Abdelkader Ameraoui 
email: aameraoui@usthb.dz
  
Kamal Boukhetala 
email: kboukhetala@usthb.dz
  
A Review on LPC model under randomly right-censored data

Keywords: LPC model, random censoring, maximum likelihood estimator, goodness-of-fit, simulations

In this paper, we investigate a new kind of the so-called Lognormal-Pareto composite model (LPC), for modeling Algerian cars claims data, where right random censoring sinister payments are considered. The LPC model allows more flexibility over the thickness of the tail. We study the adequacy of the LPC model, using a Monte-Carlo procedure first, and thereafter propose a basic application to car premium relating to a real dataset of Algerian cars claims.

Introduction

Recently in actuarial cars insurance studies, various kind of models where introduced by mixing two or more probability density functions (pdf) to describe a complex behaviour of cars amount claims (typically a lognormal distribution for moderate cars sinister, and a Pareto type for corporals cars costs). The well formulated model was given by [START_REF] Cooray | Modeling actuarial data with a composite lognormal-Pareto model[END_REF] in [START_REF] Cooray | Modeling actuarial data with a composite lognormal-Pareto model[END_REF], called the two parameters lognormal-Pareto composite model. Many works recently discussed the statistical inference in the LPC model as [START_REF] Scollnick | On composite lognormal-Pareto model[END_REF] Over this literature, the statistical inference is based essentially on the maximum likelihood (ML) estimation approach. Other inference alternatives conclude construction of a Bayesian estimation procedure as in [START_REF] Cooray | Bayesian estimators of the lognormal-Pareto composite distribution[END_REF] or Bayesian inference for stable Paretian distribution under right random censoring proposed by [START_REF] Ameraoui | Bayesian estimation of the tail index of a heavy tailed distribution under random censoring[END_REF] in [START_REF] Ameraoui | Bayesian estimation of the tail index of a heavy tailed distribution under random censoring[END_REF].

In this paper, we suggest an adaptation of the LPC model when randomly right-censored data are considered. Both simulation and real data validation are examined to evaluate the proposed estimation procedure. The paper is constructed as follows: First, we describe in section 2, the LPC model, and gives the basic characteristics of a LPC distribution. In section 3, we construct our maximum likelihood estimators under random right-censoring. We also report some results of a comprehensive simulation study. Finally, an application to Algerian cars claims data is carried out in section 4. A discussion and some perspectives are given in section 5. Klugman et al. (2004[START_REF] Klugman | Loss models: from data to decisions[END_REF]) expressed a composite expression of two probability density functions (f 1 and f 2 , supposed absolutely continuous functions, and F 1 , F 2 are their corresponding cumulative density functions (cdf)) as:

Lognormal-Pareto composite model

f (x) = a 1 f * 1 (x) if -∞ < x < θ a 2 f * 2 (x) if θ x < +∞, (1) 
where

f * 1 (x) (respectively f * 2 (x)) is given by f1(x) θ -∞ f1(x)dx respectively f2(x)
+∞ θ f2(x)dx . The weights a 1 and a 2 serve as a normalisation coefficients of the pdf f . Hence, any construction of a composite model is conditioned by the definition of a 1 and a 2 , necessary with summation equals to 1. Nadarajah et al. (2012) consider some criteria for a composite model in [START_REF] Ameraoui | Bayesian estimation of the tail index of a heavy tailed distribution under random censoring[END_REF]. The first condition is to consider that f is continuous in any x ∈ ]-∞, +∞[, which holds if and only if f (θ -) = f (θ + ). This means that the left piecewise of f is joined to the tail, at the threshold θ. The second criterion is smoothness of the pdf f , i.e it is necessary to ensure the differentiability of f at θ. A major precondition as cited above, is the mixing weight criteria, which can be written as: 

a 1 = 1 1 + φ , a 2 = φ 1 + φ , where φ = f 1 (x)[1 -F 2 (x)] f 2 (x)F 1 (x) > 0.
f (x) =        βθ β (1 + Φ(k))x β+1 exp -0.5 ((β/k) ln(x/θ)) 2 if 0 < x θ βθ β (1 + Φ(k))x β+1 if θ < x < ∞ , (2) 
where Φ(•) is the cumulative distribution function (cdf) of the standard normal distribution, and k is a positive constant solution of the equation exp(-k 2 ) = 2πk 2 -numerical resolution give k = 0.372238898-. θ (respectively β) is naturally positive, representing the scale (respectively the shape) parameter of the LPC distribution. Thus, we denote any random variable with LPC pdf by X ∼ LP C(β, θ).

The survival function S(x) = 1 -F (x), where F (x) is the cdf of a random variable X ∼ LP C(β, θ), and the quantile function Q(u) are respectively given by

S(x) =      1 - 1 (1 + Φ(k)) Φ ((β/k) ln(x/θ) + k) if 0 < x θ 1 (1 + Φ(k)) (θ/x) β if θ < x < ∞ , (3) 
and

Q(u) = θ exp (k/β) Φ -1 ((1 + Φ(k))u) -k if 0 < u u 0 θ [(1 -u)(1 + Φ(k))] -1/β if u 0 < u < 1 , (4) 
where

u 0 = Φ(k)/(1 + Φ(k)).
The m th integer moment, E [X m ] of the LPC distribution exists only for m < β and is given by

E [X m ] = 1 1 + Φ(k) Φ(k -km/β) exp 1 2 k β 2 (m 2 -2mβ) + β β -m

LPC parameters estimation under random censoring

In this paper, we address the estimation of the two LPC distribution parameters when observations X 1 , X 2 , . . . , X n are randomly right-censored. Censoring commonly occurs in the analysis of event time or incomplete data observation. For example, X may represent the amount of claims relating to an insurance policy, and the amount of loss can not be definitively evaluated when the data are collected, the variable of interest X is not completely available (or partially observed). An appropriate way to model this situation is to introduce a random variable Y (called a censoring random variable) such that observations consist of pairs (Z i , δ i ), 1 ≤ i ≤ n where Z i = min(X i , Y i ), δ i = 1 {Xi≤Yi} and 1 is the indicator function. Let consider now, a variable of interest X with a LP C(β, θ) pdf f as in (2) and a survival function S given by (3), and a censoring random variable Y with pdf g and survival function Ḡ (supposed independent of β and θ). We assume also that X and Y are independent and that we observe only the n independent pairs (Z i , δ i ), 1 ≤ i ≤ n,. The Likelihood function from the observed sample χ = (Z i , δ i ), 1 ≤ i ≤ n is given by

L(χ, β, θ) = n i=1 f (z i ). Ḡ(z i ) δi × (g(z i ).S(z i )) 1-δi
We keep in mind that we want to bring the inference on the two LPC distribution parameters β and θ, This results in the following partial likelihood function

L * (χ, β, θ) = n i=1 (f (z i )) δi × (S(z i )) 1-δi = n i=1 βθ β (1 + Φ(k))z β+1 i exp -0.51 {zi θ} ((β/k) ln(z i /θ)) 2 δi × 1 1 + Φ(k) θ z i β (1-δi)1 {z i >θ} × 1 - 1 (1 + Φ(k)) Φ ((β/k) ln(z i /θ) + k) (1-δi)1 {z i θ}
and the corresponding partial log-likelihood function is

(χ, β, θ) = log L * (χ, β, θ) = n i=1 δ i log β + β log θ -log(1 + Φ(k)) -(β + 1) log(z i ) -1 {zi θ} β 2 2k 2 log 2 z i θ + n i=1 1 {zi θ} (1 -δ i ) log 1 - 1 (1 + Φ(k)) Φ ((β/k) ln(z i /θ) + k) + n i=1 1 {zi>θ} (1 -δ i ) β log θ z i -log(1 + Φ(k))
The maximum likelihood estimators of β and θ are the simultaneous solution of

∂ ∂β (χ, β, θ) = 0 ∂ ∂θ (χ, β, θ) = 0 (5) 
We can easily see that there is no closed form expression of the maximum likelihood estimates of (β, θ). So, they must be obtained numerically using for example a quasi-Newton algorithm. The following subsection will be dedicated to the estimation procedure using Monte-Carlo replication.

Simulation study

In this subsection, we assess, via simulations, finite-sample performance of estimators obtained as numerical solution of the system (5), using the R-package maxLik (see for instance http://www.maxlik.org/). Study design. The simulation design is as follows. Let X and Y be independent random variables with cdf F X ∼ LP C(β, θ) and G Y ∼ E(λ) respectively. X is the variable of interest and Y is the censoring random variable. Thus, for a given β, θ, a relevant choice of λ allows us to simulate data with an approximate proportion p := 1 n n i=1 1 {Xi Yi} of non-censored X i s. Our simulation procedure is as follows:

1. We simulate a sample of n independent copies of (Z, δ), where Z = min(X, Y ), δ = 1 {X≤Y } and the target censoring proportion of X is 1 -p. For a given β and θ, letting λ = 0.01, 0.02, 0.03, 0.05 and 0.1, should allow various censoring percentage of X.

2.

For each λ, we compute the maximum likelihood estimators of β, θ

3. Steps 1-2 are repeated m times, so that we obtain m realisations pairs of ( β, θ), for each λ.

4.

For each λ, we calculate the average value and MSE (Mean Square Error) of ( β, θ) over the m estimates.

Simulation results discussion. Simulations are conducted using the statistical software R [START_REF]R: A language and environment for statistical computing[END_REF]. Results are provided for a sample of size n = 1000 and m = 1000 simulated samples. Let first denote ∀j = 1 to m, p(j) :

= 1 n n i=1 1 X (j) i ≤Y (j) i
, representing the proportion of uncensored data over the j th simulated sample . In tables 1 and 2, we report the averaged (over the m simulated samples) value and empirical MSE of each β and θ. We also report the averaged proportion of uncensored data among observations i such that X i < Y i given by p = 1 m m j=1 p(j) . From these results, it appears, as expected, that the bias and MSE of all estimators decrease when censoring in the right tail of X decreases (one can see also that the proportion of censoring decreases when the value of the exponential parameter λ increases). We also propose a bootstrapped confidence interval (IC B ) at level 95% for each LPC parameter estimator of size B = 10000 (see Algorithm Figure 1 shows the parameter estimations empirical (reduced and centred values) quantile to standard normal quantile plot, to investigate for each estimator, the normality behaviour over the m replications. One can see that almost estimations values of both β and θ are well aligned with the first bisecting line. This behaviour is also supported by figure 2, where we present the estimated kernel density of the sample ( βj , j = 1 to n), which are clearly concentrated around the target value of 1. 
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An application to Algerian cars claims data

In this section, we illustrate our methodology on a set of Algerian cars claims data. The dataset contains n = 1167 car insurance claims in Algeria (expressed in 10 6 Algerian dinars DZD) between 2007 and 2012. The data is a subset provide from the Project " Ãtude de Revalorisation du Tarif de la RC Automobile" directed by the actuarial office A.R.M.S.S.M (Algiers) for the Algerian Insurances Union (U.A.R). According to the Algerian premium pricing schema, The subset represents cars claims amount, of gender "particular cars without trailer"for "Affair"used, with "3 to 7"horsepower and an indicator which equals 1 if the claim is entirely settled and 0 otherwise. 997 claims are close settled. The other sinister amount are right-censored. some summary of the data are : minimum claims 0.02354 (which correspond to 2, 354.00DZD), the mean claim 2.22300 (222, 300.00DZD) and a maximum claim of 57.72000 (5, 772, 000.00DZD).

Our objective here is to estimate the LPC models parameters using ML estimates, and compares this fit to Lognormal (Adjusted using ML estimation for right censored data in R package STAND -see https: //CRAN.R-project.org/package=STAND) and Pareto (Adjusted using ML estimation procedure adapted to right censored data) fit. The estimation results are given in Table 3. Hence, it's useful to express the fit quality to the data using the following goodness-of-fit measures (see for instance D'Agostino et al. (1986)): For any data sample x 1 , x 2 , . . . , x n , with corresponding ordered data x (1) , x (2) , . . . , x (n) and by denoting F the cdf of the fitted model, we define • Kolmogorov-Smirnov (KS) test statistics : D = max(D -, D + ), where

D + = max 1 i n i n -F (x(i)) , D -= max 1 i n F (x(i) - i -1 n )
• Anderson-Darling (AD) test statistics:

A 2 = -n - 1 n n i=1 (2i -1) log( F (x (i) )) + (2n -2i + 1) log( F (x (i) ))
Note that smaller values of the above measures indicate better adjustment of the model to the data. Results from Table 3 suggest that LPC model provide the better adequate fit to the data. Moreover, we illustrate in figure 3 

Conclusion and perspectives

In this paper, we address the identification problem of the LPC model to real actuarial data, when randomly right-censoring is considered. We constructed the corresponding ML estimators of the two LPC distribution. Our simulation results indicate good performance of these estimators. We also proposed an original procedure applied to a set of real data and provided coherent results. Now, several issues still deserve attention. First, we mentioned that estimation of the LPC parameters constitutes usually a first step in an actuarial analysis. Premium estimation often comes as a second step. In the real-data example, we incorporated our fitted LPC model in the so-called Wang's premium principle. More investigations of the LPC model performances and applications are needed. This is a subject for our future research.

In practice, it often arises that some covariate information W is available to the distribution of an interest variable X depends on W . In this case, interest turns to estimation of the LPC parameters considering the co-variables in W . This is a difficult problem which we overcame, in our real-data analysis, by considering sub-populations defined by gender, the used and horsepower of the car. However, a more advanced approach should be developed to tackle this issue. This also constitutes a topic for our future research.

  , Pigeon et al. (2011), Nadarajah et al. (2012), or the more general composite Stoppa model proposed by Calderín-Ojeda et al. (2015).

Cooray

  et al. (2005) propose a composite model combining a lognormal pdf with a Pareto type II pdf, as
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 11 Figure 1: Line 1: QQnorm of m estimations of the scale parameter β, Line 2: QQnorm of m estimations of the shape parameter θ under simulated LPC(1.5, 10) right censored by: E(0.01) -left plot-, E(0.1) -right plot-
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 2 Figure1shows the parameter estimations empirical (reduced and centred values) quantile to standard normal quantile plot, to investigate for each estimator, the normality behaviour over the m replications. One can see that almost estimations values of both β and θ are well aligned with the first bisecting line. This behaviour is also supported by figure2, where we present the estimated kernel density of the sample ( βj , j = 1 to n), which are clearly concentrated around the target value of 1.5

  the natural logarithm of Quantile-Quantile plot of LPC, Lognormal and Pareto distribution to the Algerian cars claim. One can clearly see that the LPC model is more adequate to claims data than Pareto or Lognormal distribution. All these findings confirm results from AIC (Akaike Information Criterion), D statistics and A 2 statistics values in table 3.
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 3 Figure 3: Log Quantile-Quantile plot of Algerian claims data for LPC (Black), Pareto (Green) and Lognormal (Pink) distibution.

Table 1 :

 1 1 in appendix). LPC(β = 1.5, θ = 5) parameters estimation right censored by E(λ) distribution

	λ	0.01	0.02	0.03	0.05	1
	p	0.9152	0.8461	0.7872	0.6870	0.5053
	β	1.5013	1.5021	1.4979	1.5040	1.5060
	(MSE(β))	(0.0019)	(0.0021)	(0.0023)	(0.0026)	(0.0037)
	IC B (95%)	1.509 ± 0.0871 1.5016 ± 0.1043 1.5002 ± 0.1621 1.5041 ± 0.1833 1.5032 ± 0.2204
	for β					
	θ	5.0028	4.9975	5.0097	5.0015	5.0014
	(MSE(θ))	(0.0050)	(0.0056)	(0.0061)	(0.0064)	(0.0077)
	IC B (95%)	5.0009± 0.1795 5.001 ± 0.2301 5.0013 ± 0.2617 5.0041 ± 0.3411 5.0012 ± 0.3702
	for θ					
	λ	0.01	0.02	0.03	0.05	1
	p	0.8464	0.7338	0.6447	0.5048	0.2932
	β	1.5012	1.5016	1.5020	1.5050	1.5061
	(MSE(β))	(0.0021)	(0.0026)	(0.0031)	(0.0037)	(0.0057)
	IC B (95%)	1.5046±0.1480 1.5036±0.2033	1.5089±0.2817	1.5092±0.3041	1.5100±0.3166
	for β					
	θ	10.0051	10.0059	10.0061	9.9915	10.0041
	(MSE(θ))	(0.0219)	(0.0295)	(0.0260)	(0.0315)	(0.0483)
	IC B (95%)	10.003±0.2837 10.0067±0.3109 10.0028±0.2980 10.0017±0.3428 10.0039±0.4006
	for θ					

Table 2 :

 2 LPC(β = 1.5, θ = 10) parameters estimation right censored by E

Table 3 :

 3 Estimated Parameter and Goodness-of-fit for Algerian data claims
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Appendix

Let Θ = (θ 1 , θ 2 , . . . , θ m ) be a vector of m any LPC parameter estimations, obtained over the replication procedure in subsection 3. Construction of the parameter bootstrapped confidence interval at level 1 -α (IC B ), is obtained as follows