct mass – relation for
disc galaxies (for example, Cattaneo et al. 2017).

For a flat rotation curve with vc = 1, Eq. (10) gives rd = λ/2.
We do not make this approximation. We substitute Eqs. (4) into
(10) and solve Eq. (10) numerically for each combination of λ,
md, and c that we wish to consider. However, we find that the
approximation rd ' λ/2 is accurate at the 20% level.

Muñoz-Cuartas et al. (2011) found that λ follows a log-
normal distribution with λ̄ = 0.044 and σln λ = 0.57.
Burkert et al. (2016) found a similar distribution with λ̄ = 0.052
and σln λ = 0.46. So did Cattaneo et al. (2017) with λ̄ = 0.049
and σln λ = 0.57 (we use the same symbol λ for the spin of the
halo and the spin of the disc because we have assumed they are
identical). From these figures, we conclude that λ = 0.05 cor-
responds to a typical value and that ∼80% of all haloes lie in
the interval 0.025 < λ < 0.1. Haloes with λ < 0.0125 comprise
less than 2% of all systems. Based on these considerations and
the fact that rd is the parameter to which our results are most
sensitive, we have explored six values of λ (0.011, 0.018, 0.025,
0.035, 0.05, 0.1).

We sample the parameter space by λ rather than rd because
we started this research to find a prescription that may be
useful to assign morphologies to galaxies in both semian-
alytic and halo-occupation-distribution models (for example,
Behroozi et al. 2013, 2019; Moster et al. 2013, 2018; Tollet et al.
2017). If the objective is to find a recipe to populate haloes with
galaxies, then λ and c are the quantities that we directly measure
in N-body simulations, and we should like to find B/T as a func-
tion of them. However, the halo spin has no direct effect on our
simulations because our haloes are spherical and static. Hence,
it is the dependence of B/T on rd that we probe in reality.

In contrast to λ, which appears to be a true random quan-
tity, md strongly correlates with Mvir. Considerable observational
evidence shows that the stellar-to-halo mass ratio increases with
Mvir over the range of halo masses where spiral morphologies
are prevalent (Papastergis et al. 2012; Leauthaud et al. 2012;
Reyes et al. 2012; Behroozi et al. 2013; Moster et al. 2013;
Wojtak & Mamon 2013; Cattaneo et al. 2017; Tollet et al. 2017).
In a halo with Mvir = 1012 M�, the typical stellar mass of the cen-
tral galaxy is M? = 4 × 1010 M� (md = 0.04 if we assume that
the galaxy started as a pure disc). In a halo with Mvir = 1011 M�,
the typical stellar mass is two orders of magnitudes lower and
md is lower by about a factor of ten. Hence, we explore four val-
ues of md (0.005, 0.01, 0.02, 0.04) that cover the typical range of
M?/Mvir from dwarf to Milky-Way-type galaxies.

Concentration has a much weaker dependence on halo mass.
Dutton & Macciò (2014) find c = 10.2 M−0.097

12 with M12 =

Mvir/1012 M� at redshift zero (also see Muñoz-Cuartas et al.
2011). Thus, we expect the mean concentration to vary from

A56, page 4 of 17



T. Devergne et al.: Bulge formation through disc instability. I.

Table 1. Simulations with relaxed initial conditions: parameter values
and difference in B/T with respect to the unrelaxed simulations.

λ md c ∆ B
T (%)

0.025 0.01 5 −7
0.025 0.04 5 −17
0.050 0.02 5 +2
0.025 0.01 15 −12
0.025 0.04 15 +7
0.050 0.02 15 −8

Table 2. Simulations with a live halo: parameter values and difference
in B/T with respect to those with a static halo.

λ md c ∆ B
T (%)

0.025 0.01 5 +9
0.1 0.04 5 +14
0.025 0.01 10 +7
0.1 0.04 10 +18

Table 3. Simulations without gas: parameter values and difference in
B/T with respect to those with fgas = 0.02.

λ md c ∆ B
T (%)

0.011 0.01 5 −4
0.011 0.01 10 −9
0.025 0.04 10 −1
0.025 0.04 15 +3

c = 13 for a dwarf galaxy to c = 10 for a Milky-Way-type one.
The real concentration range is larger because the scatter is sig-
nificant. We thus consider three concentration values (5, 10, 15)
such that the interval 5 < c < 15 contains ∼80% of the haloes
with Mvir > 1011 M�.

Six values for λ, four values for md and three values for c
make 72 combinations in total. We have simulated only 34 of
these 72 combinations because we have explored the cases λ =
0.018 and λ = 0.035 only for c = 10 and because during our
work it became obvious that certain sets of parameters would
not form a bulge (Sect. 3). Hence, it would have been pointless
to study them.

In addition to these 34 simulations, we have run another 14
simulations to address specific issues, such as: (1) relaxation
effects due to the assumption of a razor-thin disc, (2) the assump-
tion of a static halo, and (3) the impact of a small gas frac-
tion. The parameter values for these simulations are listed in
Tables 1–3, respectively. The simulations run for this study are
34 + 14 = 48 in total.

2.3. Refinement strategy

We evolved our initial conditions with the AMR code ramses
(Teyssier 2002) until the galaxies converged to a stable configu-
ration. This usually occurs within 2 Gyr.

As we use a Eulerian code, the most important numerical
aspect of our work is the choice of the grid on which we inte-
grate the equations of motion for the stellar fluid. We centre our

discs on a cubical grid with 1283 cells and side length 32 rd.
Hence, the resolution on the scale of the entire computational
volume is l = 0.25 rd. The resolution is increased within six
nested cylinders by a factor of two each time (Fig. 1). The
radii r/rd ' 3.8, 3.2, 2.7, 2.3, 1.9, and 1.7 of the six cylin-
ders enclose the isodensity contours that contain 80, 70, 60,
50, 40, and 30% of the disc mass and correspond to l/rd =
1/8, 1/16, 1/32, 1/64, 1/128, and 1/256, respectively.

Height equals radius in all cylinders except the innermost
one, which has a height-to-radius ratio of 1 : 5 to ensure than
the vertical structure of the thin gaseous disc is well resolved
even though the gas fraction in our simulations is so small that it
has no dynamical effects. The second innermost cylinder (the
one marked in yellow in Fig. 1) has a semi-height (0.95 rd)
large enough to ensure that the disc remains well resolved when
it buckles up, since the scale-length (and therefore the scale-
height) of a pseudobulge is usually several times smaller than
rd (Gadotti 2009).

3. Results

Some of our discs our stable. They do not show any bar or pseu-
dobulge even after 2 Gyr. In unstable discs, a bar forms rapidly,
but after 2 Gyr the growth of B/T becomes very slow and, in
many cases, almost inexistent (see below for details of how we
measure B/T ). Figures 2–4 show 27 simulated galaxies from our
main sample of 34 galaxies in total (we have not shown the simu-
lations λ = 0.018 or λ = 0.035). The galaxies are shown face-on
at the first time t > 2 Gyr when the growth of B/T has stabilised.
In most galaxies, B/T has converged at t < 2.5 Gyr.

Figures 2–4 correspond to c = 5, 10, 15, respectively. They
portray the variety of morphologies that we can reproduce, from
Scd to SBa types, simply by changing the values of our parame-
ters. Since our galaxies are isolated and the gas fraction is very
small, bar instabilities are the only physical mechanisms through
which we expect that a bulge should form in our simulations (see
the discussion of this article). In agreement with this expectation,
10 out of 17 galaxies with B/T > 0.1 display morphologies that
are clearly barred. We have also looked at our galaxies edge-on.
In most bulges, an X-shaped peanut is clearly visible (Fig. 5).

The galaxy with md = 0.01 and λ = 0.011 on Fig. 2 is the
most conspicuous example of a prominent bulge (B/T = 0.24)
without any evidence for a bar. Such cases are rare. We have
looked at this galaxy edge on. The bulge looks boxy, although
the peanut shape is much less obvious than in Fig. 5.

The stellar surface-density profile Σ∗(r) of each galaxy has
been fitted with the sum of an exponential and a Sérsic (1963)
profile (Fig. 6a). This decomposition has been used to compute
a B/T ratio for each galaxy and a Sérsic index n for the pseudob-
ulges of all galaxies with B/T > 0. We assume B/T = 0 when a
visual inspection shows the surface-density profile is consistent
with a single exponential function (Fig. 6b).

The decrease in Σ∗ in the central region (Fig. 6a) is an arte-
fact due to how we set up the initial conditions for the velocity
field. Its cause is the relaxation effect discussed in Sect. 2.1 after
Eq. (9) coupled to the lower resolution in the central region. The
radius r ∼ 0.1 rd within which Σ∗ begins to decline is so small
that it does not affect our results, except when B/T is very low,
in which case it limits our accuracy in fitting the surface-density
profile of the bulge component.

All galaxies with B/T > 0.1 have n . 1.2, as expected for
pseudobulges. In systems with B/T ≤ 0.1, the bulge is small and
the Sérsic index may not be robust, also because of the effect
mentioned above. The galaxy with md = 0.04 and λ = 0.05
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λ = 0.011 λ = 0.025 λ = 0.05 λ = 0.1

md = 0.005

md = 0.01

md = 0.02

md = 0.04

Fig. 2. Face-on view of the simulated galaxies at the first time t when B/T has stopped growing (2 Gyr < t < 3 Gyr). The image brightness is
proportional to the logarithm of stellar surface density. This figure show the simulations with c = 5, sorted by md = Md/Mvir (lines) and halo spin
λ (columns). On each image, we have shown the corresponding value of rd = Rd/Rvir. Bulge-to-total stellar mass ratios B/T have been computed
by decomposing the stellar surface-density distribution into an exponential and a Sérsic (1963) profile. Galaxies that could be fitted with a single
exponential profile have B/T = 0. When the fit required a bulge component, its Sérsic index n has been shown.

on Fig. 4 exemplifies this situation. Bulges with n > 2 are
usually classical bulges and are seldom encountered in galax-
ies with B/T . 0.1 (Fisher & Drory 2008). Hence, our simula-
tions should not form any bulges with n = 4, let alone one with
B/T = 0.1. A visual inspection of the bulge/disc decomposi-
tion shows a poor fit to the stellar surface density in the central
region. The Sérsic index n = 4 measured for this galaxy cannot
be considered meaningful.

For given c and λ, higher values of md correspond to earlier-
type morphologies in the Hubble sequence and to higher B/T
(Figs. 2–4). We can also increase B/T by reducing λ at constant
c and md. At constant λ and md, B/T usually decreases with c.
Hence, if a simulation does not form a pseudobulge, simulations
with lower md, higher λ or higher c will not form one either

(supposing the other two parameters were kept fixed). Thanks
to this finding, which we have verified in a few cases, we could
nearly half the simulations required for this work (there is no
need to simulate galaxies for which we know in advance that we
shall find B/T = 0).

The qualitative findings above have a simple interpretation,
which will become apparent once we have examined the ELN
criterion in greater detail.

For an exponential disc:

vd(2.2rd) = 0.62
√

md

rd
=

√
1.3

md(2.2rd)
2.2rd

, (12)

where md(2.2rd) = 0.65md is the disc mass within 2.2rd
(Freeman 1970). The first equality in Eq.(12) implies that Eq. (1)
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λ = 0.011 λ = 0.025 λ = 0.05 λ = 0.1

md = 0.005

md = 0.01

md = 0.02

md = 0.04

Fig. 3. Same as Fig. 2 with c = 10 instead of c = 5. To avoid overcrowding the figure, we have not shown the simulations with λ = 0.018 and
λ = 0.35.

can be rewritten as:

vd(2.2rd)
vc(2.2rd)

>
0.62
ε
. (13)

By introducing the new parameter α = 0.31/ε, Eq. (13) can be
written in the alternative form:

vd(2.2rd)
vc(2.2rd)

> 2α, (14)

where α = 0.28 for ε = 1.1 (ELN) and α = 0.26 for ε = 1.2
(Christodoulou et al. 1995)4.

The second equality in Eq. (12) shows that Eq. (14) is equiv-
alent to a criterion on the disc fraction within 2.2rd because
v2

c(2.2rd)/(2.2rd) is the total gravitational acceleration at r =

4 The factor of two in Eq. (14) has been introduced so that our defini-
tion of α coincides with the one in Christodoulou et al. (1995).

2.2rd in dimensionless units and v2
d(2.2rd)/(2.2rd) is the disc’s

contribution. Therefore,

fd(2.2rd) =

[
vd(2.2rd)
vc(2.2rd)

]2

. (15)

is the disc’s fractional contribution to the gravitational acceler-
ation at r = 2.2rd and is related to disc’s mass fraction within
2.2rd by the equation:

fd(2.2rd) =
1.3md(2.2rd)

1.3md(2.2rd) + mDM(2.2rd)
. (16)

Van den Bosch (1998) was the first to use the ELN criterion
to predict disc stability in a SAM, but he applied Eq. (14) at
r = 3rd rather than at r = 2.2rd for the reason that the rotation
curve vc(r) peaks at larger radii when the halo’s contribution is
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λ = 0.011 λ = 0.025 λ = 0.05

md = 0.005

md = 0.01

md = 0.02

md = 0.04
Fig. 4. Same as Fig. 2 with c = 15 instead of c =
5. The column λ = 0.1 is now missing because we
know that simulations with λ = 0.1 will not form any
(pseudo)bulge.

considered. We have verified that Eq. (16) keeps holding at r =
3.2rd (the factor 1.3 does not change to the first decimal digit).

Equations (12) and (14) explain why B/T increases with md
and why it decreases with λ and c (Figs. 2–4). The higher md, the
higher the disc fraction within a given radius. The larger the disc,
the more DM it will contain. The more concentrated the halo is,
the more DM there will be within the disc. Our next step is to go
beyond these semi-qualitative considerations and to explore the
relation between B/T and fd in quantitative detail.

Figure 7 shows B/T versus fd at r = 2.2rd (where the rota-
tion curve of an exponential disc peaks) and at the optical radius
ropt = 3.2rd, although we have investigated the relation at other
radii down to r = 0.5rd. The vertical blue lines correspond to:

f crit
d = (2α)2 ' 0.31 (17)

for α ' 0.28.
The qualitative picture is the same at r = 2.2rd and r = 3.2rd.

At fd � f crit
d , all galaxies are pure discs (the galaxies with

B/T = 0.01 in Fig. 7 are bulgeless galaxies; we have assigned
them B/T = 0.01 merely to be able to show them on a loga-
rithmic plot). At fd � f crit

d , all galaxies develop a pseudobulge
and display a tight correlation between B/T and fd. At interme-
diate fd, galaxies with B/T = 0 and B/T > 0 coexist. Therefore,
the ELN criterion may fail to discriminate between stable and
unstable discs (Athanassoula 2008; Fujii et al. 2018). Neverthe-
less, the notion of a critical fd that separates the two populations
remains fundamentally valid.

If we restrict our attention to galaxies with B/T > 0 and
apply a linear least-squares fit to the relation between log(B/T )
and log fd, we find:

B
T

= 0.47 f 2.1
d (2.2rd) (18)

and

B
T

= 0.50 f 1.8
d (3.2rd) (19)

(thick black solid lines in Fig. 7a and b, respectively).
Equation (18) implies B/T = 0.04 for fd = f crit

d = 0.31. With
Eq. (19), B/T = 0.04 is attained for the slightly lower value
fd = f crit

d = 0.25. If we use B/T = 0.04 as the minimum bulge-
to-total stellar mass ratio below which galaxies are effectively
bulgeless, then these figures imply that the critical fd is lower at
3.2rd than it is at 2.2rd. This makes sense because fd(r) decreases
at large radii in both stable and unstable discs (the density of the
baryons in the disc decreases faster than the density of the DM).
Hence, it is logical that the critical fd that separates them should
decrease with radius, too.

The standard deviation of log(B/T ) from the linear least-
squares fit of B/T versus fd(r) (that is, the root-mean-square
residuals) decreases slowly but systematically from 0.12 dex at
r = 0.5rd to 0.11 dex at r = 3.2rd. Hence, the ELN criterion is
fairly insensitive to the radius at which it is applied, but a crite-
rion at r = 3.2rd appears to be preferable.
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B/T=0.22

Fig. 5. Galaxy in the simulation with c = 10, md = 0.04, λ = 0.025,
viewed edge-on. An X-shaped pseudobulge is clearly visible. This
galaxy has been chosen as an example and is by no means atypical.
The face-on image (Fig. 3) shows that this galaxy has a bar, but not a
prominent one.

If the condition f crit
d ' 0.31 is applied at r = 3.2rd, then all

discs with fd(3.2rd) > f crit
d are correctly identified as unstable

(Fig. 7b). For these galaxies, Eq. (19) gives B/T with an accu-
racy of ∼30%. In contrast, we find four galaxies with fd(3.2rd) <
f crit
d where the ELN criterion failed to predict instability. How-

ever, all these galaxies have B/T < 0.06. To assume that galaxies
with B/T . 0.06 are bulgeless is not such a great approximation.
Even observers may not be able to detect bulges that small, par-
ticularly for galaxies at distances &100 Mpc.

4. Comparison with previous models

The blue curves and the red curves in Fig. 7 compare our results
to the two most common assumptions encontered in SAMs.
The blue curves correspond to the model by Cole et al. (2000):
as soon as a disc becomes unstable, it collapses into a bulge.
The difference from the black lines is plainly obvious. The red
solid curves correspond to the model by Hatton et al. (2003) and
Shen et al. (2003): as soon as a disc becomes unstable, matter is
transferred from the disc to the bulge until the disc is marginally
stable.

We compute the analytic form of the red curves by assum-
ing that initially all the stars are in the disc, so that the stellar
masses within 2.2 rd and 3.2 rd are 0.65 m∗ and 0.83 m∗, respec-
tively. Equation (16) gives:

βm∗
βm∗ + mDM

= fd, (20)

with β = 1.3×0.65 = 0.85 or β = 1.3×0.83 = 1.1, depending on
the radius at which the instability condition is considered (mDM
is the mass of the DM within this radius). The disc becomes
marginally stable when:

β(m∗ − mb)
β(m∗ − mb)) + mb + mDM

= f crit
d , (21)

where mb and m∗ −mb are the final bulge mass and the final disc
mass, respectively. We compute the final bulge fraction B/T =
mb/m∗ by solving Eqs. (20) and (21), and find:

B
T

=
1

1 + (β−1 − 1) f crit
d

1 − f crit
d

fd

 , (22)

where f crit
d ≤ fd ≤ 1. Equation (22) shows that B/T → 0 for

fd → f crit
d and that:

B
T
→

1 − f crit
d

1 + (β−1 − 1) f crit
d

(23)

for fd → 1. The limit for fd → 1 reduces to B/T → 0.71 for
f crit
d = 0.31 and β = 1.1.

The red solid curves are in better agreement with the sym-
bols than the blue curves, but they systematically overestmate
B/T at high masses and underestimate it at low masses. The red
dashed curves show that increasing f crit

d does not improve the
overall agreement between Eq. (22) and the simulations because
it reduces the discrepancy with the symbols at high fd, but it
makes it worse at low fd.

We have also compared our results to a third model based on
the conservation of energy (Cacciato et al. 2012). The specific
energy of the stars in a cold disc is:

e =
1
2
v2

c + Φ, (24)

where Φ is the gravitational potential. When stars migrate from
the disc to the bulge, they move to a lower energy level. The
gravitational energy released by this process increases the stellar
velocity dispersion σ. Cacciato et al. (2012) used the conserva-
tion of energy to study the evolution of two-component discs
(gas plus stars) in a cosmological context. Here, we consider a
simpler version of their model, in which the disc is isolated (there
is no accretion) and purely stellar (there is no gas and thus no star
formation). The internal energy of the stars, 3

2 M∗σ2, equals the
energy released by the formation of a bulge, Mb∆e.

To compute ∆e, one should know the initial and final radii
of the stars that migrated to bulge, but one can expect ∆e ∼ V2

c
within a factor of order unity (Cacciato et al. 2012) and compute
B/T = Mb/M∗ by solving the equation:

MbV2
c '

3
2

M∗σ2. (25)

The calculation of σ is based on the assumption that σ self-
regulates so that the Toomre (1964) stability parameter is always
close to critical value Qc for local stability. This assumption
gives:

σΩ

GΣ
= Qc, (26)

with Qc = 1.68 for a razor-thin sheet of stars with a Maxwellian
velocity distribution (see Binney & Tremaine 2008).

Let expand Eq. (26) by using Ω = Vc/R:

σ =
GΣR
Vc

Qc =

GΣR2

R2

V2
c

R

QcVc. (27)

V2
c (R)/R is the total gravitational acceleration at radius R. The

numerator measures the disc’s contribution after the formation
of a bulge (the mass of the disc within R scales as ΣR2). This
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Fig. 6. Stellar surface-density for two of our simulated galaxies (black symbols). Galaxy a has been fitted with the sum of an exponential profile
(blue line) and a Sérsic profile, with n = 1 in this particular case (red line). Its bulge-to-total mass ratio is B/T = 0.22. The black curve shows the
sum of the two components. Galaxy b is consistent with a single exponential profile (blue line).
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Fig. 7. Relation between bulge-to-total mass ratio B/T and initial disc fraction fd(r) for r = 2.2rd (left) and r = 3.2rd (right). Triangles pointing
up, circles, and triangles pointing down correspond to simulations with c = 5, c = 10, and c = 15, respectively. The colours correspond to different
disc-to-virial mass ratios: md = 0.005 (green), md = 0.01 (black), md = 0.02 (blue), and md = 0.04 (red). Symbols with B/T = 0.01 correspond to
bulgeless galaxies. They have been assigned B/T = 0.01 merely to be able to show them on a logarithmic diagram. The thick solid black lines are
log-log linear least-squares fits to the symbols with B/T > 0.01. They correspond to Eqs. (18) and (19). The vertical blue lines show the critical
fd that corresponds to the α = 0.28 (equivalent to assuming ε = 1.1 in Eq. (1)) The coloured curves compare our results to previous models
(Cole et al. 2000; Hatton et al. 2003; Shen et al. 2003; Cacciato et al. 2012).

contribution can be decomposed into the product of two terms:
the stellar contribution relative to the total stars plus DM (the fd
factor, since all the stars are in the disc at t = 0) and the stellar
fraction in the disc after a bulge has formed, Md/M∗. The product
is not exact because matter changes geometry when it migrates
from the disc to the bulge, but neglecting that has a small effect.
Equation (27) can thus be rewritten:

σ ' η fd(R)
Md

M∗
QcVc, (28)

where η is a fudge factor (the disc mass within R scales as, but is
not equal to, ΣR2).

By substituting Eq. (28) into Eq. (25) and using Md = M∗ −
Mb, we find:

Mb

M∗
'

3
2
η2Q2

c f 2
d

(
1 −

Mb

M∗

)2

, (29)

where all uncertainties, and notably the one on ∆e/V2
c , are reab-

sorbed in the value of η.

It is straightforward to solve the second-degree Eq. (29) and
compute B/T as a function of fd. The results are shown by the
green curves on Fig. 7. The best agreement with our simulations
is for η = 0.41.

The model by Cacciato et al. (2012) predicts a shallower
slope for B/T versus fd than what we find in our simulations,
especially at high fd and when it is applied at r = 2.2 rd. How-
ever, it is the model that works best.

5. Comparison with observations

Our simulations predict that B/T is related to Vd/Vc.
Persic & Salucci (1995) and Persic et al. (1996) used 967 galax-
ies with I-band photometry and Hα data from Mathewson et al.
(1992) to conduct one of the most careful and systematic study of
the rotation curves of galaxies. The main result from Persic et al.
(1996) was that Vd/Vc increases with I-band luminosity from
Vd(Ropt)/Vc(Ropt) = 0.4 at MI = −18.5 to Vd(Ropt)/Vc(Ropt) =
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Fig. 8. 〈B/T 〉 versus I-band magnitude MI . The black curve shows our
prediction. The black circles are from Mathewson et al. (1992) when we
assign to each Hubble type the 〈B/T 〉 from Graham & Worley (2008;
the uncertainty of estimating B/T determines the size of the error bars).
The red squares are from Simard et al. (2011) after removing all galax-
ies with B/T > 0.7. The up-pointing filled blue triangles and the down-
pointing empty blue triangles are from Salo et al. (2015, S4G) when we
assign the bar to the bulge and the disc, respectively. The error bars on
the red squares and the blue filled triangles show the standard error on
the mean. We have not shown the error bars on the empty triangles so
that they do not overlap with those on the filled triangles, but their width
is comparable.

0.96 at MI = −23.2, where Ropt = 3.2Rd (the brightest discs
are close to being maximal). This finding is just another way
to say that the stellar-to-total mass ratio increases with stellar
mass (for example, Dekel & Silk 1986; Papastergis et al. 2012;
Behroozi et al. 2013; Moster et al. 2013). We can use it to trans-
form Eq. (19) into a prediction for how B/T grows with I-band
luminosity (Fig. 8, black curve). In this section, we use three data
sets to compare this prediction with observations.

The catalogue in Mathewson et al. (1992) contains only 1355
galaxies and no quantitative morphologies, but it has the advan-
tage of being the parent sample in Persic & Salucci (1995): using
the morphology – luminosity relation from the same data set that
we have used to pass from Vd(Ropt)/Vc(Ropt) to MI ensures that
our analysis is internally consistent.

Hubble-type information can obviate the lack of quantitative
morphologies. In Fig. 8, the black circles with error bars show
the mean B/T from Graham & Worley (2008) and the mean
I-band magnitude MI in the catalogue from Mathewson et al.
(1992) for each Hubble type. Our predictions are in good agree-
ment with the black circles within the observational uncertain-
ties. The analysis by Hubble type has two limitations, however.
First, Hubble type is not a quantitative measurement of B/T .
Second, we have not considered the frequency of different Hub-
ble types in Mathewson et al. (1992)’s catalogue (Table 4).

Simard et al. (2011) fitted the r-band surface-brightness pro-
files of 1.12 million galaxies from the SDSS with a Sérsic plus
exponential model. Their B/T values are therefore directly com-
parable to ours (to the extent that r-band luminosity traces stellar
mass).

To pass from r to I-band, we use Lupton’s formula5:

MI = Mi − 0.3780(Mi − Mz) − 0.3974. (30)

5 http://www.sdss3.org/dr10/algorithms/
sdssUBVRITransform.php#Lupton2005

Table 4. Morphological composition of the catalogue in
Mathewson et al. (1992).

Class T Ngal

Sa 1 1
Sab 2 0
Sb 3 362
Sbc 4 124
Sc 5 114
Scd 6 558
Sd 7 34
Sdm 8 66
Sm 9 0
Im 10 1

Notes. Hubble types T are from de Vaucouleurs et al. (1976).

We retrieve Mi and Mz for galaxies in the SDSS Data Release 7
(DR7) by using the selection query:

SELECT
objid, ra, dec, run, camcol, rerun,
petromag_i, petromag_z,
extinction_i, extinction_z

FROM
PhotoPrimary

WHERE
flags
AND (dbo.fPhotoFlags(’SATURATED’)+
dbo.fPhotoFlags(’DEBLENDED_AS_PSF’))= 0
AND (petroMag_r- extinction_r)
BETWEEN 14.0 and 18.0
AND Type=3

and by cross-correlating the results with the catalogue from
Simard et al. (2011).

This sample selection includes elliptical galaxies, while we
are interested in the B/T – MI relation for spiral galaxies. We cir-
cumvent this problem by removing all bona fide ellipticals with
B/T > 0.8 and n > 2. This selection is based on the distribution
of galaxies on a B/T versus n diagram (Fig. 14 of Simard et al.
2011), which shows two main populations: a spiral/S0 popula-
tion with 0 < B/T < 0.7 and 0 < n < 7 (the mean B/T grows
with n), and an elliptical population with B/T > 0.8 and n > 2.
The diagram also shows a third population with B/T > 0.7
and n < 1.5 (most of these galaxies have B/T ∼ 1). Visual
inspection (for example, Fig. 9) suggests that the bulges of these
galaxies are misclassified discs (discs for which a Sérsic model
with n < 1 worked better than an exponential fit). We therefore
assign B/T = 0 to galaxies for which Simard et al. (2011) find
B/T > 0.7 and n < 1.5.

The red squares in Fig. 8 show the B/T – MI relation for the
subsample from Simard et al. (2011) selected according to the
above criteria. The error bars are small because they show the
error on the mean:

σB/T
√

N − 1
=

√
ΣN

i=1[(B/T )i − B/T ]2

N(N − 1)
, (31)

which is much smaller than the standard deviation σB/T (N is the
number of galaxies per magnitude bin).

Our predictions are in good agreement with the red
squares at MI .−20.5. At MI >−20.5, the B/T measured
by Simard et al. (2011) are larger than those measured by
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Graham & Worley (2008) for galaxies with Hubble type T ≥
5, which comprise the dominant population in this luminos-
ity range. One explanation for this discrepancy is the challenge
of fitting correctly a faint bulge component that contributes to
.10% of the total light when the uncertainty on B/T can be as
large as 20% (see Figs. 18 and 19 of Simard et al. 2011). Another
explanation is that bulge/disc decompositions based on a single
photometric band are not reliable (observations discussed in the
next section suggest that this may be the case).

Salo et al. (2015) used the Spitzer Survey of Stellar Struc-
ture in Galaxies (S4G) to study the morphologies of 2352 with
distances < 40 Mpc. The S4G’s excellent image quality allowed
Salo et al. (2015) to fit three components: an exponential disc, a
Sérsic bulge, and a bar modelled with a Ferrer profile. The draw-
back is a smaller sample and thus poorer statistics.

In Fig. 8, the filled blue triangles with error bars show B/T
in the S4G when the bar is assigned to the bulge. The down-
pointing open triangles show the difference when the bulge is
identified with the Sérsic component only.

We note that Salo et al. (2015) published stellar masses. We
converted them to baryonic masses using the relation between
gas fraction and stellar mass from Boselli et al. (2014) and we
used the relation between baryonic mass and MI relation for
the galaxies of Persic & Salucci (1995) to obtain a final result
in I-band magnitudes (the baryonic masses for the galaxies of
Persic & Salucci 1995 were measured dynamically by perform-
ing a galaxy/halo decomposition, they were not inferred by fit-
ting a stellar population synthesis model).

The higher-quality measurements of B/T from Salo et al.
(2015) are in agreement with those by Simard et al. (2011) at
MI < −22 and confirm our suspicion that the latter are proba-
bly overestimated at low luminosities. Our agreement with the
filled blue triangles is very good over the entire luminosity range
−23 < MI < −20, especially given the simplifying assumptions
we have made (isolated system, axisymmetric initial conditions,
purely stellar disc). The fact that the agreement with the filled
triangles is better than the agreement with the open ones sug-
gests that our two-component fit effectively assigns most of the
bar mass to the bulge component.

We have also checked if our predictions are consistent with
the data for the Milky Way. Bland-Hawthorn & Gerhard (2016)
studied the disc’s contribution fd to the gravitational acceleration
at 2.2 Rd and found fd = 0.42–0.74. The main uncertainty is
value of Rd. We predict B/T = 0.09–0.16 for fd = 0.53 (Rd =
2.6 kpc; Robin et al. 2003; Jurić et al. 2008) and B/T = 0.19–
0.33 for fd = 0.74 (Rd = 2.15 kpc; Bissantz & Gerhard 2002;
Bovy & Rix 2013). Observationally, B/T ranges between 0.19
and 0.32 depending on whether the long bar is assigned to the
disc or the bulge (Bland-Hawthorn & Gerhard 2016). Hence, our
predictions are consistent with the data for the Milky Way within
the observational uncertainties.

6. Application to SAMs

Our key result is a model for B/T as a function of fd, the disc’s
contribution to the total gravitational acceleration. To use this
model predictively, we must know how fd depends on observ-
able quantities such as luminosity or stellar mass. In Sect. 4,
we followed a semi-empirical approach. The conversion from
MI to fd was based on observational data. Here, Eq. (19) is
incorporared into the GalICS 2.0 SAM (Cattaneo et al. 2017;
Koutsouridou & Cattaneo 2019). Hence, the values of fd used to
compute B/T are those predicted by our SAM.

Fig. 9. Composite image of SDSS J141007.94-002348.4 from sky-
server.sdss.org. SDSS J141007.94-002348.4 is a spiral galaxy with
MI = −21.8. Simard et al. (2011) assign to it B/T = 0.93 but a bulge
Sérsic index of only n = 0.5.

The main difference with the semi-empirical approach is
that, in our SAM, mergers cannot be switched off. Hence, we
must consider two mechanisms for the formation of bulges:
mergers and disc instabilities. GalICS 2.0 accounts for these
two mechanisms by separating galaxies into four components:
the disc, the pseudobulge, the classical bulge, and the central
cusp. The cusp is composed of baryons that fell to the centre at
the last major merger. It is absent in core ellipticals, which were
formed in dissipationless mergers (Kormendy et al. 2009). The
cusp component is irrelevant for this article. Relevant is the dis-
tinction between classical bulges formed through mergers and
pseudobulges formed through disc instabilities (GalICS 2.0 is
the only SAM to operate such a distinction to the best of our
knowledge).

In GalICS 2.0, the distinction between major and minor
mergers is based on the mass ratioM1/M2, whereM1 andM2
are the total masses of the merging galaxies within their respec-
tive baryonic half-mass radii (M1 >M2). Cattaneo et al. (2017)
assumed a sharp transition at a critical mass ratio M1/M2 =
εm = 4. In major mergers (M1/M2 < εm), all stars go
into a classical bulge and all gas goes into the central cusp
(Toomre & Toomre 1972; Barnes 1992; Negroponte & White
1983; Barnes & Hernquist 1991; Springel et al. 2005; but also
see Hopkins et al. 2009 and Hammer et al. 2018). In minor
mergers (M1/M2 > εm), the merging galaxies are added com-
ponent by component.

Our assumptions for minor mergers are the same as
in Cattaneo et al. (2017). Based on N-body simulations by
Eliche-Moral et al. (2012), we assume thay the scale-lengths of
the disc and the bulge of the larger galaxy are not affected by
minor-merging events. The difference is in major mergers. The
model by Cattaneo et al. (2017) had the shortcoming of predict-
ing too many pure ellipticals. The median B/T for early-type
galaxies with B/T > 0.7 was close to unity in the model while
it is B/T ∼ 0.85 in the observations (the red symbols with error
bars in Fig. 10, data from Mendel et al. 2014). We obviate to this
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Fig. 10. B/T versus M∗ for all galaxies (black), spiral galaxies (B/T < 0.7, blue), and elliptical galaxies (B/T > 0.7, red). The curves are
medians in bins of stellar mass. They refer to GalICS 2.0 without (left) and with (right) disc instabilities. The data points are the observations by
Mendel et al. (2014). The width of the shaded areas around the curves shows the standard error on the median.

shortcoming by assuming that the mass fraction ftr transferrred
to the bulge (or the cusp in the case of gas) is not always unity
but varies gradually from ftr = 0 forM1/M2 = εm to ftr = 0 for
M1/M2 = 1. We assume:

ftr =
εm −M1/M2

εm − 1
, (32)

where εm = 3. Using εm = 4 would increase B/T at 1010.5 M� <
M∗ < 1011 M� but also at M∗ < 1011 M�, where there is no need
for such an increase (Fig. 10).

The reader should keep in mind that the choice of a lin-
ear relation in Eq. (32) is motivated by its simplicity rather
than physical considerations. The study of the dependence of
ftr on M1/M2 would be a major project in its own right and
would require an extensive campaign of numerical simulations.
The GalMer database of major and minor mergers experiments
(Chilingarian et al. 2010) has been the most significant effort
in this direction but does not answer our question because the
questions that were important for those who have analysed the
GalMer database (for example, Eliche-Moral et al. 2018 for a
recent study) are not those that are important for our SAM.

Besides the model for major mergers, the only other
differences with the version of GalICS 2.0 described in
Koutsouridou & Cattaneo (2019) are the model for disc insta-
bilities and a detail in the calculation of disc sizes. Disc radii
are important because compact discs are less stable (Sect. 3).
In GalICS 2.0, rd is determined by the spin parameter λ of
the DM halo (Eq. (10)), which we measure from the N-body
simulation used to construct the merger trees. The gaseous disc
and the stellar disc are assumed to have the same exponential
scale-length. If λ fluctuates from one timestep to the next, so
does rd. The effect is small for central galaxies, but it can be
significant for satellites and is particularly strong in the central
regions of groups and clusters, where the halo finder6 may incor-
rectly assign to the host system particles that in reality belong
to a subhalo. Koutsouridou & Cattaneo (2019) showed that this
numerical effect causes the discs of satellite galaxies to shrink at
pericentric passages. Discs regain their previous sizes after
moving away from their orbital pericentres, but the temporary
contraction affects their stability and drives the formation of

6 GalICS 2.0 uses a halo finder that is called HaloMaker
(Tweed et al. 2009) and is based on AdaptaHOP (Aubert et al. 2004).

spurious bulges. In this article, we prevent this phenomenon by
requiring that the sizes of discs cannot decrease.

Our model for disc instability is based on Eq. (19); fd is the
contribution of the disc to the total gravitational acceleration at
r = 3.2rd. The other two contributions are those of the bulge and
the halo. Let Md, Mcb, and Mbar be the masses of the disc, the
classical bulge inclusive of the cusp, and the bar inclusive of the
pseudobulge, respectively, where Mbar = 0 initially. If the B/T
computed with Eq. (19) is B/T > Mcb/(Mcb + Mbar), then a bar
will form until:
B
T

=
Mcb + Mbar

Mcb + Mbar + Md
. (33)

To understand how fd is computed in the case of a galaxy
that already has a bar, one should consider that, in our SAM, the
bar is the disc’s inner part. The formation of a bar changes the
azimuthal distribution of stars in the inner disc and causes the
inner disc to buckle, but does not change the total contribution
of the disc-plus-bar system to the circular velocity at r = 3.2rd.
We therefore compute fd as if the mass in the bar belonged to the
disc (in the beginning this mass will be zero because all galaxies
start as pure discs). Mbar does not change the B/T computed with
Eq. (19) but affects the right-hand side of Eq. (33). If the right-
hand side is larger than the left-hand side, the disc is stable and
there is no need for any further increases in Mbar. A classical
bulge from a previous major merger lowers fd, makes the disc
more stable and can prevent the formation of a bar.

The black, blue, and red curves in Fig. 10 show B/T versus
stellar mass M∗ in GalICS 2.0 for all galaxies, galaxies with
B/T < 0.7, and galaxies with B/T > 0.7, respectively. The
shaded area around each curve shows the standard error on the
median. The left panel refers to a model with mergers only. The
right panel shows a model that contains both mergers and disc
instabilities.

We now focus on the blue curves (B/T < 0.7) and com-
pare them to the SDSS data by Mendel et al. (2014, blue symbols
with error bars). The model without disc instabilities is in reason-
ably good agreement with the data points for M∗ > 1011 M� but
fails completely at lower masses, where mergers make a negligi-
ble contribution to the mass growth of galaxies (Cattaneo et al.
2011; also see Cattaneo et al. 2017).

Including disc instabilities improves the SAM considerably.
The agreement with the observations by Mendel et al. (2014,
data points with error bars) is reasonably good at all masses
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but especially at M∗ < 1010.5 M�. The transition from pseudob-
ulges formed at low masses to classical bulges formed by merg-
ers at high masses is not only a theoretical predictions. The data
themselves show that the B/T − M∗ relation changes slope at
M∗ ∼ 1010 M�.

We remark that a model could reproduce the mean B/T
galaxies with B/T < 0.7 (blue symbols) and with B/T > 0.7
(red symbols) separately and still not reproduce the mean B/T
of the total galaxy population (black symbols) if the fraction of
galaxies with B/T > 0.7 is not reproduced correctly. The rea-
sonably good agreement between the black curve and the black
symbols suggests that the fraction of galaxies with B/T > 0.7
is reproduced reasonably well at both low (M∗ . 1010 M�) and
high (M∗ & 1011 M�) masses. It is only in the intermediate mass-
range M∗ ∼ 1010.5 M� that mergers seem to struggle to form
enough elliptical and S0 galaxies compared to what the observa-
tions suggest they should be doing.

We note that the catalogue by Mendel et al. (2014; 660 000
galaxies) is based on the one by Simard et al. (2011) used to pro-
duce the red squares in Fig. 8. The difference is the use of addi-
tional photometric bands, which allows a more accurate fitting
of the spectral energy distributions and thus more accurate mass
estimates, as well as a more detailed analysis of the effects of
dust absorption. Comparing the red squares in Fig. 8 with the
blue circles in Fig. 10 shows that the bulge-to-total mass ratios
of faint galaxies in Fig. 8 are almost certainly overestimated and
highlights the danger of B/T decompositions based on one pho-
tometric band only.

7. Discussion and conclusion

Our simulations of the stability of a thin disc embedded in a
static spherical halo improve the classical work by ELN because
they are three-dimensional and have higher resolution, but the
underlying assumptions are very similar. The only substantial
difference is the density distribution of the DM. Hence, it is
unsurprising and reassuring that our results and those by ELN
are in substantial agreement.

However, not only do our simulations confirm that all discs
with vd/vc > 0.6 are unstable unless the threshold is exceeded
by a narrow margin. They also take the work by ELN one
step forwards and show that vd/vc can be used to predict a
galaxy’s bulge-to-total mass ratio B/T . This is the main differ-
ence between our work and that of ELN. They used fd = (vd/vc)2

to decide whether an instability would develop. We use the same
parameter to compute B/T , so that our answer is more than yes
or no. A pseudobulge may form, but its mass may be very small.
Therefore, it is completely unrealistic to assume as Cole et al.
(2000) that the entire disc collapses into a bulge whenever ELN’s
stability criterion is not satisfied.

Cattaneo et al. (2017) computed the sizes and masses of
pseudobulges by solving the equation:

vd(r)
vc(r)

= 2α, (34)

where α was treated as an input parameter of the SAM. Discs
were bulgeless when the equation admitted no solution for r.
This approach has no physical justification because the ELN
criterion is a global one and the stability threshold depends on
the radius at which it is applied. A disc with fd(2.2rd) < 2α is
likely to be globally stable and should not form any pseudob-
ulge, statistically at least. However, it is possible that fd(r) = 2α
for r < 2.2rd, in which case the SAM of Cattaneo et al. (2017)

would attribute to it a pseudobulge of radius r. Cattaneo et al.
(2017) compensated this overpropensity of their model to form
pseudobulges by using α = 0.45 instead of α = 0.28 (it is more
difficult to form pseudobulges when the instability threshold is
set to a higher level) and none of their key results (stellar mass
function of galaxies, disc sizes, and the Tully-Fisher relation)
are sensitive to their model for disc instabilities. Still, Eq. (34)
should not be regarded as a physically correct model for the for-
mation of pseudobulges. In contrast, using Eq. (19) would rep-
resent a major step forwards with respect to the prescriptions
currently used in SAMs.

Having summarised the main results of our simulations, we
now discuss a number of caveats. The first is the cell size. We
have run some of our simulations at lower resolution and we did
not see substantial differences that would alter our conclusions.

Another potential issue is the local stability of our initial con-
ditions. The local stability of a stellar thin disc is determined by
the Toomre (1964) parameter:

Q =
σκ

3.36GΣ
, (35)

where σ is the radial one-dimensional velocity dispersion, Σ is
the stellar surface density and

κ =

√
R

d
dR

Ω2 + 4Ω2 (36)

is the epicyclic frequency. The disc is stable for Q > 1. In our
razor-thin discs:

σ2

GΣ
= π

h
rd

Rd ' 0.138Rd (37)

(Sect. 2.1). By substituting the σ from Eq. (37) and Ω = Vc/R
with Vc from Eq. (4) into Eq. (35), we find that our discs have
Q = 0.3–0.4 over most of their surface and that Q > 1 only at the
centre. Hence, our initial conditions do not satisfy Toomre’s sta-
bility criterion. When Q < 1, spiral shocks heat the disc and
contribute to its global stability, but a disc with Q < 1 can
also develop clumps (Hockney & Hohl 1969), which can sink
and merge to the centre because of dynamical friction. Relax-
ation effects will also lead to a redistribution of mass that could
increase the central density.

To explore how this may affect our results, we have run six
simulations in which we have let our initial conditions relax
before we let them evolve. The relaxation procedure is as fol-
lows. We compute the initial gravitational potential and let the
disc evolve in this fixed potential for one orbital time at the disc’s
half-mass radius. We recompute the gravitational potential and
perform a second iteration, then a third one. After three orbital
times we let the disc’s potential become live and we run the sim-
ulations as usual. Table 1 lists the simulations that we have rerun
in this manner and the final difference in B/T with respect to the
values presented in Sect. 3.

The difference for relaxed and unrelaxed initial conditions
is fairly random: ∆(B/T ) = (B/T )rel − (B/T )unrel is sometimes
negative and sometimes positive. Statistically, there is a system-
atic trend towards lower B/T when relaxed initial conditions are
used, but the difference is small: −6% on average. No observer
can reliably distinguish between B/T = 0.2 and B/T = 0.18,
and certainly no model can claim to predict B/T with such accu-
racy. Hence, the effect of using unrelaxed, locally unstable initial
conditions has no bearing on our conclusions within the preci-
sion that we aim to achieve (we remind the reader that the fit in
Eq. (19) is accurate within to 30%).
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This conclusion appears at odds with recent simulations of
the dynamical evolution of cold stellar discs. Saha & Cortesi
(2018) studied how such discs evolve for different stellar velocity
dispersions when all other parameters are kept the same. Discs
with higher σ and Q ∼ 1 formed a bar. They did not fragment
into clumps. Discs with very low σ and Q < 0.5 fragmented
in less than 1 Gyr. The stellar clumps migrated to the centre via
dynamical friction and there coalesced into a bulge that reached
B/T ' 0.35 at the end of the simulations. We shall argue that
the simulations by Saha & Cortesi (2018) are more physical than
ours, but also that their finding does not invalidate our results.

The key point is how dynamical friction works. Stellar
clumps sink to the centre because they move with respect to the
DM and dynamical friction transfers their angular momentum to
the halo. We assume a static halo. Hence, this process cannot
occur in our simulations. The disc can fragment into clumps, but
the clumps do not migrate to the centre. One can see this as a
limitation of our simulations. If some stellar discs really started
with Q � 1, their evolution into lenticular galaxies through the
process described by Saha & Cortesi (2018) will not captured by
our analysis. One can also see it as a justification for our assump-
tion of a static spherical halo. We find that discs that start with
Q ∼ 0.5 reach Q ∼ 0.8–1.1 in just one rotation time (measured
at the half-mass radius). By assuming a static halo, we avoid that
our final results are too contaminated by relaxation effects due to
the Toomre instability. The latter view makes more sense if we
consider that our initial conditions are artificial and that stellar
discs did not start with Q � 1.

To check that this explanation is correct, we have rerun four
simulations with a live halo (Table 2). Orbital decay and coa-
lescence of clumps through dynamical friction increase B/T by
12% on average. The effect is strongest in galaxies where clumps
are clearly visible (those with md = 0.04 and λ = 0.1 in Figs. 2
and 3).

An effect of 10–20% (Table 2) is ultimately small.
Saha & Cortesi (2018) did not report the final B/T for the sim-
ulations with Q > 0.5. Hence, we cannot make a quantitative
comparison with their results. However, a glance at their images
shows that the simulations with Q > 0.5 display a significant
bulge component, too. Hence, there is no reason to suppose that
our final B/T are inconsistent with theirs.

That is not to say that the final visual morphologies look
identical in the simulations with Q < 0.5 and the simulation with
Q ∼ 1 (Fig. 2 of Saha & Cortesi 2018). The simulations with
Q < 0.5 form S0 galaxies with a prominent bulge but no bar or
spiral structure. In the simulation with Q ∼ 1, the final galaxy is
clearly barred. This is a case where a two-component bulge/disc
fit and a fit with an additional bar component may give substan-
tially different B/T and show a much stronger dependence on
Q. We do not perform such an analysis, which would be more
accurate in reality, because it would then be difficult to compare
our results to SDSS studies based on a two-component analysis
(for example, Mendel et al. 2014).

Finally, to understand the extent to which 2% gas could affect
our results, we have run four simulations in which the gas frac-
tion is exactly zero (Table 3) and we have analysed them at
t = 1,1.5, 2, 2.5 and 3 Gyr. The mean variation in B/T with-
out gas was (−2.7 ± 1.8)% with minimum and maximum vari-
ations with respect to the case with gas of −9.3% and +3.2%,
respectively. These variations show that gas tends to concentrate
in the inner regions and thus to increase B/T , but the effect is
negligible for the 2% gas fraction assumed in this article, espe-
cially since the scatter in B/T for a given fd(3.2rd) is much larger
(∼30%).

Based on the numerical tests above, we are confident that
Eq. (19) provides the correct answer to our problem within
the approximations that we have made. The adequacy of these
approximations is another problem, the one that we now discuss.

Already ten years ago, Athanassoula (2008) had run more
realistic simulations with a live halo and she found that sup-
posedly stable discs (according to the ELN criterion) could still
form a pseudobulge by transferring angular momentum to the
DM through resonances. Conversely, supposedly unstable discs
could still be stabilised by random motions in the disc or the halo
or by a central DM concentration (the effects of the latter have
been considered in this article). She concluded that the ELN cri-
terion is too simplistic to describe a complex process such as the
formation of pseudobulges.

Fujii et al. (2018) ran simulations with a live halo at
extremely high resolution and they confirmed cases (6 out of
18) where the ELN criterion failed to predict the formation of a
bar, although, in all those cases, Vc(2.2Rd)/

√
GMd/Rd exceeded

the threshold value ε = 1.1 by only 30% on average. Their result
is not inconsistent with ours (we, too, find a pseudobulge in a
galaxy with vd/vc < 0.5 at r = 2.2rd, which should not have one
according to the ELN criterion) and it does not surprise us given
the additional possibilities (such as resonances) that come into
play when a live halo is considered. Our simulations with a live
halo (Table 2) confirms that it can make a difference, but also that
the bulge-to-total mass ratios measured with a two-component fit
are not too affected by it.

The comparison with Fujii et al. (2018) is interesting also in
relation to two specific claims they make. Fujii et al. claim that
all discs will develop a bar if one waits long enough and that
what fd(2.2rd) really measures is the timescale tb for bar forma-
tion. The discs with fd(2.2rd) < f crit

d ' 0.31 are simply those
with tb > 10 Gyr. They also claim that the shear rate:

Γ(r) = −
d lnΩ

d lnr
= 1 −

d lnvc

d lnr
, (38)

is the physical quantity that is most relevant to determining B/T
(Ω = vc/r; also see D’Onghia 2015), and demonstrate a tight
correlation between B/T and Γ(2.2rd).

We cannot comment on the long-term evolution of our galax-
ies because we have not run any simulations for more than 3 Gyr
and since our resolution is lower than that of Fujii et al. (2018)
anyway (the originality of our study is rather in our system-
atic exploration of the parameter space). However, we have ver-
ifed that our discs evolved very little in the last gigayear before
we stopped following them, in agreement with Debattista et al.
(2017) and Martinez-Valpuesta et al. (2017), who find that the
bar strength grows slowly after the initial rapid growth and the
formation of a pseudobulge in the first 2 Gyr. Furthermore, any
result for isolated discs is purely academical when used to dis-
cuss the evolution of galaxies on timescales comparable to the
Hubble time7.

In relation to the second claim, our simulations confirm that
B/T and Γ(2.2rd) are tightly related (Fig. 11). However, we do
not consider that Γ adds substantial information with respect to
fd and the reason is simple. Γ(r) is directly linked to the form
of the rotation curve (Γ < 1 for a rising rotation curve; Γ > 1
for a declining one), which is the sum in quadrature of vd and vh.

7 Even in the absence of mergers, discs still accrete gas from their envi-
ronment. Slow accretion lowers the B/T ratio and could compensate the
growth of pseudobulges in galaxies with tb & 10 Gyr. Rapid gas accre-
tion, whereby the gas fraction becomes significant, is beyond the scope
of this article, which is on stellar discs.
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Fig. 11. B/T versus the exponent Γ of Ω(r) at r = 2.2rd. Symbols of
the same shape and colour correspond to the same galaxies as in Fig. 7.
The black line is a log-log linear least-square fit to the symbols with
B/T > 0.01.

Substituting Eqs. (4) into (38) gives:

Γ(r) = 1 − βd fd − βh(1 − fd), (39)

where:

βd =
d lnvd

d lnr
(40)

and:

βh =
d lnvh

d lnr
=

1
2

(
d lnmDM

d lnr
− 1

)
. (41)

At r = 2.2rd, vd has a maximum, so that βd(2.2rd) = 0; βh(2.2rd)
depends on crd, but, for reasonable values of c and rd, its value
is always βh(2.2rd) ' 0.4 (±0.1 at most). In contrast, fd can vary
by an order of magnitude from one galaxy to another. Hence, it
is fd that determines Γ, as we intended to demonstrate.

Studies such as those by Athanassoula (2008) and Fujii et al.
(2018) show that the formation of a bar is sensitive to the insta-
bility threshold α and that α is not universal but depends on
parameters that our crude assumption of a static spherical halo
cannot capture. However, predicting the stability of individual
galaxies with the highest possible accuracy is not the goal of our
article. Our goal is to develop a model that may be able to make
statistical predictions for the most likely B/T ratios of galaxies
given the halo masses, spins, concentrations, and merging histo-
ries measured in cosmological N-body simulations.

Considering the quantitative dependence of B/T on vd/vc
helps to overcome the problem highlighted by the above stud-
ies. We may erroneously predict the formation of a pseudobulge
in a galaxy with vd/vc > α that should not have formed one in
reality. However, if vd/vc is small, B/T will be small, and galax-
ies with B/T < 0.1 are, for many practical purposes, indistin-
guishable from galaxies with B/T = 0, particularly when one
considers the difficulty of obtaining accurate quantitative mor-
phologies from observations at high redshift. In the same way,
our criterion may fail to predict the formation of a pseudobulge
in a galaxy with vd/vc < α that should develop one. However,
the bulges that we miss are usually small. The clearest example

is galaxy md0.3mb1 of Fujii et al. (2018). For that galaxy, the
left-hand side of Eq. (1) is equal to 1.87, so the galaxy should be
stable. The simulations by Fujii et al. (2018) show that it is not.
However, visual inspection of the morphology after 5 Gyr does
not show any massive bulge.

The assumptions under which we have derived Eq. (19) are
consistent with the spirit of the semi-analytic approximation,
which is to separate the evolution of the DM from that of the
baryons within haloes. Cosmological hydrodynamic simulations
have shown that baryonic physics can affect the structural prop-
erties of DM haloes (Pontzen & Governato 2012; Teyssier et al.
2013; Di Cintio et al. 2014; Tollet et al. 2016) and cause them to
deviate from the NFW profile that SAMs assume, when they do
not make the even cruder approximation of a singular isother-
mal sphere. Using Eq. (19) to assign morphologies to galaxies
that have not experienced any mergers is no greater approx-
imation than to model the DM with an NFW profile or to
assume that major mergers transform discs into spheroids instan-
taneously. In fact, Robertson et al. (2006), Hopkins et al. (2009),
and Hammer et al. (2009) have shown examples of discs that sur-
vived gas-rich major mergers. Yet, a lot has been learned about
the Universe from this simple picture.

Finally, despite their simplifying assumptions, our simula-
tions reproduce the magnitude – morphology relation observed
in the catalogues from Mathewson et al. (1992), Simard et al.
(2011), and Salo et al. (2015). SAMs based on our findings are in
very good agreement with the B/T – M∗ relation (Mendel et al.
2014), especially at M∗ . 1010 M�, where most bulges are pseu-
dobulges formed by disc instabilities in both our SAM and obser-
vations. Our results support models in which pseudobulges grow
gradually through non-axisymmetric secular disc instabilities as
opposed to violent instabilities where discs collapse rapidly into
bulges (à la Cole et al. 2000).

We conclude with a note on our future plans. “Pseudobulge
formation through bar instabilities” might have been a more pre-
cise title for our current article, but we have chosen ‘Bulge for-
mation through disc instabilities’ because we are planning a sec-
ond article, in which explore how our results can be extended to
gas-rich systems. We have seen that a 2% gas fraction increases
the final B/T by ∼3% on average (Sect. 4). For high gas frac-
tions, the instability may be not only quantitatively but also qual-
itatively different. Already Noguchi & Shlosman (1994) found
that unstable gas-rich discs do not develop a bar. They frag-
ment into clumps that merge into a central bulge. Bulges formed
through this process may be closer to classical bulges than to
peanut-shaped pseudobulges (Bournaud et al. 2007). Hence our
choice of a title that is broad enough to encompass our future
projects.
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