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ABSTRACT  

This work deals with the numerical simulation on bending test to characterize two 

Cameroonian hardwoods under mode I and II loading for different crack lengths. The finite 

element analysis for fracture in orthotropic medium is developed. The algorithm of fracture is 

introduced in a finite element software Cast3M. According to the Mtheta method, the 

calculation of the stress intensity factors and the energy release rate for pure mode I and II 

fracture are deduced using a SENB (Single Edge Notch Bending) specimen. The path 

independence of Mθ-method on the specimen is confirmed. 

Keywords: Mode I and II failure; Mtheta method; Finite element analysis; SENB specimen 

I. INTRODUCTION 

The wood species lovoa trichilioides and triplochiton scleroxylon are subject of an 

increasingly high exploitation and exportation each year in Cameroon and belong to the first 

five types of hardwoods exploited in the country and used in the various ways [1], [2]. They 

are very little used for construction, but important for socioeconomic function of the country. 

Often used in an empirical way, Cameroonian woods are the source of many security and 

dimension problems, for instance when they are used for the construction of bridges and 

heavy roof frames. In this context, wood material has a special interest to revive construction 

sector. Furthermore, due to the economic cost, the design of structure is required not for 

oversized dimension, but to respect the limit range of the security. Therefore, fracture 

behavior of wood is important to be more investigated to better understand the crack process 

in the structure [3].  

In this regard, many work have been done to evaluate the characteristics of fracture 

and their consequences on wood structure facing crack problems. Reference [4] investigated 
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in 2002 the influence of the physical and mechanical characteristics on the behavior of wood 

during machining. The determination of fracture energy and fracture process zone length in 

Mode I fracture of European spruce wood were reported by [5]. Reference [6] work on 

fracture energy of wood and root burl wood of Thuya. The mode I fracture of tropical woods 

using grid method has been developed by [7]. The Influence of loading rate on the mode II 

fracture toughness of vinyl ester GRP where investigated by [8] in 2017. In this work bending 

simulation used the Mtheta method introduced by [9]- [11] in the plane constrain for linear 

elastic fracture mechanics to model crack growth on two Cameroonian hardwoods. 

II. LOCAL MECHANICAL FIELDS IN ORTHOTROPIC MEDIUM FOR PLANE 

CRACK 

II.1.  FIELDS OF STRESSES AND DISPLACEMENTS 

We considered a thin solid with a constant width subjected to the applied forces in his contour 

as shown in Fig. 1. The stresses in the z direction is neglected and are too small in front of  

,xx yy xyand   for continuity reason.  

 

Fig. 1. Solid in a plane stress. 

 In the absence of the body forces, the equilibrium equations are considering in the form of 

(1): 
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By introducing the Airy's stress function ( , )x y  and taking into account (2)  the 

compatibility equation give (3). 
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Hence we said ( , )x y  satisfies the biharmonic equation (3) for isotropic medium. For 

orthotropic case let consider the orthotropic principal planes and (4) give the relation between 

stress and strain. 
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The compatibility equation become with Airy’s stress function the equation (5) in plane 

coordinate. 
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By setting a change of variables [12], [13] as follow below, 
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The combination of equation (5), (6) and (7) help to introduced (8) as giving below. 
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Equation (8) is the characteristic equation deriving from strain integrality condition. Solving 

(8) give’s four solutions in 1 2;   and there complex conjugates 
1 2and   following the 

relation below (9). 

1

2

(9)i A

i B









 

Where A and B are defined as giving by (9a) and (9b): 
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  The elements 11 12 22 33, , ,S S S S are the elastic compliance tensor components for an 

orthotropic symmetry. Considering the orthotropic directions (L, R, T), the elastic compliance 

tensor components are directly related to the elastic orthotropic characteristics for an opening 

mode solicitation in (R, L) plane with the crack oriented in the L direction of fiber. In the 

plane stress their expression is stated in the form  



   

 

11 22 33 12

1 1 1
; ; ; (9 )

xy

x y xy x

S S S S b
E E E




    

 

,x yE E are Young modules in x and y directions and ,xy xyµ  are respectively the shear 

module and Poisson coefficient in the considering direction x and y. From (5) and considering 

the equilibrium equations, the field of stresses is stated as: 
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  Where ϕ’ and χ’ denote the derivative. 

By combining (10) and (4), we obtain the deformation and by integration we deduced the 

displacement as follow: 
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II.2.  RELATION BETWEEN STRESS INTENSITY FACTOR, 

DISPLACEMENTS AND STRESSES 

From Airy’s function, let set (12) in order to deduce the relation between the stress intensity 

factor and stress. 



   

 

2

1

2

1

( )

(12)

( )

nN

n

n

nN

n

n

i

Z A Z

Z B Z

With Z x iy re 














 


  





1 2

1 2
(12 )

n n n

n n n

A a ia
a

B b ib

  


 

 

Fig. 2. Crack orientation. 

Taking the surface area of the crack free in tension (Fig. 2), for ϴ = ± π permit to deduce that 

0 (13)y xy  

 

Therefore (10) and (13) imply that, 

       

 

1 1 2 2 1 1 2 21 '( ) 1 '( ) 1 '( ) 1 '( ) (14)

, 1;2 ,

y xy

i

j j j

i z z z z

with i j Z xe for

         

   

        

    

  

For each values of ϴ, (13) and (14) can be presented as follow: 

       

       

1 1 2 2

1 1 2 2

1 1 1 1 0
(15)

1 1 1 1 0

n i n i

n n n n

n i n i

n n n n

A A e B B e

A A e B B e

 

 

   

   

         


       

 

From (15) the relation between n nA and B more over between 
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Is obtained by imposing that deformation energy should be finite at the vicinity of the crack, 

therefore n = 1 [12], [13]. By comparing to the isotropic medium, the stress intensity factor is 

related to the field of stresses by (16).  
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Equation (16) proves that the singular field of stresses is dependent on the characteristic of 

materials in contrary to the isotropic case. Also, the stress intensity factor is related to the field 

of displacement by:  
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j jp and q are defined as stated in (11). 

From [13], the crack opening intensity factor and the stress intensity factor are related. Their 

expressions are given by the relation (18):  
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Where CI and CII (19) are the reduced elastic compliances for orthotropic behavior develop by 

[13] and cited by [16] and [17],  which derive from the crack opening displacement vectors 

xu  and yu for each mode of failure considered (Mode I and Mode II). 
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III. MTHETA-METHOD IN PROPAGATION 

J-integral [14], [15], is one of the widely applied in rate-independent quasi-static fracture 

analysis, as a parameter characterizing crack tip field. It could be used for linear-elastic as 

well as elastic-plastic material behavior and the definition is given by (20):  
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Fig. 3. Contour of integration. 

Г is an arbitrary curvilinear contour oriented by its normal vector n surrounding the crack 

type in the external failure zone, W is the strain energy density, σij is the component stress 

and ui is the displacement vector. The integral form supposes that the crack is oriented in 

the x direction Fig. 3. However, energetic criterions necessitate a mixed-mode separation 

in order to isolate open and shear cinematic effects. In this regard, the generalization of 

the M-integral to orthotropic material has been developed by [10]. M-integral takes the 

following notation:  
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Fig. 4. Domain of integration. 

Finite element analysis (FEA) is employed to transform this form in terms of a surface 

integral by introducing a θ scalar field which is continuous and differentiable for θ =1 and θ = 

0 inside and outside the ring as it is shown in Fig. 4. The vector field 
r

 must be continuous 

and differentiable on the considered S domain. Then, the general modeling form of    - 

integral is given by [16], [17]. 
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where the virtual field v is given by the Sih’s singular form presented in equation (17). 

According to Dubois cited by [16], [17], the superposition principle enables to write:  
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where CI and CII are the reduced elastic compliances in mode I and mode II defining in 

equation (19), KI and KII are respectively the real stress intensity factors for opening mode 

and shear mode.  Replacing virtual and real fields, the Mθ-integral is assimilated to the energy 

release rate as follow:  
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KI and KII can be obtained independently, let perform two distinct calculations from the Mϴ-

integral:  
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Expression (25) inside (24), compute the energy release rate part for each mode. 

IV.   GEOMETRY OF SENB SIMULATION SPECIMEN 

The geometry of the specimen is firstly generated according to the SENB specimen. This 

specimen is adapted to model easily in three point bending the evolution of crack. The 

obtained specimen dimensions are presented in Fig. 5 with the following values base on [18] 

work. 

Fig. 5. Dimension of specimen. 

It’s used to evaluate crack displacement on the hardwoods   Lovoa trichilioides and 

Triplochiton scleroxylon under loading force control. The specimen is used in computational 

finite elements method to generate the mode I and II fracture toughness in the RL planes. The 

2-D finite element mesh of the specimen obtained for deformation and displacement 

respectively in pure mode I and II simulation are shown in Fig. 6. 



   

 

 

Fig. 6. Finite element mesh of specimen: (i) Mode I deformation shape, (ii) Mode II 

deformation shape, (iii) Open mode virtual displacement, (iv) Shear mode virtual 

displacement, (v) Circular mesh around crack tip. 

The geometry is calculated using a plane stress assumption, using a unitary loading force 

corresponding to the determination of stress intensity factor and the energy release rate 

values. This finite element mesh in which a circular discretization around the crack tip (Fig. 6 

(v)), allows to easily define the θ vector field and the integration crown using parametric 

elements. Mθ-integral performed the virtual finite element displacement fields (Fig. 6 (iii) and 

(iv)) and deformation (Fig. 6 (i) and (ii)) for open and shear mode respectively. The 

computation is limited for an elastic response according to 2-D formulation and the 

characteristics of the hardwoods are taken as follow: 

3

L R LR RL   7260MPa, E  893MPa, G  552MPa,  0.4, Density  380Kg / m (27)E     

 

Equation (27) is the characteristic of Triplochiton scleroxylon hardwoods were E is the Young 

module, G and v are shear module and Poisson coefficient respectively. 



   

 

3

L R LR RL   10460MPa, E  1287MPa, G  795MPa,  0.4, Density  530Kg / m (28)E     

   The hardwoods Lovoa trichilioides properties are cited in (28) with the same components 

define previously. 

V.  RESULTS AND DISCUSSIONS 

The simplified numerical routine (flow diagram) used to compute the fracture parameters 

based on Mθ-integral is sketched in Fig. 7. The Fig. 8 below evaluates the path independence 

of the methods on the specimen according to crown. By considering different crack 

orientations, it is observed the unvarying results versus different crowns for energy release 

rate evolution. Across singularity in the crack tip or near zero the mechanical fields cause a 

disturbance through the integration process for the crown 0, which is the origin of the 

perturbation. Nevertheless, there is a great stability with the increase of crown sizes. 

Fig. 7. Flow diagram on computing fracture parameters. 



   

 

This satisfied the theoretical assumption of path independence in agreement with [19] work. 

From the result, in what follows crown six, will be used to performed calculations of the 

stress intensity factors and energy release rate.  

 

Fig. 8. Path independence on triplochiton scleroxylon and lovoa trichilioides: (a), (b) 

Mode I and (c), (d) Mode II. 

From Fig. 9 (i), (ii) and Fig. 10 (a), (b) general observation indicated the decreasing of the 

energy release and stress intensity factor with the growing of the crack. This behavior was 

obtained by [20], [21]. Hence the total energy of the two wood is reduced to the released 

strain energy consequences of the decrement and induced their brittle fracture. 



   

 

 

Fig. 9. (i), (iii) Energy release rate and (ii), (iv) Stress intensity factor versus crack growth 

position for lovoa trichilioides in mode I and II. 

This type of result would occur in a “fixed-grips” apparatus with the applied load and the 

apparatus clamped into position. The same arguments can be exactly being applied for a 

“dead-weight” loading, where the fracture surface energy corresponds to a decrease in 

potential energy of the loading system [21]. 



   

 

 

Fig. 10. (a), (c) Energy release rate and (b), (d) Stress intensity factor versus crack growth 

position for triplochiton scleroxylon in mode I and II. 

The apparent drop in mode II toughness of stress intensity factor and energy release rate (Fig. 

9 (iii), (iv)) and (Fig. 10 (c), (d)) observed as crack length increases for the two hardwoods 

were obtained by [8] on four-point bending end notched flexure (4ENF) tests. The causes of 

this behavior is not yet known but, [8] observed that the crack tends to open under large 

displacements and tended to migrate away from the mid-thickness of the specimen and 

towards face of tension. They remark that mode I fracture in addition induce to the intended 

mode II fracture for the opening of the crack and the measured of fracture toughness is 

modify by the mixed mode. In this respect, this study reveals the decreasing of the energies 



   

 

for the both two modes of fracture; which imply future investigation of the effect of mixed 

mode to overcome some conclusion on these behaviors.   

VI.  CONCLUSION AND PERSPECTIVE 

In this study, the evolution of energy release rate and stress intensity factors of two woods 

species have been investigated on bending. The finite element mesh of the two hardwoods in 

different modes were presented. The independently computation results of the stress intensity 

factor and the energy release rate for mode I and mode II fracture are proved. The path-

independence of Mθ-integral result have been showed. It has been observed the quasi 

decrement of energy release rate and stress intensity factors of the both two hardwoods 

species. The future investigation will be consecrated to study mixes mode fracture on the two 

hardwoods to evaluate his effect and finally it will be important to make an experimental 

setup result to compare with the numerical results.  
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