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CONTINUOUS TIME SOLITON RESOLUTION

FOR TWO-BUBBLE EQUIVARIANT WAVE MAPS

JACEK JENDREJ AND ANDREW LAWRIE

Abstract. We consider the energy-critical wave maps equation R
1+2

→ S
2 in the equivariant case.

We prove that if a wave map decomposes, along a sequence of times, into a superposition of at most
two rescaled harmonic maps (bubbles) and radiation, then such a decomposition holds for continuous
time. If the equivariance degree equals one or two, we deduce, as a consequence of sequential soliton
resolution results of Côte [5], and Jia and Kenig [22], that any topologically trivial equivariant wave
map with energy less than four times the energy of the bubble asymptotically decomposes into (at
most two) bubbles and radiation.

1. Introduction

1.1. Setting of the problem. This paper concerns wave maps from the Minkowski space R1+2
t,x into

the two-sphere S
2, with k-equivariant symmetry. These are formal critical points of the Lagrangian

action,

L (Ψ) =
1

2

∫∫

R
1+2
t,x

(
−|∂tΨ(t, x)|2 + |∇Ψ(t, x)|2

)
dxdt,

restricted to the class of maps Ψ : R1+2
t,x → S

2 ⊂ R
3 that take the form,

Ψ(t, reiθ) = (sinψ(t, r) cos kθ, sinψ(t, r) sin kθ, cosψ(t, r)) ∈ S
2 ⊂ R

3,

for some fixed k ∈ {1, 2, . . .}. Here ψ is the colatitude measured from the north pole of the sphere,
the metric on S

2 is given by ds2 = dψ2 + sin2 ψ dω2, and (r, θ) are polar coordinates on R
2.

Wave maps are called nonlinear σ-models in the high energy physics literature, see for example [29,
16]. They are a canonical example of a geometric wave equation as they generalize the free scalar
wave equation to the geometric setting of manifold-valued maps. The 2d case we consider is of
particular interest, since the static solutions given by finite energy harmonic maps are amongst
the simplest examples of topological solitons; other examples include kinks in scalar field equations,
vortices in Ginzburg-Landau equations, magnetic monopoles, Skyrmions, and Yang-Mills instantons;
see [29]. Wave maps under k-equivariant symmetry possess intriguing features from the point of
view of nonlinear dynamics, for example, bubbling harmonic maps, multi-soliton solutions, etc., in
the relatively simple setting of a geometrically natural scalar semilinear wave equation.

The Cauchy problem for k-equivariant wave maps is given by

(1.1)
∂2t ψ − ∂2rψ −

1

r
∂rψ + k2

sin 2ψ

2r2
= 0,

(ψ(T0), ∂tψ(T0)) = (ψ0, ψ̇0), T0 ∈ R.

The conserved energy is

(1.2) E(ψ(t)) := 2π

∫ ∞

0

1

2

(
(∂tψ)

2 + (∂rψ)
2 + k2

sin2 ψ

r2

)
r dr,
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where we have used bold font to denote the vector ψ(t) := (ψ(t), ∂tψ(t)). We will write pairs of

functions as φ = (φ, φ̇), noting that the notation φ̇ will not, in general, refer to a time derivative of
φ but rather just to the second component of φ. With this notation (1.1) can be rephrased as the
Hamiltonian system

(1.3) ∂tψ(t) = J ◦DE(ψ(t)), ψ(T0) = ψ0,

where

J =

(
0 1
−1 0

)
, DE(ψ(t)) =

(
−∂2rψ(t) − r−1∂rψ(t) + k2r−22−1 sin(2ψ(t))

∂tψ(t)

)
.

We remark that both (1.3) and (1.2) are invariant under the scaling

(ψ(t, r), ∂tψ(t, r)) 7→
(
ψ(t/λ, r/λ), λ−1∂tψ(t/λ, r/λ)

)
, λ > 0,

which makes this problem energy-critical.
For ψ0 : (0,∞) → R, we denote

Ep(ψ0) = 2π

∫ ∞

0

1

2

(
(∂rψ)

2 + k2
sin2 ψ

r2

)
r dr

the potential part of the energy (1.2). It is easy to check that any k-equivariant state ψ0 of finite
potential energy must satisfy limr→0 ψ0(r) = ℓπ and limr→∞ ψ0(r) = mπ for some ℓ,m ∈ Z, which
splits the set of states of finite potential energy into disjoint classes, which we denote Hℓ,m. These
classes are related to the topological degree of the full map Ψ(t) : R2 → S

2: if m − ℓ is even and
ψ0 ∈ Hℓ,m, then the corresponding map Ψ is topologically trivial, whereas for odd m− ℓ we obtain
maps of degree k.

The sets Hℓ,m are affine spaces, parallel to the linear space H := H0,0, which we equip with the
norm

‖ψ0‖
2
H :=

∫ ∞

0

(
(∂rψ0(r))

2 + k2
ψ0(r)

2

r2

)
r dr.

We denote L2 := L2(rdr) and Eℓ,m := Hℓ,m × L2 the set of finite energy initial data corresponding
to the class Hl,m. It is natural to consider the Cauchy problem (1.1) within a fixed class Eℓ,m. The
set E := E0,0 is a linear space, which comes with the norm

‖ψ0‖
2
E := ‖ψ0‖

2
H + ‖ψ̇0‖

2
L2 =

∫ ∞

0

(
(∂rψ0(r))

2 + k2
ψ0(r)

2

r2

)
r dr +

∫ ∞

0
ψ̇0(r)

2 r dr.

The unique (up to scaling and sign change, and adding a multiple of π) k-equivariant harmonic
map is given explicitly by

Q(r) := 2 arctan(rk).

The function Q, and its rescaled versions Qλ(r) := Q(λ−1r) for λ > 0, are minimizers of Ep within
the class H0,1. On can compute that Ep(Qλ) = 4πk. We denote Qλ := (Qλ, 0) the initial data
yielding the stationary solution of (1.1), ψ(t) = Qλ.

Linearizing (1.1) around ψ = 0 leads to the equation

(1.4) ∂2t ψl + L0ψl = 0, where L0 := −∂2r − r−1∂r + k2r−2.

If a solution ψ of (1.1) converges in the energy space to a solution of (1.4) as t → ∞, so that the
nonlinearity becomes negligible at main order, we say that ψ scatters in the positive time direction.
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1.2. Sub-threshold theorems, bubbling and soliton resolution. The regularity theory for k-
equivariant wave maps is well understood, see [2, 3, 38, 39, 37], and recent research has been focused
on the nonlinear dynamics of solutions with large energy. A guiding principle is called the soliton
resolution conjecture, which asserts that every finite energy k-equivariant wave map asymptotically
decouples into a superposition of finitely many harmonic maps (bubbles) with dynamically sepa-
rating scaling parameters plus a term capturing the linear radiation. There has been substantial
progress towards this conjecture over the last twenty years.

Struwe’s sequential characterization of singular wave maps [41] can be viewed as a first step in the
direction of soliton resolution. He proved that any wave map that blows up in finite time converges
locally along a well chosen sequence of times and a well chosen sequence of scales to a non-constant
harmonic map. Struwe’s bubbling theorem has an immediate consequence for the regularity theory:
every wave map with energy less than that of the ground state harmonic map must be globally
regular. Since only topologically trivial wave maps, and more specifically those in the class Eℓ,ℓ,
can scatter, one is led to the following formulation of the threshold theorem proved in [6] using
the Kenig-Merle road map [23, 24]: every wave map ψ ∈ Eℓ,ℓ with E(ψ) < 2E(Q) must scatter
in both time directions. That the threshold is 2E(Q) rather than E(Q) reflects the fact that any
k-equivariant element of Eℓ,ℓ that develops a bubble must use a least another quantum of energy
E(Q) to connect back to ℓπ; see [40, 28] for generalizations of these results outside equivariant
symmetry.

Using similar logic, a natural threshold in the class E0,1 is E < 3E(Q) since this is the maximal
energy level allowing for at most one bubble to form. It was proved in [6, 7], using ideas from
Duyckaerts, Kenig, and Merle [9, 11, 10, 12], that continuous soliton resolution does hold in this
regime. For every global-in-forward-time 1-equivariant wave map ψ ∈ E0,1 with E(ψ) < 3E(Q) one
can find a continuous function λ(t) ≪ t and a finite energy linear wave ψ∗

l
so that ψ(t) satisfies,

ψ(t) = Qλ(t) +ψ
∗
l
(t) + oE(1) as t→ ∞.

For wave maps in the same class that blow up at a finite time T+ an analogous decomposition holds
with λ(t) = o(T+ − t). Following an analogous approach, Côte [5] generalized this result to allow
for an arbitrary number of bubbles, but at the cost of only establishing the decomposition along a
well chosen sequence of times. That is, given a finite energy wave map in the class E0,m one can
find a linear wave ψ∗

l
, an integer J ≥ m, a sequence tn → ∞, scales λJ,n ≪ λJ−1,n ≪ · · · ≪ λ1,n,

disjoint subsets J−,J+ ⊂ {1, . . . J} with #J− +#J+ = J and #J+ −#J− = m so that

ψ(tn) =
∑

j∈J+

Qλj,n
−

∑

k∈J−

Qλk,n
+ψ∗

l
(tn) + oE (1) as t→ ∞,(1.5)

with an analogous result if ψ(t) blows up in finite time. Later, Jia and Kenig [22] generalized
the result from [5] to k = 2-equivariant wave maps using some different techniques, and we note
that a minor technical observation could be used to obtain such sequential decompositions in all
equivariance classes; see Remark 1.1. In this paper we will address the question of how to refine such
sequential decompositions to ones that hold continuously in time when the sequential decomposition
has at most two bubbles; see [13, 14, 15] for a complete resolution of this question for the critical
radial focusing NLW in odd dimensions.

1.3. Statement of the results. We prove continuous time soliton resolution for a class of initial
data not covered in [6, 7, 5, 22].

Theorem 1. Fix k ∈ {1, 2}. Let ψ0 ∈ E such that E(ψ0) < 4E(Q) = 16kπ, and let ψ : [0, T+) → E
be the corresponding solution of (1.1). One of the following alternatives holds:

(i) (Scattering) T+ = ∞ and ψ(t) scatters as t→ ∞,
3



(ii) (One-bubble blow-up) T+ < ∞, and there exist λ : [0, T+) → (0,∞), ψ∗
0 ∈ E0,1 and ι ∈

{−1, 1} such that λ(t) ≪ T+ − t as t→ T+ and

lim
t→T+

∥∥ψ(t)− ι
(
Qλ(t) −ψ

∗
0

)∥∥
E
= 0.

(iii) (Two-bubble blow-up) T+ < ∞, and there exist λ, µ : [0, T+) → (0,∞), ψ∗
0 ∈ E and ι ∈

{−1, 1} such that λ(t) ≪ µ(t) ≪ T+ − t as t→ T+ and

lim
t→T+

∥∥ψ(t) − ι
(
Qλ(t) −Qµ(t) +ψ

∗
0

)∥∥
E
= 0.

(iv) (Global two-bubble) T+ = ∞, and there exist λ, µ : [0,∞) → (0,∞), a solution ψ∗
l
: [0,∞) →

E of (1.4) and ι ∈ {−1, 1} such that λ(t) ≪ µ(t) ≪ t as t→ ∞ and

lim
t→∞

∥∥ψ(t)− ι
(
Qλ(t) −Qµ(t) +ψ

∗
l
(t)

)∥∥
E
= 0.

Remark 1.1. We note that an identical result holds in equivariance classes k ≥ 3, modulo the
completion of the proof of a sequential decompositions as in (1.5), which was only carried out
in full detail in [5, 22] in the cases k = 1, 2. The missing technical ingredient in their proofs is
the observation that an L3

tL
6
x-type Strichartz estimate (see (2.1) for the precise norm) holds for

the linearization of k-equivariant wave maps equation for every k ≥ 1 using the estimates proved
by Planchon, Stalker, Tahvildar-Zadeh [33] for the radially symmetric wave equation with inverse
square potential.

The theorem stated above will easily follow from the sequential soliton resolution of Côte [5], and
Jia and Kenig [22], once we prove the following result, which is our main contribution.

Theorem 2. Fix k ∈ {1, 2, 3, . . .}, m ∈ {0, 1, . . .}, and let ψ : [0, T+) → E0,m be a solution of (1.1).

1. (Blow-up case.) Assume T+ < ∞, there exists ψ∗
0 ∈ E0,m, and a sequence tn → T+ such

that λn ≪ µn ≪ T+ − tn and

lim
n→∞

∥∥ψ(tn)− ι
(
Qλn

−Qµn +ψ∗
0

)∥∥
E
= 0.

Then there exist continuous functions λ, µ : [T0, T+) → (0,∞) such that λ(t) ≪ µ(t) ≪ T+−t
as t→ T+ and

lim
t→T+

∥∥ψ(t) − ι
(
Qλ(t) −Qµ(t) +ψ

∗
0

)∥∥
E
= 0.

2. (Global case.) Assume T+ = ∞, there exists ψ∗
l
: [0,∞) → E a solution of (1.4), and a

sequence tn → ∞ such that λn ≪ µn ≪ tn and

lim
n→∞

∥∥ψ(tn)− ι
(
Qλn

−Qµn +ψ∗
l
(tn)

)∥∥
E
= 0.

Then there exist continuous functions λ, µ : [T0,∞) → (0,∞) such that λ(t) ≪ µ(t) ≪ t as
t→ ∞ and

lim
t→∞

∥∥ψ(t)− ι
(
Qλ(t) −Qµ(t) +ψ

∗
l
(t)

)∥∥
E
= 0.

1.4. Comments on the results. While the soliton resolution conjecture itself is a qualitative
description of the dynamics, it is of central importance to understand which configurations of
bubbles and radiation are actually realized by solutions in either the finite time singularity or global-
in-time case. Finite-time blow up wave maps with one concentrating bubble were first constructed
in a series of influential works by Krieger, Schlag, Tataru [27], Rodnianski, Sterbenz [35], and
Raphaël, Rodnianski [34], with the latter work yielding a stable blow-up regime; see also the recent
works [25, 26] for stability properties of the solutions from [27], as well as [21] for a classification
of blowup solutions with a given radiation profile, and [31, 32] for constructions of various types of
solutions with one bubble in infinite time. While these solutions are all constructed within the class
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E0,1, the examples that blow up in finite time can be smoothly truncated outside the light cone to
yield solutions in E blowing up in finite time with one bubble, thus the scenario (ii) in Theorem 1
is realized.

The first examples of wave maps with two bubbles were constructed by the first author in [17] in
equivariance classes k ≥ 2. The solutions in [17] take the form

ψ(t) = Qλ(t) −Qµ(t) + oE(1) as t→ ∞

with λ(t) → 0 and µ(t) → 1 as t → ∞. The radiation term ψ∗
l
= 0 and thus the solution has

threshold energy, i.e., E(ψ) = 2E(Q). In [18] the authors classified the dynamics of every k-
equivariant wave map with energy E = 2E(Q) = 8kπ in both time directions, showing, for example,
that every such wave map must scatter in at least one time direction. Rodriguez [36] proved an
analogous result in the case k = 1 including a construction of a threshold wave map blowing up in
finite time in one direction and scattering in the other. The collision analysis in these papers will
play a key role in the proof of Theorem 2; see Section 1.5. Recently the authors proved that the
2-bubble solution constructed in [17] is unique and of regularity H2 for classes k ≥ 4; see [19, 20].

Côte [5] observed that a result analogous to Theorem 2 holds, both in the blow-up case and in the
global case, if both bubbles have the same sign. In fact, Côte’s result allows an arbitrary number of
bubbles, all having the same sign. However, it is worth noting that existence of solutions developing
more than one bubble of the same sign is unknown.

In the setting of Theorem 2, we know that, at least in the global case, the set of the initial data
satisfying the assumptions is non-empty, as it contains the two-bubble solution constructed in [17].
Of course, we expect this set to be much bigger. Whether the set of initial data satisfying the
assumptions of the blow-up case in Theorem 2 is non-empty, is unclear to us. Also, in the case
k = 1, we do not know if there exist any solutions satisfying the assumptions of Theorem 2.

A natural question is whether our strategy could lead to a proof of soliton resolution for any
number of bubbles. While we believe that studying threshold N -bubble solutions for N ≥ 3 is an
interesting topic in itself, currently it is unknown if this can lead to a proof of soliton resolution in
the general case.

Remark 1.2. To be precise, the paper [17] provided a construction for the radial Yang-Mills
equation, which is very similar to equivariant wave maps with k = 2.

1.5. Comments on the proofs. The following result follows from [6, Theorem 1.1], [18, Theo-
rem 1.6] and [36, Theorem 1.6].

Theorem 1.3. Let k ∈ {1, 2, . . .}.

1. If ψ is a solution of (1.1) with initial data ψ0 ∈ E and energy E(ψ) < 2E(Q) = 8kπ, then
ψ scatters to a linear wave in both time directions.

2. If ψ is a solution of (1.1) with initial data ψ0 ∈ E and energy E(ψ) = 2E(Q) = 8kπ, then
ψ scatters to a linear wave in at least one time direction.

Settling the threshold case E(ψ) = 8kπ is essential for our proof of continuous time soliton
resolution of two-bubble wave maps. Indeed, one immediate enemy, when one attempts to deduce
continuous time soliton resolution from sequential soliton resolution, is the possibility of elastic
collisions. If colliding solitons could recover their shape after a collision, then one could potentially
encounter the following scenario: the solution approaches a multi-soliton configuration for a sequence
of times, but in between infinitely many collisions take place, so that there is no soliton resolution
in continuous time. The threshold case in Theorem 1.3 shows in particular that two bubbles cannot
collide in an elastic manner.

Transforming the intuition described above into a proof might not be immediate, see for example
the recent preprints [13, 14, 15]. In our case, however, we know that threshold two-bubbles not only
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collide in an inelastic way, but scatter in one time direction. As we demonstrate, this very strong
information makes the proof of continuous time soliton resolution almost immediate.

We stress as well that our proofs crucially use the observation from the earlier works cited above
that the radiation part of the solution is extracted for continuous time, and not only for a sequence.
We further comment on this issue at the beginning of Section 3 below.

1.6. Acknowledgments. The importance of the collision problem for the continuous time soliton
resolution was explained to us by Frank Merle.

2. Preliminaries

2.1. Profile decomposition. Our proof is based on the nonlinear profile decomposition method
due to Bahouri and Gérard [1], and Merle and Vega [30]. For the presentation of this theory in the
setting of the equivariant wave maps for arbitrary k, see [18, Section 2.3]. Here, we only state the
relevant results.

For a time interval I and ψ : I × (0,∞) → R, we define the Strichartz norm

(2.1) ‖ψ‖S(I) :=

(∫

I

(∫ ∞

0

ψ(t, r)6

r3
dr

)1

2
)1

3

.

If I = R, we write S instead of S(R). It is worth noting that a solution ψ of (1.1) scatters for
positive times if and only if ‖ψ‖S([T0,∞)) <∞.

We also introduce the following notation for the scale change: if φ ∈ Hℓ,m, then φλ(r) := φ(r/λ)

for all λ > 0; if φ = (φ, φ̇) ∈ Eℓ,m, then φλ(r) := (φ(r/λ), λ−1φ(r/λ)).

Definition 2.1. We say that a bounded sequence (ψn) ⊂ E has a profile decomposition with profiles

U
j
0 ∈ E and displacements (λjn, t

j
n) if the following conditions are satisfied:

(1) if j 6= j′, then limn→∞
λ
j
n

λ
j′

n

+ λ
j′

n

λ
j
n

+ |tj
′

n −t
j
n|

λ
j
n

= ∞,

(2) if wJ
n,0 is the remainder term defined by

ψn =
J∑

j=1

U j
l
(−tjn/λ

j
n)λj

n
+wJ

n,0,

then

lim
J→∞

lim sup
n→∞

‖wJ
n,l‖S = 0,

where U j
l : R → E and wJ

n,l : R → E are the solutions of (1.4) such that U j
l (0) = U0 and

wJ
n,l(0) = w

J
n,0.

Lemma 2.2 (Linear Profile Decomposition). Every bounded sequence (ψn) ⊂ E has a subsequence
which has a profile decomposition. �

Without loss of generality, upon taking subsequences and modifying the profiles, one can assume

that for all j one of the following holds: tjn = 0 for all n, limn→∞ tjn/λ
j
n = ∞, limn→∞ tjn/λ

j
n = −∞.

The nonlinear profile U j associated with the profile U j
0 is a solution of (1.1) defined by the condition

lim
n→∞

‖U j(−tjn/λ
j
n)−U

j
n,l(−t

j
n/λ

j
n)‖E = 0.

6



Lemma 2.3 (Nonlinear Profile Decomposition). Let ψn,0 ∈ E be a bounded sequence with a profile
decomposition, and let U j be the associated nonlinear profiles, with the maximal forward time of
existence T+(U

j). The following “Pythagorean formula” holds:

(2.2) lim
J→∞

lim sup
n→∞

∣∣∣E(ψn,0)−
J∑

j=1

E(U j)− ‖wJ
n,0‖

2
E

∣∣∣ = 0.

Furthermore, let sn ∈ (0,∞) be any sequence such that for all j and n

sn − tjn

λjn
< T+(U

j), lim sup
n→∞

‖U j‖
S(Ijn)

<∞, where Ijn :=
[
−
tjn

λjn
,
sn − tjn

λjn

]
.

Let ψn(t) denote the solution of (1.1) with initial data ψn(0) = ψn,0. Then for n large enough ψn(t)
exists on the interval s ∈ [0, sn] and satisfies,

lim sup
n→∞

‖ψn‖S([0,sn]) <∞.

Moreover, the following nonlinear profile decomposition holds for all s ∈ [0, sn],

ψn(s) =

J∑

j=1

U j
(s− tjn

λjn

)
λ
j
n

+wJ
n,l(s) + g

J
n(s)

with wJ
n,l(t) as in Definition 2.1 and

lim
J→∞

lim sup
n→∞

(
‖gJn‖S([0,sn]) + ‖gJn‖L∞([0,sn];E)

)
= 0.

The analogous statement holds for sequences sn ∈ (−∞, 0). �

2.2. Bubbles and two-bubbles. In this section, we state a few useful facts about states ψ0 ∈ E
which are close to a two-bubble.

First, we recall the following variational characterization of Q in H0,1 from [4], which amounts to
the coercivity of the energy functional near Q.

Lemma 2.4. [4, Proposition 2.3] For any ǫ > 0 there exists δ > 0 such that if ψ0 ∈ H0,1 and
Ep(ψ0) ≤ 4kπ + δ, then there exists λ > 0 such that ‖ψ0 −Qλ‖H ≤ ǫ. �

Next, we consider two-bubble configurations.

Definition 2.5. Given a map ψ0 ∈ E , we define its proximity d+(ψ0) to a positive pure 2-bubble
and its proximity d−(ψ0) to a negative pure 2-bubble by

d±(ψ0) := inf
λ,µ>0

(
‖ψ0 ∓ (Qλ −Qµ)‖

2
E + (λ/µ)k

)
.

We also set

d(ψ0) := min(d+(ψ0),d−(ψ0)).

Lemma 2.6. For any ǫ > 0 there exists δ > 0 such that if ψ0 ∈ E, E(ψ0) ≤ 8kπ + δ and
‖ψ0‖E ≥ δ−1, then d(ψ0) ≤ ǫ.

Proof. The result follows from the proof of Lemma 2.13 in [18], with minor modifications left to the
Reader. �
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3. Proofs of the theorems

Our proof of Theorem 2 uses the observation from [6, 7, 5] that the sequential decomposition
provides one profile which is independent of the time sequence: ψ∗

0 in the blow-up case and ψ∗
l

in
the global case. Before stating the claim, we introduce the notation

‖ψ0‖
2
E(r≤ρ) = ‖(ψ0, ψ̇0)‖

2
E(r≤ρ) :=

∫ ρ

0

(
ψ̇0(r)

2 + (∂rψ0(r))
2 + k2

ψ0(r)
2

r2

)
r dr,

‖ψ0‖
2
E(r≥ρ) = ‖(ψ0, ψ̇0)‖

2
E(r≥ρ) :=

∫ ∞

ρ

(
ψ̇0(r)

2 + (∂rψ0(r))
2 + k2

ψ0(r)
2

r2

)
r dr.

Lemma 3.1. [5, Propositions 5.1 and 5.2] Fix k ∈ {1, 2, 3, . . .}, ℓ,m ∈ {0, 1, . . .}, and let ψ :
[0, T+) → Eℓ,m be a solution of (1.1).

1. (Blow-up case.) Assume T+ < ∞. Then there exists p ∈ Z and ψ∗
0 ∈ Ep,m such that

φ(t) := ψ(t)−ψ∗
0 satisfies

(3.1) lim
t→T+

‖φ(t)‖E(r≥T0−t) = 0.

2. (Global case.) Assume T+ = ∞. Then there exists a solution ψ∗
l
: R → E of (1.4) and

an increasing function A : [0,∞) → [0,∞) such that limt→∞A(t) = ∞, and φ(t) :=
ψ(t)−ψ∗

l
(t) satisfies

lim
t→∞

‖φ(t)− (πm, 0)‖E(r≥t−A(t)) = 0.

�

Remark 3.2. In the paper [5], only the cases k = 1 and k = 2 were considered, but the proofs,
which are identical to the arguments given in Section 5.1 of [6] and Section 3.2 of [7], are valid for
general k, using the Strichartz estimates from [33].

In the global case, we will also need the following fact.

Lemma 3.3. Let tn be an increasing sequence such that limn→∞ tn = ∞, and let ρn be a sequence
such that limn→∞(tn − ρn) = ∞.

1. If φl : R → E is a solution of (1.4), then limn→∞ ‖φl(tn)‖E(r≤ρn) = 0.
2. Let φ0,n ∈ E be a bounded sequence of initial data such that limn→∞ ‖φ0,n‖E(r≥ρn) = 0.

Let φn,l be the solution of (1.4) corresponding to the initial data φn,l(tn) = φ0,n. Then
φn,l(0)⇀ 0 as n→ ∞.

Proof. The first claim is a well-known property of the linear wave equation, see for example [8,
Proposition 4].

Regarding the second claim, it is sufficient to prove that every subsequence of φn,l(0) has a
subsequence weakly converging to 0. By weak compactness, we only need to show that φn,l(0) ⇀ φ0

implies φ0 = 0.

Let φn,l(0) = φ0 + φ̃0,n, and let φ̃n,l be the solution of (1.4) corresponding to the initial data

φ̃n,l(0) = φ̃0,n. Let φl be the solution of (1.4) for the initial data φl(0) = φ0, so that φn,l(t) =

φl(t) + φ̃n,l(t) for all t ≥ 0. It is easy to see that (1.4) defines a unitary group in E , hence

〈φl(tn),φ0,n − φl(tn)〉E = 〈φl(tn), φ̃n,l(tn)〉E = 〈φ0, φ̃0,n〉E → 0, as n→ ∞,

where 〈·, ·〉 denotes the inner product in E .
By the first part of the lemma, we have ‖φl(tn)‖E(r≤ρn) → 0, which yields 〈φl(tn),φ0,n〉E → 0,

and we obtain ‖φ0‖
2
E = 〈φl(tn),φl(tn)〉E → 0. �
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Proof of Theorem 2. In the proof, we use several times the following fact. If φn,ψn are sequences
such that E(φn), E(ψn) are bounded, and ρn ∈ (0,∞) is a sequence such that

lim
n→∞

‖φn‖E(r≤ρn) = 0, lim
n→∞

‖ψn‖E(r≥ρn) = 0,

then

lim
n→∞

(
E(φn +ψn)− E(φn)− E(ψn)

)
= 0.

The blow-up case. We first prove that it can be assumed without loss of generality that m = 0,
so that ψ∗

0 ∈ E .

To see this, consider the solution ψ̃ of (1.1) corresponding to the initial data ψ̃(T0) = χψ(T0),
where χ is a smooth cut-off function such that χ(r) = 1 if r ≤ 1

2 and χ(r) = 0 if r ≥ 1, and

T+− 1
8 < T0 < T+. By finite speed of propagation, ψ̃(t, r) = ψ(t, r) for all t ∈ [T0, T+) and r ≤ 3/8

(since an equivariant wave map can only blow up at r = 0, it is clear that ψ̃ does not blow up until

time T+). Let ψ̃∗
0 ∈ E be given by Lemma 3.1, so that φ̃(t) := ψ̃(t)− ψ̃∗

0 satisfies (3.1). It follows

that ψ̃∗
0(r) = ψ∗

0(r) if r ≤ 3
8 , implying φ̃(t, r) = φ(t, r) if r ≤ 3

8 . Thus, for any sequence sn → T+,

d±(φ(sn)) → 0 if and only if d±(φ̃(sn)) → 0. We deduce that (sequential or continuous-time)

soliton resolution holds for ψ if and only if it holds for ψ̃.
We thus assume m = 0. Let ψ∗

0 ∈ E be given by Lemma 3.1. We decompose

ψ(t) = φ(t) +ψ∗
0.

We have limn→∞E(φ(tn)) = 8kπ, thus E(ψ∗
0) = E(ψ) − 8kπ. Since limt→T+

‖φ(t)‖E(r≥T+−t) = 0

and limt→T+
‖ψ∗

0‖E(r≤T+−t) = 0, we obtain limt→T+

(
E(φ(t)+ψ∗

0)−E(φ(t))−E(ψ∗
0)
)
= 0, in other

words

lim
t→T+

E(φ(t)) = 8kπ.

Suppose there exists a sequence τn → T+ such that supn ‖φ(τn)‖E < ∞. Upon extracting a
subsequence, we can assume without loss of generality that the sequence φ(τn) has a profile decom-
position. For j ∈ {1, 2, . . .}, let U j be the nonlinear profiles, with the corresponding parameters

λjn, tjn. Let U0 be the solution of (1.1) with the initial data U0(0) = ψ∗
0 , t

0
n = 0, λ0n = 1. Since

φ(τn)⇀ 0 as n→ ∞, see Lemma 3.1, the sequence ψ(τn) has a profile decomposition with profiles

U j , j ∈ {0, 1, 2, . . .}, and parameters λjn, t
j
n.

Thanks to the Pythagorean formula (2.2), either there is just one non-zero profile of energy 8kπ
and wJ

n,L = w1
n,L → 0 in E for all J ≥ 1, or all the profiles scatter in both time directions.

Case 1. All the profiles U j scatter in both time directions. Fix any 0 < T < T+(U
0). The

assumptions of Lemma 2.3 are satisfied with sn = T , which implies that ψ exists on the time
interval [τn, τn + T ] for all n large enough. This is in contradiction with the fact that φ blows up
at t = T+.
Case 2. There is just one profile U1, and wJ

n,l = 0 for J ≥ 1. By taking a subsequence and

adjusting U1, we can assume that limn→∞ t1n/λ
1
n ∈ {−∞,∞}, or t1n = 0 for all n.

Case 2.1. We either have limn→∞ t1n/λ
1
n = −∞, or t1n = 0 for all n and U1 scatters in the forward

time direction. In this situation, the same argument as in Case 1 yields a contradiction.
Case 2.2. We either have limn→∞ t1n/λ

1
n = ∞, or t1n = 0 for all n and U1 scatters in the backward

time direction.
Let ψn(t) := ψ(τn+ t). The assumptions of Lemma 2.3 are satisfied with sn = −∞. For tm fixed

and n large enough so that tm < τn, we obtain

(3.2) ψ(tm) = ψn(−(τn − tm)) = U1
(−(τn − tm)− t1n

λ1n

)
+ψ∗

0 + hn,
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with limn→∞ ‖hn‖E = 0. Since U1 scatters in the backward time direction, there exists ǫ > 0 such
that d(U1(t)) ≥ 2ǫ for all t ≤ 0. Taking n→ ∞ in (3.2), we obtain

d(ψ(tm)−ψ∗
0) ≥ ǫ.

This is true for all m, with ǫ independent of m, in contradiction with the assumptions of Theorem 2.
Thus, we have proved that limt→T+

‖φ(t)‖E = ∞. By Lemma 2.6, φ(t) converges to a two-bubble
in continuous time.

The global case. The proof is completely analogous. We decompose

ψ(t) = φ(t) +ψ∗
l
(t).

and we claim that

lim
t→∞

E(φ(t)) = 8kπ.(3.3)

To see this, note that the limits limn→∞E(φ(tn)) = 8kπ, limn→∞ ‖φ(tn)‖E(r≥tn−A(tn)) = 0, and
limt→∞ ‖ψ∗

l
(t)‖E(r≤t−A(t)) = 0, imply that

lim
n→∞

E(ψ∗
l
(tn)) = E(ψ)− 8kπ.

Next, let ψ∗(t) ∈ E denote the solution to (1.1) that scatters to ψ∗
l
(t), i.e.,

‖ψ∗(t)−ψ∗
l
(t)‖E → 0 as t→ ∞,

which, together with the previous displayed equation implies that E(ψ∗) = E(ψ)−8kπ. Now define

φ̃(t) by ψ(t) = φ̃(t)+ψ∗(t). Since limt→∞ ‖ψ∗(t)‖E(r≤t−A(t)) = 0 and limt→∞ ‖φ̃(t)‖E(r≥t−A(t)) = 0,

we obtain limt→∞

(
E(φ̃(t) +ψ∗(t))− E(φ̃(t))− E(ψ∗)

)
= 0, or in other words

lim
t→∞

E(φ(t)) = lim
t→∞

E(φ̃(t)) = E(ψ) − E(ψ∗) = 8kπ,

proving (3.3).
Suppose there exists a sequence τn → ∞ such that supn ‖φ(τn)‖E < ∞. Upon extracting a

subsequence, there exists a profile decomposition of the sequence φ(τn). For j ∈ {1, 2, . . .}, let U j

be the nonlinear profiles, with the corresponding parameters λjn, tjn. Set U0
l
:= ψ∗

l
, t0n = τn, λ0n = 1.

In order to check that U0
l

is a profile, we need to verify that Vn,l(0)⇀ 0, where Vn,l is the solution of
(1.4) corresponding to the initial data Vn,l(τn) = φ(τn). By Lemma 3.1, ‖φ(τn)‖E(r≥τn−A(τn)) → 0.
Thus Lemma 3.3, applied with ρn := τn −A(τn), implies the claim.

Let U0 be the corresponding nonlinear profile, so that the sequence ψ(τn) has a profile decom-

position with nonlinear profiles U j , j ∈ {0, 1, 2, . . .}, and parameters λjn, t
j
n.

Either there is just one profile of energy 8kπ and wJ
n,l = w1

n,l → 0 in E for all J ≥ 1, or all the
profiles scatter in both time directions.
Case 1. All the nonlinear profiles U j scatter in both time directions. Since the nonlinear profile
U0 scatters as t → ∞, Lemma 2.3 yields a contradiction with the fact that φ does not scatter as
t→ ∞.
Case 2. There is just one profile U1, and wJ

n,l = 0 for J ≥ 1. By taking a subsequence and

adjusting U1, we can assume that limn→∞ t1n/λ
1
n ∈ {−∞,∞}, or t1n = 0 for all n.

Case 2.1. We either have limn→∞ t1n/λ
1
n = −∞, or t1n = 0 for all n and U1 scatters in the forward

time direction. In this situation, the same argument as in Case 1 yields a contradiction.
Case 2.2. We either have limn→∞ t1n/λ

1
n = ∞, or t1n = 0 for all n and U1 scatters in the backward

time direction.
10



Let ψn(t) := ψ(τn+ t). The assumptions of Lemma 2.3 are satisfied with sn = −∞. For tm fixed
and n large enough so that tm < τn, we obtain

(3.4) ψ(tm) = ψn(−(τn − tm)) = U1
(−(τn − tm)− t1n

λ1n

)
+ψ∗

l
(tm) + hn,

with limn→∞ ‖hn‖E = 0. Since U1 scatters in the backward time direction, there exists ǫ > 0 such
that d(U1(t)) ≥ 2ǫ for all t ≤ 0. Taking n→ ∞ in (3.4), we obtain

d(ψ(tm)−ψ∗
l
(tm)) ≥ ǫ.

This is true for all m, with ǫ independent of m, in contradiction with the assumptions of Theorem 2.
Thus, we have proved that limt→T+

‖φ(t)‖E = ∞. By Lemma 2.6, φ(t) converges to a two-bubble
in continuous time. �

Proof of Theorem 1. Let k = 1. The energy constraint implies that in Theorem 1.1 in [5], we have
J ≤ 2. If J 6= 2, then Corollary 1.2 from [5] yields the result. If J = 2, then the assumptions of our
Theorem 2 are satisfied.

The case k = 2 is analogous and uses Theorem 1.2 from [22]. �
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