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Abstract

We study quitting games and define the concept of absorption

paths, which is an alternative definition to strategy profiles that acco-
modates both discrete time aspects and continuous time aspects, and
is parameterized by the total probability of absorption in past play
rather than by time. We then define the concept of sequentially 0-

perfect absorption paths, which are shown to be limits of ε-equilibrium
strategy profiles as ε goes to 0. We finally identify a class of quitting
games that possess sequentially 0-perfect absorption paths.
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1 Introduction

Stochastic games were introduced by Shapley (1953) as a dynamic model,
where the players’ behavior affects the evolution of the state variable. Whether
every multiplayer stochastic game admits an ε-equilibrium is one of the
most difficult open problems in game theory to date. Mertens and Ney-
man (1981) proved that the value exists in two-player zero-sum games, Vieille
(2000a, 2000b) proved that an ε-equilibrium exists in two-player nonzero-sum
games, Solan (1999) extended this result to three-player absorbing games,
and Flesch, Schoenmakers, and Vrieze (2008, 2009) proved the existence of
an ε-equilibrium when each player controls one component of the state vari-
able.

Solan and Vieille (2001) introduced a new class of stochastic games, called
quitting games, where each player has two actions, continue and quit, the
game terminates once at least one player chooses quit, and the terminal pay-
off depends on the set of players who choose to quit at the termination stage.
Solan and Vieille (2001) proved that if the payoff function satisfies a cer-
tain condition, then an ε-equilibrium exists. Simon (2007, 2012) and Solan
and Solan (2020) extended this result to other families of payoff functions.
Though the class of quitting games is simple – if the game has not termi-
nated by a given stage, then necessarily all players continued so far – the
analysis of these games is intricate, the mathematical tools used to study
them are diverse, and include dynamical systems, topological tools, and lin-
ear complementarity problems, and the equilibria these games possess may
be complex (see, Flesch, Thuijsman, and Vrieze (1997), Solan (2003), and
Solan and Vieille (2002)).

The main difficulty in studying ε-equilibria in stochastic games is that the
undiscounted payoff is not continuous over the space of strategies, hence one
cannot apply a fixed point theorem to prove the existence of an ε-equilibrium.
In this paper we provide a new representation for strategy profiles in quitting
games, termed absorption paths. This representation allows for both discrete-
time aspects and continuous-time aspects in the players’ behavior. Moreover,
the undiscounted payoff is continuous over the space of absorption paths.
In fact, the space of absorption paths is a compactification of the space of
absorbing strategy profiles.

We define the concept of sequentially 0-perfect absorption paths, which
are the analog of equilibria in standard strategy profiles. We then show
that limits of ε-equilibria in standard strategy profiles are sequentially 0-
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perfect absorption paths, and that every sequentially 0-perfect absorption
path induces an ε-equilibrium in standard strategy profiles, for every ε > 0.
Finally, using Viability Theory we identify one class of quitting game where
sequentially 0-perfect absorption paths exist.

The paper is organized as follows. The model of quitting games is pre-
sented in Section 2, and the equilibrium concept that we study is presented
in Section 3. Absorption paths are presented in Section 4, and their applica-
tion to prove existence of ε-equilibrium in a certain class of quitting games
is described in Section 5. Concluding remarks appear in Section 6.

2 The Model

Definition 2.1 A quitting game is a pair Γ = (I, r), where I is a finite set
of players and r :

∏
i∈I{C

i, Qi} → RI is a payoff function.

Player i’s action set is Ai := {C i, Qi}. These actions are interpreted as
continue and quit, respectively. Set A :=

∏
i∈I A

i. The game is played as
follows. At every stage n ∈ N each player i ∈ I chooses an action ain ∈ Ai.
If all players continue, the play continues to the next stage; if at least one
player quits, the play terminates, and the terminal payoff is r(an), where

an = (ain)i∈I . If no player ever quits, the payoff is r( ~C), where ~C := (C i)i∈I .
A mixed strategy profile is a vector ξ = (ξi)i∈I ∈ [0, 1]I , with the interpre-

tation that ξi is the probability with which player i quits. The probability of
absorption under the mixed action profile ξ is p(ξ) := 1−

∏
i∈I(1−ξi). Extend

the absorbing payoff to mixed action profiles that are absorbing with positive

probability: for every ξ ∈ [0, 1]I such that ξ 6= ~0, r(ξ) :=
∑

a∈A∗ ξ(a)r(a)

p(ξ)
, where

ξ(a) :=
(∏

{i : ai=Qi} ξ
i
)
·
(∏

{i : ai=Ci}(1− ξi)
)
, for every a ∈ A.

A (behavior) strategy of player i is a function xi = (xi
n)n∈N : N → [0, 1],

with the interpretation that xi
n is the probability that player i quits at stage

n if the game did not terminate before that stage. A strategy profile is a
vector x = (xi)i∈I of strategies, one for each player.

We denote by A∗ := A\{ ~C} the set of all action profiles in which at least
one player quits, by A∗

1 := {(Qi, C−i), i ∈ N} the set of all action profiles in
which exactly one player quits, where C−i := (Cj)j 6=i, and by A∗

≥2 := A∗ \A1

the set of all action profiles in which at least two players quit.
Given a sequence (an)

N
n=1, which may be finite or infinite, set θ := min{n ≤

N : an ∈ A∗}, where the minimum over an empty set is ∞. When finite, θ
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is the first stage in which at least one of the players quit. In this case let
I∗ := {i ∈ I : aiθ = Qi} be the set of players who quit at the terminal stage.

For every strategy profile x, the probability distribution of the random
variable (θ, aθ) is denoted Px. Denote by Ex the corresponding expectation
operator. A strategy profile x is absorbing if Px(θ < ∞) = 1.

The payoff under strategy profile x is

γ(x) := Ex

[
1{θ<∞}r(aθ) + 1{θ=∞}r( ~C)

]
.

Let ε ≥ 0. A strategy profile x∗ is an ε-equilibrium if γi(x∗) ≥ γi(xi, x∗,−i)−ε
for every player i ∈ I and every strategy xi of player i.

It is easy to check that every two-player quitting game admits an ε-
equilibrium, for every ε > 0. Solan (1999) extended this result to three-player
quitting games, see also Flesch, Thuijsman, and Vrieze (1997). Whether
every quitting game admits an ε-equilibrium for every ε > 0 is an open
problem.

3 Sequential ε-Perfectness

3.1 ε-Perfectness in Strategic-Form Games

Let G = (I, (Ai)i∈I , r) be a strategic-form game with set of players I, set
of actions Ai for each player i ∈ I, and payoff function r : A → RI , where
A =

∏
i∈I A

i.
In an ε-equilibrium, no player can profit more than ε by deviating. This

does not rule out the possibility that a player plays with small probability an
action that generates her a low payoff. This deficiency is taken care of by the
following concept, which requires that a player does not play with positive
probability actions that generates her a low payoff.

Definition 3.1 Let G = (I, (Ai)i∈I , r) be a strategic-form game, let i ∈ I,
and let ξ ∈

∏
i∈I ∆(Ai) be a mixed action profile. Player i is ε-perfect at ξ

in G if the following conditions hold for every action ai ∈ Ai:

ri(ai, ξ−i) ≤ ri(ξ) + ε, (1)

ξi(ai) > 0 =⇒ ri(ai, ξ−i) ≥ ri(ξ)− ε. (2)

Eq. (1) means that player i cannot gain more than ε by unilaterally
altering her action; Eq. (2) demands that player i cannot lose more than ε
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no matter which one of the actions to which she assigns positive probability
is played.

Standard continuity arguments yield that if player i is εk-perfect at a
mixed action profile ξk in the game Gk = (I, rk), if (ξk)k∈N converges to a
limit ξ, if (εk)k∈N converges to 0, and if r is a payoff function that satisfies
ri = limk→∞ rik, then player i is 0-perfect at ξ in G = (I, r).

3.2 Sequentially ε-Perfect Players in Quitting Games

In this section we extend the concept of ε-perfect players to quitting games.
Consider a quitting game Γ = (I, r). For every vector y ∈ RI let GΓ(y) be
the one shot game with set of players I, set of actions Ai = {Qi, C i} for each
player i ∈ I, and payoff function rΓ defined by

rΓ(y; a) :=

{
r(a) a 6= ~C,

y a = ~C.

The game GΓ(y) represents one stage of the game Γ, when the continua-
tion payoff is y. A strategy profile in GΓ(y) is a vector ξ ∈ [0, 1]I , with the
interpretation that ξi is the probability that player i chooses the action Qi,
for each i ∈ I.

We now define the concept of sequential ε-perfectness in quitting games.
For every n ∈ N denote by γn(x) the expected payoff under x, conditional
that the game did not terminate in the first n− 1 stages.1

γn(x) := Ex[1{θ<∞}r(aθ) + 1{θ=∞}r( ~C) | θ ≥ n].

Definition 3.2 Let Γ be a quitting game and let i ∈ I be a player. Player i
is sequentially ε-perfect at the strategy profile x in Γ if for every n ∈ N,
player i is ε-perfect at the mixed action profile xn in the strategic-form game
GΓ(γn+1(x)).

Remark 3.3 In the strategic-form game GΓ(γn+1(x)), when the other play-
ers play x−i

n , the payoff of player i when she plays xi
n (resp. Qi, C i) is γi

n(x)
(resp. ri(Qi, x−i), (1− p(C i, x−i

n ))γn+1(x) + p(C i, x−i
n )ri(C i, x−i

n )). Therefore
if player i is ε-perfect at xn in GΓ(γn+1(x)), then in particular ri(Qi, x−i

n ) ≤
γi
n(x) + ε, and, if xi

n(Q
i) > 0 then ri(Qi, x−i

n ) ≥ γi
n(x)− ε.

1Note that since a strategy xi is a function from N to [0, 1], the conditional probability
distribution Px(· | θ > n) is well defined even when Px(θ ≤ n) = 1.
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The following two results relate ε-equilibria to sequential ε-perfectness in
quitting games.

Theorem 3.4 (Simon, 2007, Theorem 3 + Solan and Vieille, 2001, Proposition 2.13)
Assume that the quitting game Γ admits an ε-equilibrium, for every ε > 0.
Then at least one of the following statements hold.

(S.1) For every ε > 0 sufficiently small the game admits a stationary ε-
equilibrium.

(S.2) For every ε > 0 sufficiently small the game admits an ε-equilibrium x
that has the following structure: there is a player i ∈ I who quits with
probability 1 at the first stage; from the second stage and on, all players
punish player i at her min-max level.2

(S.3) For every ε > 0 sufficiently small there is an absorbing strategy profile
x such that all players i ∈ I are sequentially ε-perfect at x.

Theorem 3.5 (Solan and Vieille, 2001, Propositions 2.4 and 2.13) Let
ε > 0 be sufficiently small. Every absorbing strategy profile x at which all
players are sequentially ε-perfect is an ε1/6-equilibrium.

4 An Alternative Representation of Strategy

Profiles

A strategy profile x = (xn)n∈N is parameterized by time: xi
n is the probability

that player i quits at stage n if the game did not terminate before that stage.
As is well known, the space of strategies is compact in the product topology.
There are two issues with this topology:

• The payoff is not continuous in this topology. Indeed, if for every
k ∈ N, xk is the stationary strategy profile in which in every stage
each player quits with probability 1

k
, then the sequence (xk)k∈N con-

verges to the strategy profile x that always continues. While un-
der the strategy profile xk absorption occurs with probability 1 and
limk→∞ γ(xk) = 1

|I|

∑
i∈I r(Q

i, C−i), under the strategy profile x the

game is never absorbed and γ(x) = r( ~C).

2The min-max level of player i is vi := infx−i sup
xi γi(xi, x−i).
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• It may not be possible to generate the limit behavior of a sequence
of strategy profiles by a strategy profile. For example, when (xk)
are the strategy profiles that are defined in the first bullet, we have
limk→∞Pxk [aθ = (Qi, C−i) | θ = n] = 1

|I|
for every n ∈ N, yet there

is no strategy profile x that satisfies Px[aθ = (Qi, C−i) | θ = n] = 1
|I|

for every n ∈ N. Indeed, under such a strategy profile x = (xi)i∈I , for
every n ∈ N we have xi

n > 0 for each i ∈ I, and then
∑

i∈I Px[aθ =
(Qi, C−i) | θ = n] < 1.

In this section we will provide an alternative representation of strategy
profiles, that takes care of both of these issues by allowing both discrete-time
behavior and continuous-time behavior. The representation will be based on
a change of parametrization: instead of parameterizing the strategy profile
according to time, we will parameterize it according to the probability of
termination. Thus, the parameter t will run from 0 to 1, and for every action
profile a ∈ A∗ and every t ∈ [0, 1] we will indicate the probability by which
the game is absorbed by the action profile a up to that moment in which the
total probability of absorption is t.

4.1 Absorption Paths

Let F be the set of càdlàg paths π = (πt(a), a ∈ A∗)t∈[0,1] with values in
[0, 1]A

∗

, such that, for all a ∈ A∗, t 7→ πt(a) is nondecreasing. We en-
dow F with the weak topology: a sequence (πk) ⊂ F converges to π if∫
[0,1]

f(t)dπk
t (a) →

∫
[0,1]

f(t)dπt(a), for every continuous map f : [0, 1] → R

and every a ∈ A∗. In such a case we write πk ⇒ π. Recall that πk ⇒ π if
and only if πk

t → πt for every t ∈ [0, 1] where π is continuous, and that the
set F is sequentially compact.

For each π ∈ F, set π0−(a) := 0 for every a ∈ A∗, π̂t :=
∑

a∈A∗ πt(a), and
∆πt := πt − πt− for every t ∈ [0, 1]. Set T (π) := {t ∈ [0, 1], π̂t = t}, and
denote by S(π) the set of jumps: S(π) = {t ∈ [0, 1],∆πt 6= 0}.

Finally we introduce the right-hand side derivative of t 7→ πt : for every
t ∈ [0, 1) set π̇t := lim infsցt

πs−πt

s−t
. By Lebesgue’s Theorem for the differen-

tiability of monotone functions, since t 7→ πt(a) is nondecreasing for every
a ∈ A∗, the liminf is in fact a limit almost everywhere in [0, 1).

Definition 4.1 The set A of absorption paths is the set of all paths π ∈ F
such that the following hold.
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(A.1) For every t ∈ [0, 1], we have π̂t ≥ t.

(A.2) On each connected component (t1, t2) of [0, 1] \ (S(π) ∪ T (π)), π̂ is
constant and equal to t2.

(A.3) For every t ∈ S(π), there exists ξt = (ξit)i∈N ∈ [0, 1]I such that

∆πt(a)

1− t
= ξt(a), ∀a ∈ A∗. (3)

(A.4) For every t ∈ T (π) \ {1} we have supp(π̇t) ⊆ A∗
1.

Remarks 4.2 Let π ∈ A be an absorption path.

1. For every t ∈ S(π)∪T (π), the quantity πt(a) should be thought of as the
unconditional probability that the play is absorbed by the action profile
a, until the moment in which the total probability of absorption is t.

2. Elements t ∈ S(π) correspond to play in discrete time, and for such t,
ξt is the mixed action profile the players play at t, and 1− t is the total
probability of absorption up to t. This explains (A.3).

3. Elements t ∈ T (π) \ {1} correspond to play in continuous time. This
explains (A.4).

4. If (t, t′) is a connected component of [0, 1]\(S(π)∪T (π)), then t ∈ S(π)
and t′ = t + (1 − t)p(ξt). This interval corresponds to the increase in
probability due to play in discrete time.

5. Since, for all a ∈ A∗, s 7→ πs(a) is nondecreasing, π is continuous at t
if and only if π̂ is continuous at t, for every t ∈ [0, 1]. It follows from
(A.2) that on each connected component of [0, 1] \ (S(π) ∪ T (π)) the
process π is constant.

6. Let t ∈ S(π). Since π is càdlàg and nondecreasing, we get from (A.1)
that π̂t > t, and from (A.2) that π̂s = π̂t for every s ∈ [t, π̂t). In
particular π̂π̂t− = π̂t.

7. For every t ∈ [0, 1], both π̂t− and π̂t belong to the set T (π) ∪ S(π).
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Figure 1: The absorption path in Example 4.3.

8. From (A.2) and Remark 4.2(7), we deduce that [0, 1) is partitioned to
a countable number of intervals U = [t1, t2), with, either U ⊂ T (π), or
t1 ∈ S(π) and t2 = π̂t1. On each of these intervals, π is continuous,
with π̂t = t if U ⊂ T (π), and π̂t = t2 otherwise.

9. The function π is continuous at t = 1: indeed, since, for all t ∈ [0, 1],
t ≤ π̂t ≤ 1, we have π̂1 = limtր1 π̂t = 1.

10. For every a ∈ A∗
≥2, the function t 7→ πt(a) is piecewise constant.

11. The reader may wonder why we defined π̇ with liminf and not with
limsup. It turns out that to ensure that the set of absorption paths is
sequentially compact (see Proposition 4.9 below), we need to define π̇
with liminf.

Example 4.3 Figure 1 displays an absorption path π for the case |I| = 2.
The interpretation of this absorption path is the following: First Players 1
and 2 simultaneously quit with positive probability, Player 1 with probability
1
3
and Player 2 with probability 1

4
; then Player 1 quits alone with probability

1
2
; and then Players 1 and 2 quit together in continuous time, Player 1 with

rate 1
2
and Player 2 with rate 1

4
. We have S(π) = {0, 1

2
} and T (π) = [3

4
, 1].
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Remark 4.4 Every absorbing strategy profile x = (xn)n∈N naturally defines
an absorption path πx that contains only discrete-time aspects. Indeed, for
every n ∈ N denote tn := Px(θ < n), and define

πx
t (a) := Px(θ ≤ n, aθ = a), ∀a ∈ A∗, n ∈ N, t ∈ [tn, tn+1).

The reader can verify that S(πx) = {t1, t2, . . .}, T (π
x) = {1}, and ξtn = xn

for every n ∈ N.

Remark 4.5 The function x 7→ πx that is defined in Remark 4.4 is not one-
to-one. Indeed, fix an absorbing strategy profile x and let x′ be the strategy
profile in which all players continue in the first stage, and from the second
stage on they follow x :

x′i
n =

{
C i, if n = 1,
xi
n−1, if n > 1.

Then πx′

= πx. In fact, given an absorbing strategy profile x, the addition or
elimination of stages in which all players continue is the only way to create
an absorbing strategy profile x′ such that πx = πx′

.

The following result states that the set of all πx, where x ranges over all
absorbing strategy profile, is dense in the set of absorption paths. Thus, the
set of absorption paths is a compactification of the set of absorbing strategy
profiles.

Proposition 4.6 For every absorption path π there is a sequence of absorb-
ing strategy profiles (xk)k∈N such that πxk

⇒ π.

To prove Proposition 4.6 we need the following technical lemma.

Lemma 4.7 Let ε > 0 be sufficiently small, and let y ∈ ∆(A) be a distribu-

tion that satisfies p(y) := 1−y( ~C) ≤ ε and y(a) ≤ εy(Qi, C−i) for each i ∈ I
and every a ∈ A∗

≥2 such that ai = Qi. Let ξ ∈ [0, 1]I be the unique mixed
action profile that satisfies p(ξ) = p(y) and

ξi

ξj
=

y(Qi, C−i)

y(Qj, C−j)
, ∀i, j ∈ I, (4)

where 0
0
= 1. Then

|ξ(a)− y(a)| ≤ 2|I| · (|I|+ 1) · εp(y), ∀a ∈ A∗. (5)
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Proof. For every i ∈ I we have y(Qi, C−i) ≤ p(y) ≤ ε, and similarly
ξi ≤ ε. This implies that y(a), ξ(a) ∈ [0, εp(y)] for every a ∈ A∗

≥2, hence
Eq. (5) holds for a ∈ A∗

≥2. It follows that

∣∣∣∣∣∣

∑

a∈A∗
1

ξ(a)−
∑

a∈A∗
1

y(a)

∣∣∣∣∣∣
≤ 2|I|εp(y)

and 0 ≤ ξi − ξ(Qi, C−i) ≤ 2|I|−1εp(y) for every i ∈ I. Hence

∣∣∣∣∣∣

∑

i∈I

ξi −
∑

a∈A∗
1

y(a)

∣∣∣∣∣∣
≤ 2|I| · (|I|+ 1) · εp(y).

Eq. (4) implies now that Eq. (5) holds for a ∈ A∗
1, provided ε is sufficiently

small.

Note that ξ in Lemma 4.7 is uniquely defined, because ξi = z· y(Qi,C−i)∑
j∈I y(Q

j ,C−j)
,

where z is determined so that p(ξ) = p(y).

Proof of Proposition 4.6. The idea of the proof is to discretize [0, 1],
that is, for every k ∈ N, we define a countable set Sk = (skn)n∈N ⊂ [0, 1] and
a strategy profile xk in such a way that xk

n approximates the behavior under
π between the n’th and (n+1)’st point of Sk. The set Sk contains the points
t in S(π) where the conditional probability of quitting is larger than 1

k
, and

covers [0, 1] minus the corresponding intervals [t, π̂t) with well chosen points
skn such that skn+1 ≤

1
k
(1− skn), i.e., the conditional probability of absorption

in [skn, s
k
n+1) is less than

1
k
.

We turn to the formal construction. Fix an absorption path π ∈ A and
k ∈ N. Let

Sk
0 := {t ∈ S(π) : π̂t − t ≥ 1−t

k
} = {t ∈ S(π) : p(ξt) ≥

1
k
}.

Define the set Sk = (skn)n∈N ⊂ [0, 1] as follows:

• sk1 := 0.

• For n ∈ N, define inductively skn+1 := sup
((

(S(π) ∪ T (π)) ∩ [0, skn +
1−skn
k

]
)
∪ {π̂k

skn
}
)
.

In words, if skn ∈ Sk
0 then skn+1 = π̂skn

, and if skn 6∈ Sk
0 , then skn+1 is the

maximal point in S(π) ∪ T (π) smaller than skn +
1−skn
k

.
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Define a strategy profile xk as follows:

(D.1) If skn ∈ Sk
0 , set x

k
n := ξskn.

(D.2) If skn 6∈ Sk
0 , let xk

n = (xk,i
n )i∈I be the unique solution of the following

system of equations:

p(xk
n) = 1−

∏

i∈I

(1− xk,i
n ) =

skn+1 − skn
1− skn

, (6)

xk,i
n

xk,j
n

=
πskn+1

−(Q
i, C−i)− πskn−

(Qi, C−i)

πskn+1
−(Q

j , C−j)− πskn−
(Qj , C−j)

, where
0

0
= 1. (7)

Recall that as mentioned after Lemma 4.7, a unique solution to Eqs. (6)–
(7) exists.

The convergence πxk

⇒ π will follow as soon as we show that

‖πxk

skn−
− πskn−

‖∞ ≤ skn · 2
|I| · (|I|+ 1)/k, ∀k ∈ N, ∀n ∈ N. (8)

Eq. (8) is trivially satisfied for k = 1. We shall suppose that the relation is
true for some n ∈ N and prove that it still holds for n+1. (D.1) and Eq. (6)
ensure that π̂xk

skn+1
−
− π̂xk

skn−
= π̂skn+1

− − π̂skn−
: for every n ∈ N, the probability

of absorption at stage n under the probability πxk

, is the same as under the
original absorption path π in [skn, s

k
n+1). This implies that π̂xk

skn−
= π̂skn−

for
every n ∈ N.

If skn ∈ Sk
0 , then (D.1) implies that skn+1 = π̂sn

k
− and πxk

skn−
(a)− πxk

skn−
(a) =

πskn+1
−(a)− πskn+1

−(a) for every a ∈ A∗, and therefore Eq. (8) holds for every
n+ 1.

Suppose now that skn 6∈ Sk
0 . Set y(a) :=

π
sk
n+1

−
(a)−π

skn−
(a)

1−skn
for every a ∈

A∗ (and y( ~C) := 1 −
∑

a∈A∗ y(a)). Then p(y) =
skn+1−skn
1−skn

. By Lemma 4.7,

|xk
n(a)− y(a)| < 2|I| · (|I|+1) · p(y)/k for every a ∈ A∗. Since p(y) =

skn+1
−skn

1−skn
and

πxk

skn+1
−(a) = πxk

skn−
(a) + (1− skn)x

k
n(a), πskn+1

−(a) = πskn−
(a) + (1− skn)y(a),

it follows that

|πxk

skn+1
−(a)− πskn+1

−(a)| ≤ skn · 2
|I| · (|I|+ 1) · /k + (1− skn)

skn+1 − skn
1− skn

2|I| · (|I|+ 1) · /k

= skn+1 · 2
|I| · (|I|+ 1) · /k,

12



Figure 2: Four possibilities for the function πt(Q
1, C−1) in Remark 4.8.

as desired.

Remark 4.8 The behavior “Player 1 quits with probability 1, and all other
players continue throughout the game” may be translated in many ways to
absorption paths. Here are some examples:

• Player 1 quits with probability 1 in the first stage of the game. In this
case, we have T (π) = {1} and S(π) = {0} (Figure 2(a)).

• Player 1 quits with probability 1
2
in each stage. In this case, we have

T (π) = {1} and S = {0, 1
2
, 3
4
, 7
8
, · · · } (Figure 2(b)).

• Player 1 “quits continuously”. Here S(π) = ∅, T (π) = [0, 1], and
πt(Q

1, C−1) = t, for every t ∈ [0, 1] (Figure 2(c)).

• And we may have combinations of the above (Figure 2(d)).

Proposition 4.9 The set of absorption paths A is sequentially compact: for
every sequence (πk) ∈ A of absorption paths, there exists π ∈ A and a sub-
sequence, still denote by (πk), which converges weakly to π. Moreover, this
subsequence can be chosen in such a way that for every t ∈ S(π), there are
two sequences (tk) ⊂ [0, 1] and (ξk) ⊂ [0, 1]I with tk → t and (ξk) → ξt as
k → ∞, and such that, for every k ∈ N, tk ∈ S(πk), and Eq. (3) holds for
πk and ξk at tk.

Proof. Let (πk) be a sequence of absorption paths. Since F is sequentially
compact, there exists a subsequence, still denote by (πk), and π ∈ F, such
that πk ⇒ π. We have to show that π ∈ A.

Since πk
t → πt for a.e. t ∈ [0, 1], it follows that π̂k

t → π̂t for a.e. t ∈ [0, 1],
and therefore (A.1) passes to the limit: π̂t ≥ t for all t ∈ [0, 1].

13



To show that (A.2) holds for π, let U be a connected component of [0, 1]\
(T (π)∪S(π)). Fix t ∈ U . Since π is continuous at t, we have πt = limk→∞ πk

t .
Since π̂t > t, for every ε ∈ (0, π̂t − t), there exists k0 ∈ N such that for every
k ≥ k0 we have π̂k

t > π̂t − ε > t. Since πk belong to A, it is constant on
[t, π̂t − ε). It follows that π is also constant on [t, π̂t − ε). Since this is true
for every ε > 0 sufficiently small, π is constant on [t, π̂t), and is equal to πt.

We turn to prove that (A.3) holds for π. Fix t ∈ S(π). There exists a
subsequence of (πk), still denoted (πk), and a sequence (sk) ⊂ [0, 1] such that
sk → t and πk

sk
→ πt. For each k, set tk := min{s ≤ sk, π

k
s = πk

sk
}, where the

infimum is attained because of the right continuity of πk. Since t ∈ S(π) we
have π̂t > t, hence π̂k

tk
> tk for every k sufficiently large. By the definition of

tk and (A.2), it follows that tk ∈ S(πk).
We argue that tk → t. Let t̃ be an accumulation point of (tk). Since

tk ≤ sk → t, we have t̃ ≤ t. If t̃ < t, consider s ∈ [t̃, t) such that πk
s → πs.

Then, for every ε > 0 and every k large enough, we have

π̂t − ε ≤ π̂k
sk

= π̂k
tk
≤ π̂s + ε ≤ π̂t− + ε,

which is impossible for ε < (π̂t − π̂t−)/2.
Since tk → t, every accumulation point of (πk

tk−
) belongs to the set

{πt−, πt}, and, since limk→∞ π̂k
tk−

= limk→∞ sk = t < π̂t, it follows that
limk→∞ πk

tk−
= πt−, which implies that limk→∞∆πk

tk
= ∆πt.

For each k ∈ N, since tk ∈ S(πk), there exists ξk ∈ [0, 1]I such that

∆πk
tk
(a) = (1− tk)


 ∏

{i : ai=Qi}

ξk,i





 ∏

{i : ai=Ci}

(1− ξk,i)


 , a ∈ A∗. (9)

We can find a subsequence of (tk) and ξ ∈ [0, 1]I , such that ξk,i → ξi for all
i ∈ I. Taking the limit as k → ∞ in Eq. (9) we get

∆πt(a) = (1− t)


 ∏

{i : ai=Qi}

ξi





 ∏

{i : ai=Ci}

(1− ξi)


 , a ∈ A∗.

This proves that (A.3) holds. Since S(π) is countable, the existence of the
sequences (tk) and (ξk) for every t ∈ S(π) as described in the statement of
the proposition follows.

We finally prove that (A.4) holds as well. Fix t ∈ T (π) \ {1}, so that
π̂t = t. We have to show that π̇t(a) = 0 for every a ∈ A∗

≥2. Since t ∈ T (π),

14



there is a nonincreasing sequence (tk) that converges to t such that π̂tk− = tk
for every k. For the same reason, for every ε > 0 there is k0 ∈ N and δ > 0
such that for every k ≥ k0 and every t′ ∈ [tk, tk+δ)∩S(πk) we have p(ξkt′) < ε.
Indeed, otherwise there is ε > 0 such that for every k0 ∈ N and every δ > 0
there is k ≥ k0 and t′ ∈ [tk, tk + δ) ∩ S(πk) for which p(ξkt′) ≥ ε. But then,
letting k0 go to infinity and δ go to 0, we deduce that t ∈ S(π) and p(ξt) ≥ ε,
a contradiction.

For every mixed action profile ξ that satisfies p(ξ) < ε, we have ξi < ε
for every i, and therefore

ξ(a) =


 ∏

{i : ai=Qi}

ξi


 ·


 ∏

{i : ai=Ci}

(1− ξi)


 ≤

ε

1− ε
p(ξ), ∀a ∈ A∗

≥2.

We deduce that for every ε > 0 there is k0 ∈ N and δ > 0 such that for
every k ≥ k0 and every t′ ∈ (tk, tk + δ)∩S(πk), we have ξt′(a) ≤

ε
1−ε

p(ξt′) for

every a ∈ A∗
≥2. This implies that for every t′ ∈ (tk, tk + δ) ∩ (T (πk) ∪ S(πk))

πk
t′−(a)−πk

tk−
(a) ≤ (t′−tk)

ε

1− ε
, ∀a ∈ A∗

≥2, ∀t
′ ∈ (tk, tk+δ)∩(T (πk)∪S(πk)).

Since this inequality holds for every ε > 0, we deduce that π̇t(a) = 0 for
every a ∈ A∗

≥2.

4.2 The Payoff Path

Let π be an absorption path. For every 0 ≤ t < 1 and every a ∈ A∗, the
difference π1(a) − πt(a) is the probability that the play terminates by the
action profile a in the interval (t, 1]. Since the probability of absorption in
[t, 1] is 1 − π̂t, the expected payoff after absorption probability t is given by
the formula

γt(π) :=

{ ∑
a∈A∗(π1(a)−πt(a))r(a)

1−π̂t
, if π̂t < 1,

~0, if π̂t = 1.
(10)

We call the function γ(π) : [0, 1] → RI the payoff path.

Remarks 4.10 1. Payoff paths take their values in [−M,M ]I , whereM =
‖r(a)‖∞.
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2. Note that γ0−(π) =
∑

a∈A∗ π1(a)r(a) is the expected payoff under π in
the game. The value of γt(π) is irrelevant when π̂t = 1, because, in this
case, the game is already over at t.

3. For every absorbing strategy profile x, we have

γtn−(π
x) = γn(x), ∀n ∈ N,

where the absorption path πx is defined in Remark 4.4, and tn = Px(θ <
n). This equality reflects the equivalence between each strategy profile
x and the absorption path πx.

4. When T (π) = [0, 1], the expression for the payoff path simplifies to

γt(π) =

∑
i∈I (π1(Q

i, C−i)− πt(Q
i, C−i)) r(Qi, C−i)

1− t
(11)

Then we have for every 0 ≤ s < t < 1,

(1− t)γt = (1− s)γs +
∑

i∈I

(πs(Q
i, C−i)− πt(Q

i, C−i)r(Qi, C−i).

Hence, the function t 7→ γt solves the differential equation

(1− t)γ̇t = γt −
∑

i∈I

π̇t(Q
i, C−i)r(Qi, C−i), t ∈ [0, 1). (12)

5. Let (πk)k∈N be a sequence of absorption paths that converges to a limit
π. Then,

γt(π) = lim
k→∞

γt(π
k),

for all t ∈ [0, 1) where π is continuous.

We now adapt the definition of sequential ε-perfectness to absorption
paths.

Definition 4.11 Let ε ≥ 0. Player i is sequentially ε-perfect at the absorp-
tion path π if the following conditions hold:

(SP.1) For all t ∈ S(π) such that π̂t < 1, player i is ε-perfect at the mixed
action profile ξt in the strategic-form game GΓ(γt(π)).
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(SP.2) For every t ∈ T (π) \ {1},

(a) γi
t(π) ≥ ri(Qi, C−i)− ε, and

(b) if π̇t(Q
i, C−i) > 0, then γi

t(π) ≤ ri(Qi, C−i) + ε.

An absorption path π is sequentially ε-perfect if all players are sequentially
ε-perfect at π.

In words, an absorption path is sequentially ε-perfect if (i) whenever the
players play in discrete time (t ∈ S(π)), the mixed action that they play is
ε-perfect in the one-shot game induced by the continuation payoff, and (ii)
whenever the players play in continuous time (t ∈ T (π)), it cannot be that
by quitting a player will gain more than ε, and a player does not quit with
positive rate if her continuation payoff is higher by more than ε than her
payoff if she quits alone.

It follows by the definition of πx (see Remark 4.4), that player i is se-
quentially ε-perfect at an absorbing strategy profile x, if and only if she is
sequentially ε-perfect at the absorption path πx.

We shall see now that standard continuity arguments show that a limit
of sequentially ε-perfect absorption paths as ε goes to 0 is a sequentially
0-perfect absorption path.

Proposition 4.12 Let (πk)k∈N be a sequence of absorption paths that con-
verges to a limit π, let (εk)k∈N be a sequence of non-negative reals that con-
verges to 0, and let i ∈ I. If for every k ∈ N player i is sequentially εk-perfect
at the absorption path πk, then player i is sequentially 0-perfect at the ab-
sorption path π.

Proof. Fix t ∈ S(π). We prove that in this case (SP.1) holds with ε = 0.
Since πk ⇒ π, following Proposition 4.9 we can find a sequence (tk)k∈N, with
tk ∈ S(πk) for all k ∈ N, that converges to t and such that ξt = limk→∞ ξk,
where ξk satisfies Eq. (3) at tk for πk, for all k ∈ N. Remark 4.10(5) implies
that γtk(π

k) → γt(π). By definition, if player i is sequentially εk-perfect at
πk, then she is εk-perfect at the mixed action profile ξk in the strategic-form
game GΓ(γtk(π

k)). As discussed in Section 3.1, it follows that player i is
0-perfect at ξt in the strategic-form game GΓ(γt(π)), i.e., (SP.1) holds with
ε = 0.

Now let t ∈ T (π) \ {1}. We will prove that (SP.2.a) holds with ε = 0.
Let (tk) be a nonincreasing sequence of times converging to t, such that

17



πk
tk−

→ πt. This implies that γt(π) = limk→∞ γtk(π
k). As in the proof of

Proposition 4.9, we can choose this sequence in a way that π̂k
tk−

= tk for all
k ∈ N. Following Remark 4.2(7), this implies that, for each k ∈ N there are
only two possibilities: either tk ∈ T (πk) or tk ∈ S(πk).

Suppose first that tk ∈ T (πk) for every k ∈ N large enough. Then
(SP.2.a), applied to πk, yields

γi
tk
(πk) ≥ ri(Qi, C−i)− εk,

and, letting k go to +∞, we obtain that (SP.2.a) with ε = 0 holds for π at t.
Next let us suppose the existence of a subsequence of (πk) such that

tk ∈ S(πk) for every k ∈ N. By assumption we have

ri(Qi, ξk,−i) ≤ γi
tk
(πk) + εk, (13)

As in the proof of Proposition 4.9, the sequence (p(ξktk)) vanishes when k

tends to +∞, or, equivalenty, ξktk → ~0. The result follows by letting k go to
+∞ in Eq. (13).

The proof that (SP.2.b) holds with ε = 0 is similar, hence (SP.2) holds
for every t ∈ T (π) such that πk

t → πt. For t such that πk
t does not converge

to πt, (SP.2) holds by the right-continuity of π.
The following result relates the concepts of ε-equilibria and sequential

0-perfect absorption paths.

Theorem 4.13 Let Γ be a quitting game that does not possess an ε-equilibrium
under which the game terminates with probability 1 in the first stage. The
game admits an ε-equilibrium for every ε > 0, if and only if there is a se-
quentially 0-perfect absorption path.

Proof. Theorem 3.4 and Proposition 4.12 imply that if the game admits
an ε-equilibrium for every ε > 0, then there is a sequentially 0-perfect ab-
sorption path. Regarding the converse implication, let π be a sequentially
0-perfect absorption path. In the proof of Proposition 4.6 we constructed a
sequence (xk) of strategy profiles such that πxk

→ π. In the notations of the
proof of Proposition 4.6, supn∈N ‖γskn(π

xk

) − γskn(π)‖∞ → 0, which implies
that xk is an εk-equilibrium for every k, with εk → 0.

Theorem 4.13 is related to Gobbino and Simon (2020), who separated
the dynamics of the sequence (γn(x))n∈N, where x is an absorbing sequen-
tially ε-perfect strategy profile, into “large” motion (the discrete part of the
absorption path) and “small” motion (the continuous part of the absorption
path).
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5 Continuous Equilibria

An absorption path π is continuous if it does not contain discrete-time as-
pects; that is, if T (π) = [0, 1]. When π is continuous,

∑
a∈A∗

≥2

π1(a) = 0,

yet the converse need not hold. To simplify terminology, we use the term
continuous equilibria for sequentially 0-perfect continuous absorption paths.

In this section we provide a sufficient condition for the existence of a
continuous equilibrium. To present the sufficient condition, it is convenient
to normalize the payoffs and assume w.l.o.g. that ri(Qi, C−i) = 0 for each
i ∈ I.

Definition 5.1 Let R be an (n × n)-matrix, and let q ∈ Rn. For each i,
1 ≤ i ≤ n, denote by Ri the i’th column of R. The linear complementarity
problem LCP(R, q) is the following problem:

Find w ∈ R
n
+, and z = (z0, z1, · · · , zn) ∈ ∆({0, 1, · · · , n}),

such that w = z0q +

n∑

i=1

ziR
i, (14)

zi = 0 or wi = 0, ∀i ∈ {1, 2, . . . , n}.

A matrix R is a Q-matrix if for every q ∈ R the problem LCP(R, q) has
at least one solution.

Let Γ be a quitting game, and denote by R(Γ) the (|I| × |I|) matrix
(ri(Qj, C−j))i,j∈I . Solan and Solan (2020) proved that if R(Γ) is not a Q-
matrix, then Γ has a stationary 0-equilibrium. Here we handle the case where
R(Γ), as well as all its principal minors, are Q-matrices.

Theorem 5.2 If R(Γ) and all its principal minors are Q-matrices, then
there exists continuous equilibrium.

Remark 5.3 Theorem 5.2 is not tight: there may be continuous equilibria
when its condition is not satisfied. Indeed, it may be that the restriction
of R(Γ) to a subset of players satisfies the condition of Theorem 5.2, and
therefore there is a continuous equilibrium π for the subgame that involves
those players (when all other players are restricted to always continue), and
it may further happen that the other players obtain high payoffs along this
absorption path. In such a case, all players are sequentially 0-perfect at π
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We do not know whether the existence of a continuous equilibrium along
which all players quit with positive probability implies that R(Γ) and all its
principal minors are Q-matrices.

Proof of Theorem 5.2.
Step 1: Convex combinations in the non-negative orthant.

We will show here that for every nonempty subset J ⊆ I of players there
is a probability distribution z ∈ ∆(J) that satisfies

∑

i∈J

zir
j(Qi, C−i) ≥ 0, ∀j ∈ J, (15)

∑

i∈J

zir
j(Qi, C−i) = 0 for at least one j ∈ J. (16)

The assumption that R = R(Γ) and all its principal minors are Q-matrices
is used only in this step of the proof.

Fix i0 ∈ J and let q̂ ∈ RJ be the vector that is defined by

q̂i0 := −1, q̂i := 0 ∀i ∈ J \ {i0}.

The matrix R̂ := (ri(Qj , C−j))i,j∈J is a principal minor of R. Therefore,

the linear complementarity problem LCP(R̂, q̂) has a solution (ŵ, ẑ). Since
q̂i0 < 0, it cannot be that ẑ0 = 1. If i0 is the only player i ∈ J such that
ẑi > 0, then, since ri0(Qi0 , C−i0) = 0 and q̂i0 < 0, we have ẑi0 = 1. Otherwise,
there is i1 ∈ J \ {i0} such that ẑi1 > 0, and consequently ŵi1 = 0.

Define zi :=
ẑi

1−ẑ0
for each i ∈ J . Since ŵi ≥ 0 and q̂i ≤ 0 for every i ∈ J ,

and since ŵ is a convex combination of q̂ and
∑

i∈J zir(Q
i, C−i), it follows

that Eq. (15) holds. If zi0 = 1, then Eq. (16) holds with j = i0. Otherwise,
since ŵi1 = q̂i1 = 0, we have

∑
i∈J zir

i1(Qi, C−i) = 0, and Eq. (16) holds with
j = i1.

Step 2: Viability theory.
For every z ∈ ∆(I) denote z ·R :=

∑
i∈I ziR

i, and let Y be the boundary
of RI

+. For every q ∈ Y , set

F (q) := {z ∈ ∆(I) : zi > 0 ⇒ qi = 0, (z ·R)i ≥ 0 whenever qi = 0}.

We will show that there exists a measurable function z : [t0, 1] → ∆(I) such
that for every t ∈ [t0, 1] we have (a) q(t) ∈ Y and (b) z(t) ∈ F (q(t)).
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The set-valued function F is upper semi-continuous with convex values,
and by Step 1 it has nonempty values. For every q ∈ Y denote by TY (q) the
tangent cone at q:

TY (q) := {d ∈ R
I , q + δd ∈ Y for all δ > 0 small}.

A careful analysis of the tangent cone shows that δ
t
z · R + (1 − δ

t
)q ∈ TY (q)

for every z satisfying Eqs. (15)–(16) and δ > 0 small enough, where J = {i ∈
I : qi = 0}.

Fix (q0, t0) ∈ Y × (0, 1). For every measurable function z : [t0, 1] → ∆(I),
consider the following controlled dynamic:

{
q̇(t) = 1

t
(z(t) · R− q(t)), ∀t ∈ [t0, 1],

q(t0) = q0.
(17)

The set Y is closed, and the set-valued function F is upper-semicontinuous
with nonempty, closed, and convex values. By the classical Viability Theorem
(Aubin, 1991, Theorem 3.3.4) it follows that there exists a measurable func-
tion z : [t0, 1] → ∆(I) such that (a) and (b) above hold for every t ∈ [t0, 1].

Step 3: Constructing a continuous equilibrium.
Fix an arbitrary q0 ∈ Y . For every n ∈ N let (qn, zn) be a solution of

Eq. (17) with qn0 = q0 and t0 =
1
n
, such that qn(t) ∈ Y and zn(t) ∈ F (qn(t))

for every t ∈ [ 1
n
, 1]. Define πn ∈ A by

π̇n
t (Q

i, C−i) = zni (1− t), ∀t ∈ [0, 1− 1
n
), ∀i ∈ I, (18)

and an arbitrary continuous evolution on [1 − 1
n
, 1]. By definition, πn is a

continuous absorption path. Eq. (17) implies that, for all 0 ≤ t ≤ 1− 1
n
,

(1− t)qn(1− t)−
1

n
q0 =

∫ 1−t

1

n

zn(s)ds · R =

∫ 1− 1

n

t

zn(1− s)ds · R.

In addition, for every t ∈ [0, 1− 1
n
],

γt(π
n) =

1

1− t

∫ 1

t

zn(1− s)ds ·R

=
1

1− t

∫ 1−1/n

t

zn(1− s)ds · R +
1

1− t

∫ 1

1−1/n

zn(1− s)ds · R

= qn(1− t)−
q0

(1− t)n
+

1

1− t

∫ 1

1−1/n

zn(1− s)ds · R.
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It follows that

‖γt(π
n)− qn(1− t)‖∞ ≤

2‖R‖∞
(1− t)n

, ∀n ∈ N, ∀t ∈ [0, 1− 1
n
].

Let π be an accumulation point of (πn), and assume w.l.o.g. that πn ⇒ π.
Since πn is continuous, so is π. Consequently, for every t ∈ [0, 1) the limit
limn→∞ qn(1 − t) exists and is equal to γt(π). Since qn(1 − t) ∈ Y for every
t ∈ [0, 1

n
], we deduce that γt(π) ∈ Y for every t ∈ [0, 1), and therefore (SP.2.a)

with ε = 0 holds for each i ∈ I.
We turn to prove that (SP.2.b) holds as well. Fix i ∈ I and let t ∈ [0, 1)

be such that π̇t(Q
i, C−i) > 0. Then there exists a sequence (tn)n∈N such

that limn→∞ tn = t and π̇n
tn(Q

i, C−i) > 0 for every n sufficiently large. This
implies that for every n sufficiently large we have zni (1−tn) > 0, and therefore
qni (1 − tn) = 0. By taking the limit as n goes to infinity we deduce that
γi
t(π) = 0, and (SP.2.b) indeed holds.
Since Condition (SP.2) holds for π, and since i is arbitrary, π is sequen-

tially 0-perfect.

When π is a continuous equilibrium, we can assign to each t ∈ [0, 1) the
set of players who quit with positive rate at t. In the next two examples,
[0, 1) is divided into countably many intervals, and a single player quits with
positive rate in each interval. We therefore describe π by a list of pairs
(ik, pk)k, where ik is a player and pk ∈ (0, 1]: under π, player i0 quits in the
interval [0, p0), player i1 quits in the interval [p0, p0 + (1− p0)p1), and so on.
Thus, (ik)k indicates the order by which the players quit, and pk indicates the
probability by which player ik quits in the k’th interval, given that the game
did not terminate before. Since the play eventually absorbs,

∑
k pk = ∞,

yet it might be that the index set of k is not N, as happens in Example 5.5
below.

Example 5.4 Suppose that there are three players, r(Q1, C2, C3) = (0, 2,−1),
r(C1, Q2, C3) = (−1, 0, 2), and r(C1, C2, Q3) = (2,−1, 0). Games that have
these payoffs was studied by Flesch, Thuijsman, and Vrieze (1997) and Solan
(2003). The corresponding matrix R and all its principle minors are Q-
matrices, hence a continuous equilibrium exists. One such equilibrium is the
one were the sequence (ik, pk)k is:

(1,
1

2
), (2,

1

2
), (3,

1

2
), (1,

1

2
), (2,

1

2
), (3,

1

2
), (1,

1

2
), (2,

1

2
), (3,

1

2
), . . . . (19)
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In fact, it can be shown that all continuous equilibria in this example can
be obtained from the one in Eq. (19) by starting the period at any t ∈ [0, 7

8
]

(instead of at t = 0).

The following example shows that continuous equilibria even when peri-
odic, may exhibit a wild behavior.

Example 5.5 Suppose that there are five players, r(Q1, C2, C3, C4, C5) =
(0, 2,−1

2
, 1,−1), r(C1, Q2, C3, C4, C5) = (−1

2
, 0, 2, 1,−1), r(C1, C2, Q3, C4, C5) =

(2,−1
2
, 0, 1,−1), r(C1, C2, C3, Q4, C5) = (−1,−2,−3, 0, 10

7
), and r(C1, C2, C3, C4, Q5) =

(2, 7
2
, 47

8
, 5
2
, 0). It is a bit tedious but not difficult to show that the correspond-

ing matrix R and all its principle minors are Q-matrices, and therefore a
continuous equilibrium exists.

In this example there are many periodic continuous equilibria (ik, pk)k. In
fact, for every l ∈ N there is such an equilibrium with period 3l + 2, where
the sequence (ik)

3l+2
k=1 is (1, 2, 3, 1, 2, 3, . . . , 1, 2, 3, 4, 5).

Yet there is also a continuous equilibrium that has this structure for l =
∞:

(1,
1

4
), (2,

1

6
), (3,

1

20
), (1,

1

76
), (2,

1

300
), (3,

1

598
), . . . , (4,

1

2
), (5,

1

2
).

We do not know whether there exist games where there is a continuous equi-
librium but none that is periodic with a finite period. An algorithm for calcu-
lating the union of the range of all payoff paths that correspond to continu-
ous equilibria is described in Ashkenazi-Golan, Krasikov, Rainer, and Solan
(2020).

6 Discussion

The behavior of players in dynamic games in general, and quitting games
in particular, may be complex. It might be that in some stage, the players
mix their actions, knowing that the set of players who will terminate the
game will be random. It might also happen that some player wants to quit,
but she wants to guarantee that no other player knows when she quits, to
avoid the outcome where she quits with someone else. While in discrete
time a player cannot guarantee that no other player will be able to quit with
her, in continuous time this can be done. Equilibrium behavior in quitting
games may exhibit both types of behavior: periods of discrete-time behavior,
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when players quit with positive probability, and periods of continuous-time
behavior, when players quit at a given rate.

The concepts of discrete-time strategies and continuous-time strategies
can capture only one of the two possible behaviors described above. In this
paper we introduced an alternative representation of strategy profiles in quit-
ting games, called absorption paths, which allows to describe both behav-
iors. Though it is not known whether all quitting games have ε-equilibria,
we showed that if an ε-equilibrium exists for every ε > 0, then there exists
a sequentially 0-perfect absorption path. This result shows that, the reason
for having games that possess ε-equilibria for every ε > 0 but no 0-equilibria,
is that the nature of discrete time does not allow players to completely hide
the stage in which they quit, thereby allowing other players to quit simulta-
neously with them (albeit with small probability) and make a low profit.

The space of absorption paths A is compact, and the function that assigns
to every absorption path its payoff path is continuous. It is not difficult to
show that A is contractible. We do not know whether these properties can
be used to prove the existence of an ε-equilibrium in some family of quitting
games.
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