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ABSTRACT

In this work we introduce a statistical framework in order to analyze the spatial redundancy in natural
images. This notion of spatial redundancy must be defined locally and thus we give some examples
of functions (auto-similarity and template similarity) which, given one or two images, computes
a similarity measurement between patches. Two patches are said to be similar if the similarity
measurement is small enough. To derive a criterion for taking a decision on the similarity between
two patches we present an a contrario model. Namely, two patches are said to be similar if the
associated similarity measurement is unlikely to happen in a background model. Choosing Gaussian
random fields as background models we derive non-asymptotic expressions for the probability
distribution function of similarity measurements. We introduce a fast algorithm in order to assess
redundancy in natural images and present applications in denoising, periodicity analysis and texture
ranking.

( )
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1 Introduction

In many image processing applications, using local information combined with the knowledge of long-range spatial
arrangement is crucial. The spatial redundancy on sub-images called patches, encodes the small scale structure of the
image as well as its large scale organization. More precisely, local information is encoded in the patch content and the
large scale organization is contained in the redundancy of this information across the patches of the image. For example,
patch-based inpainting techniques, such as [10, 33], assign patches of a known region to patches of an unknown region.
Namely, each patch position on the border of the unknown region is associated to an offset corresponding to the best
patch according to the partial available information. In [33] the authors replace the search on the whole image by a
search among the most redundant offsets in the known region. This allows the authors of [33] to retrieve long-range
spatial structure in the unknown part of the image. Another famous application of spatial redundancy can be found in
denoising, with the seminal work (Non-Local means) of Buades and coauthors [5], in which the authors propose to
replace a noisy patch by the mean over all spatially redundant patches.
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Last but not least, spatial redundancy is of crucial importance in exemplar-based texture synthesis. In this paper we
define textures as images containing repeated patterns but also reflecting randomness in the arrangement of these
patterns. Among textures, one important class is given by the microtextures in which no individual object can be clearly
delimited. In the periodic case, a more precise definition will be given in Definition 4. These microtexture models can
be described by Gaussian random fields [62, 27, 42, 68]. Parametric models using features such as wavelet transform
coefficients [55], scattering transform coefficients [59] or convolutional neural network outputs [29] have been proposed
in order to derive image models with more structure. On the other hand, non-parametric patch-based algorithms such as
[25, 24, 38, 56, 28] propose to use most similar patches in order to fill the new texture images, similarly to inpainting
techniques.

All these techniques lift images in spaces with dimensions higher than the original image space, and make use of the
redundancy of the lifting to extract important structural information. There exist two main types of lifting: feature
extraction or patch extraction. Feature extraction relies on the use of filters, linear or non-linear, which aim at selecting
substantial local information. Among popular kernels are oriented and multiscale filters, which happened to be identified
as early processing in mammal vision systems [13, 35]. These last years have seen the rise of neural networks in which
the filter dictionary is no longer given as an input but learned through a data-driven optimization procedure [60]. On the
other hand, patch-based methods rely on the assumption that image processing tasks are simplified when conducted in
the higher dimensional patch space.

Every analysis performed in a lifted space, built via feature extraction or patch extraction, relies on the comparison of
points in this space. In patch-based lifted spaces, we aim at finding dissimilarity functions such that two patches are
visually close if the dissimilarity measurement between them is small. In this paper we focus on the square Euclidean
distance but other choices could be considered [64, 65, 15, 17].

This leads us to consider a statistical hypothesis testing framework to assess similarity (or dissimilarity) between
patches. The null hypothesis is defined as the absence of local structural similarities in the image. Reciprocally the
alternative hypothesis is defined as the presence of such similarities. There exists a wide variety of tractable models
exhibiting no similarity at long-range, like Gaussian random fields [62, 27, 42, 68] or spatial Markov random fields [11],
whereas sampling and inference in very structured models rely on optimization procedures and may be computationally
expensive, their distribution being the limit of some Markov chain [70, 47] or some stochastic optimization procedure
[4]. This encourages us to consider an a contrario approach, i.e. we do not consider the alternative hypothesis and
focus on rejecting the null hypothesis. This framework was successfully applied in many areas of image processing
[14, 19, 20, 1, 7] and aims at identifying structure events in images. This statistical model takes its roots in the
fundamental work of the Gestalt theory [21]. One of its principle, the non-accidentalness principle [46] or Helmholtz
principle [69, 20], states that no structure is perceived in a noise model. To be precise, in our case of interest, we want
to assess that no spatial redundancy is perceived in microtexture models. This methodology allows us to only design a
locally structured background model to define a null hypothesis. Combining a contrario principles and patch-based
measures, we propose an algorithm to identify auto-similarities in images.

We then turn to the implementation of such an algorithm and illustrate the diversity of its possible applications with three
examples: denoising, lattice extraction, and periodicity ranking of textures. In our denoising application we propose a
modification of the celebrated Non-Local means algorithm [5] (NL-means) by inserting a threshold in the selection of
similar patches. Using an a contrario model we are able to give probabilistic control on the patch reconstruction.

We then focus on periodicity detection and, more precisely, lattice extraction. Periodicity in images was described as an
important feature in early mathematical vision [32]. Most of the proposed methods to analyze periodicity rely on global
measurements such as the modulus of the Fourier transform [49] or the autocorrelation [43]. These global techniques
are widely used in crystallography where lattice properties, such as the angle between basis vectors, are fundamental
[50, 58]. Since all of our measurements are local, we are able to identify periodic similarities even in images which
are not periodic but present periodic parts, for instance if two crystal structures are present in a single crystallography
image. We draw a link between the introduced notion of auto-similarity and the inertia measurement in co-occurence
matrices [32]. We then introduce our lattice proposal algorithm which combines a detection map, i.e. the output of our
redundancy detection algorithm, and graphical model techniques, as in [53], in order to extract lattice basis vectors.

Our last application concerns texture ranking. Since the definition of texture is broad and covers a wide range of images,
it is a natural question to identify criteria in order to distinguish textures. In [45], the authors use a classical measure for
distinguishing textures: regularity. In this work, we narrow this criterion and restrict ourselves to the study of periodicity
in texture images. The proposed graphical model inference naturally gives a quantitative measurement for texture
periodicity ranking. We give an example of ranking on 25 images of the Brodatz set.

Our paper is organized as follows. An a contrario framework for local similarity detection is proposed in Section 2. In
the a contrario framework, a background model, corresponding to the null hypothesis, is required. The consequence of
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choosing Gaussian models as background models is investigated and a redundancy detection algorithm is proposed
in Section 3. The rest of the paper is dedicated to some examples of application of the proposed framework. After
reviewing one of the most popular method in image denoising we introduce a denoising algorithm in Section 4.1
and present our experimental results in Section 4.2. Local dissimilarity measurements can be used as periodicity
detectors. The link between the locality of the introduced functions and the literature on periodicity detection problems
is investigated in Section 5.1. An algorithm for detecting lattices in images is given in Section 5.2 and numerical results
are presented in Section 5.3. In our last experiment in Section 5.4, we introduce a criterion for measuring texture
periodicity. We conclude our study and discuss future work in Section 6.

2 An a contrario framework for auto-similarity

We first introduce a notion of dissimilarity between patches of an input image.

Definition 1 (Auto-similarity) Let u be an image defined over a domain Ω “ J0,M ´ 1K2 Ă Z2, with M P Nzt0u.
Let ω Ă Z2 be a patch domain. We introduce Pωpuq “ p 9upyqqyPω the patch at position ω in the periodic extension of u
to Z2, denoted by 9u. We define the auto-similarity with patch domain ω and offset t P Z2 by

ASpu, t, ωq “ }Pt`ωpuq ´ Pωpuq}
2
2 . (1)

The auto-similarity computes the distance between a patch of u defined on a domain ω and the patch of u defined by
the domain ω shifted by the offset vector t.

In what follows, we introduce an a contrario framework on the auto-similarity. This framework will allow us to derive
an algorithm for detecting spatial redundancy in natural images. In this section we fix an image domain Ω Ă Z2 and a
patch domain ω Ă Ω. We recall that our final aim is to design a criterion that will answer the following question: are
two given patches similar? This criterion will be given by the comparison between the value of a dissimilarity function
and a threshold a. We will define the threshold a so that few similarities are identified in the null hypothesis model, i.e.
similarity does not occur “just by chance”. Thus we can reformulate the initial question: is the similarity output of a
dissimilarity function between two patches small enough? Or, to be more precise, how can we set the threshold a in
order to obtain a criterion for assessing similarity between patches?

This formulation agrees with the a contrario framework [21] which states that geometrical and/or perceptual structure
in an image is meaningful if it is a rare event in a background model. This general principle is sometimes called
the Helmholtz principle [69] or the non-accidentalness principle [46]. Therefore, in order to control the number of
similarities identified in the background model, we study the probability density function of the auto-similarity function
with input random image U over Ω. We will denote by P0 the probability distribution of U over RΩ, the images over Ω.
We will assume that P0 is a microtexture model, see Definition 4 below for a precise definition of such a model. We
define the following significant event which encodes spatial redundancy: ASpu, t, ωq ď aptq, where a, the threshold
function, is defined over the offsets (t P Z2) but also depends on other parameters such as ω or P0 . The dependency
of a with respect to t cannot be omitted. For instance, even in a Gaussian white noise W , the probability distribution
function of ASpW, t, ωq depends on t.

The Number of False Alarms (NFA) is a crucial quantity in the a contrario methodology. A false alarm is defined as an
occurrence of the significant event in the background model P0. We recall that in our model the significant event is
patch redundancy. This test must be conducted for every possible configurations of the significant event, i.e. in our
case we test every possible offset t. The NFA is then defined as the expectation of the number of false alarms over all
possible configurations. Bounding the NFA ensures that the probability of identifying k offsets with spatial redundancy
is also bounded, see Proposition 1. In what follows we give the definition of the NFA in the spatial redundancy context.

Definition 2 (NFA) Let U „ P0, where P0 is a background microtexture model. We define the auto-similarity
probability map AP for any t P Ω, ω Ă Ω and a P RΩ by

APpt, ω, aq “ P0 rASpU, t, ωq ď aptqs . (2)

We define the auto-similarity expected number of false alarms ANFA by

ANFApω, aq “
ÿ

tPΩ

APpt, ω, aq . (3)

3
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Note that APpt, ω, aq corresponds to the probability that ω`t is similar to ω in the background model U . For any t P Ω,
the cumulative distribution function of the auto-similarity random variable ASpU, t, ωq under P0 evaluated at value αptq
is given by APpt, ω, αptqq. We denote by q ÞÑ AP´1

pt, ω, qq the inverse cumulative distribution function, potentially
defined by a generalized inverse (AP´1

pt, ω, qq “ inftαptq P R, APpt, ω, αptqq ě qu), of the auto-similarity random
variable for a fixed offset t, with q P p0, 1q a quantile. We now have all the tools to control the number of detected
offsets in the background model.

Definition 3 (Detected offset) Let u P RΩ be an image, ω Ă Ω a patch domain, and a P RΩ. An offset t is said to be
detected with respect to a, if ASpu, t, ωq ď aptq.

Note that a detected offset in U „ P0 corresponds to a false alarm in the a contrario model. In what follows we suppose
that the cumulative distribution function of ASpU, t, ωq is invertible for every t P Ω. This ensures that for any t P Ω
and q P p0, 1q we have

AP
`

t, ω,AP´1
pt, ω, qq

˘

“ q . (4)

Proposition 1 Let NFAmax ě 0 and for all t P Ω define aptq “ AP´1
pt, ω,NFAmax {|Ω|q. We have that for any

n P Nzt0u,

ANFApω, aq “ NFAmax and P0 r“at least n offsets are detected in U” s ď
NFAmax

n
.

Proof: Using (3), and aptq “ AP´1
pt, ω,NFAmax {|Ω|q, we get

ANFApω, aq “
ÿ

tPΩ

APpt, ω, aq “
ÿ

tPΩ

AP
`

t, ω,AP´1
pt, ω,NFAmax {|Ω|q

˘

“ NFAmax ,

where the last equality is obtained using (4). Concerning the upper-bound, we have, using the Markov inequality and
(2), for any n P Nzt0u

P0 r“at least n offsets are detected in U” s “ P0

«

ÿ

tPΩ

1ASpU,t,ωqďaptq ě n

ff

ď

ř

tPΩ E
“

1ASpU,t,ωqďaptq
‰

n
ď

NFAmax

n
,

where 1ASpU,t,ωqďaptq “ 1 if ASpU, t, ωq ď aptq and 0 otherwise. ˝

Thus, setting a as in Proposition 1, we have that an offset t P Ω is detected for an image u P RΩ if

ASpu, t, ωq ď AP´1
pt, ω,NFAmax {|Ω|q . (5)

This a contrario detection framework can then be simply rewritten as 1) computing the auto-similarity function with
input image u, 2) thresholding the obtained dissimilarity map with the inverse cumulative distribution function of the
computed dissimilarity function under P0. The computed threshold depends on the offset and Proposition 1 ensures
probabilistic guarantees on the expected number of detections under P0. Using the inverse property of the inverse
cumulative distribution function and (5), we obtain that an offset is detected if and only if

P0 rASpU, t, ωq ď ASpu, t, ωqs “ AP pt, ω,ASpu, t, ωqq ď NFAmax {|Ω| . (6)

Therefore, the thresholding operation can be conducted either on ASpu, t, ωq, see (5), or on AP pt, ω,ASpu, t, ωqq,
see (6). This property will be used in Section 3.2 to define a similarity detection algorithm based on the evaluation of
ASpu, t, ωq.

3 Gaussian model and detection algorithm

3.1 Choice of background model

In this section we compute AP pt, ω, αq, i.e. the cumulative distribution function of the similarity function under the
null hypothesis model, with a Gaussian background model. Indeed, if the background model is simply a Gaussian white
noise the similarities identified by the a contrario algorithm are the ones that are not likely to be present in the Gaussian
white noise image model. More generally, we consider stationary Gaussian random fields defined in the following way:
we introduce an image f over RΩ which contains the microtexture information we want to discard in our a contrario
model. In what follows we give the definition of the microtexture model associated to f .

4
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Definition 4 (Microtexture model) Let f P RΩ, we define the associated microtexture model U by setting, U “ f ˚W ,
where ˚ is the periodic convolution operator over Ω given by v ˚ wpxq “

ř

yPΩ 9vpyq 9wpx´ yq and W is a white noise
over Ω, i.e. pW pxqqxPΩ are i.i.d. N p0, 1q random variables.

Given an image u P RΩ, a microtexture model can be derived considering

mu “
ÿ

xPΩ

upxq{|Ω| , and U “ |Ω|´1{2pu´muq ˚W . (7)

Note that if U is given by (7) we have for any x,y P Ω

E rUpxqs “ 0 and Cov rUpxq, Upyqs “ |Ω|´1
ÿ

zPΩ

p 9upzq ´muqp 9upz ´ py ´ xqq ´muq . (8)

We refer to [27] for a mathematical study of this model.

(a) (b) (c)

Figure 1: Examples of microtexture models. In (a) we present an original 256ˆ 256 image. In (b) and (c) we derive
two microtexture models. In (b) we present a Gaussian white noise and in (c) the microtexture model given by (7). Note
that (c) shows more local structure than (b).

3.2 Detection algorithm

In this section, Ω is a finite square domain in Z2. We fix ω Ă Ω. We also define f , a function over Ω. We consider the
Gaussian random field U “ f ˚W , where W is a Gaussian white noise over Ω. We denote by Γf the autocorrelation of
f , i.e. Γf “ f ˚ f̌ where for any x P Ω, f̌pxq “ fp´xq. We introduce the offset correlation function ∆f defined for
any t,x P Ω by

∆f pt,xq “ 2Γf pxq ´ Γf px ` tq ´ Γf px ´ tq . (9)

The following proposition, proved in [15], gives the explicit probability distribution function of the squared `2 auto-
similarity.

Proposition 2 (Squared `2 auto-similarity function exact probability distribution function) Let Ω “ J0,M´1K2

with M P Nzt0u, ω Ă Ω, f P RΩ and U “ f ˚W where W is a Gaussian white noise over Ω. Then, for any t P Ω,
ASpU, t, ωq has the same distribution as

ř|ω|´1
k“0 λkpt, ωqZk, with Zk independent chi-square random variables with

parameter 1 and λkpt, ωq the eigenvalues of the covariance matrix Ct associated with function ∆f pt, ¨q restricted to ω,
defined in (9), i.e for any x1,x2 P ω, Ctpx1, x2q “ ∆f pt,x1 ´ x2q.

As a consequence if f “ δ0, i.e. U is a Gaussian white noise, and tx` t,x P ωu X ω “ H, i.e. there is no overlapping
between the patch domain ω and its shifted version, then ASpU, t, ωq is a chi-square random variable with parameter
|ω|.

In order to compute the cumulative distribution function of a quadratic form of Gaussian random variables we must deal
with two issues: 1) the computation of the eigenvalues λkpt, ωq might be time-consuming and efficient methods must
be developed ; 2) the exact computation of the cumulative distribution function of a quadratic form of Gaussian random
variables requires the use of heavy integrals, see [36]. In [15] a projection method is introduced in order to easily

5
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(a) (b) (c) (d) (e)

Figure 2: Outputs of Algorithm 1. In (a) we present an original 256ˆ 256 image. In (b) we present the associated
microtexture model given by (7). In (c) the green patch is the input patch, i.e. Pωpuq. In this experiment NFAmax is set
to 1. In (d), respectively (e), we present the output Pmap, respectively Dmap, of Algorithm 1. In (c) we show in red the
patches corresponding to the identified offsets in Pmap.

compute approximated eigenvalues, with equality when ω “ Ω. The so-called Wood F method (see [66, 3]) shows the
best trade-off between accuracy and computational cost to approximate the cumulative distribution function of quadratic
forms in Gaussian random variables with given weights. It is a moment method of order 3, fitting a Fisher-Snedecor
distribution to the empirical one. Note that in [44] another moment method of order 3 is proposed. In what follows, we
assume that we can compute the cumulative distribution function of ASpU, t, ωq and we refer to [15] for further details.

In Algorithm 1 we propose an a contrario framework for spatial redundancy detection. We suppose that u and ω
are provided by the user. Using Proposition 1 and (6) , we say that an offset is detected if AP pt, ω,ASpu, t, ωqq ď
NFAmax {|Ω|. The value NFAmax is supposed to be set by the user. The background model used in the auto-similarity
detection is the one given in (7). Therefore, Proposition 2 and the discussion that follows can be used to compute an
approximation of APpt, ω,ASpu, t, ωqq. In Figure 2 we apply Algorithm 1 to a texture image.

Algorithm 1 Auto-similarity detection

1: function AUTOSIM-DETECTION(u, ω, NFAmax)
2: for t P Ω do
3: valÐ ASpu, t, ωq
4: Pmapptq Ð APpt, ω, valq Ź APpt, ω, valq approximation detailed in Section 3.2
5: Dmapptq Ð 1PmapptqďNFAmax{|Ω|

6: end for
7: return the images Pmap, Dmap

8: end function

4 Denoising

4.1 NL-means and a contrario framework

In this section we apply the a contrario framework to the context of image denoising and propose a simple modification
of the celebrated image denoising algorithm Non-Local Means (NL-means). This algorithm was introduced in the
seminal paper of Buades et al. [5] and was inspired by the work of Efros and Leung in texture synthesis [25]. It was also
independently introduced in [2]. This algorithm relies on the simple idea that denoising operations can be conducted
in the lifted patch space. In this space the usual Euclidean distance acts as a good similarity detector and we can
obtain a denoised patch by averaging all the patches with weights that depend on this Euclidean distance. Usually the
weight function is set to have exponential decay, but it was suggested in [30, 57, 22] to use compactly supported weight
functions in order to avoid the loss of isolated details. Since its introduction, many algorithms derived from NL-means
have been proposed in order to embed the algorithm in general statistical frameworks [23, 41] or to take into account
the underlying geometry of the patch space [34]. Among the state-of-the-art denoising algorithms, see [39] for a review,
we consider Block-Matching and 3D Filtering (BM3D) [12] to compare our algorithm with.

There exist several works combining a contrario models and denoising tasks. Coupier et al. in [9] propose to combine
morphological filters and a testing hypothesis framework to remove impulse noise. In [18] Delon and Desolneux
compare different statistical frameworks to perform denoising with Gaussian noise or impulse noise. The a contrario
model was also successfully used to deal with speckle noise [26] and quasi-periodic noise [61], and rely on the

6
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thresholding of wavelet or Fourier coefficients. In [37], Kervrann and Boulanger derive approximated probabilistic
thresholds using χ2 probability distribution functions. In [67] the authors propose a testing framework in order to
estimate thresholds. The expressions they derive also relies on an approximation of the probability distribution of the
squared Euclidean norm between two patches in Gaussian white noise.

Following a standard extension procedure of the NL-means algorithm we consider a threshold version of it, see
Algorithm 2. In what follows we fix a “clean”, or original, image u0 defined over Ω, a finite rectangular domain of
Z2, a noisy image u “ u0 ` σw, with w a realization of a standard Gaussian random field W and σ ą 0 the standard
deviation of the noise. In all of our experiments we suppose that σ is known. Note that there exist several algorithms to
estimate σ from real images, see [54] for instance. Our goal is to retrieve u0 based on the information in u. We consider
the lifted version of u in a patch space. Let ω0 be a centered 8ˆ 8 patch domain. For a patch window ω “ x` ω0 the
patch search window T will be defined by

T “
 

t P Z2, t` ω Ă Ω, }t}8 ď c
(

, (10)

with c P N. |T | denotes the cardinality of T . There exists a large literature concerning the setting of c and ω0, see [22].
Note that the locality of the patch window was assessed to be a crucial feature of NL-means [31]. Suppose we have a
collection of denoised patches p̂pu, ωq for all patch domains ω, we obtain a pixel at position x in the denoised image û
using the following average, see [6],

ûpxq “ |tt P Ω, s.t x P t` ω Ă Ωu|
´1

ÿ

tPΩ, s.t xPt`ωĂΩ

p̂pu, t` ωqpxq . (11)

We now introduce our modification of NL-means. We suppose that we are provided a threshold function a. The choice
of such a function is discussed in Proposition 3.

Algorithm 2 NL-means threshold

1: function NL-MEANS-THRESHOLD(u, σ, ω0, c, a)
2: for x P Z2, x` ω0 Ă Ω do
3: ωÐ x` ω0

4: T Ð defined by (10)
5: Nωpuq Ð 0
6: p̂pu, ωq Ð 0
7: for t P T do
8: if ASpu, t, ωq ď σ2aptq then Ź always true for t “ 0

9: p̂pu, ωq Ð Nωpuq
Nωpuq`1 p̂pu, ωq `

1
Nωpuq`1Pt`ωpuq Ź Pωpuq is given in Definition 1

10: Nωpuq Ð Nωpuq ` 1
11: end if
12: end for
13: end for
14: ûÐ defined by (11)
15: return p̂pu, ¨q, û
16: end function

Note here that the output denoised version of the patch p̂pu, ωq verifies the following equation

p̂pu, ωq “
ÿ

tPT

λtPt`ωpuq , λt “
1ASpu,t,ωqďaptq

ř

sPT 1ASpu,s,ωqďapsq
.

In the original NL-means method, we have

λt “
exp

´

´
ASpu,t,ωq

h2

¯

ř

tPT exp
´

´
ASpu,t,ωq

h2

¯ . (12)

Setting h is not trivial and depends on many parameters (patch size, search window size, content of the original image).
As in Algorithm 2, we denote Nωpuq “

ř

tPT 1ASpu,t,ωqďaptq. The following proposition, similar to Proposition 1,
gives a method for setting a. We say that an offset t is a false alarm in a Gaussian white noise if the associated patch is
not used in the denoising algorithm. In Proposition 3 we choose a in order to control the number of false alarms with
high probability.

7
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Proposition 3 Let NFAmax P r0, |T |s, T given in (10) and let a P RΩ be defined for any t P Ω by

aptq “ AP´1
pt, ω, 1´NFAmax {|T |q ,

with background model being a Gaussian white noise W , i.e. f “ δ0 in Definition 4. Let T be defined in (10) and
NωpW q P t0, . . . , T u the random number of selected patches used to denoise the patch PωpW q, see Algorithm 2. Then
for any n P Nzt0u it holds that

P0 r|T | ´NωpW q ě ns ď
NFAmax

n
.

Proof: Using the Markov inequality, we have

P0 r|T | ´NωpW q ě ns ď
|T | ´

ř

tPT E
“

1ASpW,t,ωqďaptq
‰

n
ď

NFAmax

n
.

˝

In this case the null hypothesis P0 is given by a standard Gaussian random field, which is a special case of the Gaussian
random field models introduced in Section 3. In the next proposition, using the a contrario framework, we obtain
probabilistic guarantees on the distance between the reconstructed patch p̂pu, ωq and the true patch Pωpu0q.

Proposition 4 Let U “ u0`σW , whereW is a standard Gaussian white noise over Ω, u0 P RΩ and σ ą 0. Let x P Ω

and ω “ x` ω0 be a fixed patch and let NFAmax P r0, |T |s. We introduce the random set T̂ “ tt P T, ASpU, t, ωq ď
σ2aptqu (the selected offsets) with aptq “ AP´1

pt, ω, 1´NFAmax {|T |q as in Proposition 3 and T defined in (10). Let

aT “ maxtPT aptq. Then for any aW ą 0, setting εW “ 1´ P
”

}PωpW q}
2
2 ď aW | T̂

ı

, we have

P
”

}p̂pU, ωq ´ Pωpu0q}2 ď σpa
1{2
T ` a

1{2
W q | T̂

ı

ě 1´ εW . (13)

Proof: We have for any t P T̂

}Pt`ωpUq ´ Pωpu0q}2 ď }Pt`ωpUq ´ PωpUq ` PωpUq ´ Pωpu0q}2

ď }Pt`ωpUq ´ PωpUq}2 ` }PωpUq ´ Pωpu0q}2

ď σa
1{2
T ` σ}PωpW q}2 .

This gives the following event inclusion for any t P T̂ ,
!

}PωpW q}2 ď a
1{2
W

)

Ă

!

}Pt`ωpUq ´ Pωpu0q}2 ď σpa
1{2
T ` a

1{2
W q

)

,

We also have that by definition of εW

P
”

}p̂pU, ωq ´ Pωpu0q}2 ď σpa
1{2
T ` a

1{2
W q | T̂

ı

ě P

»

–

č

tPT̂

t}Pt`ωpUq ´ Pωpu0q}
2
2 ď σ2pa

1{2
T ` a

1{2
W q2u | T̂

fi

fl

ě P
”

}PωpW q}
2
2 ď aW | T̂

ı

ě 1´ εW .

˝

In our applications we use Algorithm 2 with aptq “ AP´1
pt, ω, 1´NFAmax {|T |q. Therefore we need to compute

aptq “ AP´1
pt, ω, 1´NFAmax {|T |q with a Gaussian white noise background model. We recall that in Section 3.2,

using Proposition 2, we give a method to compute this quantity in general Gaussian settings. In the case of a Gaussian
white noise, the next proposition shows that the eigenvalues can be computed without approximation.

Proposition 5 Let t “ ptx, tyq P Z2zt0u, Ct as in Proposition 2 with f “ δ0 and ω “ J0, p ´ 1K2, with p P N. We
have, expressing Ct in the basis corresponding to the raster scan order on the x-axis

Ct “

¨

˚

˚

˚

˚

˝

B0 B1 . . . Bp´1

BJ1 B0
. . .

...
...

. . . B0 B1

BJp´1 . . . BJ1 B0

˛

‹

‹

‹

‹

‚

` 2Id ,

"

B` “ D|ty | PMppRq if ` “ |tx|
B` “ 0 otherwise

8
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(a) (b)

Figure 3: Thresholds dependency in NFAmax. In (a) we display aptq “ AP´1
pt, ω, 1´NFAmax {|T |q as a function

of NFAmax. The patch size is fixed to 8 ˆ 8 and the offsets t satisfy }t}8 ď 10, hence |T | “ 212 “ 441. The red
dashed line is given by maxtPT aptq and the green dashed line by mintPT aptq. The blue line represents the value
obtained considering the simplifying assumption that patch domains do not overlap, see Proposition 2 and the remark
that follows. The maximal increase between the maximum of aptq and the minimum of aptq is of 13.0%. In (b) we
display the mapping t ÞÑ aptq for NFAmax “ 0.5, the central pixel corresponds to t “ 0. Note that aptq decreases as
}t} increases and is constant when, }t}8 ě 8.

where Dj is a zero matrix with ones on the j-th diagonal. The eigenvalues of Ct are given by λm,k “ 4 sin2
`

kπ
2m

˘

with
multiplicity rm,k where m P J2, q ` 1K, k P J1,m´ 1K and q “ r

p
|tx|_|ty |

s. For any m P J2, q ` 1K, k P J1,m´ 1K it
holds

(a) for any k1 P J1,m´ 1K, rm,k “ rm,k1 ;

(b) rm,k “ 2|tx||ty| if 2 ď m ă q ;

(c) rm,k “ rxry if m “ q ` 1 ;

(d)
řq`1
m“2

řm´1
k“1 rm,k “ p2 ,

with rx “
´

r
p
|tx|

s´ q
¯

|tx| ` |tx| ´ px, where px “ |tx|r
p
|tx|

s ´ p. We define ry in the same manner. A similar
proposition holds if ty ‰ 0.

Proof: The proof is postponed to Appendix A. ˝

This property allows us to compute exactly the eigenvalues appearing in Proposition 2. In Figure 3 we illustrate that
aptq for fixed patch size (8 ˆ 8) and patch search window (21 ˆ 21). Thus in our implementation we suppose that
aptq “ AP´1

pt, ω, 1´NFAmax {|T |q is constant and set its value to the mean of aptq over t P T .

4.2 Some experimental results

In the following paragraph we present and comment some results of our threshold NL-means algorithm, see Algorithm
2. We recall that we use aptq “

ř

tPT AP´1
pt, ω, 1´NFAmax {|T |q {|T |. In Figure 4 we present a first comparison

with the NL-means algorithm. Perceptual results as well as Peak Signal to Noise Ratio (PSNR) measurements 1 are
commented. We also present the running time of the original NL-means algorithm and ours. The experiments were
conducted with the following computer specifications: 16G RAM, 4 Intel Core i7-7500U CPU (2.70GHz). Results on
other images than Barbara are displayed in Figure 5.

If the threshold aptq is high, i.e. NFAmax ! |T | then almost no patch is rejected, which means that almost all patches
are used in the denoising process. In consequence, the output denoised image is very smooth. This smoothness is a
correct guess for constant patches. However, this proposition does not hold when the region contains details. Indeed,

1PNSRpu, vq “ 10 log10

´

maxΩ u
2

}u´v}22

¯

.

9
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(a) (b) (c) PSNR “ 29.81, δt “ 0.46s (d) PSNR “ 29.29, δt “ 0.37s

Figure 4: Visual results. In (a) we present an original image (Barbara) scaled between 0 and 255. In (b) we add
Gaussian white noise with σ “ 10. We recall that the patch domain is fixed to ω0 being a 8 ˆ 8 square. In (c) we
present the denoised results with NL-means threshold, Algorithm 2, where NFAmax “ 4.41, which corresponds to 1%
of rejected patches in the search window of a Gaussian white noise. In (d) we present the results obtained with the
traditional NL-means algorithm with h “ 0.13σ|ω| (optimal h for this noise level and this image with regard to the
PSNR measure). The results are the same on the texture area for (c) and (d). The perceptual results on the zoomed
region are satisfying, even though some regions are too smooth compared to the original image (a). In (c) and (d), δt is
the running time of the algorithm. We can observe that our algorithm is slightly slower than NL-means.

in this case details are lost due to the averaging process. By setting a conservative threshold, e.g. NFAmax {|T | « 0.1,
for example, we reject all the patches for which the structure does not strongly match the one of the input patch, see
Figure 6. This conservative property of the algorithm ensures that we can control the loss of information in the denoised
image, see Proposition 4. However, if no patch, other than the input patch itself, is detected as similar we highly overfit
the original noise. Many algorithms such as BM3D, see [12], solve this problem by treating this case as an exception,
applying a specific denoising method in this situation. We show the differences between our version of NL-means and
BM3D in Figure 7 .

In Figure 8, we show that Algorithm 2 performs better than the original NL-means algorithm. By setting NFAmax {|T | “
0.01 we obtain that the PSNR of the denoised image is better than the one of NL-means for nearly every value of h.

Let us emphasize that our goal is not to provide a new state-of-the-art denoising algorithm. Indeed we never obtain
better denoising results than the BM3D algorithm. However, our algorithm slightly improves the original NL-means
algorithm. It shows that statistical testing can be efficiently used to measure the similarity between patches and therefore
provides a robust way to perform the weighted average in this algorithm.

5 Periodicity analysis

5.1 Existing algorithms

In the following sections we use our patch similarity detection algorithm, see Algorithm 1, to analyze images exhibiting
periodicity features. Let Ω Ă Z2 be a finite domain and ω Ă Ω a finite patch domain.

Periodicity detection is a long-standing problem in texture analysis [71]. First algorithms used the quantization
of images, relying on co-occurrence matrices and statistical tools like χ2 tests or κ tests. Global methods extract
peaks in the frequency domain (Fourier spectrum) [49] or in the spatial domain (autocorrelation). In [32] the notion
of inertia is introduced. It is defined for any t P Ω by Iptq “

ř

pi,jqPJ0,NgK2pi ´ jq2
`
ř

zPΩ 1 9upzq“i1 9upz`tq“j

˘

,
where u is a quantized image on Ng ` 1 gray levels. In [8], the authors show that the local minima of the inertia
measurement can be used to assess periodicity. Similarly, we introduce the ω-inertia for any t P Ω by Iωptq “
ř

pi,jqPJ0,NgK2pi´ jq2
`
ř

zPω 1 9upzq“i1 9upz`tq“j

˘

. The following proposition extends to a local framework results from
[52].

Proposition 6 Let u P RΩ. Suppose that u is quantized, i.e. there existsNg P N such that for any x P Ω, upxq P J0, NgK.
We have Iωptq “ ASpu, t, ωq.

10



A PREPRINT - DECEMBER 2, 2020

PSNR “ 31.67, δt “ 0.21s PSNR “ 30.81, δt “ 0.07s

PSNR “ 29.12, δt “ 0.46s PSNR “ 28.44, δt “ 0.39s

PSNR “ 29.43, δt “ 0.22s PSNR “ 29.03, δt “ 0.07s

PSNR “ 28.82, δt “ 0.22s PSNR “ 28.68, δt “ 0.09s

Figure 5: NL-means comparison. In this figure we compare Algorithm 2 with the traditional NL-means algorithm.
Here ω0 is fixed to be a 8ˆ 8 square. The first column contains clean images, the second column represents the same
images corrupted by a Gaussian noise with σ “ 20. The third column is the output of Algorithm 2 with NFAmax fixed
to 4.41 and the last column is the output of the NL-means algorithm for the optimal value of h (with regards to the
PSNR), see (12). Perceptual results and PSNR are comparable, even though our algorithm yields slightly better PSNR
values. We also present the running times δt of both algorithm. Our algorithm is slower than NL-means as it computes
the threshold before running the NL-means algorithm.
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(a) NFAmax {|T | “ 0.2 (b) NFAmax {|T | “ 0.1 (c) NFAmax {|T | “ 0.01

Figure 6: Number of detections. In this figure we present, for each denoised pixel, the number of detected offsets
used to compute the denoised patch, i.e. the cardinality of T̂ , see Proposition 4. A white pixel means that the number
of detected offsets is maximal and a black pixel means that the number of detected offsets is 1, i.e. the patch is not
denoised. As NFAmax decreases the number of detected offsets increases. Note that |T̂ | is maximal, i.e. equals to
212 “ 441, for constant regions. For NFAmax {|T | “ 0.1, pixels located in textured neighborhoods use in average 20 to
40 patches to perform denoising.

(a) original (b) BM3D (c) NFAmax {|T | “ 0.01 (d) NFAmax {|T | “ 0.1

Figure 7: Comparison with BM3D. We compare Algorithm 2 to BM3D [12]. The original image (Barbara) is presented
in (a). We consider a noisy version of the input image with σ “ 20. In (b) we present the ouput of BM3D, with default
parameters, see [40]. The result in (c) corresponds to the output of Algorithm 2 with NFAmax {|T | “ 0.01. The output
(c) is too blurry compared to (b). In order to correct this behavior we set NFAmax {|T | “ 0.1 in (d), i.e. increase the
global threshold and some improvements are noticeable. However the image remains blurry and artifacts due to the
overfitting of the noise appear, this is known as the rare patch effect in [23]. For instance, some patches in the scarf are
not denoised anymore.
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(a) σ “ 10 (b) σ “ 20 (c) σ “ 40

Figure 8: PSNR study. In this figure we present the evolution of the PSNR for different values of the parameter h of the
original NL-means method, see (12), in blue, computed on the Barbara image. The x-axis represents h

σ|ω| . The orange
dashed line is the PSNR obtained for the threshold NL-means algorithm (Algorithm 2) with NFAmax {|T | “ 0.01.
Except for low levels of noise the proposed method gives better PSNR values than the original implementation of
NL-means algorithm for every choice of h.

Proof: For any t P Ω we have

Iωptq “
ÿ

pi,jqPJ0,NgK2

pi´ jq2
ÿ

xPω

1 9upxq“i1 9upx`tq“j “
ÿ

xPω,pi,jqPJ0,NgK2

pi´ jq21 9upxq“i1 9upx`tq“j

“
ÿ

xPω

p 9upxq ´ 9upx ` tqq2 “ ASpu, t, ωq.

˝

If ω “ Ω then the ω-inertia statistics is exactly the inertia introduced in [32] and the result is due to [52].

5.2 Algorithm and properties

Lattice detection is closely related to periodicity analysis, since identifying a lattice is similar to extracting periodic
or pseudo-periodic structures up to deformations and approximations. A state-of-the-art algorithm proposed in [53]
uses a recursive framework which consists in 1) a lattice model proposal based on detectors such as Kanade-Lucas-
Tomasi (KLT) feature trackers [48], 2) spatial tracking using inference in a probabilistic graphical model, 3) spatial
warping correcting the lattice deformations in the original image. In this section we propose a new algorithm for
lattice detection. The lattice proposal step 1) is replaced by an Euclidean auto-similarity matching detection (see
Section 3.2 and Algorithm 1) where the patch domain ω is fixed. Using these detections we build a graph with a few
nodes (usually approximately 20 nodes for a 256ˆ 256 image). We use the same notation for the detection mapping
t ÞÑ 1ASipu,t,ωqďaptq i.e. the Dmap output of Algorithm 1, which is a binary function over the offsets, and the set of
detected offsets. We recall that two pixel coordinates x and y are said to be 8-connected if x “ y ` pδx, δyq with
δx, δy P t´1, 0, 1u. The graph G “ pV,Eq is then built as follows:

§ Vertices: for each 8-connected component, Ck in Dmap we note vk one position for which the minimum
of ASpu, t, ωq over Ck is achieved. The set of vertices V is defined as V “ pvkqkPJ1,NC K where NC is the
number of 8-connected components in Dmap ;

§ Edges: each vertex is linked with its four nearest neighbors in the sense of the Euclidean distance, defining
four unoriented edges.

Refering to the three steps of [53] we present our model to replace step 2) (i.e. the inference in a probabilistic graphical
model) and introduce the approximated lattice hypothesis defined on a graph.

Definition 5 (Approximated lattice hypothesis) Let G “ pV,Eq be a random graph with V Ă R2. We say that
G follows the approximated lattice hypothesis if there exists a basis B “ pb1, b2q of R2 and, for each edge e P E,
a couple of integers pme, neq P Z2 such that e has the same distribution as meb1 ` neb2 ` σZe, with pZeqePE
independent standard Gaussian random variables in R2 and σ ą 0. We denote by M the vector of all coefficients
pme, neqePE P Z2|E|.

13
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Our goal is to perform inference in the statistical model defined by the following log-posterior

L pB,M, σ2|Eq “ ´2p|E| ` 1q logpσ2q ´
1

2σ2

˜

ÿ

ePE

}meb1 ` neb2 ´ e}2 ` rpB,Mq

¸

loooooooooooooooooooooooomoooooooooooooooooooooooon

qpB,M |Eq

, (14)

where rpB,Mq “ δB}B}
2
2 ` δM }M}

2
2 with δB , δM ě 0. A discussion on the dependence of the model on the

hyperparameters pδB , δM q is conducted in Figure 9. Finding the MLE of this full log-posterior is a non-convex, integer
problem. However performing the minimization alternatively on B and M is easier since at each step we only have a
quadratic function to minimize. Minimizing a positive-definite quadratic function over Z2 is equivalent to finding the
vector of minimum norm in a lattice. This last formulation is known as the Shortest Vector Problem (SVP) which is a
challenging problem [51] (though it is not known if it is a NP-hard problem). We replace this minimization procedure
over a lattice by a minimization over R2 followed by a rounding of this relaxed solution.

Algorithm 3 Lattice detection – Alternate minimization

1: function ALTERNATE-MINIMIZATION(E, δB , δM , Nit)
2: M0 Ð 0
3: B0 Ð initialization procedure Ź initialization discussed in the end of Section 5.2
4: for nÐ 0 to Nit ´ 1 do
5: M̃ Ð argmin

MPR2|E|

qpBn,M |Eq Ź expression given in Proposition 7

6: if q
´

E|Bn, rM̃ s
¯

ă q pE|Bn,Mnq then Ź r¨s is the nearest integer operator

7: Mn`1 Ð rM̃ s
8: else
9: Mn`1 ÐMn

10: end if
11: Bn`1 Ð argmin

BPR4

qpB,Mn`1|Eq Ź expression given in Proposition 7

12: end for
13: σ2

Nit
Ð argmin

σ2PR`

´L pBNit ,MNit , σ
2|Eq

14: return BNit
,MNit

, σ2
Nit

15: end function

For any σ ą 0 we denote by Lnpσq “ L pBn,Mn, σ
2|Eq, with n P N, the log-posterior sequence.

Proposition 7 (Alternate minimization update rule) In Algorithm 3, we get for any n P N

M̃ “
`

ΛBn
b Id|E|

˘´1
EBn

P R2|E| , Bn`1 “
`

ΛMn`1
b Id2

˘´1
EMn`1

P R4 ,

with b the tensor product between matrices and

(a) ΛB “

ˆ

}b1}
2 ` δB xb1, b2y

xb1, b2y }b2}
2 ` δB

˙

, ΛM “

ˆ

}M1}
2 ` δM xM1,M2y

xM1,M2y }M2}
2 ` δM

˙

;

(b) EB “
ˆ

pxe, b1yqePE
pxe, b2yqePE

˙

, EM “

¨

˚

˝

ř

ePE

mee

ř

ePE

nee

˛

‹

‚

.

Proof: The proof is postponed to Appendix B. ˝

Note that if B is orthogonal, i.e. xb1, b2y “ 0 then ΛB is diagonal and the proposed method is the exact solution to the
minimization problem over Z2.

Theorem 1 (Convergence in finite time) For any σ ą 0, pLnpσqqnPN is a non-decreasing sequence. In addition,
pBnqnPN and pMnqnPN converge in a finite number of iterations.

14
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(a) δM “ 0 δB “ 0 (b) δM “ 5 δB “ 10´1 (c) δM “ 9 δB “ 10´1

Figure 9: Influence of hyperparameters. In this experiment we assess the importance of the hyperparameters. We
consider Algorithm 3 with input graph a detection map, output of Algorithm 1. The initialization in the three cases
is the canonical basis pp0, 1q, p1, 0qq. In (a), since the initial basis vectors are a local minimum to the optimization
problem, the algorithm converges after one iteration. However, this is not perceptually satisfying. Setting δM “ 5 and
δB “ 10´1 in (b) the true observed lattice is a sub-lattice of the output lattice of Algorithm 3. Increasing δM up to 9, in
(c) we obtain a perceptually correct lattice. For δM larger than 10, the basis vectors go to 0. Only the regularizing term
is minimized by the optimization procedure and the data-attachment term is not taken into account. Experimentally we
found that the choice of δM is more flexible and that δM P p1, 20q gives satisfying perceptual results if the initialization
heuristics proposed in Section 5.2 is chosen.

Proof: pLnpσqqnPN is non-decreasing since for any n P N, Lnpσq ď L pBn,Mn`1, σ
2|Eq ď Ln`1pσq. Let us

show that the sequences pMnqnPN and pBnqnPN are bounded. Because pLnpσqqnPN is non-decreasing, the sequence
pqpBn,Mn|EqqnPN is non-increasing. We obtain that

δM }Mn}
2 ď qpB0,M0|Eq , δB}Bn}

2 ď qpB0,M0|Eq .

The sequence pMnqnPN is bounded thus we can extract a converging subsequence. Since pMnqnPN takes value in Z2|E|,
this subsequence is stationary with value M . Let n0 P N be the first time we hit value M . Let n P N, with n ě n0 ` 1,
there exists n1 P N, with n1 ě n such that Mn1 “Mn0 thus

Ln0pσq ď Ln0`1pσq ď Lnpσq ď L pBn1´1,Mn1 , σ
2|Eq ď L pBn1´1,Mn0 , σ

2|Eq ď Ln0pσq .

Hence for every n ě n0 ` 1, Lnpσq “ L pBn,Mn, σ
2|Eq “ L̃ pσq. Suppose there exists n ě n0 ` 1 such that

Mn ‰ Mn`1 this means that L pBn,Mn`1, σ
2|Eq ą Lnpσq (because of lines 6 and 7 of Algorithm 3) which is

absurd. Thus pMnqnPN is stationary and so is pBnqnPN. ˝

In Algorithm 3 M0 is initialized with zero and B0 is defined as an orthonormal (up to a dilatation factor) direct basis
where the first vector is given by an edge with median norm in E.

5.3 Experimental results

Combining the results of Section 5.2 and Section 3.2 we obtain an algorithm to extract lattices in images, see Figure 10.
In what follows we perform lattice detection using Algorithm 1 in order to extract auto-similarity given a patch in an
original image u, which implies that the patch domain ω is set by the user. Recall that in Algorithm 1, the eigenvalues of
the covariance matrix in Proposition 2 are approximated, and that the cumulative distribution function of the quadratic
form in Gaussian random variables is computed via the Wood F method [66]. Lattice detection is performed using
Algorithm 3 with parameters δM “ 10 and δB “ 10´2.

5.3.1 Escher paving

In this section we study art images, Escher pavings, with strongly periodic structure. We investigate the following
parameters of our lattice detection algorithm:

(a) background microtexture model P0,

(b) NFAmax parameter in Algorithm 1,

(c) patch domain ω.
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Patch
similarity
detection

Lattice
detection

Figure 10: Lattice proposal algorithm. Lattice detection and extraction in images require a patch from the user and
compute a binary image containing all the offsets with correct similarity as well as a lattice matching the underlying
graph. The patch auto-similarity detection step was presented in Section 3.2. The lattice detection step was presented in
Section 5.2. The first image is the input, the second one is the output of the detection algorithm. In the last step we
show the original image with red squares placed on the computed lattice. Behind this image, the unoriented edges of
the graph are shown in red.

Microtexture model We confirm that the choice of the microtexture model will influence the detected geometrical
structures. The more structured is the background noise model the less we obtain detections. This situation is considered
in Figure 11.

NFAmax parameter Using a more adapted microtexture model as background model we gain robustness compared to
other less structured models such as a Gaussian white noise. However, NFAmax must be set carefully otherwise two
situations can occur:

(a) if NFAmax is too high, too many detections can be obtained (true perceptual detections are not differentiated
from false positives) ;

(b) if NFAmax is too low, we fail to identify important perceptual structures in the image.

We observe that a general good practice is to set NFAmax equal to 10, see Figure 12. However, if the input patch is
corrupted one may increase this parameter up to 102 or 103, see Figure 17 and Figure 18.

Patch position Patch position and size are crucial in our detection model, since we rely on local properties of the
image. As shown in Figure 13 these parameters should be carefully selected by the user. However, for particular
applications such as lattice extraction for crystallographic purposes, there exist procedures to extract primitive cells
[50].

5.3.2 Crystallography images

Defect localization, noise reduction, correction of crystalline structures in images are central tasks in crystallography.
Usually, they require the knowledge of the geometry of a perfect underlying crystal. In our experiments we manually
identify the geometry of the periodic crystal, which allows for multiple structures in one image, provided a user input
of the primitive cell in a lattice. This primitive cell extraction could be automated [50]. In Figure 14, we present an
example of multiple geometry extraction. Statistics like angle and period can be retrieved using the estimated basis
vectors. This image contains two lattices and the locality of our measurements allows for the detection of both structures.
Using windowed Fourier transform could be efficient to obtain local measurements on the periodicity of these images
since the information is highly frequential. However in order to obtain the same detection map as Algorithm 1 one must
carefully set the threshold parameter, NFAmax. This situation is illustrated in Figure 15.

Finally we assess the precision of our measurements by comparing our results with a model used in crystallography,
see Figure 16. We indeed retrieve one of the possible bases used to describe these lattices. However, the symmetry
constraints are not present in the identified basis. To obtain another basis, one must relax the regularization parameters.
A more natural way to obtain the desired primitive cell would be to introduce symmetry constraints in the graphical
model formulation in (14).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Choice of the microtexture model. In this experiment we discuss the choice of the a contrario background
microtexture model. In the left column we display the graph obtained after the detection step. In the middle column we
superpose the proposed lattice on the original image. The original patch is drawn in green, obtained basis lattice vectors
are in cyan, and red squares are placed onto the proposed lattice. In (a) and (b) the microtexture model is given by
(7) and NFAmax is set to 10. A sample of this model is presented in (c). Obtained results match the perceptual lattice.
In (d), (e), (g) and (h) the microtexture model is a Gaussian white noise model with variance equal to the empirical
variance of the original image. Sample from this Gaussian white noise is presented in (f). In (d) and (e), NFAmax is
set to 10. This leads to an excessive number of detections in the input image. In order to obtain the perceptual lattice
found in (b) with a Gaussian white noise model we must set the NFAmax parameter to 10´111. Results are presented in
experiments (g), (h) and (i). Image (h) is also an example for which the median initialization for B0 in Algorithm 3
identifies a non satisfying local minimum. This situation is corrected in (i) with random initialization for B0. In (h) final
log-posterior value is ´565.5 which is inferior to the final log-posterior value in (i): ´542.1. Thus (i) gives a better
local maximum of the full log-posterior than (h).
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(a) (b) (c)

Figure 12: Choice of Number of False Alarms. In this experiment we discuss the choice of the NFAmax parameter
in the a contrario framework in the case where the underlying microtexture model is given by (7). Each column
corresponds to a pair of images: the returned lattice and its associated underlying graph. In (a), NFAmax is set to 1.
Detections are correct, there are not enough points to precisely retrieve the perceptual lattice. In (b), NFAmax is set to
10. The estimated lattice is correct. In (c), NFAmax is set to 103. In this case we obtain false detections which lead to an
incorrect final lattice. Note that large detection zones in the binary image (c) are due to the non-validity of the Wood F
approximation for some offsets. This behavior is also present in (a) and (b) but less noticeable.

5.3.3 Natural images

Identifying lattices in natural images is a more challenging task since we have to deal with image artifacts. In this
section we investigate the effect on the detection of the background clutter in natural images, see Figure 17, and the
effect of the camera position, see Figure 18.

Preprocessing Due to the occlusions occurring in natural images, if a lattice is superposed over a real photograph,
carefully selecting structural elements might not be enough in order to retrieve the periodicity. Indeed, if we observe a
repetition of the lattice pattern, the background does not necessarily contain any repetition and thus makes the detection
more complicated. In order to avoid such a problem we propose to introduce a preprocessing step in our algorithm. This
preprocessing step will be encoded in a linear filter h. Suppose U is a sample from a Gaussian model with function f
then h ˚ U is a sample from a Gaussian model with function h ˚ f . Thus all the properties derived earlier remain valid
with this linear operation. In Figure 17, we set h to be a Laplacian operator 2. This operation allows us to avoid contrast
problems.

Homography In the previous experiments we suppose that the lattice structure was in front of the camera. In many
cases this assumption is not true and there exists an homography that matches the deformed lattice in the image to a true
lattice. Our algorithm makes the assumption that the lattice is viewed in a frontal way and fails otherwise. However,
locally, this assumption is true and we can observe partial match of the lattices in Figure 18.

2We use a discrete Laplacian operator ∆ such that for any x “ px1, x2q, we get that ∆puqpx1, x2q “

pupx1 ` 1, x2q ` upx1 ´ 1, x2q ` upx1, x2 ` 1q ` upx1, x2 ´ 1q ´ 4upxqq {4, where boundaries are handled periodically.
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(a) (b) (c)

(d) (e) (f)

(g) 10ˆ 10 (h) 15ˆ 15 (i) 20ˆ 20

Figure 13: Influence of patch size and patch position. For each experiment NFAmax is set to 104, i.e. 4 % of the
pixels. In most cases lower NFAmax could be used but setting a high NFAmax ensures that we always get detections
even if the patch only contains microtexture information. Each row corresponds to a lattice proposal with same patch
position but different patch sizes: 10ˆ 10 for the left column, 15ˆ 15 for the middle one and 20ˆ 20 for the right one.
Each image represents the superposed proposed lattice on the original image. On the bottom-right of each image we
display the underlying graph as well as the binary detection. On the first row the patch contains only a white region with
a few gray pixels. The influence of these pixels is visible for small patch sizes (a) but is no longer taken into account for
larger patch sizes, (b) and (c). On the second row the patch contains gray microtexture which has some local structure.
We identify large similarity regions and no perceptual lattice is retrieved in (d), (e) and (f). The situation is different
on the third row. The 10ˆ 10 patch contains only uniform black information in (g), but the situation changes as the
patch sizes grows. In (h), the patch intersects black, gray and white zones. The graph is much sparser and the lattice is
close to the perceptual one. In (i), the patch size is large enough to cover large areas of the three gray levels and the
perceptual lattice is identified.
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(a) (b) (c) (d)

Figure 14: Lattice extraction. In this experiment we consider a crystallographic image (an orthorombic NiZr alloy)
and set NFAmax to 102. Two lattices are present in this image and they are correctly identified in (b) and (d). Note that
in (a), respectively in (c), mostly points in the left, respectively right, part of the image are identified, thus yielding
correct lattice identification. Points which should be identified and are discarded nonetheless correspond to regions in
which we observe contrast variation. Image courtesy of Denis Gratias.

(a) (b) 90% (c) 95% (d) 99%

Figure 15: Comparison with Fourier based methods. Since the original image can be segmented in two highly periodic
components, Fourier methods might be well-adapted to the lattice extraction task. In (a) we present a sub-image of the
original alloy. We compute the autocorrelation of this sub-image and threshold it. This operation gives us a detection
map, like Algorithm 1. In (b) the threshold is set to 90% percent of the maximum value of the autocorrelation. Too
many points are identified. In (d) the threshold is set to 99% and only one point is identified. Correct lattice is identified
in (c).

5.4 Texture ranking

We conclude these experiments by showing that this simple graphical model can be used to perform ranking among
texture images, sorting them according to their degree of periodicity. We say that an image has high periodicity degree
if a lattice structure can be well fitted to the image. We introduce a criterion for evaluating the relevance of the lattice
hypothesis. Let u be an image over Ω, let ω Ă Ω be a patch domain and a be as in Proposition 1 with NFAmax set by
the user.

Definition 6 (Periodicity criterion) Let tt P Ω, ASpu, t, ωq ď aptqu be the set of detected offsets andNC its number
of connected components as defined in Section 5.2. Let also p pB,xM, pσq be the estimated parameters using Algorithm 3.
We define the following periodicity criterion cper as

cperpuq “
πpσ2

NC |detpb̂1, b̂2q|
, (15)

where pB “ pb̂1, b̂2q.

The criterion cper simply computes the ratio between the error area of Algorithm 3, i.e. the error made when considering
the approximated lattice hypothesis, see Definition 5, and the area of the parallelogram defined by the output basis
vectors. If we have enough detections this quantity is supposed to be small when the approximated lattice hypothesis
holds and large when it does not. Nonetheless, we introduce a dependency in the number of detections. Indeed, even if
no lattice is perceived, the hypothesis in Definition 5 may still hold if the number of detected offsets is small.
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(a)

Axe [001]

(b)

Figure 16: Agreement with crystallography models. In (a) we perform a zoom on of the lattice identified in Figure 14
and compare it to the one identified by crystallographists in (b). (a) is a zoomed rotated version of a crystalline structure
similar to (b). The output lattice in (a) is the same as the one in (b). Indeed in (b) the red points, for instance, form a
lattice. A possible basis for this lattice is given by the vectors of a parallelogramm. Up to rotation these basis vectors
match the one identified in (a). However, the parallelogramm basis is a symmetric and thus is not chosen by chemists
since it does not reflect the geometry of the alloy. The preferred basis is given by the symmetric rhombus (white edges
in (b)). Image courtesy of Denis Gratias.

(a) (b) (c) (d)

Figure 17: Preprocessing and filtering. In (a) and (c) we display the graphs obtained with Algorithm 1 applied on
images (b) and (d). In (b) and (d) the original image is superposed with the estimated lattice (vectors in cyan and
proposed patches in red). In (a) and (b), NFAmax was set to 105 which corresponds to 35 % of detection in the associated
a contrario model. Lower NFAmax did not give enough points to conduct the lattice proposal step. We obtain a visually
satisfying lattice. In (c) and (d) we apply a simple preprocessing, a Laplacian filter, to the image and set NFAmax to 10.
The detection figure is much cleaner and the estimation makes much more sense from a perceptual point of view. Note
that, as in (b), the proposed lattice does not exactly match the fence periodicity. This is due to: 1) the initialization
of the algorithm and the structure of the graph in the alternate minimization algorithm 2) the fact that the horizontal
periodicity is broken by the black post.
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(a) (b)

Figure 18: Homography and locality. In this experiment NFAmax was set to 103. Note that the detected graph is
localized around the original patch in (a). In (b) we superpose the proposed lattice onto the original image. The lattice
proposal is valid in a small neighborhood around the original patch. However it is not valid for the whole image.

In the experiment presented in Figure 19 we sort 25 texture images based on the cper criterion. Images are of size
256ˆ 256. Since the identified graph highly depends on the patch position and the patch size, for each image we
uniformly sample 150 patch positions and set the patch size to 20ˆ 20. For each set of parameters we find a lattice
using Algorithm 1 and Algorithm 3 with parameters NFAmax “ 1, δM “ 10, δB “ 10´2 and Nit “ 10. A statistical
study of our ranking is presented in Figure 20. Note that, from a perceptual point of view, from (a) to (n) all textures
are periodic except for (f), (j) and (k) which are examples for which our algorithm fails. However, from (o) to (y), no
texture is periodic.

6 Conclusion

In this paper we introduce a statistical model, the a contrario framework, to analyze spatial redundancy in images.
We propose a general algorithm for detecting redundancy in natural images. It relies on Gaussian random fields as
background models and takes advantage of the links between the `2 norm and Gaussian densities. The a contrario
formulation provides us with a statistically sound way of thresholding distances in order to assess similarity between
patches. In this rationale we replace the task of manually setting thresholds by the selection of a Number of False
Alarms.

We illustrate our contribution with three examples in various domains of image processing. Introducing a simple
modification of the NL-means algorithm we show that similarity detection (in this case, dissimilarity detection) in a
theoretical a contrario framework can easily be embedded in any image denoising pipeline. For instance, the threshold
we introduced could be integrated into the Non-Local Bayes algorithm [41] in order to estimate mean and covariance
matrices with probabilistic guarantees. The generality of our model allows for several extensions for non-Gaussian
noises [16] or to take into account the geometry of the patch space [34, 63].

Turning to periodicity detection we propose a novel graphical model using the output of Algorithm 1 in order to extract
lattices from images. In this model, lattice extraction is formulated as the maximization of some log-likelihood defined
on a graph. We prove the finite-time convergence of Algorithm 3. We provide image experiments illustrating the
role of the hyperparameters in our study and we assess the importance of selecting adaptive Gaussian random fields
as background models. We remark that the expected number of false alarms parameter is linked to the choice of the
input patch and give a range of possible values for NFAmax settings. We also illustrate its possible application in
crystallography as it correctly identifies underlying lattices in alloys. This rationale could be used to identify symmetry
groups (wallpaper groups) in alloys, following the work of [45]. Finally our method is tested on natural images where
some of its limits such as perspective defect or sensitivity to occlusion phenoma are identified. It must be noted that our
method could easily be extended to color images by considering R3-valued instead of real-valued images.

Our last application consists in giving a quantitative criterion for periodicity texture ranking. This criterion is based
on the parameters estimated in Algorithm 3. Since we set our background models to be Gaussian random fields and
remarking that these are good microtexture approximations we wish to explore the possibility to embed our a contrario
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(a) -9.75 (b) -9.42 (c) -9.12 (d) -9.00 (e) -8.80

(f) -8.24 (g) -8.24 (h) -7.99 (i) -7.80 (j) -7.77

(k) -7.74 (l) -7.72 (m) -7.47 (n) -7.26 (o) -7.21

(p) -7.20 (q) -7.19 (r) -7.17 (s) -6.92 (t) -6.86

(u) -6.78 (v) -6.65 (w) -6.56 (x) -6.30 (y) -6.16

Figure 19: Texture ranking. The cper criterion, defined in (15), is computed for each setting. We associate to each
image the median of the 150 criterion values and sort the images accordingly. (a) corresponds to the lowest criterion, i.e.
the most periodic image according to cper criterion. (y) corresponds to the largest criterion, i.e. the least periodic image
according to cper. Under each image we give the logarithm of the median cper values.
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Figure 20: Boxplot for cper values. In this figure we present a boxplot of the cper values, defined in (15), used to
rank textures images in Figure 19. We recall that we use 150 random patch positions in order to compute the cper
values. Letters on the x-axis correspond to the textures in Figure 19. For each texture we present its median cper
value. The lower, respectively upper, limit of the blue box corresponds to 25%, respectively 75% of the computed cper
values. The dashed line corresponds to the confidence interval with level 0.07 under normality assumption. Points
outside this interval are plotted in red and the graphics was clipped between 0 and 5ˆ 10´3. The size of the confidence
interval grows with the median value. It must be noted that the overlapping of the blue boxes might explain some
inconsistencies of our ranking. Another source of errors lie in the model which assumes that if a texture is periodic its
pattern is described by a 20ˆ 20 patch. In order to perform a more robust ranking a multiscale approach should be
preferred.

framework in texture analysis and texture synthesis algorithms. For instance an a contrario methodology could be
incorporated in the algorithm proposed by Raad et al. in [56]. Another potential direction is to look at the behavior of
the introduced dissimilarity functions for more general random fields in order to handle more complex and structured
situations such as parametric texture synthesis.
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A Eigenvalues

Proof: [Proof of Proposition 5] We fix t ‰ 0 with }t}8 ă p and denote C “ Ct. Without loss of generality we
consider that tx ą 0 and ty ą 0. We consider X an eigenvector of C. Let Ω0 “ pΩ´ tq X Ωc and the function
J : Ω0 Ñ J2,`8J such that for any x0 P Ω0

Jpx0q “ argmin tk P Nzt0u, x0 ` kt R Ωu .

It is clear that I “ tpk,mq, k P J1,m ´ 1K, m P JpΩ0qu is in bijection with Ω. Let x0 P Ω0, m “ Jpx0q and
k P J1,m´ 1K. We define Xx0,k over Z2 such that

Xx0,kpx0 ` `tq “ sin

ˆ

`kπ

m

˙

for ` P J1,m´ 1K , 0 otherwise .

Using that sinpa` bq ` sinpa´ bq “ 2 sinpaq cospbq, we have for any x P Z2

Xx0,kpx` tq ´ 2 cos

ˆ

kπ

m

˙

Xx0,kpxq `Xx0,kpx´ tq “ 0 .
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This implies that for any x P Z2

2Xx0,kpxq ´Xx0,kpx` tq ´Xx0,kpx´ tq “

„

2´ 2 cos

ˆ

kπ

m

˙

Xx0,kpxq “ 4 sin2

ˆ

kπ

m

˙

Xx0,kpxq .

Thus the one-dimensional vector (given by the raster-scan order on the x-axis) of the restriction of Xx0,k is an
eigenvector of C associated with eigenvalue 4 sin2

`

kπ
m

˘

.

Using that I is in bijection with Ω we get that the number of vectors pXx0,kq is |Ω|. We show that this family of vectors
is linearly-independent. Let Λx0,k P R such that

ÿ

x0PΩ0

Jpx0q´1
ÿ

k“1

Λx0,kXx0,k “ 0 .

Since Xx0,k and Xy0,k
1 have different support if and only if x0 ‰ y0 we get that for any x0 P

Ω0,
řJpx0q´1
k“1 Λx0,kXx0,k “ 0. This gives that pΛx0,kqkPJ1,Jpx0q´1K is in the kernel of the matrix

psinp`kπ{pJpx0q ´ 1qqq1ďj,`ďJpx0q´1. Since the sinus discrete transform is invertible we obtain that for any x0 P Ω0

and k P J1, Jpx0q ´ 1K, Λx0,k “ 0. Thus the family Xx0,k is a basis of eigenvectors.

We aim at computing the cardinality of Kk,m “ tXx0,k, Jpx0q “ mu. By definition, in Proposition 5, rk,m “ |Kk,m|.
First note that |Kk1,m| “ |Kk,m|. We give the following decomposition Ω0 “ Ωx Y Ωy Y Ωx,y with

Ωx “ J´tx,´1Kˆ J0, p´ 1´ tyK, Ωx “ J0, p´ 1´ txKˆ J´ty,´1K, Ωx,y “ J´tx,´1Kˆ J´ty,´1K .

Note that for all x0 P Ω0 we have that x0 ` pq ` 1qt R Ω, with q “ r
p

|tx|_|ty |
s. Thus JpΩ0q Ă J2, q ` 1K. Let

m P J2, q ´ 1K. The cardinality of Kk,m is the cardinality of J´1pmq. Let x0 P Ωx we have

x0 “ pi0, j0q P Kk,m ô

$

&

%

i0 `mtx ě p

or
j0 `mty ě p

and

$

&

%

i0 ` pm´ 1qtx ď p´ 1

and
j0 ` pm´ 1qty ď p´ 1

.

Since x0 P Ωx we have i0 `mtx ď p´ 1, hence

x0 “ pi0, j0q P Kk,m ô j0 `mty ě p and j0 ` pm´ 1qty ď p´ 1 .

Thus |Ωx X J´1pmq| “ txty. Similarly we get that |Ωy X J´1pmq| “ txty and Ωx,y X J´1pmq “ H. Thus,
|Kk,m| “ 2txty .

We have computed |Kk,m| for every m P J2, q´1K. In order to complete our study it only remains to compute |Kk,q`1|,
since |Kk,q| can be deduced from the summability condition and from |Kk,m| “ |Kk1,m|. We only compute |Kk,q`1|.
We remark that ΩxXJ

´1pq` 1q “ Ωy XJ
´1pq` 1q “ H. Let x0 P Ωx,y then x0 “ ´t`px, yq with x P J0, tx´ 1K

and y P J0, ty ´ 1K. We obtain the following equivalence

x0 P J
´1pq ` 1q ô

$

&

%

´ tx ` x` pq ` 1qtx ě p

or
´ ty ` y ` pq ` 1qty ě p

and

$

&

%

´ tx ` x` qtx ď p´ 1

and
´ ty ` y ` qty ď p´ 1

.

Since qtx ě p or qty ě p we obtain that the first condition is always satisfied. Thus we get

x0 P J
´1pq ` 1q ô x ď p´ 1´ pq ´ 1qtx and y ď p´ 1´ pq ´ 1qty .

Using that p´ 1´ pq ´ 1qtx “
´

r
p
tx
s´ q

¯

tx ` tx ´ 1´ px, we conclude the proof. ˝

B Update rules

We derive the proof of Proposition 7.
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Proof: Computing the minimum of qpB,M |Eq for fixed B P R4, respectively fixed M P R2|E|, gives the update rule
for M , respectively for B. We obtain that

qpB,M |Eq “
ÿ

ePE

m2
e}b1}

2 `
ÿ

ePEb

n2
e}b2}

2 ` 2
ÿ

ePE

menexb1, b2y

´ 2
ÿ

ePE

mexb1, ey ´ 2
ÿ

ePE

nexb2, ey ` rpB,Mq

“ BT pΛM b Id2qB ´ 2xB,EM y ` αpMq

“ } pΛM b Id2q
1
2 B ´ pΛM b Id2q

´1
2 EM }

2 ` αpMq

“ } pΛM b Id2q
1
2

´

B ´ pΛM b Id2q
´1
EM

¯

}2 ` αpMq ,

where αpMq depends only on M . Similar derivation goes for B and we obtain the proposed update rules. ˝

References

[1] Andrés Almansa, Agnès Desolneux, and Sébastien Vamech. Vanishing point detection without any A priori
information. IEEE Trans. Pattern Anal. Mach. Intell., 25(4):502–507, 2003.

[2] Suyash P. Awate and Ross T. Whitaker. Unsupervised, information-theoretic, adaptive image filtering for image
restoration. IEEE Trans. Pattern Anal. Mach. Intell., 28(3):364–376, 2006.

[3] Dean A. Bodenham and Niall M. Adams. A comparison of efficient approximations for a weighted sum of
chi-squared random variables. Stat. Comput., 26(4):917–928, 2016.

[4] J. Bruna and S. Mallat. Multiscale Sparse Microcanonical Models. ArXiv e-prints, January 2018.

[5] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A non-local algorithm for image denoising. In 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pages 60–65, 2005.

[6] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. Non-Local Means Denoising. Image Processing On Line,
1:208–212, 2011.

[7] Frédéric Cao. Application of the Gestalt principles to the detection of good continuations and corners in image
level lines. Comput. Vis. Sci., 7(1):3–13, 2004.

[8] Richard W. Conners and Charles A. Harlow. Toward a structural textural analyzer based on statistical methods.
Computer Graphics and Image Processing, 12(3):224–256, 1980.

[9] David Coupier, Agnès Desolneux, and Bernard Ycart. Image denoising by statistical area thresholding. Journal of
Mathematical Imaging and Vision, 22(2-3):183–197, 2005.

[10] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. Region filling and object removal by exemplar-based
image inpainting. IEEE Trans. Image Processing, 13(9):1200–1212, 2004.

[11] George R. Cross and Anil K. Jain. Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell.,
5(1):25–39, 1983.

[12] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen O. Egiazarian. Image denoising by sparse 3-d
transform-domain collaborative filtering. IEEE Trans. Image Processing, 16(8):2080–2095, 2007.

[13] John G. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by
two-dimensional visual cortical filters. J. Opt. Soc. Am. A, 2(7):1160–1169, Jul 1985.

[14] Axel Davy, Thibaud Ehret, Jean-Michel Morel, and Mauricio Delbracio. Reducing anomaly detection in images
to detection in noise. In 2018 IEEE International Conference on Image Processing, ICIP 2018, Athens, Greece,
October 7-10, 2018, pages 1058–1062, 2018.

[15] Valentin De Bortoli, Agnes Desolneux, Bruno Galerne, and Arthur Leclaire. Redundancy in Gaussian random
fields. Submitted, Nov 2018.

[16] Charles-Alban Deledalle, Loïc Denis, and Florence Tupin. Iterative weighted maximum likelihood denoising with
probabilistic patch-based weights. IEEE Trans. Image Processing, 18(12):2661–2672, 2009.

[17] Charles-Alban Deledalle, Loïc Denis, and Florence Tupin. How to compare noisy patches? Patch similarity
beyond Gaussian noise. Int. J. Comput. Vis., 99(1):86–102, 2012.

26



A PREPRINT - DECEMBER 2, 2020

[18] Julie Delon and Agnès Desolneux. A patch-based approach for removing impulse or mixed Gaussian-impulse
noise. SIAM J. Imaging Sciences, 6(2):1140–1174, 2013.

[19] Agnès Desolneux, Lionel Moisan, and Jean-Michel Morel. Meaningful alignments. International Journal of
Computer Vision, 40(1):7–23, 2000.

[20] Agnès Desolneux, Lionel Moisan, and Jean-Michel Morel. Edge Detection by Helmholtz Principle. Journal of
Mathematical Imaging and Vision, 14(3):271–284, 2001.

[21] Agnes Desolneux, Lionel Moisan, and Jean-Michel Morel. From Gestalt theory to image analysis: a probabilistic
approach, volume 34. Springer Science & Business Media, 2007.

[22] Vincent Duval, Jean-François Aujol, and Yann Gousseau. On the parameter choice for the Non-Local Means. 37
pages., March 2010.

[23] Vincent Duval, JFean-rançois Aujol, and Yann Gousseau. A bias-variance approach for the nonlocal means. SIAM
J. Imaging Sciences, 4(2):760–788, 2011.

[24] Alexei A. Efros and William T. Freeman. Image quilting for texture synthesis and transfer. In Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pages 341–346, 2001.

[25] Alexei A. Efros and Thomas K. Leung. Texture synthesis by non-parametric sampling. In ICCV, pages 1033–1038,
1999.

[26] Ronan Fablet, J.-M Augustin, and Alexandru Isar. Speckle denoising using a variational multi-wavelet approach.
In Oceans 2005 - Europe, volume 1, pages 539 – 544 Vol. 1, 07 2005.

[27] Bruno Galerne, Yann Gousseau, and Jean-Michel Morel. Random phase textures: Theory and synthesis. IEEE
Trans. Image Processing, 20(1):257–267, 2011.

[28] Bruno Galerne, Arthur Leclaire, and Julien Rabin. A Texture Synthesis Model Based on Semi-discrete Optimal
Transport in Patch Space. working paper or preprint, March 2018.

[29] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Texture synthesis using convolutional neural networks.
In Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 262–270, 2015.

[30] Bart Goossens, Hiep Luong, Aleksandra Pizurica, and Wilfried Philips. An improved non-local denoising algo-
rithm. In Jaakko Astola, Karen Egiazarian, and Vladimir Katkovnik, editors, Local and Non-Local Approximation
in Image Processing, International Workshop, Proceedings, pages 143–156, 2008.

[31] Sven Grewenig, Sebastian Zimmer, and Joachim Weickert. Rotationally invariant similarity measures for nonlocal
image denoising. J. Visual Communication and Image Representation, 22(2):117–130, 2011.

[32] Robert M. Haralick, K. Sam Shanmugam, and Its’hak Dinstein. Textural features for image classification. IEEE
Trans. Systems, Man, and Cybernetics, 3(6):610–621, 1973.

[33] Kaiming He and Jian Sun. Image completion approaches using the statistics of similar patches. IEEE Trans.
Pattern Anal. Mach. Intell., 36(12):2423–2435, 2014.

[34] A. Houdard, C. Bouveyron, and J. Delon. High-dimensional mixture models for unsupervised image denoising
(HDMI ). SIAM Journal on Imaging Sciences, 11(4):2815–2846, 2018.

[35] David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in the cat’s striate cortex. The Journal
of physiology, 148(3):574–591, 1959.

[36] J. P. Imhof. Computing the distribution of quadratic forms in normal variables. Biometrika, 48:419–426, 1961.
[37] Charles Kervrann and Jérôme Boulanger. Local adaptivity to variable smoothness for exemplar-based image

regularization and representation. International Journal of Computer Vision, 79(1):45–69, 2008.
[38] Vivek Kwatra, Arno Schödl, Irfan A. Essa, Greg Turk, and Aaron F. Bobick. Graphcut textures: image and video

synthesis using graph cuts. ACM Trans. Graph., 22(3):277–286, 2003.
[39] M. Lebrun, M. Colom, A. Buades, and J. M. Morel. Secrets of image denoising cuisine. Acta Numerica,

21:475–576, 2012.
[40] Marc Lebrun. An Analysis and Implementation of the BM3D Image Denoising Method. Image Processing On

Line, 2:175–213, 2012.
[41] Marc Lebrun, Antoni Buades, and Jean-Michel Morel. A Nonlocal Bayesian Image Denoising Algorithm. SIAM

J. Imaging Sciences, 6(3):1665–1688, 2013.
[42] Arthur Leclaire. Champs à phase aléatoire et champs gaussiens pour la mesure de netteté d’images et la synthèse

rapide de textures. PhD thesis, Université Paris Descartes, 2015.

27



A PREPRINT - DECEMBER 2, 2020

[43] Hsin-Chih Lin, Ling-Ling Wang, and Shi-Nine Yang. Extracting periodicity of a regular texture based on
autocorrelation functions. Pattern Recognition Letters, 18(5):433–443, 1997.

[44] Huan Liu, Yongqiang Tang, and Hao Helen Zhang. A new chi-square approximation to the distribution of
non-negative definite quadratic forms in non-central normal variables. Computational Statistics & Data Analysis,
53(4):853–856, 2009.

[45] Yanxi Liu, Robert T. Collins, and Yanghai Tsin. A computational model for periodic pattern perception based on
frieze and wallpaper groups. IEEE Trans. Pattern Anal. Mach. Intell., 26(3):354–371, 2003.

[46] David G. Lowe and Thomas O. Binford. Perceptual organization as a basis for visual recognition. In Proceedings
of the National Conference on Artificial Intelligence, pages 255–260, 1983.

[47] Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Learning FRAME models using CNN filters. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, pages 1902–1910, 2016.

[48] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an application to stereo vision.
In Proceedings of the 7th International Joint Conference on Artificial Intelligence, IJCAI, pages 674–679, 1981.

[49] Takashi Matsuyama, Shu-Ichi Miura, and Makoto Nagao. Structural analysis of natural textures by fourier
transformation. Computer Vision, Graphics, and Image Processing, 24(3):347–362, 1983.

[50] Niklas Mevenkamp and Benjamin Berkels. Unsupervised and accurate extraction of primitive unit cells from
crystal images. In Pattern Recognition - 37th German Conference, GCPR 2015, pages 105–116, 2015.

[51] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some constant. SIAM J.
Comput., 30(6):2008–2035, 2001.

[52] Gyuhwan Oh, Seungyong Lee, and Sung Yong Shin. Fast determination of textural periodicity using distance
matching function. Pattern Recognition Letters, 20(2):191–197, 1999.

[53] Minwoo Park, Kyle Brocklehurst, Robert T. Collins, and Yanxi Liu. Deformed lattice detection in real-world
images using mean-shift belief propagation. IEEE Trans. Pattern Anal. Mach. Intell., 31(10):1804–1816, 2009.

[54] Nikolay N. Ponomarenko, Vladimir V. Lukin, Mikhail Zriakhov, Arto Kaarna, and Jaakko Astola. An automatic
approach to lossy compression of AVIRIS images. In IEEE International Geoscience & Remote Sensing
Symposium, IGARSS 2007, July 23-28, 2007, Barcelona, Spain, Proceedings, pages 472–475, 2007.

[55] Javier Portilla and Eero P. Simoncelli. A parametric texture model based on joint statistics of complex wavelet
coefficients. International Journal of Computer Vision, 40(1):49–70, 2000.

[56] Lara Raad, Agnès Desolneux, and Jean-Michel Morel. A conditional multiscale locally gaussian texture synthesis
algorithm. Journal of Mathematical Imaging and Vision, 56(2):260–279, 2016.

[57] Joseph Salmon. On two parameters for denoising with non-local means. IEEE Signal Process. Lett., 17(3):269–272,
2010.

[58] Xiahan Sang and James M. LeBeau. Revolving scanning transmission electron microscopy: Correcting sample
drift distortion without prior knowledge. Ultramicroscopy, 138:28 – 35, 2014.

[59] Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scattering for texture discrimination.
In 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23-28, 2013,
pages 1233–1240, 2013.

[60] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
CoRR, 2014.

[61] Frédéric Sur. An a-contrario approach to quasi-periodic noise removal. In 2015 IEEE International Conference
on Image Processing, pages 3841–3845, 2015.

[62] Jarke J. van Wijk. Spot noise texture synthesis for data visualization. In Proceedings of the 18th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH, pages 309–318, 1991.

[63] Yi-Qing Wang and Jean-Michel Morel. SURE guided gaussian mixture image denoising. SIAM J. Imaging
Sciences, 6(2):999–1034, 2013.

[64] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for image quality assessment. In
The Thirty-Seventh Asilomar Conference on Signals, Systems Computers, volume 2, pages 1398–1402 Vol.2, Nov
2003.

[65] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Trans. Image Processing, 13(4):600–612, 2004.

28



A PREPRINT - DECEMBER 2, 2020

[66] Andrew T. A. Wood. An f approximation to the distribution of a linear combination of chi-squared variables.
Communications in Statistics - Simulation and Computation, 18(4):1439–1456, 1989.

[67] Yue Wu, Brian Tracey, Premkumar Natarajan, and Joseph P. Noonan. Probabilistic non-local means. IEEE Signal
Process. Lett., 20(8):763–766, 2013.

[68] Gui-Song Xia, Sira Ferradans, Gabriel Peyré, and Jean-François Aujol. Synthesizing and mixing stationary
gaussian texture models. SIAM J. Imaging Sciences, 7(1):476–508, 2014.

[69] Song Chun Zhu. Embedding Gestalt laws in markov random fields. IEEE Trans. Pattern Anal. Mach. Intell.,
21(11):1170–1187, 1999.

[70] Song Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME):
towards a unified theory for texture modeling. International Journal of Computer Vision, 27(2):107–126, 1998.

[71] Steven W. Zucker and Demetri Terzopoulos. Finding structure in co-occurrence matrices for texture analysis.
Computer Graphics and Image Processing, 12(3):286 – 308, 1980.

29


	Introduction
	An a contrario framework for auto-similarity
	Gaussian model and detection algorithm
	Choice of background model
	Detection algorithm

	Denoising
	NL-means and a contrario framework
	Some experimental results

	Periodicity analysis
	Existing algorithms
	Algorithm and properties
	Experimental results
	Escher paving
	Crystallography images
	Natural images

	Texture ranking

	Conclusion
	Acknowledgements
	Eigenvalues
	Update rules

