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Abstract

Ultrasonic techniques could be good candidates to aid the assessment of osteoporosis detection, due

to their non-intrusiveness and low cost. While earlier studies made use of the measured ultrasonic phase

velocity and attenuation inside the bone, very few have considered an inverse identi�cation of both the

intrinsic pore microstructure and the mechanical properties of the bone, based on Biot's model. The

main purpose of this work is to present an in vitro methodology for bone identi�cation, adopting a

statistical Bayesian inference technique using ultrasonic transmitted signals, which allows the retrieval

of the identi�ed parameters and their uncertainty. In addition to the bone density, Young's modulus

and Poisson's ratio, the bone pore microstructure parameters (porosity, tortuosity and viscous length)

are identi�ed. These additional microstructural terms could improve our knowledge on the correlations

between bone microstructure and bone diseases, since they provide more information on the trabecular

structure. In general, the exact properties of the saturating �uid are unknown (bone marrow and blood

in the case of bone study) so in this work, the �uid properties (water) are identi�ed during the inference

as a proof of concept.

I Introduction

Osteoporosis is a metabolic bone disorder that a�ects the bone density and microstructure [1], progres-

sively reducing bone quality and increasing the risk of fractures. The pathology is particularly prevalent in
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post�menopause women, due to the loss of estrogen, which reduces the rate of bone matrix formation (os-

teoblasts) compared with that of bone removal (osteoclasts). Osteoporosis detection is routinely conducted

via X�Ray absorptiometry methods, which evaluate the bone mass density (BMD). It has also been shown

that astronauts su�er from bone loss while in space [2, 3] due to the micro gravity environment (up to a 10%

loss over a 6 month period). While the cause of bone loss in space is still not fully comprehended, it has been

suggested that changes in bones are di�erent from age�related bone loss. Space programs have thus been

looking at new ways to extend bone monitoring during the mission, beyond that of classical dual�energy

X�Ray technologies [2, 3].

To avoid the invasive treatments that current radiographic or neutron activation technologies require for

bone analysis, quantitative ultrasound assessments have been considered for more than 30 years now [4�

13] (for an osteoporosis�focused review, see Refs. [14, 15]). In the seminal paper by Langton et al. [4],

the broadband ultrasonic attenuation (BUA) of in vivo and in vitro bovine cancellous spongy bones was

measured, showing its strong correlation to the BMD. However, BMD alone does not fully account for

fracture risks: for a given BMD, the risk of fracture still increases with age, and there is an overlap in bone

density between women with and without fracture [15]. Overall, BMD is thought to explain around 70% of

bone strength, the rest being attributed to bone microstructure or remodeling states [14].

A �rst re�nement to the BUA measurement was achieved by measuring the ultrasonic wave speed [4, 5, 10]

of a wave traveling through the bone. It was shown that bones su�ering from osteoporotic disorders would

have a di�erent wave behavior compared with that of a non-osteoporotic bone. Recognizing that cancellous

bones are essentially porous media �lled with a �uid phase (the tissue, or marrow, can be considered as a

visco�elastic �uid), Hosokawa & Otani [10] used Biot's theory [16] to explain the appearance of a slow wave

and a fast wave, and their correlations to bone density. Bone volume fraction (or equivalently, the porosity)

was shown to be a relevant microstructure indicator due to its in�uence on both waves, and an important

parameter to characterize.

Biot's theory has received a lot of attention for its application to ultrasound propagation through bone [5,

12, 17�21] (for a cancellous bone focused review, see [22]), with the predominant concern being the inability

of Biot's theory to accurately reproduce BUA measurements (under�estimation of the BUA). Two non�Biot

attenuation mechanisms were then proposed to account for the observed discrepancies: a local squirt��ow

mechanism in micro�cracks (see [23] for an application to geophysics; has not been studied in the speci�c

case of bones to the best of the authors knowledge), or a possible roughness of the pores (see [24] for
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an application to sandstone). However, McKelvie & Palmer [5] showed that when taking into account a

frequency dependent tortuosity, the BUA match between experimental measurements and Biot's theory could

be improved. This observation led to the taking into account of additional visco�inertial frequency dependent

dissipation mechanisms, as predicted by the semi�phenomenological model of Johnson, Koplik and Dashen

(hereafter JKD [25]), which relates the intrinsic properties of the microstructure to the wave propagation

within the �uid. The updated theory, coined Biot�JKD, was then used to try and obtain more information

on the bone microstructure, now considered explicitly within the model [26, 27]. Fellah et al. [12] calculated

the expressions of the re�ection and transmission coe�cients of a bone sample in the frequency domain,

and showed the sensitivity of the di�erent model parameters (porosity, tortuosity, Young's modulus, etc) on

time�domain transmitted signals, and on the fast and slow waves. Alternatively, the analytical expressions

of the re�ection and transmission operators were derived in the time domain, using fractional derivative

calculus [28], with application to human cancellous bone. Sebaa et al. [29] used time�domain ultrasonic

transmitted signals at normal incidence on water��lled human cancellous bone samples, to solve an inverse

problem using the Biot�JKD model. A total of �ve parameters were deduced: the porosity, the tortuosity,

the viscous characteristic length, the Young's modulus and the Poisson's ratio of the solid frame. The inverse

problem was claimed to be well posed, meaning that a unique solution exists and that the direct problem

is well�conditioned. However, only a local analysis was performed on a point of minimum obtained through

a least-mean square �t of the experimental signals. It appeared clear at the beginning of the present study

that inverse problems such as this one are not as well posed as claimed initially. This di�culty was also

observed in Refs. [30�32]. Combining a wave based method with measurements performed in a Kundt tube,

Vanhuyse et al. [33] performed the inverse problem to retrieve all the parameters of the Biot�JCA model

(Johnson�Champoux�Allard [25, 34]), an extension of the Biot�JKD model that takes into account thermal

dissipation in the �uid phase. A global optimization method was applied for audible signals obtained in

air, showing the capability of such a method to retrieve the model parameters, provided that a clamped

condition be assumed for the sample within the tube. One of the main di�culties when measuring intrinsic

properties of a poroelastic material such as a bone, is ensuring that the experimental conditions (sample

holder) do not interfere with the sample mechanical properties. In addition, the audible frequency regime

usually resides at intermediary frequencies, between the low (viscous isothermal �uid) and high (inertial

adiabatic �uid) regimes. Since the JKD model is essentially a �t between the behaviors obtained at the two

limits of the frequency spectrum [25], it is adequate to look for intrinsic parameters in the frequency domain
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where they have been de�ned. As we are interested in the tortuosity and characteristic viscous length of a

bone (which we believe could prove to be indicators of interest in osteoporosis monitoring, as strongly hinted

in Ref. [5] where the pore size, porosity and permeability of the bone are considered), both de�ned in the

high frequency inertial regime, it is understandable why the present study focuses on ultrasonic signals.

While the previous studies focused on a deterministic approach to inverse identi�cation, i.e., a minimiza-

tion of a least mean square di�erence between experimental and numerical signals, no account on uncertainties

was given. Using frequency�domain signals obtained in an impedance tube, Chazot et al. [35] followed a

Bayesian inference approach to measure the Biot�JCA parameters and associated uncertainties, caused by

the inherent uncertainties in the experiment and the modeling. They used an evolutionary Markov�Chain

Monte�Carlo procedure to calculate the posterior probability density of each parameter, showing the pres-

ence of multi-modal densities. Bayesian inference, as we shall see in the present work, is a learning rule

based on Bayes's theorem: the information one has on a parameter is updated through the observation of a

new quantity. More recently, a Bayesian inference technique has been used on synthetic noisy signals from

both the re�ection and transmission coe�cients of a porous sample in the ultrasonic domain, showing the

capability of Bayesian inference to inverse the value of each parameter of the Biot�JKD model, and the

in�uence of the angle of incidence on the inference [36]. Alternatively, di�erent studies have been conducted,

using a Bayesian inference process, to retrieve quantities such as the wave speed of attenuation of both fast

and slow waves, even in the case when they are di�cult to separate [37, 38]. While these properties are

strongly correlated to the porous microstructure, they are not intrinsic in that they depend on the ambient

�uid.

Ultrasonic transmitted waves are considered in this work at almost normal incidence on porous samples

immersed in water. A Bayesian inference approach is then performed to update our state of belief on the

Biot-JKD parameters, which consist of the classical Biot parameters (density, Young's modulus, Poisson's

ratio etc) and the intrinsic microstructure properties (porosity, tortuosity, viscous length). In addition, the

exact value of the incidence angle is assumed unknown, due to the slightly slanted faces of the bone sample

after its preparation, and of the sample holder precision. While the properties of the ambient �uid (water)

are relatively well known, we consider these properties to be part of the inference problem in an e�ort to

tackle the possible future challenges of in vivo ultrasonic measurement, where the �uid properties would be

uncertain. The study is organized as follows.

The acoustical Biot-JKD modeling is recalled in Section II. The experimental con�guration used in this
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work is given in Section III, where a sensitivity analysis is performed to see the in�uence of the Biot-JKD pa-

rameters on synthetic transmitted signals mimicking the experiment. Then, the statistical Bayesian inference

problem is introduced in Section IV. The inference method is then applied on experimental measurements

on 2 ceramic biomaterial porous and a bone sample from a femoral head, in Section V. A conclusion is drawn

in Section VI.

II Acoustical model

A bone, be it cancellous or cortical, can be seen as a porous material in which two phases interact with each

other. The �uid phase, composed of blood and marrow, is a viscoelastic �uid. The solid phase, made of

calci�ed tissue, has a complex microstructure that pertains to its physical strength. Due to the two phases

having a density of the same order of magnitude (i.e ≈ 1 · 103 kg/m3 for the �uid phase and ≈ 2 · 103 kg/m3

for the solid phase), coupling e�ects between phases can be important. This is one of the main di�erences

with sound absorbing porous media, which are mostly considered in air where the coupling e�ect is less

pronounced.

Biot's initial theory describes the equations of motion of the two phases [16], involving 6 unknowns, which

are the displacement �elds of the two phases. In this work, we use Biot's alternative formulation [39], while

taking into account the additional visco-inertial dissipation that occurs within the pores, as developed by

Johnson et al. [25]. In this regard, we mostly follow Niskanen et al. [32] in the presentation of the modeling

strategy, using the same notations (except when mentioned otherwise).

Equations are written in the frequency domain, where the �eld quantities are the Fourier transform coef-

�cients of their time domain counterpart (e+jωt convention), homogenized from a representative elementary

volume (REV), small compared with the wave length considered, large compared with the pore size. Biot's

coupling equations are given as

ω2ρfw + ω2ρu = −∆ · σ,

ω2ρfu+ ω2ρ̃eqw = ∆ · p, (1)

where p is the pressure �eld, σ is the total stress tensor, u is the solid phase displacement �eld, w is the

relative displacement �eld between the phases: w = φ(U −u) with U the �uid phase displacement �eld and

φ the porosity. Note that the coupling between the solid and �uid phases is of a volume nature, the phases

being considered superposed in both time and space [40, Chap. 6]. The angular frequency writes ω = 2πf ,
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with f the frequency in Hz; ρf is the ambient �uid density and ρ = (1 − φ)ρs + φρf is the density of the

bulk medium, with ρs the density of the calci�ed tissue. The equivalent density of the �uid phase ρ̃eq is a

complex frequency dependent quantity that takes into account visco-inertial e�ects within the �uid phase

inside the pores. The equivalent density reads

ρ̃eq =
ρf
φ
α̃(ω), (2)

with α̃(ω) the dynamic tortuosity, de�ned in the high frequency limit, where the viscous e�ects are con-

centrated in a small volume near the surface of the frame and are negligible compared with inertial e�ects

within the pores, as

α̃(ω) = α∞

(
1 +

2

Λ
δv +O

(
δ2v
))

, (3)

where α∞ is the high frequency limit of the dynamic tortuosity (hereafter denoted simply �tortuosity�), a di-

mensionless ratio related to the disorder of the microstructure [25]; Λ is the characteristic viscous length [25],

close to the value of the smallest hydraulic radius of the pore connections, where the slow wave propagates

and where viscous e�ects are dominant. The viscous boundary layer for viscous e�ects δv is de�ned as

δv =

√
µf
jωρf

, (4)

where µf is the intra�pore �uid dynamic viscosity. The high-frequency regime is attained when δv � rp, with

rp the typical size of a pore. In the present applications, where µf ≈ 1 ·10−3 kg.m−1.s−1, ρf ≈ 1 ·103 kg.m−3

and rp could be as low as rp ≈ 5µm at a constriction, the lower bound for the frequency to be in the high

frequency regime is fv � 6.4 kHz. Since we consider signals in the ultrasonic range (f > 500 kHz), we comply

with the requirements for the hypothesis of a high frequency regime, while keeping the wave�length large

compared with the pore size (λv = cf/f ≈ 1500/5 · 105 = 3 mm). We note that this further assumption

could prove false in some highly porous cancellous bone with pore diameters ≈ 1 mm [41], which could lead

to the need for an additional modeling e�ort regarding the presence of Rayleigh scattering e�ects [42]. This

limitation could be avoided by using a signal of a lower frequency content.

The presence of coupling between the �uid and solid phases in Eq. 1 is evidenced by the relationship

between the total stress tensor σ and the pressure �eld p, which reads, for an isotropic porous material (at

the wave-length scale), as

σ = 2Nε+ (λcξ − αBMζ) I,

p = M (ζ − αBξ) , (5)
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where N is the shear modulus, ε = 1
2

(
∇u+ (∇u)

T
)
is the strain tensor, I is the identity matrix, ξ = ∇ ·u

(θ in Ref. [32]) and ζ = −∇ · w. The Biot�Willis coe�cient αB (α in Ref. [43, Eq. 28]) writes, after

simpli�cations,

αB = 1− Kb

Ks
. (6)

In the previous equation, Kb is the bulk modulus of the porous frame, whileKs is that of the solid constituent

of the material. The shear modulus N , the Young's modulus and Poisson's ratio of the solid Es, νs and the

bulk skeletal frame Eb, νb are related to the bulk moduli by the expressions

Ks =
Es

3 (1− 2νs)
, Kb =

Eb
3 (1− 2νb)

, N =
Eb

2 (1 + νb)
. (7)

We note that the parameters Es and νs are non identi�able. They pertain to the de�nition of a single

parameter, Ks, so there is not enough information to separate these two values. For this reason, the

parameter that is inferred in this work is Ks. The problem does not arise for Eb and νb, since they are

related to both Kb and N .

In Eq. 5, λc is an elastic parameter de�ned as

λc = λ+ α2
BM, (8)

where λ is the �rst Lamé's coe�cient of the elastic frame, and

M =

[
αB +

(
Ks

Kf
− 1

)
φ

]−1
Ks, (9)

with Kf the bulk modulus of the intra�pore �uid (thermal e�ects are neglected in water).

The analytical calculation in the frequency domain of the transmission coe�cient T (ω) of a bone sample

is done by solving the system (1) and associated boundary conditions [40, Chap. 6]. We follow, as was done

in Ref. [32], the state vector formalism that makes it possible to write the motion equations as an ordinary

di�erential equation, coupled to a global matrix approach to a solution for the Biot equations [44, 45].

Physical �elds are expressed as a function of wave amplitudes, thus naturally introducing the transmission and

re�ection coe�cients in the matrix representation. These coe�cients are then extracted after the solving of a

linear system, conveniently expressed with a sparse matrix easy to inverse at all frequencies simultaneously.

The incident (pi) and transmitted (pt) pressure �elds are then related to the transmission scattering operator

T̃ (t) via the convolution in the time domain

pt(x, t) =

∫ t

0

T̃ (τ)pi (t− τ) dτ, (10)
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where the incident wave is retrieved by phase-shifting the reference signal pref as

pi(t) = pref

(
t− x− L

cf

)
, (11)

with L the material thickness. The reference pressure signal is measured in the absence of the porous sample,

but is not an incident signal. In practice, instead of doing the convolution in Eq. 10, the incident pressure

signal is �rst Fourier transformed, multiplied by the transmission coe�cient in the frequency domain, and

the product is inverse Fourier transformed as

pt(x, t) = iFFT [T (ω)p̂i(ω)] . (12)

III In�uence of model parameters on the measured transmitted

signals

In this section, the experimental apparatus used to measure transmitted waves through the bone sample

is �rst recalled (it is identical to that in Ref. [29]). Then, a numerical sensitivity analysis is conducted to

evaluate the in�uence of each of the model parameters on the transmitted waves.

A Experimental apparatus

Experiments are performed in water using two Panametrics A 303S (resp. V389) plane piezoelectric trans-

ducers of diameter 1 cm, with a 500 kHz central frequency (resp. 1 MHz). 400 V pulses are provided by

a 5058PR Panametrics pulser/receiver, ampli�ed to 90 dB, �ltered above 10 MHz and averaged over 1000

iterations. A schematic of the experiment is shown in Fig. 1. The size of the ultrasound beam is very

small compared with the size of the specimens. The liquid initially in the pore space (blood and marrow) is

removed from the bone sample and substituted by water. The bone samples, machined from the cancellous

parts of a femoral head and neck, are constantly immersed in liquid to prevent them from drying, which can

alter their properties [46]. Due to possible manufacturing defects and positioning uncertainties, the angle of

incidence of the pressure wave θ (displayed in Fig. 1) is taken as an additional unknown.

B Sensitivity analysis

A synthetically generated numerical incident pressure is considered. The transmitted pressure associated with

the transmission through a certain material is then obtained using Eq. 12, thus mimicking the experiment
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Frequency Analyzer
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Tektronix TDS3012B
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Personal
Computer
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Water tank
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Figure 1: Experimental setup for ultrasonic measurements

described in Sec. A. The in�uence of all the parameters intervening in the Biot�JKD model of Sec. II is

studied, by varying their reference values, other things equal, in the same manner as was done in Ref. [12].

Reference properties that are close to those of bone materials are considered, while ensuring the clear display

of both fast and slow waves, at normal incidence only. Reference properties are displayed in Table 1, and the

reference transmitted time-domain signal is shown in Fig. 2, where the slow and fast waves are represented

when water is considered within the pores.

Note that ξb (resp. ξs) has been introduced in Table 1 as a parameter equal to the ratio of the imaginary

part to the real part of the Young modulus of the bulk skeletal frame Eb (resp. Es), to allow for dissipation

caused by the frame.
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Table 1: Summary of the reference properties

Parameter Symbol Value

Porosity φ 0.75

Tortuosity α∞ 1.05

Viscous length Λ (µm) 10.0

Bulk modulus Ks (GPa) 10.8

Imaginary ratio ξs 0.0

Young modulus Eb (GPa) 4.5

Imaginary ratio ξb 0.0

Poisson ratio νb 0.28

Solid density ρs (g/cm3) 2.0

Fluid bulk modulus Kf (GPa) 2.0

Fluid viscosity µf (kg.m−1.s−1) 1.0 · 10−3

Fluid density ρf (g/cm3) 1.0

Sample thickness L (mm) 20

0 0.5 1 1.5 2
Time (s) 10-5

A
m

pl
itu

de

Fast wave Slow wave
1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

Figure 2: Reference transmitted ultrasonic signal with an air �lled bone (straight black line) and with a

viscous �uid mimicking marrow (dashed blue line). Incident signal has a Gaussian spectrum centered at

1 MHz with a 100 kHz standard deviation. Signals are normalized by their respective maximum amplitude.

The 12 parameters in Table 1 are now varied. For each parameter variation, the di�erence in fast and

slow wave speeds (cfast, cslow) and amplitudes (Afast, Aslow) is given in Table 2. While these four quantities

do not represent the full content of a transmitted ultrasonic signal, they are representative enough so as to

give an idea of the in�uence of the model parameters.
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Table 2: In�uence of parameter variation on the fast and slow wave speed and amplitude (in %), with respect

to reference values of Table 1

Parameter ∆%cfast ∆%cslow ∆%Afast ∆%Aslow

φ+ 20% +41 +1 −85 +45

α∞ + 20% −8 −13 −181 −43

Λ + 20% +0.2 0.4 +13 +51

Ks + 20% 0 −1 +14 −12

ξs + 0.05 0 −0.3 −0.2 +59

Eb + 20% +10 0.8 −10 +16

ξb + 0.05 0 0 −85 −31

νb + 20% +9 +1 −18 +28

ρs + 20% −8 0 +4 +1

Kf + 20% +3 +11 +8 +20

µf + 20% −0.7 −0.3 −6 −20

ρf + 20% −5 −15 −6 −20

L+ 20% −22 −38 −21 −38

All parameters seem to display a certain amount of sensitivity to the ultrasonic transmitted signal, and

should thus be considered during the inversion procedure. As expected, parameters associated to the Biot

model have a strong in�uence on the fast wave, while parameters associated to the pore microstructure have

a strong in�uence on the slow wave. However, due to the coupling between the solid and �uid phases in the

Biot model, a strong in�uence of the Biot parameters can be seen on the slow wave (see for instance ξs).

The same observation holds for the sensitivity of microstructure parameters (i.e. α∞) on the fast wave.

When a �uid of higher viscosity is considered (µf = 10−1 kg.m−1.s−1), the reference signal displayed in

dashed blue in Fig. 2 only shows the presence of the fast wave: the slow wave is much more attenuated in

this case. The transmitted signals of Fig. 2 are both normalized by their respective maximum amplitude. In

practice, the signal transmitted in the higher viscosity �uid has a maximum that is ≈ 3.4 times lower than

the maximum of the signal transmitted in water. It is thus expected that for in vivo measurements where

the bone is �lled with marrow (much more viscous than water), the slow wave might prove more di�cult to
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detect than in the case of water �lled pores. However, Biot theory is still valid even when the slow wave is

not visible.

IV Identi�cation method: Bayesian inference

In this section, the principal elements of Bayesian inference are reviewed and applied to the calibration of the

Biot�JKD model recalled in Sec. II. A numerical strategy is then presented (see Ref. [47] for an application

of the same strategy to ultrasonic transmitted waves in rigid porous media �lled with air).

A Bayes theorem

In the context of statistical inverse problems, the Bayesian inference framework consists in recasting the

model parameters of interest as random variables associated with probability densities encompassing the

information one has on the parameters [48, Chap. 8]. A new experimental data vobs is observed (here a

signal transmitted through the bone sample), and this information updates our state of knowledge. vobs is

the realization of a multi�variate random variable Υobs. The degree of knowledge about the true value of the

parameters Q = (φ, α∞, . . .), with realizations q, is represented by the marginal posterior density π(q|vobs).

This new quantity of interest is written, using Bayes theorem,

π(q|vobs) =
π(vobs|q)π0(q)

π(vobs)
. (13)

In the previous equation, L(q) ≡ π(vobs|q) is the likelihood function, representing the probability that the

experience be observed, given a particular set of model parameters; π0(q) is the prior probability, representing

all the information obtained on q prior to the new observation (i.e, earlier measurements on the sample, or

general knowledge of some of the bone properties such as its mineral density). Finally, π(vobs) is a scaling

constant not calculated in practice. Details on the likelihood and prior modeling are given hereafter.

A.1 Likelihood

The physical correlations between the parameters of interest and the experimental data being observed are

predicted by a deterministic forward model (Biot�JKD model of Sec. II) and a deterministic operator f

de�ned as

fi(q) = p̂t(ti), i = 1, . . . , n (14)

where p̂t(ti) is a numerical transmitted pressure signal, evaluated using Eq. 12 at time step ti.
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Due to both the observation and the modeling being corrupted by uncertainties, it is legitimate to consider

that the measurement Υobs is related to the deterministic operator by a relationship of the type

Υobs
i = fi(q) + ςj , i = 1, . . . , n (15)

where ςj is a random variable representing the averaged measurement errors at time steps belonging to zone

j (see Fig. 3). In the case where the measurement errors are independent and identically distributed and

ςj ∼ N (0, σ2
j ), then

Υobs
i ∼ N (fi(q), σ

2
j ), (16)

which leads to

π(vobsi |q) =
1√

2πσ2
j

e−[vobsi −fi(q)]
2
/2σ2

j . (17)

When considering all the measurement points (at di�erent time steps) as independent and uncorrelated, the

likelihood becomes

π(vobs|q) =

n∏
i=1

π(vobsi |q). (18)

The additional parameters ςj are unknown and should be identi�ed along with the parameters of interest.

However, due to the large number of model parameters and the possibility of over��tting, it was deemed more

conservative to �x the values of ςj to represent a typical spread obtained depending on the ultrasonic beam

position along the bone sample, due to strong spatial inhomogeneities. Di�erent zones of the transmitted

signal were considered, each associated with a particular averaged value of ςj , as represented in Fig. 3 for

the reference signal, where four di�erent zones were considered. Had we considered only one single ςj (as

in our recent work [47]), certain parts of the signal would have been too constrained, while other parts of

the signal would have been too unconstrained, resulting in a poor �t between numerical and experimental

signals. The values of the ςj were adjusted manually in each zone prior to the identi�cation, to correspond

to our knowledge on the typical measurement spread observed: in zones 1 and 4, the ς1 and ς4 value is set

to 0.5% of the maximum signal amplitude, while ς2 and ς3 are set to 10% of the maximum signal amplitude.

In the case where waves are not well separated, zones 2 and 3 are merged into a single zone and ς2,3 is set

to 10% of the maximum signal amplitude.
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Figure 3: De�nitions of zones having a di�erent error ςj on the reference transmitted signal.

A.2 Prior

The prior probability π0(q) encompasses the prior knowledge one has on the parameters, before the new

experimental observation (material thickness, physical bounds of certain parameters, etc). The general prior

constraints used in this work mostly follow uniform laws, meaning that we attempt an inference as objective

as possible [49], restraining ourselves from using informative priors that could help regularize the inference

process. The goal is to benchmark the method in a general case where as less a priori as possible is required.

In future studies, any prior information on bone samples should be added (such as models based on physical

correlations [50], as used in an information theory context by Rus et al. [20]).

Since we aim at the identi�cation of any bone sample, the prior bounds were �rst taken as large as

possible. Uniform prior bounds are given in Table 3, where a ∗ exponent indicates a measured value for the

sample thickness. Note that the angle of incidence θ (in rad, see Fig. 1) is part of the inferred parameters,

due to the uncertainty in the material positioning. The prior probability writes

π0(q) = χ[qmin,qmax](q), (19)

where χ is a uniform density of bounds qmin and qmax (Table 3).

Due to the problem ill-posedness, as noted before in Ref. [30, 36], we found it necessary to constrain

the priors on certain parameters in order to regularize the inverse problem, i.e., to remove a multitude of

local minima caused by the lack of information contained in a single transmitted signal when attempting to

retrieve all the parameters. Since Ks and ρs are tabulated in the literature [46, 51, Table II], we constrained

them to case dependent values. Details of these constraints are made explicit in Sec. B for each material. It

must be noted that the ill-posedness is mostly related to the elastic parameters (Ks, Eb, etc.) rather than

to the equivalent �uid parameters (φ, α∞, Λ) or the ambient �uid parameters.
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Parameter θ L φ α∞ Λ Ks Eb ξb νb ρs Kf µf ρf

qmin 0 0.9L∗ 0.4 1.0 1 CD 0.1 0 0.1 CD 2.3 0.95 0.95

qmax 0.5 1.1L∗ 0.99 2.0 500 CD 20 0.5 0.45 CD 2.5 1.05 1.05

Table 3: Prior bounds of the parameters for bone samples (same units as in Table 1). CD: case dependent.

Additional physical constraints It is known [43, Eq. 28] that αB (de�ned in Eq. 6) follows the rela-

tionship φ < αB . This leads to the additional constraint Kb < (1−φ)Ks, which is enforced by a prior added

to the variable x∗ = (1− φ)Ks −Kb, as

π0(x∗) = χ]0,+∞[(x
∗). (20)

B Adaptive Di�erential Evolution MCMC

A numerical method is used in order to sample directly from the posterior density of interest π(q|vobs),

without having to calculate the denominator on the right hand side of Eq. 13. The technique used is a

variant of the now classical Markov Chain Monte Carlo (MCMC) approach, whose central idea is to sample

from unknown distribution, by a random walk across the parameter space that e�ciently explores the

posterior density, moving preferentially towards regions of high probability density [52]. Doing so, a Markov

Chain whose stationary distribution is the posterior density π(q|vobs) is created [53, 54]. This technique

has now been well tested on di�erent cases of acoustic porous media identi�cation [32, 35, 36, 47, 55, 56].

The MCMC approach used in this work is the MT-DREAMzs of Laloy et al. [57], shown to be e�cient in

sampling complex multimodal densities.

In this work, 3 chains are run in parallel, with a multi-try number of 3. The chains are run for 5 · 105

iterations, of which 10% are discarded as burn-in, to let the chains decorrelate from their initial states.

Convergence is checked a posteriori with a Gelman and Rubin [58] criterion and a visual check of the chains.

The acceptance ratio of the Metropolis-Hasting algorithm is around 0.2 − 0.3 in all cases, which is deemed

acceptable.
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V Results

Three di�erent samples, named M1, M2 and M3, are tested. M1 is an alumina ceramic porous (biomaterial)

whose properties are relatively well known, and serves as a validation case. M2 is a hydroxyapatite sample,

a bone substitute [59]. M3 is a cancellous bone sample extracted from a human femoral head. The main

results are displayed in Sec. A, and a discussion is provided in Sec. B

A Inference of biomaterial and bone samples

The results are displayed as follows. The posterior marginal densities of each parameter and each pair of

parameters are displayed in a matrix form, in Figs. 4,6,8. The shape of the marginal densities gives an

information on the sensitivity of an identi�ed parameter, relative to the inference. A �at posterior density

function (pdf) is a synonym of a low sensitivity, while a well de�ned pdf means that information on a

parameter was extracted from the experimental data. The presence of multiple peaks in a pdf relates to the

non-unicity of the inverse problem solution: given the data and model, both peak values (called modes) have

the same likelihood. The joint posterior densities (extra diagonal elements) give an information on the type

of correlation between the identi�ed parameters. As such, a very thin ellipse shape denotes either a strong

positive or negative correlation between parameters (depending on its orientation). These correlations are

not physical ones, but merely represent a possible joint in�uence of two parameters within the model.

A summary of the results is given in Table 4, with the Maximum A Posteriori (MAP) and a standard

deviation relative to the mean. The di�erent �ts between the experimental and numerical data are given in

Figs. 5,7,9, where CI stands for credibility interval. Credibility intervals are calculated by taking the envelops

of Markov Chain realizations (numerical transmitted signals) for input parameters contained in 63% (resp.

95%) of the posterior densities. In addition to the time-domain transmitted signals, the attenuation coe�cient

A(ω) and the phase velocity c(ω) are displayed. Their expressions are [60]

A(ω) =
20

L
log10 (|T (ω)|) /100, in dB/cm, (21)

c(ω) =
ωL

∆ϕ(ω) + ωL
Vwater

, in m/s, (22)

where T (ω) is the transmission coe�cient of Eq. 12, ∆ϕ(ω) is the unwrapped phase di�erence between the

incident and transmitted signals, and Vwater = 1482 m/s is the speed of sound in the pore �lling �uid (here

water). For the cases of materials M1 and M2, the clear display of the fast and slow waves is evidenced ex-

perimentally. This allows the immediate separation of the waves, and a speci�c calculation of the attenuation
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and phase velocity for each.

The good �t displayed here between numerical and experimental signals (both in time domain and for the

attenuation coe�cient and phase velocities does not act as a validation of the inferred parameter values, but

only as a posterior check. In all cases, the identi�ed values of the incident angle and of the material thickness

were correctly identi�ed. Since they are not parameters of interest in this study, they are not shown below

for conciseness. However, we note a strong correlation between these parameters and the tortuosity α∞.

Table 4: Result summary for materials M1, M2 and M3

φ α∞ Λ |Ks| ξs |Eb| ξb νb ρs Kf µf ρf

M1
MAP 0.85 1.67 41.0 282 0.09 14.0 0.04 0.1 4.1 2.4 0.97 0.94

St.D / mean (%) 5.0 18.5 47.5 11.8 45.7 14.3 40.3 14.7 6.9 1.9 2.6 2.4

M2
MAP 0.5 1.05 12.1 140.0 0.09 31.4 0.1 0.39 2.7 2.38 1.0 1.0

St.D / mean (%) 9.8 2.9 5.4 16.8 42.4 19.2 14.2 16.0 6.3 2.1 5.4 4.7

M3
MAP 0.84 1.04 40.5 14.2 0.07 0.71 0.04 0.35 1.87 2.39 0.97 0.94

St.D / mean (%) 1.0 0.96 15.0 13.2 51.5 16.4 26.8 6.3 3.0 2.0 2.0 2.4

B Discussion

A speci�c analysis of the results is given for each material below.

� Material M1 is an alumina ceramic foam material, which was tested in water with a 500 kHz centered

ultrasonic signal. The constructor gave a material porosity of ≈ 0.85, which is in excellent agreement

with the identi�ed value φ = 0.85 ± 0.04. The known density and Young modulus of alumina are

ρs ≈ 3.9 g/cm3 and Es ≈ 380 GPa [61, Chap. 3]. The prior box-constraints were chosen accordingly by

setting ρs ∈ [3.3, 4.5]g/cm3 and Ks ∈ [150, 400]GPa. The identi�ed value of density 4.1 ± 0.28g/cm3

matches the theoretical one. Using the identi�ed value of the bulk modulus and Eq. 7 with a Poisson's

ratio �xed at νs = 0.26 [62], a Young's modulus of Es ≈ 406 GPa is obtained, quite close to the expected

value. Note the high sensitivity of Es relative to νs: taking νs = 0.275 would yield Es ≈ 380 GPa.

A di�culty in identifying the bulk Poisson's ratio νb was not expected: the inference seems to favor
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Figure 5: Credibility intervals and experimental ul-

trasonic measurement for alumina ceramic material

M1

values close to the lower limit that was given in the prior constraints, see Fig 4. This problem was

absent from other tests. The parameters associated with the ambient �uid (water) are very close to

the values known from previous measurements. The relative spread of Λ is quite important, compared

to the other inference results. This is due to the relatively high value of Λ, which tends to reduce

its sensitivity to the Biot model (the term 2δν/Λ in Eq. 3 becomes small compared to 1). Overall,

the closeness between identi�ed parameters and independently measured properties gives credit to the

identi�cation procedure.

� Material M2 is a bone substitute sample, made of hydroxyapatite, which was tested in water with a

1 MHz centered ultrasonic signal. The prior box-constraints were chosen by setting ρs ∈ [2, 4]g/cm3 and

Ks ∈ [80, 300]GPa. The identi�ed values of porosity (φ = 0.5), Young modulus (|Eb| = 31.4± 6 GPa)

and apparent density, i.e., the BMD, (ρ = (1− φ) ρs = 1.35 g/cm3) are quite close to known values

(|Eb| ∈ [35, 120 ]GPa [63, 64]) and constructor information (φ ∈ [0.45, 0.85], ρ ∈ [0.4, 1.6 ]g/cm3 [65]).

One notes the presence of a bi-modal distribution for the posterior density of the tortuosity, each

mode (i.e α∞ = 1.05 and α∞ = 1.11) having almost the same likelihood. Only the mode related to
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trasonic measurement for bone sample material M3

α∞ = 1.05 is given in Table 4.

� Material M3 is a bone sample extracted from a human femoral head. The material was tested in

water with a 1 MHz centered ultrasonic signal. The prior box-constraints were chosen by setting

ρs ∈ [1.6, 2.2]g/cm3(see Ref. [66]) and Ks ∈ [5, 30]GPa. It was also necessary to further constrain the

material density ρs by adding a prior as

π0(ρs) = N (2, 0.16), (23)

to avoid the parameter taking either too low or too high a value. A graph is shown in Fig. 10 to

compare the present identi�cation results (of Young's modulus versus apparent density) with direct

measurements performed by di�erent authors on similar bone samples [67]. The agreement is quite

correct, with each contour plot encompassing 10% of the probabilistic weight of the joint probability

density (the external contour encompasses 90% of the probabilistic weight). In addition, the identi�ed

value of solid bulk modulus |Ks| = 14.2 ± 1.8 GPa is quite close to experimental values obtained by

Ashman [68] (Es = 13± 1.47 GPa, which amounts to Ks = 14.4± 1.6 GPa, assuming a Poisson's ratio

of νs = 0.35 for the solid part of the material). The solid density, identi�ed at ρs = 1.87±0.06g/cm3, is
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also well in the range of measured values of 1.76±0.15 g/cm3 obtained in Ref. [68, Table 1] by averaging

the results of the di�erent human femoral bone samples). We also note that the standard deviation

of the identi�ed value of density is well below that for the density prior in Eq. 23, which means that

information was indeed gained through the identi�cation process (prior is not too informative). The

low value of tortuosity α∞ = 1.04 ± 0.01 is coherent with the fact that the test was performed in

the bone axial direction, where the trabeculae are mostly straight (for straight pores, the theoretical

value is α∞ = 1 [25, Eq 2.21a with θ = 0]). The identi�ed porosity φ = 0.84 ± 0.01 is in the range

usually cited for trabecular bone samples (0.88 ± 0.06 in Ref. [19]). The porosity is one of the most

sensitive parameters in this particular case (lowest relative standard deviation), which means that the

transmitted signal yields a signi�cant amount of information on this parameter. Compared with the

other inferences, the standard deviations are relatively lower in the case of bone sample M3. The

sensitivity of each parameter is a complex function of the values of the other parameters, which makes

any de�nitive assessment di�cult regarding the increased perceived precision in this particular case.

While realizing this study, multiple possible improvements became apparent.

If possible, the measurement of the re�ected wave should be added to the inference process, since it carries

information on the microstructure that is di�erent from the information carried by transmitted waves [69].

It has to be noted that while the clear separation of the slow and fast wave is not always present, Biot theory

remains valid whether the fast and slow waves are perfectly decoupled or not.

In this work, the microstructural properties of the bone are introduced as model parameters to be

identi�ed. Since the inverse problem is ill-posed, adding prior knowledge on these parameters is almost

mandatory. Additional prior information could be the knowledge of possible physical correlations between

φ, α∞, Λ in bone samples, to this day unknown. It is thought by the present authors that for a higher

porosity φ, the tortuosity α∞ would be lower, while the viscous length Λ would be increased. While the
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intrinsic properties of dry bone are di�erent from those of liquid saturated bone [46], approximate values

of φ, α∞ and Λ could be obtained as was done in Ref. [55], using the ultrasonic re�ected waves from the

�rst interface in air, at di�erent angles of incidence. The �rst advantage of this technique is that in air, the

�uid-structure coupling is reduced. An equivalent �uid approach can then be followed, as in Refs. [36, 47, 55]

instead of the full Biot-JKD model, which simpli�es the inference procedure and removes most of the problem

ill-posedness. Another advantage would be the access to the thermal length Λ′, whose in�uence cannot be

neglected in air-saturated porous media. The thermal length parameter is also related to the pore network

micro architecture, and could yield additional insights. For instance, the knowledge of both Λ and Λ′ could

be used to infer some statistical properties of the pore size distribution (mean and standard deviation), as

explained in Ref. [70]. One could also directly use the pore size distribution parameters as model inputs,

since they are more easily measured and de�ned than Λ and Λ′ by non-acoustic means. Di�erent physical

correlations could also be extracted from previous experimental studies related to bone physical properties,

and used to improve the identi�cation process, as done in Ref. [20]. Another point of improvement relates

to the anisotropic nature of the bone microstructure. It would certainly be of interest to probe a sample at

di�erent incident angles and use all the experimental transmitted signals simultaneously during the inference

to obtain the material properties. To represent the anisotropic characteristics of the structure, the tortuosity

needs to take into account the wave direction, as done for instance in Ref. [71].

VI Conclusion

The identi�cation of the microstructure of bone samples could help in the diagnosis of osteoporosis and

other bone related diseases. This article has introduced a general identi�cation method for ceramic and bone

samples, based on ultrasonic transmitted signals through the bone porous matrix. A statistical inference

strategy has been used to identify simultaneously 9 properties of the porous medium samples, as well as the

properties of the �uid saturating the pores (here water). The advantages of this method is that it provides

the uncertainty on the model parameters, and a robust way to take into account prior knowledge on the

di�erent identi�ed properties.

Three di�erent materials were considered: a ceramic foam of known properties which serves a validation

purpose, a bone substitute hydroxyapatite sample and one bone sample extracted from a femoral head.

The inverse problem was originally ill-posed, due to a combination of a large number of parameters, an

extended search space, the lack of data and the non-linearity of the Biot model used to represent the
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acoustic propagation in bone and biomaterial samples. To limit the problem ill-posedness, prior knowledge

on the material constituent density ρs and on the material constituent compressibility modulus was used,

thus regularizing the solution.

Identi�cation results were in correct agreement with the data obtained in the available literature, and all

the material parameters displayed a certain sensitivity relative to the model. The experimental transmitted

signals were correctly �tted in all cases, even in the presence of both the slow and fast waves, and for material

properties covering a wide range of bio-materials. To continue improving the inference strategy, future work

should implement stronger regularizations in the prior density of some of the material properties, by �rst

analyzing a large number of bone samples in air, where the �uid-structure coupling is less important.
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