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1 Introduction

In this report we study a problem which arises in the context of support structures in
additive manufacturing. Support structures are used in Additive Manufacturing (AM) to
ensure the quality of the final part. They are used, for example, to deal with overhanging
regions when the final part cannot be self-supporting, or, to avoid deformations on the
final part due to thermal residual stresses.
In the work [1] several mathematical models are proposed to deal with this issues, leading
to optimization problems which are numerically computed using the level set topology
optimization method [2]. In this framework, the supporting structure is assumed to be
made of an isotropic material, this is, a material with same mechanical properties in any
direction.
In this work, we consider the problem of printing a shape ω together with its supports S
such that the compliance is minimal. The material of the shape ω is considered isotropic
and the material of the supports S are considered orthotropic, this is, a material whose
mechanical properties are different between mutually orthogonal directions. This may
be a reasonable assumption in consideration as, in real manufacturing, the supports are
grid structures, which could be modeled as an equivalent volume with different material
properties on each direction. The studied case, following [1], is the minimization of the
compliance assuming the shape ω fixed, this is, we want to determine the supports for the
structure ω which has only the influence of his own weight. We explore a two dimensional
reference case to study eventual qualitative differences whenever we impose stronger ma-
terial properties on some directions, and we compare them also with the isotropic case.
This study is motivated as a part of the research project SOFIA (SOlutions pour la
Fabrication Industrielle Additive metallique), whose main objective is to contribute for
new developments in AM technologies.

2 Anisotropic Supports

Anisotropic materials are characterized by the fact that the material properties are dif-
ferent when we study their mechanical properties with respect to different directions. A
subset of this materials are the orthotropic materials, which have material properties that
differ along mutually-orthogonal axes of rotational symmetry. In contrast, isotropic ma-
terials have the same properties independently of the measuring direction.
We begin by exploring the involved formulations and main changes with respect with the
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isotropic setting.
Given a shape ω and the supports S, both being open sets of Rd (d = 2 or d = 3) with ω
made of an isotropic material and S made of an orthotropic material, such that the shape
ω in this work is fixed and only the supports S are optimized. The supported structure
is denoted Ω = S ∪ ω and, as usual, is assumed to be contained in a rectangular build
chamber D. The baseplate will always be the bottom boundary of D, and is denoted
ΓD := {x ∈ D : xd = 0}. We assume, except when mentioned, the support is clamped to
the baseplate ΓD. The other regions of the boundary of the supported structure Ω are
traction free, denoted by ΓN . In the following we consider the space, for Ω ⊂ Rd open set,
and Γ a (d− 1)-dimensional set:

H1
Γ(Ω)d :=

{
u ∈ H1(Ω)d : u = 0 on Γ

}
(2.1)

The supported structure Ω is governed by the linearized elasticity with only gravity
forces are applied to Ω. In this context, optimizing the support S for minimizing the
compliance of Ω will induce minimal overhang regions. The elastic displacement uspt of
the supported structure Ω = ω ∪ S is the unique solution in the space H1

ΓD
(Ω) to the

mechanical system: 
−div (σ(uspt)) = ρg in Ω,

uspt = 0 on ΓD,

σ(uspt)n = 0 on ΓN .

(2.2)

Where σ is the stress tensor which is related with the strain tensor e, which in the

linearized case is given by e(u) =
1

2

(
∇u+∇uT

)
, via the Hooke’s law:

σ = Ce (2.3)

where C is a fourth order tensor, usually called the elasticity tensor or simply ‘Hooke
law’ of the material. Using the minor and major symmetries of the tensor C, due to the
symmetry of the tensors σ and e, we can rewrite the relation in a vector form, using Voigt
notation (see [5]), as:

σ = Ae (2.4)

Where now A is matrix and σ, e are vectors using Voigt notation. The explicit form
of C (or A) will depend on the material properties considered and in our particular case
will be of special interest, as we are considering materials with different properties on each
‘part’ (shape or supports), this will imply in particular that we will consider (analogously
for C):

AΩ = Aωχω +ASχS ,

where χO is the indicator function for the set O. This decomposition means that the me-
chanical properties on the fixed shape ω and the optimizable supports S, will be assumed
in general different; with a sharp-interface.

When the considered material is isotropic, we can relate the quantities σ(u) with e(u)
in the form:

σ(u) = Ce(u) = 2µe(u) + λ tr (e(u)) Id = 2µe(u) + λ div u Id (2.5)

where µ, λ are the Lamé coefficients of the material. This will be the setting for the fixed
part ω.
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Remark 2.1. The variational formulation for the system (2.2) in the isotropic case is:Find u ∈ H1
ΓD

(Ω) such that, for any v ∈ H1
ΓD

(Ω):∫
Ω

2µe(u) · e(v) dx+

∫
Ω
λdiv udiv v dx =

∫
Ω
ρg · v dx

(2.6)

however, in anisotropic cases, we cannot expect to have such a compact formula.

How things change when the material is anisotropic? Let us focus on the orthotropic
case, in which we have, in Voigt notation:

σ1

σ2

σ3

σ4

σ5

σ6

 =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





e1

e2

e3

e4

e5

e6

 (2.7)

this implies, in the most general case, that the derivatives of u (and the test function v)
are weighted differently in comparison of the compact formula (2.5). We will specify this
quantities in the next section.

The mechanical performance of the structure Ω is measured by means of its structural
compliance, given by:

J(S) =

∫
ω∪S

Ae(uspt) · e(uspt)dx =

∫
ω∪S

ρg · usptdx . (2.8)

the latter equality comes from the variational formulation of the problem taking the test
function as the solution uspt. It is worth notice that therefore, this quantity is (explicitly)
independent of the Hooke’s law considered (however is implicitly dependent of it, as uspt
depends of it). The admissible supports for this problem are allowed in the following set:

Uad := {S ⊂ (D \ ω) such that, ΓD ∩ ∂S 6= ∅, ∂ω ∩ ∂S 6= ∅} (2.9)

And notice also that the objective functional, in order to avoid trivial solutions, will
be

L(S) := J(S) + ` V ol(S) (2.10)

where ` is a Lagrange multiplier (a penalization parameter or adjusted parameter in the
optimization process).

In order to minimize (2.10) with respect to the admissible supports Uad, we rely on
the concept of shape derivatives, based on the Hadamard boundary variation method (see
[6]), this is: we measure the changes on the cost given by (2.10) whenever the set S is
perturbed by a vector field θ ∈W 1,∞(Rd,Rd) in the sense:

θ 7→ Sθ := (Id+ θ)(S),

with this, we can define the concept of shape derivative of a functional:

Definition 2.2. A function F : Uad → R is shape differentiable at S if the map θ 7→ F (Sθ)
is Fréchet-differentiable at 0. The shape derivative, denoted F ′(S), satisfies the following
asymptotic expansion:

F (Sθ) = F (S) + F ′(S)(θ) + o(θ)

in a neighborhood of 0 ∈W 1,∞.
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Independent of the Hooke’s law considered, we have the following result (which can be
obtained using, for example, the formal method of Céa; see [1, 4]):

Proposition 2.3. Assuming θ ·n = 0 on ∂S∩∂ω (this is, assuming that interface between
ω and S is fixed). The shape derivative of the compliance (2.8) is given by

J ′(S)(θ) =

∫
∂S∩ωc

(−Ae(uspt) · e(uspt) + 2ρg · uspt) θ · n ds (2.11)

where uspt is the solution of (2.2) and the compliment of ω is respect to D, and ∂S ∩ωc =
∂S \ ∂ω.

Remark 2.4. It is important to notice that this formula is valid only under the assumption
that the shape ω remains fixed (which is a realistic assumption in the case when, for design
reasons, we cannot change it). If we allow to optimize ω and S simultaneously, the different
material properties between ω and S will impose additional terms to the shape derivative
and the hypothesis θ · n = 0 on the interface will be no longer valid. See [1] for details for
such problem.

Remark 2.5. Thanks to the previous propostion, we can find a descent direction θ for the
cost functional L, which is given by:

θ = −(−Ae(uspt) · uspt + 2ρg · uspt + `)n = −vn (2.12)

with this, we obtain:

L′(S)(θ) =

∫
∂S∩ωc

−v2ds < 0

which, using the asymptotic expansion from definition 2.2, allows, for a small enough t,
obtain a shape Stθ with a smaller cost: L(Stθ) < L(S).

2.1 Orthotropic material: 2d case

When we consider a 2-dimensional scenario we are saying that the case in study is a
plane strain problem, this is, a problem where the displacement takes places only in two
orthogonal directions. This is equivalent to the following definition.

Definition 2.6. If the strain state at a material particle is such that the only non-zero
strain components act in one plane only, the particle is said to be in plane strain.

Choosing the plane XY as the plane where the strains are non-zero, we have

exz = eyz = ezz = 0 (2.13)

So, the strain matrix becomes

e =

exx exy 0
exy eyy 0
0 0 0

 (2.14)

and, in this case, the Hooke’s law becomes, in Voigt notation:σ11

σ22

σ12

 =

2µ1 + λ λ 0
λ 2µ2 + λ 0
0 0 γ

 e11

e22

2e12

 (2.15)
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In principle λ should also be different on each direction, however for sake of simplicity
we let it constant as for testing purposes will be enough considering different Young mod-
ulus. The variational formulation of (2.2), if we assume that the whole material in Ω is
orthotropic, becomes:

Find u ∈ H1
ΓD

(Ω) such that, for all v ∈ H1
ΓD

(Ω):∫
Ω 2µ1∂1u1∂1v1 + λ(∂1u1 + ∂2u2)(∂1v1 + ∂2v2) dx

+
∫

Ω 2µ2∂2u2∂2v2 + γ(∂2u1 + ∂1u2)(∂1v2 + ∂2v1) dx

=
∫

Ω ρg · v dx

(2.16)

For our computations, we consider, instead of Lamé coefficients λ, µ, the Young mod-
ulus Ei and the Poisson ratio ν (this latter one fixed to 0.3). The coefficients are related
in the following way (in the isotropic case)

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)

in our simplified case we will consider:

µi =
Ei

2(1 + ν)
, λ =

Eων

(1 + ν)(1− 2ν)

where Eω stands for the fixed part ω Young’s modulus and E1 and E2 will be the Young’s
modulus on horizontal (i = 1) and vertical (i = 2) directions for the support S, this will
be (roughly) a measure of the strength of the support S on each direction.

2.2 The level-set method for shape optimization

The level-set method has been proposed by Osher and Sethian (see [10]) for tracking fronts
and free boundaries, it is used for several applications in image processing, fluid mechanics,
etc. In structural optimization it has been proposed as a powerful tool by Allaire, Jouve
and Toader (see [2]) which allows to perform shape and topological optimization in this
context with a less computational cost (avoiding unnecessary remeshing).
In this context, let us consider a computational working domain D ⊂ Rd in which all
admissible shapes S are included and such that the loaded boundaries ΓD,ΓN are included
in ∂D. The mesh on D is fixed and the shape S of the actual support is implicitly defined
by a level set function φ, defined on D, by:

φ(x) < 0⇔ x ∈ S
φ(x) = 0⇐ x ∈ ∂S ∩D
φ(x) > 0⇔ x ∈ D \ S

As we are interested to compute the shape derivative J ′(S)(θ) given by (2.11), we need
to compute the solution of the system (2.2), however as Ω is implicitly defined by the level
set function, no mesh is available to solve it. In order to overcome this problem, we consider
the Ersatz approach, which consists on filling the the complementary part D \ (S∪ω) with
a with a very soft material with Hooke’s tensor εA with ε � 1 (typically ε = 10−3), and
therefore we solve the problem, defined on the whole computational domain D:

−div (Aεe(uspt)) = ρg in D,

uspt = 0 on ΓD,

σ(uspt)n = 0 on ΓN ,

(2.17)
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with Aε(x) :=

{
A = Aωχω +ASχS if x ∈ Ω

εAω if x ∈ D \ Ω.

This method is proved to be consistent (see [3]).

In order to track the evolution of the shape S as we perform the minimization of the
cost functional L, we have to relate the movement of the level-set function φ for Sk−1 (the
shape of the supports at the (k− 1) iteration of the numerical algorithm) and the normal
velocity θ = −vn given by (2.12), which ensures that the new shape Sk := Sk−1

tθ is such that
L(Sk) < L(Sk−1). So, as we want to transport the level set function φ along the gradient
flow θ = −vn, we have to solve the following linear transport equation (introducing a time
variable for the step t):

∂tφ+ θ · ∇φ = 0 on [0, τ ]×D

which, for the given θ, provides the Hamilton-Jacobi equation:

∂tφ− v‖∇φ‖ = 0 on [0, τ ]×D (2.18)

with initial condition φ(0, x) taken as the input level set (without time). The new level
set will correspond to φ(τ, x).

Finally, it is important to notice that, in order to solve the equation (2.18) we need to
have a field θ defined on the whole box D, instead of the expression (2.12) deduced from
the shape derivative (2.11) which is defined only on ∂S ∩ωc. To this end, following [7] we
perform a process called extension-regularization of the velocity, solving the problem:Find Q ∈ H1(Rd) such that:∫

D
α2
reg∇Q · ∇v +Q · v dx = L′(Γ)(vn) ∀v ∈ H1(Rd)

(2.19)

where the parameter αreg is the minimal element size from the mesh of D.
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We can resume the procedure in the following algorithm:

Algorithm 1 Shape optimization of an orthotropic support structure for a fixed part
minimizing the compliance

Require: S0, a given support structure and its level set function φ0; ω the fixed part.
while k ≤ kmaxiter do

Solve elasticity system on Ωk = Sk ∪ ω.
Compute the normal velocity (descent direction) vk using formula (2.12) and solving
the extension-regularization problem (2.19).
Put t = initial step
while j ≤ jmax (Loop for Line search) do

Let φkj := φk.

Transport φk solving (2.18) with θ = −vkn using τ = t.
Compute Hooke’s tensor Ak associated with the transported φk.
if L(Ωk

tθ) < (1 + tol)L(Ωk−1) then
φk ← Transport(φk)
break

else
φk ← φkj (Undo the transport).
t← max(0.5t, tmin)

end if
j ← j + 1

end while
New shape is defined by

{
x ∈ D : φk(x) < 0

}
.

Update parameters (augmented Lagrangian case)
k ← k + 1

end while

2.3 Numerical Testing

In the following, we consider a few tests in order to study how much a solution changes
when the horizontal-vertical properties (the Young modulus Ei) changes in the orthotropic
cases with respect with the isotropic case: E1 = E2. We present two different geometries
with several initialization procedures, recalling that, in general, we are obtaining local

minima. For simplicity we take, in all the simulations, ν = 0.3, γ =
µ1 + µ2

2
and then

we will test how behaves the structure when the Young modulus of the supports changes
(this is, we only modify E1, E2 or, equivalently, µ1, µ2; where the index 1 is related to
horizontal strength and 2 is related to vertical strength).
All the simulations are performed using the Finite Element software FreeFEM++ (see [8]),
the transport of the level set is performed using the package Advect [9].

2.3.1 The diagonal shape

In this case the geometry of the fixed part to be supported is a diagonal bar, with
homogeneous Dirichlet boundary condition at the bottom and rightside of the domain
D = [0, 1]× [0, 1], the rest have an homogeneous Neumann boundary condition.

We consider two level set initializations, both of them are basically the domain D
covered by the support material with holes distributed with different symmetries:
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• Case 1:

Figure 1: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 2: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 3: Anisotropic case: E1 = 0.1, E2 = 1.0
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Figure 4: Isotropic case: E1 = E2 = 1.0

• Case 2:

Figure 5: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 6: Anisotropic case: E1 = 1.0, E2 = 0.1
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Figure 7: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 8: Isotropic case: E1 = E2 = 1.0

2.3.2 The L shape

In this case the geometry of the fixed part to be supported is an L shape with homogeneous
Dirichlet boundary condition at the bottom of the domain D = [0, 1] × [0, 1], the rest of
the boundary have an homogeneous Neumann boundary condition.

• Case 1:

Figure 9: Initial level set function
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For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 10: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 11: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 12: Isotropic case: E1 = E2 = 1.0

• Case 2:
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Figure 13: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 14: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 15: Anisotropic case: E1 = 0.1, E2 = 1.0
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Figure 16: Isotropic case: E1 = E2 = 1.0

In this first series of examples we can observe some common behavior:

• The lowest value of the cost functional is reached on the isotropic case.

• Qualitatively, isotropic and ’vertically stronger’ (E2 > E1) cases have similar topol-
ogy. ’Horizontally stronger’ case obtains the highest cost and their topology is dif-
ferent.

• As we have mentioned before, the optimal shape could be different if the initialization
is different, as we can see on the L shape case.

• The reinforced zones tends to be similar in all cases, even when qualitatively the
shapes for the supports are different.

2.3.3 The diagonal shape: Augmented Lagrangian

In the following, we will test the diagonal shape, now using an Augmented Lagrangian
method for the optimization, this allows to impose a fixed objective volume for the sup-
ports, considering merit function to be optimized:

L(Ω, λ, µ) := J(Ω)− λ(V ol(Ω)− Vobj) +
µ

2
(V ol(Ω)− Vobj)2

where Vobj is the objective volume and the coefficient λ is expected to converge to the
Lagrange multiplier of the restriction V = Vobj . In order to do this, the theory (see [11]),
suggest to update λk+1 as:

λk+1 = λk − µk(V ol(Ω)− Vobj),

is important to notice that, in this case, it is not necessary to take a sequence of µk such
that µk → +∞. In our examples we begin with µ = 0.1 and update each 3 iterations as
µ← 1.3µ while µ ≤ µmax = 10.0. We take in this examples:

λ0 = −0.2, λ0 = − 1

|∂S ∩ ωc|

∫
∂S∩ωc

Ae(u) : e(u) ds; µ0 =
|λ0|
2
.

We take the same configuration as before, imposing that the volume of the supports
should be 10% of the volume of the shape in the first 3 cases, then 30% in the following 3
cases and finally 50% in the last 3 cases.
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• Case 1:

Figure 17: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 18: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 19: Anisotropic case: E1 = 0.1, E2 = 1.0
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Figure 20: Isotropic case: E1 = E2 = 1.0

• Case 2:

Figure 21: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 22: Anisotropic case: E1 = 1.0, E2 = 0.1
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Figure 23: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 24: Isotropic case: E1 = E2 = 1.0

• Case 3:

Figure 25: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):
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Figure 26: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 27: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 28: Isotropic case: E1 = E2 = 1.0

Remark: in the following three cases we have Vobj = 1.3 · Vfixed.

• Case 4:
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Figure 29: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 30: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 31: Anisotropic case: E1 = 0.1, E2 = 1.0
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Figure 32: Isotropic case: E1 = E2 = 1.0

• Case 5:

Figure 33: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 34: Anisotropic case: E1 = 1.0, E2 = 0.1

19



Figure 35: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 36: Isotropic case: E1 = E2 = 1.0

• Case 6:

Figure 37: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):
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Figure 38: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 39: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 40: Isotropic case: E1 = E2 = 1.0

Remark: in the following three cases we have Vobj = 1.5 · Vfixed.

• Case 7:
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Figure 41: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 42: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 43: Anisotropic case: E1 = 0.1, E2 = 1.0

22



Figure 44: Isotropic case: E1 = E2 = 1.0

• Case 8:

Figure 45: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):

Figure 46: Anisotropic case: E1 = 1.0, E2 = 0.1
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Figure 47: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 48: Isotropic case: E1 = E2 = 1.0

• Case 9:

Figure 49: Initial level set function

For this configuration, we obtain the following final distribution of supports and
convergence curves (volume and cost functional):
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Figure 50: Anisotropic case: E1 = 1.0, E2 = 0.1

Figure 51: Anisotropic case: E1 = 0.1, E2 = 1.0

Figure 52: Isotropic case: E1 = E2 = 1.0

From this cases we can notice:

• As before, best performance is obtained on isotropic cases.

• As expected, highest target volume implies better performance.
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• We obtain more variety of final configurations, with in some cases different number
of connected components in all cases, however, qualitatively there are not remarkable
differences.

3 Conclusions

From the performed tests we can conclude that:

• For the considered problem, the best performance is obtained with an isotropic con-
figuration of the mechanical properties for the supports. Between horizontally or
vertically stronger configurations, vertically ones perform better in all the consid-
ered tests, but however, in general the obtained configurations are not notoriously
different with respect to the isotropic case.

• The zones to be supported seems to be independent of the initial topology and of
the mechanical properties of the support.

• As expected, as more material we allow for the supports, the better performance we
obtain.

Finally, we consider that more general models of anisotropy should be considered in order
to study the possibilities on improving the performance of the supports, orthotropy is a
particular case of anisotropy as well as the consideration of only the vertical and horizontal
axis as the axis of orthotropy is a strong restriction.
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