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The wave turbulence theory predicts that a conservative system of nonlinear waves can exhibit
a process of condensation, which originates in the singularity of the Rayleigh-Jeans equilibrium
distribution of classical waves. Considering light propagation in a multimode fiber, we show that
light condensation is driven by an energy flow toward the higher-order modes, and a bi-directional
redistribution of the wave-action to the fundamental mode and to higher-order modes. The analysis
of the near-field intensity distribution provides experimental evidence of this mechanism. The kinetic
equation also shows that the wave-action and energy flows can be inverted through a thermalization
toward a negative temperature equilibrium state, in which the high-order modes are more populated
than low-order modes. In addition, a Bogoliubov stability analysis reveals that the condensate state
is stable.

Bose-Einstein condensation (BEC) has been predicted
and experimentally reported in genuine quantum sys-
tems, such as quantum degenerate gases of ultracold
atoms [1], exciton polaritons [2], magnons [3] and pho-
tons [4, 5]. On the other hand, several studies based
on the wave turbulence theory [6–10] predict that non-
linear waves can also exhibit a phenomenon of conden-
sation [7, 8, 11–25]. Although the physics of quantum
gases and wave condensation are different, the underly-
ing mathematical origin of the condensation process is
similar because of the common low-energy divergence of
the equilibrium Bose distribution for quantum particles
and the equilibrium Rayleigh-Jeans (RJ) distribution for
waves [8, 12]. Other forms of condensation processes have
been discussed for optical cavity systems, whose nonequi-
librium forced-dissipative features[2, 26–31] lead to dif-
ferent forms of universal properties [32].

Full 3D quantum thermalization and condensation
with optical waves in a conservative cavity-less free prop-
agation geometry has been predicted in [33], but has also
been anticipated to require prohibitive large propagation
lengths. Reducing to an effective 2D geometry using
monochromatic classical light helps observing condensa-
tion effects, but still requires propagation lengths that
challenge experimental feasibility [25]. Actually, ther-
malization to the RJ equilibrium is not even properly de-
fined when the optical beam propagates in a bulk medium
because of the ultraviolet catastrophe inherent to classi-
cal optical waves. This issue can be circumvented by con-
sidering a waveguide configuration, whose finite number
of modes regularizes the ultra-violet catastrophe and also
substantially reduces the rate of thermalization [17, 19].
In this respect, a remarkable phenomenon of spatial beam
self-organization, termed ‘beam self-cleaning’, has been

recently discovered in (graded index) multimode fibers
(MMF) [34–37]. Recent works suggested that this phe-
nomenon of beam self-cleaning can be interpreted as a
consequence of a wave thermalization and condensation
process [38–42]. In particular, a wave turbulence kinetic
equation (KE) describing this effect has been derived in
[38, 39]. This process has been experimentally demon-
strated in a recent work [43], where the condensate frac-
tion across the transition to condensation has been found
in agreement with the RJ equilibrium theory.

Our aim in this article is to provide more physical
insights into the experimental results reported in [43].
We recall in this respect that wave condensation is usu-
ally understood as an inverse turbulence cascade that
increases the level of nonlinearity at large scales (i.e. low
wave-numbers), up to a breaking point of the weak turbu-
lence theory [8]. In the focusing regime of our experiment,
such a nonlinear breaking point is usually regularized by
the (Benjamin-Feir) modulational instability, which leads
to the generation of coherent soliton-like structures (‘soli-
ton condensation’) [8, 18, 44–46]. At variance with this
strongly nonlinear process that occurs far from thermal

equilibrium, in our experiments the transition to conden-
sation is driven by the thermalization to the RJ equilib-
rium in the weakly nonlinear regime. More precisely, we
show that the process of condensation is characterized by
a flow of the energy toward the higher-order modes, and
a bi-directional redistribution of the wave-action (or op-
tical power, or particle number in a corpuscular picture),
from intermediate modes to both the fundamental and
the higher-order modes.

Modal nonlinear Schrödinger equation.– We consider
the (2D+1) nonlinear Schrödinger equation (NLSE) ac-
counting for the polarization degree of freedom, which
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is known to describe the transverse spatial evolution of
an optical beam in a waveguide modelled by a confin-
ing potential V (r) [with r = (x, y)] [19]. Following the
experiments of beam cleaning, we consider a parabolic
shaped potential V (r) modelling a graded-index MMF,
with the mode eigenvalues βp = β0(px+py+1) (the index
p labels the two integers (px, py) that specify a mode),
where β0 = 1/(nck0r

2
o) with k0 = 2π/λ, ro the radius

of the fundamental mode, λ the laser wavelength, and nc

the core refractive index. By expanding the random wave
into the normalized Hermite-Gauss modes (up(r)) of the
MMF, the modal NLSE for the evolutions of the vector
modal components ap = (ap,x, ap,y)

T reads [38, 39]:

i∂zap = βpap +Dp(z)ap − γPp(a), (1)

where the nonlinear terms read Pp(a) =
∑

l,m,n Splmn

(

1
3a

T
l ama∗

n + 2
3a

†
namal

)

, Splmn denoting

the overlap among the modes – note that S0000 = 1
[39]. To explain the experiments of beam-cleaning, it
is important to introduce the impact of a structural
disorder, which is known to affect light propagation
in MMFs due to inherent imperfections and external
perturbations [49]. We consider in (1) the dominant
contribution of weak disorder. In its most general
form that conserves the wave-action N =

∑

p |ap|2,
the Hermitian matrices Dp(z) are expanded into the

Pauli matrices σj , Dp(z) =
∑3

j=0 νp,j(z)σj , where σ0

is the identity matrix and νp,j(z) are independent and
identically distributed real-valued random processes,
with variance σ2 and correlation length ℓc. Introducing
the parameter ∆β = σ2ℓc, the characteristic length scale
of disorder is Ld = 1/∆β [39]. Finally note that since
the disorder is (“time”) z dependent, our system is of
different nature than those studying the interplay of
thermalization and Anderson localization [24].

Kinetic equation.– It is important to recall that our ex-
periments are carried out in the weakly nonlinear regime
Llin ∼ 1/β0 ≪ Lnl ∼ 1/(γN) [43], and that linear prop-
agation effects dominate disorder effects, Llin ≪ Ld (or
∆β ≪ β0). According to this latter separation of spatial
scales, turbulence in MMFs is described by a discrete

wave turbulence approach [38, 39], which means that
only exact resonances contribute to the KE, while quasi-
resonances can be neglected [8]. Indeed, assuming that
disorder effects dominate nonlinear effects Ld ≪ Lnl,
we have derived a discrete wave turbulence KE that
describes the nonequilibrium evolution of the averaged
modal components np(z) =

〈

|ap|2(z)
〉

during the propa-
gation through the fiber [38, 39]:

∂znp(z) =
γ2

6∆β

∑

l,m,n

|Slmnp|2δK(∆ωlmnp)Mlmnp(n)

+
4γ2

9∆β

∑

l

|slp(n)|2δK(∆ωlp)(nl − np), (2)

with slp(n) =
∑

m′ Slm′m′pnm′ , and Mlmnp(n) =
nlnmnp + nlnmnn − nnnpnm − nnnpnl and ∆ωlp =
βl − βp. The term δK(∆ωlmnp) denotes the four-wave
frequency resonance ∆ωlmnp = βl + βm − βn − βp, with
δK(∆ωlmnp) = 1 if ∆ωlmnp = 0, and zero otherwise.
Note the presence of ∆β in the denominator of the KE,
so that disorder significantly affects the rate of thermal-
ization [39].
To derive the KE (2) we made use of the conventional

assumption of Gaussian statistics to achieve a closure of
the infinite hierarchy of the moments equations [6], a
feature which is justified by the weakly nonlinear regime
of our experiments. In the absence of the confining po-
tential (V (r) = 0), the wave turbulence KE can be de-
rived under a weaker assumption than Gaussian statis-
tics, namely the random phase and amplitude (RPA) ap-
proximation [8]. In the presence of the confining potential
(V (r) 6= 0), we have shown that the Gaussian approxi-
mation gives the same result as the RPA for the coupling
among non-degenerate modes, while differences appear
for the degenerate modes, which only marginally affect
the rate of thermalization.

Numerical simulations: Energy and wave-action

flows.– The KE conserves the wave-action N =
∑

p np

and the ‘energy’ E =
∑

p βpnp – note that we call E ‘en-
ergy’ because it refers to the linear contribution to the
Hamiltonian (E is in units of W·m−1), while we call N
‘wave-action’ by following the wave turbulence terminol-
ogy [6] (N is in units of W). In a particle picture, np and
N have the meaning of population of the p mode and of
total particle number.
The KE (2) exhibits a H−theorem of entropy growth

(∂zS ≥ 0) for the nonequilibrium entropy S(z) =
∑

p log
(

np(z)
)

, so that it describes an irreversible evolu-
tion to the RJ equilibrium distribution neq

p = T/(βp−µ)
that realizes the maximum of entropy. Accordingly we
have N = T

∑

p(βp − µ)−1 and E = T
∑

p βp/(βp − µ)
and we recall that there is a one to one relation between
the equilibrium parameters (µ, T ) and the initial condi-
tions (N,E) [12, 19, 47] – note in particular that T is not
determined by a thermostat (T is in units of W·m−1).
This irreversible process of thermalization to the RJ

distribution is illustrated in Fig. 1(a)-(c), which reports
numerical simulations of the modal NLS Eq.(1) and cor-
responding KE (2) starting from the same initial condi-
tion. During the propagation, np essentially flows toward
the fundamental mode (inverse cascade), while a small
fraction of np flows toward the higher-order modes. For
convenience we have reported in Fig. 1 the average wave-
action ñg within each group of degenerate modes, where
g = 0, .., gmax − 1 indexes the mode group (in Fig. 1
gmax = 15 for a total M = gmax(gmax + 1)/2 = 120
modes). The RJ power-law ñg ∼ 1/g is verified by the
simulation of the KE and NLSE – due to the large com-
putation times, we are unable to perform an average over
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FIG. 1: Numerical simulation of the modal NLSE (1) (a)-(b),
and KE (2) (c)-(d): Evolutions of the wave-action ñg (a)-(c),

and energy Ẽg (b)-(d), for gmax =15 groups of non-degenerate
modes. The dashed black lines in (a) and (c) denote the RJ
power-law ñeq

g ∼ 1/g. The thermalization is featured by an
energy flow toward the higher-order modes and a wave-action
flow toward the fundamental and higher-order modes. Evo-
lutions of n0(z) (e) and n4(z) (f) obtained from the NLSE
(1) simulation (red line) and the KE (2) (dashed blue): The
modal components thermalize to the theoretical equilibrium
value predicted by the RJ theory (the dashed black line de-
notes neq

0 /N = 0.6). Parameters: N =47.5kW, ℓc = 0.019m,
2π/σ = 0.26m, there is no average over the realizations for
the NLSE simulation.

the realizations of NLSE simulations, which explains the
noisy structure of ñg in Fig. 1a-b.

These results are corroborated by the modal distri-
bution of the energy, which exhibits a flow toward the
higher-order modes (direct cascade). In this example, we
considered a relatively small value of the conserved en-
ergy E, which is below the critical value of the transition
to condensation Ec ≃ Emin

√

M/2, where Emin = Nβ0

denotes the minimum energy when all the ‘particles’ N
populate the fundamental mode. Note that Ec only de-
pends on the geometry of the waveguide potential, whose
finite number of modes M regularizes the ultraviolet
catastrophe of classical waves. In the condensed state,
µ → β−

0 [43], so that the waves that started from an ini-
tial state with an excess energy in the low-energy modes,
eventually tend to an equilibrium state displaying an en-
ergy equipartition among the modes Ep = (βp − β0)np ∼
T [or Ẽg = β0gñg ∼ T ], as illustrated in Fig. 1(b)-(d).

Then RJ thermalization is characterized by a macro-
scopic population of the fundamental mode, as illustrated
in Fig. 1(e), where the condensate fraction relaxes toward
the theoretical equilibrium value neq

0 /N ≃ 0.6. Note that
the good agreement between NLSE and KE simulations
in Fig. 1 is obtained without using adjustable parameters.
One may question whether the above energy and wave-

action flows can be described theoretically by means
of the Zakharov-Kolmogorov spectra of turbulence [6].
While these nonequilibrium stationary solutions are sus-
tained by the addition of a permanent forcing and damp-
ing at different scales in the system, they may be iden-
tified in the transient evolution of a purely conservative
system, before reaching the RJ equilibrium [8, 18]. Note
however that our KE (2) differs from the conventional
wave turbulence KE in two respects: (i) It involves the
tensor |Splmn|2 instead of the Dirac δ−function over the
wave-vectors, because the potential V (r) breaks the con-
servation of the momentum; (ii) Our KE is discrete in fre-
quencies. This latter property does not allow the appli-
cation of the standard procedure based on the Zakharov
conformal transformation to derive nonequilibrium sta-
tionary solutions featured by a non-vanishing flux of the
conserved energy and wave-action. This appears consis-
tent with the numerical simulations, which do not evi-
dence the formation of a nonequilibrium power-law spec-
trum in the transient evolution that precedes the forma-
tion of the equilibrium RJ spectrum.

Experimental results.– We performed experiments in a
MMF with the experimental setup of Ref.[43]. We used
a 12m-long graded-index MMF that guides M = 120
modes (gmax = 15) with a core radius R = 26µm charac-
terized by a parabolic shaped transverse refractive index.
The originality with respect to conventional experiments
of spatial beam cleaning [34, 35, 37] relies on the fact
that the laser beam (Nd:YAG at λ = 1.06µm) is passed
through a diffuser to generate a speckle beam before in-
jection into the MMF. In the experiments we measure
N and E from the near-field and far-field measurements
of the intensity distributions, see Ref.[43]. By moving
the diffuser we obtain different realizations of the speckle
beams, and then we can vary the (conserved) energy E
while keeping constant the power (N = 7kW). Here, we
focus the analysis into the near-field intensity distribu-
tion. Note that, because of the parabolic shaped poten-
tial V (r), the average near-field and far-field intensity
representations are equivalent to each other [43].
We report in Fig. 2 (left column) the experimental

results of the near-field intensity distributions averaged
over ∼50 realizations for three different values of the en-
ergies E, which correspond to an equilibrium condensate
fraction of neq

0 /N = 0.6, 0.4, 0.2. We report the ‘out-
put’ intensity distributions recorded at 12m (red lines),
and the ‘input’ intensities recorded after 20cm of propa-
gation in the MMF (representing the ‘initial conditions’
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FIG. 2: (a)-(c) Experimental intensities distributions aver-
aged over the realizations at the input (blue), and the output
(red) of the MMF. (d)-(f) Corresponding numerical simula-
tions of the NLSE (1), see the text for parameters. The con-
densate fraction is neq

0 /N = 0.6 (1st line); neq
0 /N = 0.4 (2nd

line); neq
0 /N = 0.2 (3rd line). The dashed green lines report

the theoretical RJ intensity distribution Ieq(r) from Eq.(3)
without using any adjustable parameter. The intensities are
plotted as a function of the angle-averaged distance r = |r|.
The insets show the 2D output intensity distributions with
the same color-bar (the circle denotes the MMF’s core).

[38], blue lines). The output intensities are compared to
the theoretical RJ intensity distributions Ieq(r) (dashed
green lines). It is important to stress that the good
agreement between the experiments and the theory in
Fig. 2 (left column) is obtained without any adjustable

parameter: The experimentally measured values (E,N)
determine a unique pair (µ, T ), which in turn determines
neq
p = T/(βp − µ) and thus the RJ equilibrium intensity

distribution (dashed green lines in Fig. 2):

Ieq(r) =
∑

p

neq
p u2

p(r). (3)

We do not have access to a measurement of the power np

within each individual mode p in the experiments. How-
ever, for large values of px = py, the asymptotic forms for
the Hermite-Gauss functions show that the normalized
mode up(r) is essentially supported in r ≤ √

2gro with
g = px + py [50], i.e., there is a correspondence between
the radius r and the mode number g. The bi-directional
wave-action flows toward the fundamental mode and the
higher-order modes (r ≃ R) is clearly visible for a strong
condensation, see Fig. 2(a) for neq

0 /N = 0.6. By increas-
ing the energy E (i.e. decreasing neq

0 /N), the amount

of incoherence (randomness) of the launched beam also
increases and then populates the higher-order modes, so
that only the inverse wave-action flow toward the funda-
mental mode is visible, see Fig. 2(c). Note that the prop-
erties of phase coherence of a condensed cleaned beam
have been recently studied experimentally [48].

The numerical simulations of the modal NLSE (1)
qualitatively reproduce the behavior observed experi-
mentally. This is illustrated in Fig. 2 (right column),
where an average over the propagation has been consid-
ered from 12m to 22m so as to smooth the output inten-
sity profiles (red lines). Although the parameters that
characterize the disorder are not precisely known, we con-
sidered in Fig. 2 plausible experimental values ℓc = 0.3m
and 2π/σ = 2.14m [49]. For these parameters disorder
no longer dominates nonlinear effects (Ld ∼ Lnl), and
strictly speaking the KE (2) is no longer valid [39]. How-
ever, the scaling predicted by the KE, namely that ther-
malization is accelerated by decreasing the disorder (see
the parameter ∆β in the denominator of (2)) is responsi-
ble for a fast process of condensation for the small disor-
der considered in Fig. 2. This is apparent by comparing
the simulations in Fig. 1 (propagated over ∼ 100m) and
Fig. 2 (over L = 12m). In spite of the acceleration of ther-
malization, we had to increase the power up to 22kW in
the simulations to get a good agreement between NLSE
simulations and the experimental results in Fig. 2. Then
although the purely spatial model considered in Eq.(1)
captures many features of the experimental results, an
improved quantitative agreement would require a spatio-
temporal extension of the model so as to account for the
pulsed laser regime considered in the experiments.

Stability of the condensate.– The description of wave
condensation in the absence of a trapping potential (i.e.,
in the homogeneous case V (r) = 0) is known to require a
Bogoliubov approach, which shows that the condensate
fraction neq

0 /N strongly depends on the nonlinearity γ
[11, 12]. Here we show that the Bogoliubov approach is
irrelevant to describe the weakly nonlinear regime of our
experiment.

The structural disorder considered in the modal NLSE
(1) enforces the random phase dynamics among the
modes. As described by the KE (2), the disorder then
has a stabilizing effect on the process of condensation
in the regime Ld ≪ Lnl. However, as discussed above
through the simulations of Fig. 2, the disorder does not
dominate nonlinear effects in the experiments. In the
following we show that the condensate is stable against
the focusing nonlinearity even in the absence of disor-
der effects. Then we neglect the impact of polarization
disorder and set Dp = 0, ap → ap in Eq.(1). We as-
sume that the fundamental mode is strongly occupied
(|a0| ≫ |am|, m 6= 0) and consider the weakly nonlin-
ear regime ε = Llin/Lnl = γN/β0 ≪ 1. The linearized
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equations read:

∂za0 = −iβ0a0 + iγ|a0|2a0
+iγ

∑

p6=0

sp0(2|a0|2ap + a20a
∗
p),

∂zam = −iβmam + iγsm0|a0|2a0
+iγ

∑

p6=0

smp(2|a0|2ap + a20a
∗
p),

where smn = Smn00. Writing smn = wmxnx
wmyny

, we
have

wmxnx
=

(−1)
mx−nx

2

2mx+nx

√
mx!nx!

(mx + nx)!

(mx+nx

2 )!
, (4)

when mx and nx have the same parity, and wmxnx
= 0

otherwise (idem for wmyny
). We look for a particular

solution of the form a0 =
√
n0e

−iβ̄0z, where β̄0 will be

defined later, and am = dme−iβ̄0z with β̄m = βm − β̄0

(dm real-valued). The ansatz is solution if

−β̄0n
1/2
0 = −β0n

1/2
0 + γn

3/2
0 + 3γn0

∑

p6=0 sp0dp

β̄mdm = +γsm0n
3/2
0 + 3γn0

∑

p6=0 smpdp, m 6= 0

Therefore the vector d is solution of the linear sys-
tem (I − K)d = y, with the elements of y given by

ym = γn
3/2
0 sm0/β̄m and the matrix K = (Kmp) given

by Kmp = 3γn0smp/β̄m for m 6= p and 0 otherwise.
The matrix I − K is invertible if supm

∑

p |Kmp| < 1,
which is verified since ε ≪ 1. Therefore there is a
unique vector solution that is d = (I − K)−1y. By
considering only the leading order corrections O(ε2β0),

we have dm = γn
3/2
0 sm0/(βm − β0), β̄0 = β0 − γn0,

β̄m = βm − β0 + γn0, and the nonlinear fundamental
mode is of the form

ū0(r, z) =
√
n0e

−iβ̄0z
(

u0(r) +
∑

m 6=0

γn0sm0

βm − β0
um(r)

)

.

The field then consists of the superposition of the strong
condensate in the (slightly distorted) mode ū0 and the
incoherent mode fluctuations am 6=0, that can be written

in terms of ãm(z) = am(z)eiβ̄0z:

∂z ãm = −iβ̄mãm + iγn0

∑

p6=0

smp(2ãp + ã∗p). (5)

The stability of this system is carried out by comput-
ing the matrix eigenvalues, which reveals that all eigen-
values are purely imaginary for ε ≪ 1, i.e., the con-
densate is stable. Note that for mx,my ≫ 1, we
have sm0 ≃ 1/[

√
π(mxmy)

1/42(mx+my)/2] and smm ≃
4/[π(mxmy)

1/2], so that sm0 exhibit a rapid decay to
zero as compared to smm. Then assuming smm ≫ smp

(p 6= m), the eigenvalues are obtained in analytical form
with the Bogoliubov dispersion relation

β̄B
m =

√

(β̄m − 3γn0smm)(β̄m − γn0smm). (6)

(a) (b)

m

(c) (d)

(e) (f)

FIG. 3: Simulation of the KE (2) showing RJ thermaliza-
tion toward a negative temperature equilibrium state: ñg es-
sentially flows to the last group of degenerate modes (high-

est energy level g = gmax − 1) (a), while the energy Ẽg

flows to the low-order modes (b). The inset shows that

F̃g = β0(g − gmax + 1)ñg relaxes toward an equipartition

among the modes, F̃g ≃ T < 0 (red line), as predicted by
the RJ equilibrium distribution (N =47.5kW, ℓc = 0.3m,
2π/σ = 2.1m, gmax =15). (c) µ/β0 − 1 vs E/Emin: note
the asymptotic behaviors µ → β−

0 for E → Emin, and
µ → gmaxβ

+

0 for E → Emax. The horizontal dashed line
denotes µ = gmaxβ0 and the vertical one E = Et. (d) Seq

vs E/Emin showing 1/T = (∂Seq/∂E)M,N < 0 for E > Et.
The green circle denotes Seq

max = −M logM at E = Et. (e)
T/Emin vs E/Emin: The divergences T = ±∞ for E = E∓

t

are removed by plotting Emin/T vs E/Emin (f).

Considering the weakly nonlinear regime of the experi-
ment ε = γN/β0 < 10−3, β̄B

m is real and β̄B
m ≃ β̄m ≃

βm−β0, i.e., the Bogoliubov dispersion relation of am(z)
in the presence of the condensate (

√
n0 ≫ |am|) is well

approximated by the linear expression βB
m ≃ βm. In

other words, the Bogoliubov nonlinear renormalization of
the dispersion relation is negligible. This is corroborated
by a scale-by-scale analysis of NLSE simulations, which
reveals that even the strongly condensed mode p = 0
evolves in the weakly nonlinear regime [38].

Perspectives on negative temperatures.– We have seen
that light condensation in MMFs is driven by a flow of en-
ergy toward the higher order modes and a bi-directional
redistribution of the wave-action. This thermalization
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process exhibits properties similar to those identified nu-
merically in the absence of a confining potential, see e.g.
[25]. However, the main difference is that condensation
in a MMF is described by a weakly nonlinear and discrete

wave turbulence approach where the structural disorder
accelerates the process of thermalization over a relatively
small number of modes (M ≃ 120), see the KE (2).
An interesting consequence of the finite number of

modes with an upper energy bound (Emax = β0gmaxN)
is that the system can exhibit negative temperature equi-
librium states, T < 0 [41, 51, 52]. The condition neq

p =
T/(βp−µ) > 0 then requires µ > max(βp) = gmaxβ0 and
the equilibrium distribution is featured by an inverted
modal population (ñeq

g+1 > ñeq
g ) for an energy E > Et =

N 〈βp〉 = Emin(2gmax+1)/3, where 〈βp〉 is the arithmetic
mean of the eigenvalues and we recall that Emin = Nβ0.
The denominator of the RJ equilibrium now vanishes for
µ → gmaxβ0. Accordingly, ñg essentially flows toward
the highest energy level, i.e. highest mode group g = 14,
while the energy Ẽg = β0gñg flows toward the low-order

modes. This process of thermalization toward a negative
temperature equilibrium is demonstrated by the numeri-
cal simulation of the KE (2) in Fig. 3. For such a negative
temperature equilibrium, the role of energy equipartition
is played by the quantity Fp = (βp − gmaxβ0)np ≃ T < 0

[or F̃g = β0(g − gmax + 1)ñg ≃ T < 0], which is equally
distributed among the modes (inset of Fig. 3). In spite
of the fact that the highest energy level can be macro-
scopically populated ñgmax−1 ≫ ñg, there is no phase

coherence amongst such a group of degenerate modes,
which suggests an analogy with the notion of turbulent
crystal [53].
We finally complete the study with the thermodynamic

properties of the system. We start from the equilibrium

entropy S̃eq =
∑

p log(n
eq
p ) – note that at equilibrium it

coincides with the previous nonequilibrium entropy ver-
ifying the H−theorem. It proves convenient to shift the
entropy by a constant Seq = S̃eq −M logN , so that by
using T = N/

∑

p(βp − µ)−1, we can write

Seq(µ) = −
∑

p

log(βp − µ)−M log
(

∑

p

1

βp − µ

)

(7)

E(µ)

Emin
=

∑

p
βp

βp−µ
∑

p
β0

βp−µ

(8)

T (µ)

Emin
=

1
∑

p
β0

βp−µ

(9)

The evolution of µ vs E is reported in Fig. 3(c) from
Eq.(8). It evidences that µ → β−

0 for E → Emin, and
µ → gmaxβ

+
0 for E → Emax: In both cases the denomi-

nator of the RJ distribution vanishes, which leads to the
macroscopic population of the lowest mode (g = 0) and
the highest mode group (g = 15), respectively.
The parametric plot with respect to µ of (7) and (8)

gives Seq(E) in Fig. 3(d); while the corresponding para-
metric plot of (8) and (9) gives T vs E in Fig. 3(e).
Note the concavity of the entropy with respect of the
energy as required by a self-consistent thermodynamic
theory. Negative temperatures equilibrium states arise
for E > Et, where the entropy decreases by increasing
the energy, T = (∂E/∂Seq)M,N < 0. Note that such
negative temperature states (E > Et) are actually “hot-
ter” than those at positive temperature (E < Et), as the
energy will spontaneously flow from negative to positive
temperature when the systems are put in contact.
Remark in Fig. 3(e) that the equilibrium state corre-

sponding to T = 0+ (T = 0−) refers to a population
distribution concentrated in the lowest (highest) mode
with E = Emin (E = Emax). Accordingly, the sates
T = 0+ and T = 0− are fundamentally different from
each other, whereas there is almost no difference be-
tween the states T = +∞ and T = −∞ for E ≃ Et.
This latter equilibrium state for E = Et corresponds
to an equipartition of the wave-action among all the
modes neq

p =const, and it refers to the most disordered
state with Seq

max = −M logM [43], see the green cir-
cle in Fig. 3(c). The apparent paradoxical divergence of
T = ±∞ around this homogeneous state neq

p =const dis-
appears if one considers the inverse of the temperature
as the appropriate parameter (just as the Lagrange mul-
tiplier 1/T that arises naturally in statistical mechanics).
In this case 1/T vs E exhibits a continuous behaviour as
shown in Fig. 3(f).
Work is in progress to study experimentally the un-

usual thermalization to negative temperature equilibrium
states. Given the large degeneracy of the condensate
mode in this case, this raises interesting question about
the possibility of having fragmented condensates [54].
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