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1 Introduction

In this report, we investigate a problem that arises within the scope of support structures
in additive manufacturing. Support structures are employed in Additive Manufacturing
(AM) to guarantee the quality of the final product. They are utilized, for instance, to
handle overhanging regions where the final product is not self-supporting, or to prevent
deformations in the final product due to thermal residual stresses.

In the study [1], various mathematical models are introduced to address these issues,
leading to optimization problems that are numerically solved using the level set topology
optimization method [2]. In this framework, the support structure is assumed to be com-
posed of an isotropic material, that is, a material with uniform mechanical properties in
all directions.

In our research, we address the challenge of printing a shape ω along with its supports
S, aiming to minimize the compliance. The material of the shape ω is considered isotropic,
whereas the material of the supports S is deemed orthotropic, a material with distinct me-
chanical properties in mutually orthogonal directions. This assumption might be realistic
as, in actual manufacturing, the supports are grid structures, which could be modelled as
an equivalent volume possessing different material properties in each direction. Following
[1], we focus on the case where the compliance minimization occurs while assuming the
shape ω to be fixed; in other words, we aim to identify the supports for the structure ω
that are influenced only by their own weight. We examine a two-dimensional reference case
to explore potential qualitative differences when stronger material properties are imposed
in certain directions, comparing these results with the isotropic case.

This study is motivated as a component of the research project SOFIA (SOlutions pour
la Fabrication Industrielle Additive metallique), which is primarily aimed at contributing
to new developments in AM technologies.

2 Anisotropic Supports

Anisotropic materials are characterized by their differing material properties when we ex-
amine their mechanical properties in relation to different directions. A subset of these ma-
terials are orthotropic materials, which have material properties that differ along mutually-
orthogonal axes of rotational symmetry. In contrast, isotropic materials possess the same
properties regardless of the direction of measurement.
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We begin by exploring the formulations involved and the main changes compared to
the isotropic setting.

Given a shape ω and the supports S, both being open sets of Rd (d = 2 or d = 3),
with ω composed of an isotropic material and S composed of an orthotropic material, we
note that the shape ω in this study is fixed, and only the supports S are optimized. The
supported structure, denoted as Ω = S ∪ω, is, as usual, assumed to be contained within a
rectangular build chamber D. The baseplate will always represent the bottom boundary
of D, and is denoted as ΓD := {x ∈ D : xd = 0}. Unless otherwise stated, we assume the
support is clamped to the baseplate ΓD. The remaining regions of the boundary of the
supported structure Ω are traction-free, denoted by ΓN . In the following, we consider the
space, for Ω ⊂ Rd an open set, and Γ a (d− 1)-dimensional set:

H1
Γ(Ω)

d :=
{
u ∈ H1(Ω)d : u = 0 on Γ

}
(2.1)

The supported structure Ω is governed by linearized elasticity, with only gravity forces
being applied to Ω. In this context, optimizing the support S to minimize the compliance
of Ω will result in minimal overhang regions. The elastic displacement uspt of the supported
structure Ω = ω∪S is the unique solution in the space H1

ΓD
(Ω) to the mechanical system:

−div (σ(uspt)) = ρg in Ω,

uspt = 0 on ΓD,

σ(uspt)n = 0 on ΓN .

(2.2)

Here, σ is the stress tensor, which is related to the strain tensor e. In the linearized

case, this is given by e(u) =
1

2

(
∇u+∇uT

)
, via Hooke’s law:

σ = Ce, (2.3)

where C is a fourth order tensor, often referred to as the elasticity tensor or simply as
the ’Hooke’s law’ of the material. Using the minor and major symmetries of the tensor C,
due to the symmetry of the tensors σ and e, we can rewrite the relation in a vector form,
using Voigt notation (see [5]), as:

σ = Ae. (2.4)

Now, A is a matrix and σ, e are vectors using Voigt notation. The explicit form of C
(or A) will depend on the considered material properties and, in our specific case, will be
of particular interest. As we are considering materials with different properties in each
‘part’ (shape or supports), this will, in particular, imply that we will consider (analogously
for C):

AΩ = Aωχω +ASχS ,

where χO is the indicator function for the set O. This decomposition indicates that the
mechanical properties of the fixed shape ω and the optimizable supports S will, in general,
be assumed to be different, with a sharp-interface.

When the considered material is isotropic, we can relate the quantities σ(u) with e(u)
in the form:

σ(u) = Ce(u) = 2µe(u) + λ tr (e(u)) Id = 2µe(u) + λ div u Id (2.5)

where µ, λ are the Lamé coefficients of the material. This will be the setting for the fixed
part ω.
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Remark 2.1. The variational formulation for the system (2.2) in the isotropic case is:Find u ∈ H1
ΓD

(Ω) such that, for any v ∈ H1
ΓD

(Ω):∫
Ω
2µe(u) · e(v) dx+

∫
Ω
λdiv udiv v dx =

∫
Ω
ρg · v dx

(2.6)

however, in anisotropic cases, we cannot expect to have such a compact formula.

How do things change when the material is anisotropic? Let us focus on the orthotropic
case, in which we have, in Voigt notation:

σ1
σ2
σ3
σ4
σ5
σ6

 =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





e1
e2
e3
e4
e5
e6

 (2.7)

This implies, in the most general case, that the derivatives of u (and the test function
v) are weighted differently compared to the compact formula (2.5). We will specify these
quantities in the next section.

The mechanical performance of the structure Ω is measured by means of its structural
compliance, given by:

J(S) =

∫
ω∪S

Ae(uspt) · e(uspt)dx =

∫
ω∪S

ρg · usptdx . (2.8)

The latter equality comes from the variational formulation of the problem taking the test
function as the solution uspt. It is worth noting that, therefore, this quantity is (explicitly)
independent of the Hooke’s law considered (however, it is implicitly dependent on it, as
uspt depends on it). The admissible supports for this problem are allowed in the following
set:

Uad := {S ⊂ (D \ ω) such that, ΓD ∩ ∂S ̸= ∅, ∂ω ∩ ∂S ̸= ∅} (2.9)

And also notice that the objective functional, in order to avoid trivial solutions, will
be

L(S) := J(S) + ℓ V ol(S) (2.10)

where ℓ is a Lagrange multiplier (a penalization parameter or adjusted parameter in the
optimization process).

In order to minimize (2.10) with respect to the admissible supports Uad, we rely on
the concept of shape derivatives, based on the Hadamard boundary variation method (see
[6]), this is: we measure the changes on the cost given by (2.10) whenever the set S is
perturbed by a vector field θ ∈W 1,∞(Rd,Rd) in the sense:

θ 7→ Sθ := (Id+ θ)(S),

with this, we can define the concept of shape derivative of a functional:

Definition 2.2. A function F : Uad → R is shape differentiable at S if the map θ 7→ F (Sθ)
is Fréchet-differentiable at 0. The shape derivative, denoted F ′(S), satisfies the following
asymptotic expansion:

F (Sθ) = F (S) + F ′(S)(θ) + o(θ)

in a neighborhood of 0 ∈W 1,∞.
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Regardless of the Hooke’s law considered, we have the following result (which can be
obtained using, for example, the formal method of Céa; see [1, 4]):

Proposition 2.3. Assuming θ ·n = 0 on ∂S∩∂ω (this is, assuming that interface between
ω and S is fixed). The shape derivative of the compliance (2.8) is given by

J ′(S)(θ) =

∫
∂S∩ωc

(−Ae(uspt) · e(uspt) + 2ρg · uspt) θ · n ds (2.11)

where uspt is the solution of (2.2) and the compliment of ω is with respect to D, and
∂S ∩ ωc = ∂S \ ∂ω.

Remark 2.4. It is important to note that this formula is valid only under the assumption
that the shape ω remains fixed (which is a realistic assumption in the case when, for design
reasons, we cannot change it). If we allow optimizing ω and S simultaneously, the different
material properties between ω and S will impose additional terms to the shape derivative
and the hypothesis θ · n = 0 on the interface will no longer be valid. See [1] for details for
such a problem.

Remark 2.5. Thanks to the previous proposition, we can find a descent direction θ for
the cost functional L, which is given by:

θ = −(−Ae(uspt) · uspt + 2ρg · uspt + ℓ)n = −vn, (2.12)

with this, we obtain:

L′(S)(θ) =
∫
∂S∩ωc

−v2ds < 0

which, using the asymptotic expansion from definition 2.2, allows us, for a small enough
t, to obtain a shape Stθ with a smaller cost: L(Stθ) < L(S).

2.1 Orthotropic Material: 2D Case

When we consider a 2-dimensional scenario, we are saying that the case under study is a
plane strain problem, that is, a problem where the displacement takes place only in two
orthogonal directions. This is equivalent to the following definition.

Definition 2.6. If the strain state at a material particle is such that the only non-zero
strain components act in one plane only, the particle is said to be in plane strain.

Choosing the plane XY as the plane where the strains are non-zero, we have

exz = eyz = ezz = 0 (2.13)

So, the strain matrix becomes

e =

exx exy 0
exy eyy 0
0 0 0

 (2.14)

and, in this case, Hooke’s law becomes, in Voigt notation:σ11σ22
σ12

 =

2µ1 + λ λ 0
λ 2µ2 + λ 0
0 0 γ

 e11
e22
2e12

 (2.15)
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In principle, λ should also differ in each direction; however, for the sake of simplicity,
we will keep it constant as it will be sufficient for testing purposes to consider different
Young’s modulus. The variational formulation of (2.2), assuming that the entire material
in Ω is orthotropic, becomes:

Find u ∈ H1
ΓD

(Ω) such that, for all v ∈ H1
ΓD

(Ω):∫
Ω 2µ1∂1u1∂1v1 + λ(∂1u1 + ∂2u2)(∂1v1 + ∂2v2) dx

+
∫
Ω 2µ2∂2u2∂2v2 + γ(∂2u1 + ∂1u2)(∂1v2 + ∂2v1) dx

=
∫
Ω ρg · v dx

(2.16)

For our computations, we consider, instead of Lamé coefficients λ, µ, the Young’s
modulus Ei and the Poisson ratio ν (this latter one fixed to 0.3). The coefficients are
related in the following way (in the isotropic case)

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)

in our simplified case we will consider:

µi =
Ei

2(1 + ν)
, λ =

Eων

(1 + ν)(1− 2ν)
,

where Eω stands for the Young’s modulus of the fixed part ω, and E1 and E2 will be the
Young’s modulus in the horizontal (i = 1) and vertical (i = 2) directions for the support
S. This will be (roughly) a measure of the strength of the support S in each direction.

2.2 The Level-Set Method for Shape Optimization

The level-set method, proposed by Osher and Sethian (see [10]) for tracking fronts and
free boundaries, is used for various applications in image processing and fluid mechanics,
among others. In structural optimization, it has been suggested as a powerful tool by
Allaire, Jouve, and Toader (see [2]), which allows for shape and topological optimization
in this context with reduced computational cost, avoiding unnecessary remeshing.

In this context, consider a computational working domain D ⊂ Rd in which all admis-
sible shapes S are included, such that the loaded boundaries ΓD,ΓN are included in ∂D.
The mesh on D is fixed, and the shape S of the actual support is implicitly defined by a
level set function ϕ, defined on D, as follows:

ϕ(x) < 0⇔ x ∈ S

ϕ(x) = 0⇐ x ∈ ∂S ∩D

ϕ(x) > 0⇔ x ∈ D \ S

We are interested in computing the shape derivative J ′(S)(θ) given by (2.11), and we
need to compute the solution of the system (2.2). However, since Ω is implicitly defined
by the level set function, no mesh is available to solve it. To overcome this issue, we
employ the Ersatz approach. This involves filling the complementary part D \ (S ∪ ω)
with an extremely soft material, characterized by Hooke’s tensor εA with ε≪ 1 (typically
ε = 10−3), and then we solve the problem defined on the entire computational domain D:

−div (Aεe(uspt)) = ρg in D,

uspt = 0 on ΓD,

σ(uspt)n = 0 on ΓN ,

(2.17)
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with Aε(x) :=

{
A = Aωχω +ASχS if x ∈ Ω εAω

if x ∈ D \ Ω.
This method is proven to be consistent (see [3]).
To track the evolution of the shape S as we perform the minimization of the cost

functional L, we must relate the movement of the level-set function ϕ for Sk−1 (the shape
of the supports at the (k−1) iteration of the numerical algorithm) and the normal velocity
θ = −vn given by (2.12). This ensures that the new shape Sk := Sk−1

tθ is such that L(Sk) <
L(Sk−1). So, to transport the level set function ϕ along the gradient flow θ = −vn, we
solve the following linear transport equation (introducing a time variable for the step t):

∂tϕ+ θ · ∇ϕ = 0 on [0, τ ]×D

which, for the given θ, provides the Hamilton-Jacobi equation:

∂tϕ− v∥∇ϕ∥ = 0 on [0, τ ]×D (2.18)

with initial condition ϕ(0, x) taken as the input level set (without time). The new level
set will correspond to ϕ(τ, x).

Finally, it is important to note that to solve equation (2.18), we need a field θ defined
on the entire box D, instead of the expression (2.12) deduced from the shape derivative
(2.11), which is defined only on ∂S ∩ ωc. To this end, following [7], we perform a process
called extension-regularization of the velocity, solving the problem:Find Q ∈ H1(Rd) such that:∫

D
α2
reg∇Q · ∇v +Q · v dx = L′(Γ)(vn) ∀v ∈ H1(Rd)

(2.19)

where the parameter αreg is the minimal element size from the mesh of D.
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We can summarize the procedure in the following algorithm:

Algorithm 1 Shape Optimization of an Orthotropic Support Structure for a Fixed Part
Minimizing the Compliance

Require: S0, a given support structure and its level set function ϕ0; ω, the fixed part.
while k ≤ kmaxiter do

Solve elasticity system on Ωk = Sk ∪ ω.
Compute the normal velocity (descent direction) vk using formula (2.12) and solving
the extension-regularization problem (2.19).
Set t = initialstep.
while j ≤ jmax (Loop for Line search) do

Let ϕk
j := ϕk.

Transport ϕk solving (2.18) with θ = −vkn using τ = t.
Compute Hooke’s tensor Ak associated with the transported ϕk.
if L(Ωk

tθ) < (1 + tol)L(Ωk−1) then
ϕk ← Transport(ϕk)
break

else
ϕk ← ϕk

j (Undo the transport).
t← max(0.5t, tmin)

end if
j ← j + 1

end while
New shape is defined by x ∈ D : ϕk(x) < 0.
Update parameters (augmented Lagrangian case)
k ← k + 1

end while

2.3 Numerical Testing

In the following, we consider a few tests in order to study how much a solution changes
when the horizontal-vertical properties (the Young modulus Ei) change in orthotropic
cases compared to the isotropic case: E1 = E2. We present two different geometries with
several initialization procedures, recalling that, in general, we obtain local minima. For

simplicity, in all the simulations, we take ν = 0.3, γ =
µ1 + µ2

2
and then we will test how

the structure behaves when the Young modulus of the supports changes (this is, we only
modify E1, E2 or, equivalently, µ1, µ2; where the index 1 is related to horizontal strength
and 2 is related to vertical strength).

All the simulations are performed using the Finite Element software FreeFEM++ (see
[8]), and the transport of the level set is performed using the package Advect [9].

2.3.1 The Diagonal Shape

In this case, the geometry of the fixed part to be supported is a diagonal bar, with ho-
mogeneous Dirichlet boundary conditions at the bottom and right side of the domain
D = [0, 1]× [0, 1], and the rest have homogeneous Neumann boundary conditions.

We consider two level set initializations, both of which are essentially the domain D
covered by the support material with holes distributed with different symmetries:
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• Case 1:

Figure 1: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 2: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 3: Anisotropic case: E1 = 0.1, E2 = 1.0
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Figure 4: Isotropic case: E1 = E2 = 1.0

• Case 2:

Figure 5: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 6: Anisotropic case: E1 = 1.0, E2 = 0.1
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Figure 7: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 8: Isotropic case: E1 = E2 = 1.0

2.3.2 The L Shape

In this case, the geometry of the fixed part to be supported is an L shape with homogeneous
Dirichlet boundary condition at the bottom of the domain D = [0, 1]× [0, 1], and the rest
of the boundary has homogeneous Neumann boundary conditions.

• Case 1:

Figure 9: Initial level set function
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For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 10: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 11: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 12: Isotropic case: E1 = E2 = 1.0

• Case 2:
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Figure 13: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 14: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 15: Anisotropic case: E1 = 0.1, E2 = 1.0
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Figure 16: Isotropic case: E1 = E2 = 1.0

In this first series of examples, we observe some common behavior:

• The lowest value of the cost functional is reached in the isotropic case.

• Qualitatively, isotropic and ’vertically stronger’ (E2 > E1) cases have similar topol-
ogy. The ‘horizontally stronger’ case obtains the highest cost and its topology is
different.

• As we mentioned before, the optimal shape could be different if the initialization is
different, as we see in the L shape case.

• The reinforced zones tend to be similar in all cases, even when qualitatively the
shapes for the supports are different.

2.3.3 The Diagonal Shape: Augmented Lagrangian

Next, we test the diagonal shape using an Augmented Lagrangian method for optimization.
This allows us to impose a fixed objective volume for the supports, considering the following
merit function to be optimized:

L(Ω, λ, µ) := J(Ω)− λ(V ol(Ω)− Vobj) +
µ

2
(V ol(Ω)− Vobj)

2

where Vobj is the objective volume and the coefficient λ is expected to converge to the
Lagrange multiplier of the restriction V = Vobj . In order to do this, the theory (see [11]),
suggests updating λk+1 as:

λk+1 = λk − µk(V ol(Ω)− Vobj),

It is important to note that in this case, it is not necessary to take a sequence of µk such
that µk → +∞. In our examples, we begin with µ = 0.1 and update every 3 iterations as
µ← 1.3µ while µ ≤ µmax = 10.0. We take in these examples:

λ0 = −0.2, λ0 = −
1

|∂S ∩ ωc|

∫
∂S∩ωc

Ae(u) : e(u) ds; µ0 =
|λ0|
2

.

We use the same configuration as before, imposing that the volume of the supports
should be 10% of the volume of the shape in the first 3 cases, then 30% in the following 3
cases, and finally 50% in the last 3 cases.
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• Case 1:

Figure 17: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 18: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 19: Anisotropic case: E1 = 0.1, E2 = 1.0
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Figure 20: Isotropic case: E1 = E2 = 1.0

• Case 2:

Figure 21: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 22: Anisotropic case: E1 = 1.0, E2 = 0.1
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Figure 23: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 24: Isotropic case: E1 = E2 = 1.0

• Case 3:

Figure 25: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):
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Figure 26: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 27: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 28: Isotropic case: E1 = E2 = 1.0

Remark: in the following three cases we have Vobj = 1.3 · Vfixed.

• Case 4:
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Figure 29: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 30: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 31: Anisotropic case: E1 = 0.1, E2 = 1.0
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Figure 32: Isotropic case: E1 = E2 = 1.0

• Case 5:

Figure 33: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 34: Anisotropic case: E1 = 1.0, E2 = 0.1
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Figure 35: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 36: Isotropic case: E1 = E2 = 1.0

• Case 6:

Figure 37: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):
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Figure 38: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 39: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 40: Isotropic case: E1 = E2 = 1.0

Remark: in the following three cases we have Vobj = 1.5 · Vfixed.

• Case 7:
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Figure 41: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 42: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 43: Anisotropic case: E1 = 0.1, E2 = 1.0
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Figure 44: Isotropic case: E1 = E2 = 1.0

• Case 8:

Figure 45: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 46: Anisotropic case: E1 = 1.0, E2 = 0.1
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Figure 47: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 48: Isotropic case: E1 = E2 = 1.0

• Case 9:

Figure 49: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):
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Figure 50: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 51: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 52: Isotropic case: E1 = E2 = 1.0

From these cases, we notice:

• As before, the best performance is obtained in isotropic cases.

• As expected, a higher target volume implies better performance.

25



• We obtain a wider variety of final configurations, with different numbers of connected
components in all cases. However, qualitatively there are no remarkable differences.

3 Conclusions

From the tests performed, we can conclude:

• For the considered problem, the best performance is obtained with an isotropic con-
figuration of the mechanical properties for the supports. Between horizontally or
vertically stronger configurations, vertically stronger ones perform better in all the
considered tests. However, in general, the obtained configurations are not signifi-
cantly different from the isotropic case.

• The zones to be supported seem to be independent of the initial topology and of the
mechanical properties of the support.

• As expected, the more material we allow for the supports, the better performance
we obtain.

Finally, we believe that more general models of anisotropy should be considered in order
to study the possibilities of improving the performance of the supports. Orthotropy is a
particular case of anisotropy, and considering only the vertical and horizontal axes as the
axes of orthotropy is a significant restriction.
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