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Abstract

We study quitting games and define the concept of absorption paths, which is
an alternative definition to strategy profiles that accommodates both discrete-
time aspects and continuous-time aspects, and is parametrized by the total
probability of absorption in past play rather than by time. We then define the
concept of sequentially 0-perfect absorption paths, which are shown to be limits
of ε-equilibrium strategy profiles as ε goes to 0. We establish that any quitting
game that does not have simple equilibria (that is, an equilibrium where the
game terminates in the first period or one where the game never terminates) has
a sequentially 0-perfect absorption path. We finally identify a class of quitting
games that possess sequentially 0-perfect absorption paths.
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1 Introduction

Stochastic games were introduced by Shapley (1953) as a dynamic model, where the
players’ behavior affects the evolution of the state variable. Whether every multiplayer
stochastic game admits an ε-equilibrium is one of the most difficult open problems
in game theory to date. Mertens and Neyman (1981) proved that the value exists
in two-player zero-sum games, Vieille (2000a, 2000b) proved that an ε-equilibrium
exists in two-player nonzero-sum games, Solan (1999) extended this result to three-
player absorbing games, and Flesch, Schoenmakers, and Vrieze (2008, 2009) proved
the existence of an ε-equilibrium when each player controls one component of the
state variable.

Solan and Vieille (2001) introduced a new class of stochastic games, called quitting
games, where each player has two actions, continue and quit, the game terminates
once at least one player chooses to quit, and the terminal payoff depends on the set of
players who choose to quit at the termination stage. Solan and Vieille (2001) proved
that if the payoff function satisfies a certain condition, then an ε-equilibrium exists.
Simon (2007, 2012) and Solan and Solan (2020) extended this result to other families
of payoff functions. Though the class of quitting games is simple – if the game has not
terminated by a given stage, then necessarily all players continued so far – the analysis
of these games is intricate, the mathematical tools used to study them are diverse, and
include dynamical systems, topological tools, and linear complementarity problems,
and the equilibria these games possess may be complex (see, Flesch, Thuijsman, and
Vrieze (1997), Solan (2003), and Solan and Vieille (2002)).

The main difficulty in studying ε-equilibria in stochastic games is that the undis-
counted payoff is not continuous over the space of strategies, hence one cannot apply
a fixed point theorem to prove the existence of an ε-equilibrium. In this paper we
provide a new representation for strategy profiles in quitting games, termed absorp-
tion paths (AP for short). This representation allows for both discrete-time aspects
and continuous-time aspects in the players’ behavior. Moreover, the undiscounted
payoff is continuous over the space of absorption paths. In fact, the space of absorp-
tion paths is a compactification of the space of absorbing strategy profiles, when such
profiles are properly represented.

The representation of strategy profiles via AP’s involves parametrizing time ac-
cording to the accumulated probability of absorption. Using a parametrization of time
to facilitate analysis of continuous-time models as the limit of discrete-time models
was done, e.g., by Vieille (1992) for studying weak approachability in repeated games
with vector payoffs and by Sorin and Vigeral (2020) for studying ε-optimal trajectories
in discounted zero-sum stochastic games.
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We define the concept of sequentially 0-perfect AP, denoted 0-AP, which is the
analogue of equilibrium in standard strategy profiles. We then show that when no
simple ε-equilibrium exists, limits of ε-equilibria in standard strategy profiles are 0-
AP’s, and that every 0-AP induces an ε-equilibrium in standard strategy profiles, for
every ε > 0. In particular, a quitting game admits an ε-equilibrium for every ε > 0
if and only if it admits a 0-AP.

This relation between ε-equilibrium in standard strategy profiles and 0-AP’s is
useful because an important research agenda is understanding ε-equilibrium in quit-
ting games, and 0-AP’s are much simpler to study than ε-equilibria: the sets of AP’s
and 0-AP’s are compact in the weak topology, the payoff function is continuous over
the set of AP’s, and 0-AP’s do not allow for profitable deviations. These properties
should be contrasted with the analogous properties for strategies and ε-equilibria:
the set of strategies is compact in the product topology, but in this topology the set
of ε-equilibria is not compact and the payoff function is not continuous. Moreover,
ε-equilibria allow for deviations where profit is low.

Finally, using Viability Theory we identify one class of quitting games where 0-
AP’s exist, thereby proving that this class admits an ε-equilibrium for every ε > 0.

The paper is organized as follows. The model of quitting games is presented in
Section 2, and the equilibrium concept that we study is presented in Section 3. AP’s
are presented in Section 4, and their application to prove existence of ε-equilibrium
in a certain class of quitting games is described in Section 5. Concluding remarks
appear in Section 6.

2 The Model

Definition 2.1 A quitting game is a pair Γ = (I, r), where I is a finite set of players
and r :

∏
i∈I{Ci, Qi} → RI is a payoff function.

Player i’s action set is Ai := {Ci, Qi}. These actions are interpreted as continue
and quit, respectively. Denote by A :=

∏
i∈I A

i the set of action profiles. The game is
played as follows. At every stage n ∈ N each player i ∈ I chooses an action ain ∈ Ai.
If all players continue, the play continues to the next stage; if at least one player
quits, the play terminates, and the terminal payoff is r(an), where an = (ain)i∈I . If no

player ever quits, the payoff is r(C⃗), where C⃗ := (Ci)i∈I .

We denote by A∗ := A \ {C⃗} the set of all action profiles in which at least one
player quits, by A∗

1 := {(Qi, C−i), i ∈ N} the set of all action profiles in which exactly
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one player quits, where C−i := (Cj)j ̸=i, and by A∗
≥2 := A∗ \ A1 the set of all action

profiles in which at least two players quit.
A mixed action profile is a vector ξ = (ξi)i∈I ∈ [0, 1]I , with the interpretation that

ξi is the probability with which player i quits. The probability of absorption under
the mixed action profile ξ is p(ξ) := 1−

∏
i∈I(1− ξi). Extend the absorbing payoff to

mixed action profiles that are absorbing with positive probability: for every ξ ∈ [0, 1]I

such that ξ ̸= 0⃗, define r(ξ) :=
∑

a∈A∗ ξ(a)r(a)

p(ξ)
, where

ξ(a) :=
( ∏

{i : ai=Qi}

ξi
)
·
( ∏

{i : ai=Ci}

(1− ξi)
)
, ∀a ∈ A. (1)

A (behavior) strategy of player i is a function xi = (xi
n)n∈N : N → [0, 1], with the

interpretation that xi
n is the probability that player i quits at stage n if the game did

not terminate before that stage. A strategy profile is a vector x = (xi)i∈I of strategies,
one for each player. A strategy profile x is stationary if xn = xn+1 for all n ∈ N; that
is, if the players play the same mixed actions repeatedly as long as the game has not
terminated.

Denote by θ := min{n ∈ N : an ∈ A∗} the stage of termination; θ = ∞ if all
players continue throughout the game. For every strategy profile x, the probability
distribution of the random variable (θ, aθ) is denoted Px. Denote by Ex the corre-
sponding expectation operator. A strategy profile x is absorbing if Px(θ < ∞) = 1.

The payoff under strategy profile x is

γ(x) := Ex

[
1{θ<∞}r(aθ) + 1{θ=∞}r(C⃗)

]
.

Let ε ≥ 0. A strategy profile x∗ is an ε-equilibrium if γi(x∗) ≥ γi(xi, x∗,−i) − ε for
every player i ∈ I and every strategy xi of player i.

It is easy to check that every two-player quitting game admits an ε-equilibrium,
for every ε > 0. Solan (1999) extended this result to three-player quitting games, see
also Flesch, Thuijsman, and Vrieze (1997). Whether every quitting game admits an
ε-equilibrium for every ε > 0 is an open problem.

3 Sequential ε-Perfectness

3.1 ε-Perfectness in Strategic-Form Games

Let G = (I, (Ai)i∈I , r) be a strategic-form game with set of players I, set of actions
Ai for each player i ∈ I, and payoff function r : A → RI , where A =

∏
i∈I A

i.
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In an ε-equilibrium, no player can profit more than ε by deviating. This does
not rule out the possibility that a player plays with small probability an action that
generates her a low payoff. This deficiency is taken care of by the following concept,
borrowed from Solan and Vieille (2001), which requires that a player does not play
with positive probability actions that generates her a low payoff.

Definition 3.1 Let G = (I, (Ai)i∈I , r) be a strategic-form game, let i ∈ I, and let
ξ ∈

∏
i∈I ∆(Ai) be a mixed action profile. Player i is ε-perfect at ξ in G if the

following conditions hold for every action ai ∈ Ai:

ri(ai, ξ−i) ≤ ri(ξ) + ε, (2)

ξi(ai) > 0 =⇒ ri(ai, ξ−i) ≥ ri(ξ)− ε. (3)

Eq. (2) means that player i cannot gain more than ε by unilaterally altering her
action; Eq. (3) requires that player i cannot lose more than ε, no matter which one
of the actions to which she assigns positive probability is played. Player i is 0-perfect
if ξi is a best response to ξ−i.

Standard continuity arguments yield that if player i is εk-perfect at a mixed action
profile ξk in the game Gk = (I, (Ai)i∈I , rk), if (ξk)k∈N converges to a limit ξ, if (εk)k∈N
converges to 0, and if r is a payoff function that satisfies ri = limk→∞ rik, then player i
is 0-perfect at ξ in G = (I, (Ai)i∈I , r).

3.2 Sequentially ε-Perfect Players in Quitting Games

In this section we extend the concept of ε-perfect players to quitting games. Consider
a quitting game Γ = (I, r). For every vector y ∈ RI let GΓ(y) be the one shot game
with set of players I, set of actions Ai = {Qi, Ci} for each player i ∈ I, and payoff
function rΓ defined by

rΓ(y; a) :=

{
r(a) a ̸= C⃗,

y a = C⃗.

The game GΓ(y) represents one stage of the game Γ, when the continuation payoff
is y. A strategy profile in GΓ(y) is a vector ξ ∈ [0, 1]I , with the interpretation that ξi

is the probability that player i chooses the action Qi, for each i ∈ I.
We now define the concept of sequential ε-perfectness in quitting games. For every

n ∈ N denote by γn(x) the expected payoff under x, conditional that the game did
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not terminate in the first n− 1 stages.1

γn(x) := Ex[1{θ<∞}r(aθ) + 1{θ=∞}r(C⃗) | θ ≥ n].

Definition 3.2 Let Γ be a quitting game and let i ∈ I be a player. Player i is
sequentially ε-perfect at the strategy profile x in Γ if for every n ∈ N, player i is
ε-perfect at the mixed action profile xn in the strategic-form game GΓ(γn+1(x)).

Player i is sequentially 0-perfect at the strategy profile x in Γ if xi is a best
response to x−i in every sub-game.

Remark 3.3 In the strategic-form game GΓ(γn+1(x)), when the other players play
x−i
n , the payoff of player i when she plays xi

n (resp. Qi, Ci) is γi
n(x) (resp. r

i(Qi, x−i),
(1 − p(Ci, x−i

n ))γn+1(x) + p(Ci, x−i
n )ri(Ci, x−i

n )). Therefore, if player i is ε-perfect at
xn in GΓ(γn+1(x)), then in particular ri(Qi, x−i

n ) ≤ γi
n(x)+ ε, and, if xi

n(Q
i) > 0 then

ri(Qi, x−i
n ) ≥ γi

n(x)− ε.

The following two results relate ε-equilibria to sequential ε-perfectness in quitting
games.

Theorem 3.4 (Simon, 2007, Theorem 3 + Solan and Vieille, 2001, Proposition 2.13)
A quitting game Γ admits an ε-equilibrium for every ε > 0, if and only if at least one
of the following statements holds.

(S.1) For every ε > 0 sufficiently small the game admits a stationary ε-equilibrium.

(S.2) For every ε > 0 sufficiently small the game admits an ε-equilibrium x that has
the following structure: there is a player i ∈ I who quits with probability 1 at
the first stage; from the second stage and on, all players punish player i with a
payoff ε-close to her min-max level.2

(S.3) For every ε > 0 sufficiently small there is an absorbing strategy profile x such
that all players i ∈ I are sequentially ε-perfect at x.

Theorem 3.5 (Solan and Vieille, 2001, Propositions 2.4 and 2.13) Let ε >
0 be sufficiently small. Every absorbing strategy profile x at which all players are
sequentially ε-perfect is an ε1/6-equilibrium.

1Since a strategy xi is a function from N to [0, 1], the conditional probability distribution Px(· |
θ ≥ n) is uniquely defined even when Px(θ < n) = 1.

2The min-max level of player i is vi := infx−i supxi γi(xi, x−i).
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4 An Alternative Representation of Strategy Pro-

files

A strategy profile x = (xn)n∈N is parameterized by time: xi
n is the probability that

player i quits at stage n if the game did not terminate before that stage. As is well
known, the space of strategies is compact in the product topology. There are two
issues with this topology:

� The payoff is not continuous in this topology. Indeed, if for every k ∈ N, x(k)
is the stationary strategy profile in which in every stage each player quits with
probability 1

k
, then the sequence (x(k))k∈N converges to the strategy profile x

under which all players always continue. While under the strategy profile x(k)
absorption occurs with probability 1 and limk→∞ γ(x(k)) = 1

|I|
∑

i∈I r(Q
i, C−i),

under the strategy profile x the game is never absorbed and γ(x) = r(C⃗).

� It may not be possible to generate the limit behavior of a sequence of strategy
profiles by a strategy profile. For example, when (x(k))k∈N are the strategy
profiles that are defined in the first bullet, we have limk→∞Px(k)[aθ = (Qi, C−i) |
θ = n] = 1

|I| for every n ∈ N and i ∈ I, yet there is no strategy profile x that

satisfies Px[aθ = (Qi, C−i) | θ = n] = 1
|I| for every n ∈ N. Indeed, under such a

strategy profile x = (xi)i∈I , for every n ∈ N we have xi
n > 0 for each i ∈ I, and

then
∑

i∈I Px[aθ = (Qi, C−i) | θ = n] < 1 as soon as |I| > 1.

In this section we will provide an alternative representation of strategy pro-
files, that takes care of these two issues by allowing both discrete-time behavior
and continuous-time behavior. The representation will be based on a change of
parametrization: instead of parameterizing the strategy profile according to time n,
we will parameterize it according to the probability of termination t. The parameter
t will run from 0 to 1, representing the total probability of absorption. In addition,
for each t ∈ [0, 1] and action profile a ∈ A∗ we will indicate the probability by which
the game is absorbed by the action profile a up to that moment in which the total
probability of absorption is t.

4.1 A Motivating Example

The following example motivates the representation of strategy profiles by parametriz-
ing time differently. For every η ≥ 0, consider the three-player quitting game Γη
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displayed in Figure 1.

Q1

C1

C2 Q2 C2 Q2
C3 Q3

0, 2,−1

−1,−1,−1

η,−1, 0

−1, 0, 2

−1, 0, η

2,−1, 0

−1,−1,−1

0, η,−1

Figure 1: The three-player game Γη.

The game Γ0 was studied in Flesch, Thuijsman, and Vrieze (1997), who charac-
terized the set of its 0-equilibria. They showed that the following periodic strategy
profile x∗ with period 3 is an equilibrium, and that all players are 0-perfect at x∗: at
stage 1 (resp. 2, 3) Player 1 (resp. 2, 3) quits with probability 1

2
, while the other two

players continue.
Solan (2003) studied the game Γη for η small, and showed that this game admits

no 0-equilibrium. For example, the strategy profile x∗ described in the previous
paragraph is not a 0-equilibrium when η > 0, because Player 3 is better off quitting
in stage 1 and obtaining 1

2
· 0 + 1

2
· η = η

2
, while her payoff under x∗ is 0.

Solan (1999) implies that every three-player quitting game, and in particular the
games Γη for η > 0, admit an ε-equilibrium for every ε > 0. In fact, the following
strategy profile xm, which depends on a positive integer m and is periodic with period
3m, is an ε-equilibrium of Γη, provided m is sufficiently large: at stages 1, 2, . . . ,m
(resp. m+ 1,m+ 2, . . . , 2m, resp. 2m+ 1, 2m+ 2, . . . , 3m) Player 1 (resp. 2, 3) quits
with probability ρ, where (1− ρ)m = 1

2
, while the other two players continue.

The limit of the sequence (xm)m∈N as m goes to infinity is the strategy profile
under which all players continue in all stages, which is not an ε-equilibrium of Γη,
provided ε < 1. Another natural limit of the sequence (xm)m∈N is a strategy profile in
continuous time: First Player 1 quits in continuous time, until the total probability
that she quits is 1

2
, then it’s the turn of Player 2 to quit continuously until she has

quitted with probability 1
2
, then Player 3 does the same, and, if the play has not

terminated (which happens with probability 1
8
), the players repeat this behavior.

This example motivates a definition of strategy profiles that include both discrete-
time aspects and continuous-time aspects, which we provide in the next section.
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4.2 Absorption Paths - Definition

For clarity of exposition, before providing a general definition of our new concept,
absorption paths, we define absorption paths that originate from absorbing strategy
profiles.

Definition 4.1 For every absorbing strategy profile x and every n ∈ N denote tn :=
Px(θ < n). The absorption path (AP for short) defined by x is the function πx :
[0, 1]×A∗ → [0, 1] given by πx

t (a) := Px (θ ≤ n, aθ = a) for every a ∈ A∗, n ∈ N, and
t ∈ [tn, tn+1), and is continuous from the left at t = 1.

Remark 4.2 1. While a strategy profile is a vector of strategies, each describing
the behavior of an individual player, an AP highlights information about the ab-
sorbing entries that are played along the game. For example, it clearly indicates
through which action profiles the play is more probable to be absorbed early in
the game, and which later on. In particular, AP’s cannot be defined for each
player separately, but only for strategy profiles.

2. The function x 7→ πx that is defined in Definition 4.1 is not one-to-one. Indeed,
fix an absorbing strategy profile x and let x′ be the strategy profile in which all
players continue in the first stage, and from the second stage on they follow x :

x′i
n =

{
Ci, if n = 1,
xi
n−1, if n > 1.

Then πx′
= πx. In fact, given an absorbing strategy profile x, the addition or

elimination of stages in which all players continue is the only way to create an
absorbing strategy profile x′ such that πx = πx′

.

3. For simplicity we defined AP’s for absorbing strategy profiles. The definition can
be adapted to strategy profiles x for which Px(θ < ∞) := t∞ ∈ [0, 1). Indeed, in
this case, π can be defined on [0, t∞)×A∗, and later, when we define the payoff
function associated to an absorption path, this function will take into account
that, after t∞, the player get r(C⃗).

For each strategy profile x, the AP πx is càdlàg. For all càdlàg maps π : [0, 1] ×
A∗ → [0, 1] and every a ∈ A∗, set π0−(a) := 0 and πt−(a) := lims↗t πs(a) for t ∈ (0, 1].
Set also π̂t :=

∑
a∈A∗ πt(a), ∆πt := πt − πt− and ∆π̂t := π̂t − π̂t− for every t ∈ [0, 1].

The AP defined by x satisfies the following properties. (1) For t ∈ [tn, tn+1), π̂
x
t is

the probability that the game is absorbed before or at period n, that is, π̂x
t = Px(θ ≤
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n) = tn+1, and so π̂x
t ≥ t for all t ∈ [0, 1). (2) It follows that, on the interval (tn, tn+1),

π̂x
t is constant and equals Px(θ ≤ n). (3) The ratio

∆πx
tn

1−tn
equals the probability that

the game terminates at period n by action profile a, and is therefore equal to xn(a).
As we have seen in Section 4.1, the set of AP’s defined by absorbing strategy

profiles is not closed in the weak topology of càdlàg paths. The new concept of the
paper, absorption paths, are the elements in the closure of this set of AP’s.

Let F be the set of càdlàg paths π = (πt(a), a ∈ A∗)t∈[0,1] with values in [0, 1]A
∗
,

such that, for all a ∈ A∗, t 7→ πt(a) is nondecreasing. We endow F with the weak
topology: a sequence (πk)k∈N converges to π if

∫
[0,1]

f(t)dπk
t (a) →

∫
[0,1]

f(t)dπt(a), for

every continuous map f : [0, 1] → R and every a ∈ A∗. In such a case we write
πk ⇒ π. Recall that πk ⇒ π if and only if πk

t → πt for every t ∈ [0, 1] at which π is
continuous. The set F is sequentially compact in the weak topology.

For each π ∈ F define

T (π) := {t ∈ [0, 1], π̂t = t},
S(π) := {t ∈ [0, 1],∆πt ̸= 0}.

S(π) is the set of jumps of π, that is, the play is in discrete time, and as we will see,
T (π) is the set of t’s in which the play is in continuous time.

Finally we introduce the right-hand side derivative of t 7→ πt : for every t ∈ [0, 1)
set π̇t := lim infs↘t

πs−πt

s−t
. By Lebesgue’s Theorem for the differentiability of monotone

functions, for every π ∈ F the liminf is in fact a limit almost everywhere in [0, 1).

Definition 4.3 An element π of F is an absorption path (AP) if

(A.1) for every t ∈ [0, 1], we have π̂t ≥ t,

(A.2) on each connected component (t1, t2) of [0, 1] \ (S(π)∪ T (π)), π̂ is constant and
equals t2,

(A.3) for every t ∈ S(π), there exists ξt = (ξit)i∈N ∈ [0, 1]I such that

∆πt(a)

1− t
= ξt(a), ∀a ∈ A∗. (4)

(A.4) For every t ∈ T (π) \ {1} we have π̇t(a) = 0 for every a ∈ A∗
≥2.

The set of absorption paths is denoted by A.

Remarks 4.4 Let π ∈ A be an AP.
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1. For every t ∈ S(π) ∪ T (π), the quantity πt(a) should be thought of as the un-
conditional probability that the play is absorbed by the action profile a, until the
moment in which the total probability of absorption is t.

2. Elements t ∈ S(π) correspond to play in discrete time, and for such t, ξt is
the mixed action profile the players play at t, and t is the total probability of
absorption up to t. This explains (A.3).

3. Elements t ∈ T (π) \ {1} correspond to play in continuous time. In intervals
(t1, t2) ∈ T (π), the time at which a player quits is a continuous random variable.
Therefore, players cannot quit simultaneously with a positive probability. This
explains (A.4).

4. If (t, t′) is a connected component of [0, 1] \ (S(π) ∪ T (π)), then t ∈ S(π) and
t′ = t+ (1− t)p(ξt), where ξt is defined in Eq. (4). This interval corresponds to
the increase in probability due to play in discrete time.

5. Since, for all a ∈ A∗, s 7→ πs(a) is nondecreasing, π is continuous at t if and
only if π̂ is continuous at t, for every t ∈ [0, 1]. It follows from (A.2) that on
each connected component of [0, 1] \ (S(π) ∪ T (π)) the process π is constant.

6. Let t ∈ S(π). Since π is càdlàg and nondecreasing, we get from (A.1) that
π̂t > t, and from (A.2) that π̂s = π̂t for every s ∈ [t, π̂t). In particular π̂π̂t− = π̂t.

7. For every t ∈ [0, 1], both π̂t− and π̂t belong to T (π) ∪ S(π).

8. From (A.2) and Remark 4.4(7), we deduce that [0, 1) is partitioned to a countable
number of intervals U = [t1, t2), with, either U ⊂ T (π), or t1 ∈ S(π) and t2 =
π̂t1. On each of these intervals, π is continuous, with π̂t = t if t ∈ U ⊂ T (π),
and π̂t = t2 otherwise.

9. The function π is continuous at t = 1: indeed, since, for all t ∈ [0, 1], t ≤ π̂t ≤ 1,
we have π̂1 = limt↗1 π̂t = 1.

10. For every a ∈ A∗
≥2, the function t 7→ πt(a) is piecewise constant.

11. The reader may wonder why we defined π̇ with liminf and not with limsup.
This choice is crucial to ensure that the set of AP’s is sequentially compact.
Indeed, we show in Proposition 4.11 below that, if some function π is the limit
of a sequence of AP’s, then lim infs↗t

πs(a)−πt(a)
s−t

= 0 for every t ∈ T (π) and
a ∈ A∗

≥2. This result does not hold when changing liminf into limsup in the
definition of π̇.
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Example 4.5 Consider the limit behavior in continuous time that is described in
Section 4.1: each one of the three player, one after the other, quits in continuous
time, until the total probability that she quits is 1

2
, the players repeat this behavior.

The AP that corresponds to this behavior is displayed in Figure 2. Player 1 quits
first with total probability 1

2
, and therefore π(Q1, C2, C3) increases linearly from 0

at t = 0 to 1
2
at t = 1

2
. Player 2 quits afterwards with total probability 1

2
, hence the

probability that the play terminates until Player 2 is done with quitting is 3
4
. Therefore,

π(C1, Q2, C3) increases linearly from 0 at t = 1
2
to 1

4
at t = 3

4
. Since Player 3 quits

after Player 2 with total probability 1
2
, the probability that the play terminates until

Player 3 is done with quitting is 7
8
. It follows that, π(C1, C2, Q3) increases linearly

from 0 at t = 3
4
to 1

8
at t = 7

8
. Afterwards, Player 1 again quits in continuous time

with total probability 1
2
, hence the probability that the play terminates when Player 1

is done with the next round of termination is 15
16
. As a result, π(Q1, C2, C3) increases

linearly from 1
2
at t = 7

8
to 9

16
at t = 15

16
, and so on.

1
2

9
16

1
4

1
8

115
16

7
8

3
4

1
2

π(Q1, C2, C3)

π(C1, Q2, C3)

π(C1, C2, Q3)

Figure 2: The AP in Example 4.5.

Example 4.6 Figure 3 displays a more generic AP π for the case |I| = 2. This AP
corresponds to the following behavior: first the players play the mixed action profile
ξ0 = (1

3
, 1
4
) (that is, Player 1 (resp. Player 2) quits with probability 1

3
(resp. 1

4
)), then

they play the mixed action profile ξ1/2 = (1
2
, 0), and then they quit in continuous time

until the game terminates, with Player 1 quitting at a double rate than Player 2.
Indeed, S(π) = {0, 1

2
} and T (π) = [3

4
, 1], hence the players play twice in discrete

time (at t = 0, 1
2
) and then in continuous time (at t ∈ [3

4
, 1]).

To find ξ0 = (ξ10 , ξ
2
0), we recall that it is the unique mixed action profile that

satisfies 3
12

= ∆π0(Q
1, C2) = ξ10(1 − ξ20),

2
12

= ∆π0(C
1, Q2) = (1 − ξ10)ξ

2
0, and

1
12

=
∆π0(Q

1, Q2) = ξ10ξ
2
0, hence it is ξ10 = 1

3
and ξ20 = 1

4
.
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Similarly, ξ1/2 = (ξ11/2, ξ
2
1/2) is the unique mixed action profile that satisfies 1

2
=

3
12
/1
2
= ∆π1/2(Q

1, C2) = ξ11/2(1 − ξ21/2), 0 = ∆π1/2(C
1, Q2) = (1 − ξ11/2)ξ

2
1/2, and

0 = ∆π1/2(Q
1, Q2) = ξ11/2ξ

2
1/2, hence it is ξ11/2 =

1
2
and ξ21/2 = 0.

In the interval [3/4, 1] the slope of πt(Q
1, C2) is twice the slope of πt(C

1, Q2),
reflecting the rates at which the players quit in the last phase of the game.

8
12

6
12

3
12
2
12
1
12

13
4

1
2

πt(Q
1, C2)

πt(Q
1, C2)

πt(C
1, Q2)

πt(Q
1, Q2)

t

Figure 3: The AP in Example 4.6.

Remark 4.7 By Remark 4.4(3), in intervals that belong to T (π), π(a) increases
only for a ∈ A∗

1. Moreover, in those intervals
∑

i∈I π̇t(Q
i, C−i) = 1, and as seen in

Example 4.6, π̇t(Q
i, C−i) is equal to the ratio between the rate at which player i quits

at t and the sum of rates at which all players quit at t.

The following result states that the set of all πx, where x ranges over all absorbing
strategy profiles, is sequentially dense in the set of AP’s. Thus, the set of AP’s is a
compactification of the set of absorbing strategy profiles.

Proposition 4.8 For every AP π there is a sequence of absorbing strategy profiles
(xk)k∈N such that πxk ⇒ π.

To prove Proposition 4.8 we need the following technical lemma, which states that
a correlated action profile that (a) absorbs with low probability and (b) provided
absorption occurs, absorbs mainly by single quittings, can be well approximated by
an (independent) mixed action profile.

Lemma 4.9 Let ε ∈ (0, 1
2
] be sufficiently small, and let y ∈ ∆(A) be a distribution

that satisfies p(y) := 1 − y(C⃗) ≤ ε and y(a) ≤ εy(Qi, C−i) for each i ∈ I and every

13



a ∈ A∗
≥2 such that ai = Qi. Then there exists a mixed action profile ξ ∈ [0, 1]I such

that p(ξ) = p(y) and

|ξ(a)− y(a)| < 2|I| · εp(y), ∀a ∈ A∗, (5)

where ξ(a) is defined in Eq. (1).

Proof. If yi(Qi, C−i) = 0 for some i ∈ I, then the assumptions imply that
y(a) = 0 for every a such that ai = Qi. In such a case we set ξi = 0, and then
Eq. (5) holds for every a such that ai = Qi. We therefore assume from now on that
yi(Qi, C−i) > 0 for each i ∈ I. Denote δ := mini∈I y

i(Qi, C−i) ∈ (0, ε].
To construct a mixed action profile ξ that satisfies the conditions we will construct

a vector field φ over the set Ξ := [0, 1]I , prove that it has at least one zero, and prove
that all its zeros satisfy the conditions in the lemma. It will be useful to require in

addition that for every zero ξ of the vector field the ratio ξ(Qi,C−i)
y(Qi,C−i)

is the same for all
i ∈ I.
Step 1: Definition of a vector field φ over Ξ.

For every ξ ∈ Ξ and every i ∈ I define

φi
0(ξ) :=

2

δ

(
p(y)− p(ξ)

)
+

(
1

|I|
∑
j∈I

ξ(Qj, C−j)

y(Qj, C−j)
− ξ(Qi, C−i)

y(Qi, C−i)

)
.

As we will see, at every zero ξ of the vector field that is yet to be defined, both
summands in the definition of φ0 will vanish, hence the properties we need will hold.
The coefficient 2

δ
of the first summand ensures that the contribution of the first term

is larger than that of the second term, so that φi
0(ξ) < 0 whenever ξi = 1. Define

φi(ξ) := 1{φi
0(ξ)≥0} · φi

0(ξ) + 1{φi
0(ξ)<0} · ξi · φi

0(ξ).

As we will see in Step 2, the multiplication by ξi on {φi
0(ξ) < 0} ensures that φi(ξ) ≥ 0

whenever ξi = 0.
Step 2: The vector field has a zero in Ξ.

By Brouwer’s fixed point theorem, since Ξ is convex and compact, to prove that
the vector field has a zero in Ξ it is sufficient to establish three properties: (a) φ is
continuous, (b) φi(ξ) ≤ 0 whenever ξi = 1, and (c) φi(ξ) ≥ 0 whenever ξi = 0.

Property (a) follows from the definition of φ. We turn to prove Property (b). If

ξi = 1 then p(ξ) = 1. Since for every j ∈ I and every ξ ∈ Ξ we have ξ(Qj ,C−j)
y(Qj ,C−j)

∈ [0, 1
δ
],

and since ε < 1
2
, we have in this case

φi
0(ξ) ≤

2

δ
(ε− 1) +

1

δ
≤ 0.

14



Property (c) holds since on {φi
0(ξ) < 0} ∩ {ξi = 0} we have φi(ξ) = 0.

Step 3: For every zero ξ of φ we have (i) p(y) = p(ξ) and (ii) ξ(Qi,C−i)
y(Qi,C−i)

is the same
for all i ∈ I.

Suppose that φ(ξ) = 0⃗. We will distinguish between three cases: p(y) = p(ξ),
p(y) > p(ξ), or p(y) < p(ξ).

Suppose first that p(y) = p(ξ). It follows that ξj > 0 for at least one j ∈ I. If
ξi = 0 for some i ∈ I, then φi

0(ξ) > 0 and hence φi(ξ) > 0, a contradiction. Hence
ξi > 0 for every i ∈ I. But then the second summand in the definition of φi

0(ξ) is 0

for all i ∈ I, which implies that ξ(Qi,C−i)
y(Qi,C−i)

is indepdnent of i.

Suppose now that p(y) > p(ξ). Then the first summand in the definition of φi
0(ξ)

is positive for all i ∈ I. This implies that the second summand must be negative for
all i ∈ I. But the sum of the second summand over all i ∈ I is 0, a contradiction.

Last of all, suppose that p(y) < p(ξ). In particular, p(ξ) > 0, and hence there is

i ∈ I such that ξi > 0. Let i ∈ I be an index such that ξ(Qi,C−i)
y(Qi,C−i)

is maximal (and

in particular positive). For this i, the second summand in the definition of φi
0(ξ) is

negative, but then φi(ξ) < 0, a contradiction.

We note that since ξ(Qi,C−i)
y(Qi,C−i)

is the same for all i ∈ I, so is the sign of ξ(Qi, C−i)−
y(Qi, C−i).
Step 4: Every zero ξ of φ satisfies Eq. (5).

For each a ∈ A∗
≥2 we have

ξ(a) =
( ∏

{i : ai=Qi}

ξi
)
·
( ∏

{i : ai=Ci}

(1− ξi)
)
≤

∏
{i : ai=Qi}

ξi ≤ (p(ξ))2 ≤ εp(y),

where the penultimate inequality holds since #{i : ai = Qi} ≥ 2. For each such a we
also have y(a) ≤ εy(Qi, C−i) ≤ εp(y), where i is any index such that ai = Qi. Hence,
Eq. (5) holds for a ∈ A∗

≥2.
To show that Eq. (5) holds for a ∈ A∗

1, note that∣∣∣ ∑
a∈A∗

1

ξ(a)−
∑
a∈A∗

1

y(a)
∣∣∣ =

∣∣∣ ∑
a∈A∗

ξ(a)−
∑
a∈A∗

y(a)−
∑

a∈A∗
≥2

ξ(a) +
∑

a∈A∗
≥2

y(a)
∣∣∣

=
∣∣∣ ∑
a∈A∗

≥2

ξ(a)−
∑

a∈A∗
≥2

y(a)
∣∣∣ < 2|I|εp(y).

Since the sign of ξ(Qi, C−i)− y(Qi, C−i) is independent of i, this implies that Eq. (5)
holds for every a ∈ A∗

1 as well.
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Proof of Proposition 4.8. The idea of the proof is to discretize [0, 1]; that
is, for every k ∈ N, we define a countable set Sk = (skn)n∈N ⊂ [0, 1] and a strategy
profile xk in such a way that xk

n approximates the behavior under π between the n’th
and (n + 1)’st point of Sk. The set Sk contains (a) the points t in S(π) with high
jumps: ∆π̂t ≥ 1−t

k
, and (b) covers [0, 1] minus the corresponding intervals [t, π̂t) with

well chosen points skn such that skn+1 ≤ 1
k
(1 − skn), i.e., the conditional probability of

absorption in [skn, s
k
n+1) is less than 1

k
. If skn satisfies the condition in (a), we take

xk
n = ξskn ; otherwise, we use Lemma 4.9 to approximate the behavior of π in the

interval (skn, s
k
n+1).

We turn to the formal construction. Fix an AP π ∈ A and k ≥ 2. Let

Sk
0 := {t ∈ S(π) : π̂t − t ≥ 1−t

k
} = {t ∈ S(π) : p(ξt) ≥ 1

k
}.

Define the set Sk = (skn)n∈N ⊂ [0, 1] as follows:

� sk1 := 0.

� For n ∈ N, define inductively skn+1 := sup
((

(S(π) ∪ T (π)) ∩ [0, skn +
1−skn
k

]
)
∪ {π̂skn

}
)
.

In words, if skn ∈ Sk
0 then skn+1 = π̂skn

, and if skn ̸∈ Sk
0 , then skn+1 is the maximal

point in S(π) ∪ T (π) smaller than skn +
1−skn
k

.

For every n ∈ N define a correlated action profile ykn ∈ ∆(A) by

ykn(a) :=


π
skn+1−

(Qi,C−i)−π
skn−(Qi,C−i)

1−skn
, a ∈ A∗,

1−
∑

a′ ̸=C⃗ y(a′) =
1−skn+1

1−skn
, a = C⃗.

We argue that y(a) ≤ 1
k
y(Qi, C−i) for every i ∈ I and every a ∈ A∗

≥2 such that
ai = Qi. Indeed, this inequality holds since for every t ∈ [skn, s

k
n+1), if t ∈ S(π) then

ξit ≤ 1
k
for each i ∈ I, while if t ∈ T (π) than π̇t(a) = 0 for each such action profile

a. We can then apply Lemma 4.9 to ykn, and obtain a mixed action profile ξ̂kn that

satisfies (i) p(ξ̂kn) = p(ykn) =
skn+1−snk
1−skn

and (ii) Eq. (5).

Define a strategy profile xk as follows:

(D.1) If skn ∈ Sk
0 , set x

k
n := ξskn .

(D.2) If skn ̸∈ Sk
0 , set x

k
n := ξ̂kn.
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The convergence πxk ⇒ π will follow as soon as we show that

∥πxk

skn− − πskn−∥∞ ≤ skn · 2|I|/k, ∀k ∈ N,∀n ∈ N. (6)

For every fixed k ∈ N we prove this inequality by induction over n. For n = 1 Eq. (6)
trivially holds, because sk1 = 0, hence both sides of Eq. (6) vanish.

We shall suppose that the relation is true for some n ∈ N and prove that it holds
for n+ 1. (D.1) and (i) ensure that π̂xk

skn+1−
− π̂xk

skn−
= π̂skn+1− − π̂skn− : for every n ∈ N,

the probability of absorption at stage n under the AP πxk
, is the same as under the

original AP π in [skn, s
k
n+1). This implies that π̂xk

skn−
= π̂skn− for every n ∈ N.

If skn ∈ Sk
0 , then (D.1) implies that skn+1 = π̂snk− and πxk

skn+1−
(a) − πxk

skn−
(a) =

πskn+1−(a)− πskn−(a) for every a ∈ A∗, and therefore Eq. (6) holds for n+ 1.

Suppose now that skn ̸∈ Sk
0 . By (i) and (ii),

|πxk

skn+1−
(a)− πskn+1−(a)| ≤ skn · 2|I|/k + (1− skn) ·

skn+1 − skn
1− skn

· 2|I|/k

= skn+1 · 2|I|/k,
as desired.

Remark 4.10 The behavior “Player 1 quits with probability 1, and all other players
continue throughout the game” may be translated in many ways to AP’s. Here are
some examples:

� Player 1 quits with probability 1 in the first stage of the game. In this case, we
have T (π) = {1} and S(π) = {0} (Figure 4(a)).

� Player 1 quits with probability 1
2
in each stage. In this case, we have T (π) = {1}

and S = {0, 1
2
, 3
4
, 7
8
, · · · } (Figure 4(b)).

� Player 1 “quits continuously”. Here S(π) = ∅, T (π) = [0, 1], and πt(Q
1, C−1) =

t, for every t ∈ [0, 1] (Figure 4(c)).

� And we may have combinations of the above (Figure 4(d)).

1

1
(a)

1

1
(b)

1

1
(c)

1

1
(d)

Figure 4: Four possibilities for the function πt(Q
1, C−1) in Remark 4.10.
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Proposition 4.11 The set A of AP’s is sequentially compact: for every sequence
(πk)k∈N of AP’s there exists π ∈ A and a subsequence, still denoted (πk)k∈N, which
converges weakly to π. Moreover, this subsequence can be chosen in such a way that
for every t ∈ S(π), there are two sequences (tk)k∈N ⊂ [0, 1] and (ξk)k∈N ⊂ [0, 1]I such
that for every k ∈ N we have tk ∈ S(πk) and Eq. (4) holds for πk and ξk at tk, and
such that limk→∞ tk = t, limk→∞ πk

tk
= πt, and limk→∞ ξk = ξt. Furthermore the limit

ξt satisfies Eq. (4) for π.

As described in Section 4.1, even when all AP’s (πk)k∈N are defined by strategy
profiles, the limit AP need not be defined by a strategy profile. Furthermore, in this
case, the sequence of AP’s that was constructed in the proof of Proposition 4.8 and
converges to π does not need to coincide with the original sequence (πk)k∈N.

Proof. Let (πk)k∈N be a sequence of AP’s. Since F is sequentially compact, there
exists a subsequence, still denoted (πk)k∈N, and π ∈ F, such that πk ⇒ π. We have
to show that π ∈ A.

Since πk
t → πt for a.e. t ∈ [0, 1], it follows that π̂k

t → π̂t for a.e. t ∈ [0, 1]. Together
with the weak monotonicity of t 7→ π̂ this implies that π̂t ≥ t for all t ∈ [0, 1].

To show that (A.2) holds for π, let U be a connected component of [0, 1]\ (T (π)∪
S(π)). Fix t ∈ U . Since π is continuous at t, we have πt = limk→∞ πk

t . Since π̂t > t,
for every ε ∈ (0, π̂t − t), there exists k0 ∈ N such that for every k ≥ k0 we have
π̂k
t > π̂t − ε > t. Since πk belong to A, it is constant on [t, π̂t − ε). It follows that π

is also constant on [t, π̂t − ε). Since this is true for every ε > 0 sufficiently small, π is
constant on [t, π̂t), and is equal to πt.

We turn to prove that (A.3) holds for π. Fix t ∈ S(π). There exists a subse-
quence of (πk)k∈N, still denoted (πk)k∈N, and a sequence (sk)k∈N ⊂ [0, 1] such that
limk→∞ sk = t and limk→∞ πk

sk
= πt. For each k, set tk := min{s ≤ sk, π

k
s = πk

sk
},

where the infimum is attained because of the right continuity of πk. Since t ∈ S(π)
we have π̂t > t, hence π̂k

tk
> tk for every k sufficiently large. By the definition of tk

and (A.2), it follows that tk ∈ S(πk).
We argue that limk→∞ tk = t. Let t̃ be an accumulation point of (tk)k∈N. Since

tk ≤ sk → t, we have t̃ ≤ t. If t̃ < t, consider s ∈ [t̃, t) such that πk
s → πs. Then, for

every ε > 0 and every k large enough, we have

π̂t − ε ≤ π̂k
sk

= π̂k
tk
≤ π̂s + ε ≤ π̂t− + ε,

which is impossible for ε < (π̂t − π̂t−)/2.
Since limk→∞ tk = t, every accumulation point of (πk

tk−)k∈N belongs to the set
{πt−, πt}, and, since limk→∞ π̂k

tk− = limk→∞ sk = t < π̂t (originally, it is (sk) which

18



converges to t), it follows that limk→∞ πk
tk− = πt−, which implies that limk→∞∆πk

tk
=

∆πt.
For each k ∈ N, since tk ∈ S(πk), there exists ξk ∈ [0, 1]I such that

∆πk
tk
(a) = (1− tk)

 ∏
{i : ai=Qi}

ξk,i

 ∏
{i : ai=Ci}

(1− ξk,i)

 , a ∈ A∗. (7)

We can find a subsequence of (tk)k∈N and ξ ∈ [0, 1]I , such that limk→∞ ξk,i = ξi for
all i ∈ I. Taking the limit as k → ∞ in Eq. (7) we get

∆πt(a) = (1− t)

 ∏
{i : ai=Qi}

ξi

 ∏
{i : ai=Ci}

(1− ξi)

 , a ∈ A∗.

This proves that (A.3) holds, as well as the existence of the sequences (tk)k∈N and
(ξk)k∈N for every t ∈ S(π) as described in the statement of the proposition.

We finally prove that (A.4) holds as well. Fix t ∈ T (π) \ {1}, so that π̂t = t.
We have to show that π̇t(a) = 0 for every a ∈ A∗

≥2. Since t ∈ T (π), there is a
nonincreasing sequence (tk)k∈N that converges to t such that π̂tk− = tk for every k.
For the same reason, for every ε > 0 there is k0 ∈ N and δ > 0 such that for every
k ≥ k0 and every t′ ∈ [tk, tk + δ) ∩ S(πk) we have p(ξkt′) < ε. Indeed, otherwise
there is ε > 0 such that for every k0 ∈ N and every δ > 0 there is k ≥ k0 and
t′ ∈ [tk, tk + δ) ∩ S(πk) for which p(ξkt′) ≥ ε. But then, letting k0 go to infinity and δ
go to 0, we deduce that t ∈ S(π) and p(ξt) ≥ ε, a contradiction.

For every mixed action profile ξ that satisfies p(ξ) < ε, we have ξi < ε for every
i, and therefore

ξ(a) =

 ∏
{i : ai=Qi}

ξi

 ·

 ∏
{i : ai=Ci}

(1− ξi)

 ≤ ε

1− ε
p(ξ), ∀a ∈ A∗

≥2.

We deduce that for every ε > 0 there is k0 ∈ N and δ > 0 such that for every
k ≥ k0 and every t′ ∈ (tk, tk+δ)∩S(πk), we have ξt′(a) ≤ ε

1−ε
p(ξt′) for every a ∈ A∗

≥2.

This implies that for every t′ ∈ (tk, tk + δ) ∩ (T (πk) ∪ S(πk)),

πk
t′−(a)− πk

tk−(a) ≤ (t′ − tk)
ε

1− ε
, ∀a ∈ A∗

≥2,∀t′ ∈ (tk, tk + δ) ∩ (T (πk) ∪ S(πk)).

Since this inequality holds for every ε > 0, we deduce that π̇t(a) = 0 for every a ∈ A∗
≥2.
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4.3 The Payoff Path

Let π be an AP. For every 0 ≤ t < 1 and every a ∈ A∗, the difference π1(a) − πt(a)
is the probability of absorption by the action profile a in the interval (t, 1]. Since the
total probability of absorption in [t, 1] is 1− π̂t, the expected payoff after absorption
probability t is given by

γt(π) :=

{ ∑
a∈A∗ (π1(a)−πt(a))r(a)

1−π̂t
, if π̂t < 1,

0⃗, if π̂t = 1.
(8)

We call the function γ(π) : [0, 1] → RI the payoff path.

Remarks 4.12 1. Payoff paths take their values in [−M,M ]I , where M = ∥r(a)∥∞.

2. The quantity γ0−(π) =
∑

a∈A∗ π1(a)r(a) is the expected payoff under π in the
game. The definition of γt(π) when π̂t = 1 is irrelevant, because in this case the
game is already over at t.

3. For every absorbing strategy profile x, we have

γtn−(π
x) = γn(x), ∀n ∈ N,

where πx is the AP defined by x and tn = Px(θ < n). This equality reflects the
equivalence between each strategy profile x and the AP πx.

4. When T (π) = [0, 1], the expression for the payoff path simplifies to

γt(π) =

∑
i∈I (π1(Q

i, C−i)− πt(Q
i, C−i)) r(Qi, C−i)

1− t
, ∀t ∈ [0, 1). (9)

We then have for every 0 ≤ s < t < 1,

(1− t)γt = (1− s)γs +
∑
i∈I

(
πs(Q

i, C−i)− πt(Q
i, C−i)

)
r(Qi, C−i).

Hence, the function t 7→ γt is a solution of the differential equation

(1− t)γ̇t = γt −
∑
i∈I

π̇t(Q
i, C−i)r(Qi, C−i), t ∈ [0, 1). (10)

5. Let (πk)k∈N be a sequence of AP’s that converges to a limit π. Then,

γt(π) = lim
k→∞

γt(π
k),

for every t ∈ [0, 1) where π is continuous.
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We now adapt the definition of sequential ε-perfectness to AP’s.

Definition 4.13 Let ε ≥ 0. Player i is sequentially ε-perfect at the AP π if the
following conditions hold:

(SP.1) For every t ∈ S(π) such that π̂t < 1, player i is ε-perfect at the mixed action
profile ξt in the strategic-form game GΓ(γt(π)), where ξt satisfies Eq. (4).

(SP.2) For every t ∈ T (π) \ {1},

(a) γi
t(π) ≥ ri(Qi, C−i)− ε, and

(b) if π̇t(Q
i, C−i) > 0, then γi

t(π) ≤ ri(Qi, C−i) + ε.

An AP π is sequentially ε-perfect, denoted ε-AP, if all players are sequentially ε-
perfect at π.

In words, an AP is sequentially 0-perfect (resp. sequentially ε-perfect) if (i) when-
ever the players play in discrete time (t ∈ S(π)), the mixed action that they play is a
Nash equilibrium (resp. ε-perfect) in the one-shot game induced by the continuation
payoff, and (ii) whenever the players play in continuous time (t ∈ T (π)), every player
who quits with a positive rate is indifferent (resp. indifferent up to ε) between con-
tinuing and quitting, and no player who quits with rate 0 can profit (resp. can profit
more than ε) by quitting.

It follows from Definition 4.1 that player i is sequentially ε-perfect at an absorbing
strategy profile x if and only if she is sequentially ε-perfect at the AP πx.

We shall see now that standard continuity arguments imply that a limit of se-
quentially ε-perfect AP’s as ε goes to 0 is a 0-AP.

Proposition 4.14 Let (πk)k∈N be a sequence of AP’s that converges to a limit π,
let (εk)k∈N be a sequence of non-negative reals that converges to 0, and let i ∈ I.
If for every k ∈ N player i is sequentially εk-perfect at the AP πk, then player i is
sequentially 0-perfect at the AP π.

Proof. Fix t ∈ S(π). We prove that in this case (SP.1) holds with ε = 0. Since
πk ⇒ π, following Proposition 4.11 we can find a sequence (tk)k∈N, with tk ∈ S(πk)
for all k ∈ N, that converges to t, limk→∞ πk

tk
= πt and ξt = limk→∞ ξk, where ξk

satisfies Eq. (4) at tk for πk, for all k ∈ N. Since πk
tk

converges to πt, we have also
γtk(π

k) → γt(π).
By definition, if player i is sequentially εk-perfect at πk, then she is εk-perfect at
the mixed action profile ξk in the strategic-form game GΓ(γtk(π

k)). As discussed
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in Section 3.1, it follows that player i is 0-perfect at ξt in the strategic-form game
GΓ(γt(π)), i.e., (SP.1) holds with ε = 0.

Now let t ∈ T (π) \ {1}. We will prove that (SP.2.a) holds with ε = 0. Let (tk)k∈N
be a nonincreasing sequence of times converging to t, such that πk

tk− → πt. Since
t ∈ T (π), we can choose a subsequence of (tk)k∈N, still denoted (tk)k∈N, such that
π̂tk− = tk for every k. This implies that γt(π) = limk→∞ γtk(π

k).
Following Remark 4.4(7), this implies that, for each k ∈ N there are only two possi-
bilities: either tk ∈ T (πk) or tk ∈ S(πk).

Suppose first that tk ∈ T (πk) for every k ∈ N large enough. Then (SP.2.a), applied
to πk, yields

γi
tk
(πk) ≥ ri(Qi, C−i)− εk,

and, letting k go to +∞, we obtain that (SP.2.a) with ε = 0 holds for π at t.
Next let us suppose the existence of a subsequence of (πk)k∈N such that tk ∈ S(πk)

for every k ∈ N. By assumption we have

ri(Qi, ξk,−i) ≤ γi
tk
(πk) + εk. (11)

Since t ∈ T (π) \ {1}, necessarily limk→∞ p(ξktk) = 0.
The result follows by letting k → ∞ in Eq. (11).
The proof that (SP.2.b) holds with ε = 0 is similar, hence (SP.2) holds for every

t ∈ T (π) such that πk
t → πt. For t such that πk

t does not converge to πt, (SP.2) holds
by the right-continuity of π.

The following result relates the concepts of ε-equilibria in discrete-time games and
0-AP’s.

Theorem 4.15 Let Γ be a quitting game that for every ε > 0 sufficiently small
possesses neither an ε-equilibrium under which the game terminates with probability
1 in the first stage, nor an ε-equilibrium where all players always continue. Then Γ
admits an ε-equilibrium for every ε > 0, if and only if there is a 0-AP.

Theorem 4.15 highlights the significance of AP’s in simplifying the study of ε-
equilibria in quitting games. The set of strategy profiles is compact in the product
topology, yet in this topology the payoff function is not continuous and the set of
ε-equilibria is not compact. Moreover, since players may not be indifferent among
their actions along the equilibrium, it may be difficult to identify and to characterize
ε-equilibria. On the other hand, in the weak topology the sets of AP’s and 0-AP’s
are compact, the payoff is continuous, and along a 0-AP for every t ∈ [0, 1) players
are indifferent between actions they play with positive probability or rate. Therefore,
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the study of 0-AP’s seems to be simpler than that of ε-equilibria, yet, in view of
Theorem 4.15, it may suffice to answer various questions on ε-equilibria. We will see
such a case in the next section.

Proof. Theorem 3.4, Proposition 4.11, and Proposition 4.14 imply that if the
game admits an ε-equilibrium for every ε > 0, then there is a 0-AP. Regarding the
converse implication, let π be a 0-AP. By Proposition 4.8, there exists a sequence
(xk)k∈N of strategy profiles such that πxk ⇒ π. For every k ∈ N let (skn)n∈N be the
sequence of real numbers defined in the proof of Proposition 4.8 for xk. We then have
limk→∞ supn∈N ∥γskn(π

xk
) − γskn(π)∥∞ = 0, which implies that xk is an εk-equilibrium

for every k ∈ N, for some sequence (εk)k∈N that converges to 0.

Theorem 4.15 is related to Gobbino and Simon (2020), who separated the dynam-
ics of the sequence (γn(x))n∈N, where x is an absorbing sequentially ε-perfect strategy
profile, into “large” motion (the discrete part of the AP) and “small” motion (the
continuous part of the AP).

5 Continuous Equilibria

An AP π is continuous if it does not contain discrete-time aspects; that is, if T (π) =
[0, 1]. When π is continuous,

∑
a∈A∗

≥2
π1(a) = 0, yet the converse need not hold. Such

equilibria only depend on (r(Qi, C−i))i∈I and not on the whole payoff function. In this
sense, continuous equilibria are (partially) detailed-free, and, perhaps, more robust
to misspecification of payoffs. To simplify terminology, we use the term continuous
equilibria for sequentially 0-perfect continuous AP’s.

In this section we provide a sufficient condition for the existence of a continu-
ous equilibrium. This sufficient condition uses the concept of linear complementarity
problems, which encompassed linear programming and quadratic programming, see,
e.g., Cottle and Dantzig (1968), Balinski (1978), and Murty (1988). To link our suffi-
cient condition to linear complementarity problems, we find it convenient to normalize
the payoffs and assume w.l.o.g. that ri(Qi, C−i) = 0 for each i ∈ I.

Definition 5.1 Let R be an (n× n)-matrix, and let q ∈ Rn. For each i, 1 ≤ i ≤ n,
denote by Ri the i’th column of R. The linear complementarity problem LCP(R, q)
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is the following problem:

Find w ∈ Rn
+, and z = (z0, z1, . . . , zn) ∈ ∆({0, 1, . . . , n}),

such that w = z0q +
n∑

i=1

ziR
i, (12)

zi = 0 or wi = 0, ∀i ∈ {1, 2, . . . , n}.

A matrix R is a Q-matrix if for every q ∈ R the problem LCP(R, q) has at least
one solution.

Let Γ be a quitting game, and denote byR(Γ) the (|I|×|I|) matrix (ri(Qj, C−j))i,j∈I .
Solan and Solan (2020) proved that if R(Γ) is not a Q-matrix, then Γ has a stationary
0-equilibrium. Here we study another family of matrices.

Definition 5.2 We say that a matrix R is a Q-matrix if R as well as all its principal
minors are Q-matrices.

Remark 5.3 A (1 × 1)-matrix R = (R11) is a Q-matrix if and only if R11 ≥ 0. A
(2 × 2)-matrix R = (Rij) is a Q-matrix if and only if there is a non-negative row
whose diagonal entry is 0. A (3 × 3)-matrix R is a Q-matrix if and only if, up to a
conjugation with a permutation matrix, one of the following conditions holds:

� The sign structure of R is

 0 ? ?
≥ 0 ?
≥ ≥ ?

, where ? means that the sign of the

entry is irrelevant.

� The sign structure of R is

 0 ≤ ≥
≥ 0 ≤
≤ ≥ 0

 and the determinant of R is non-

negative.

The following result identifies a new class of quitting games were ε-equilibria exist.

Theorem 5.4 If R(Γ) is a Q-matrix, then Γ admits a continuous equilibrium.

Remark 5.5 1. Theorem 5.4 is not tight: there may be continuous equilibria when
its condition is not satisfied. Indeed, it may be that the restriction of R(Γ) to
a subset J of players satisfies the condition of Theorem 5.4, and therefore there
is a continuous equilibrium π for the subgame that involves those players (when
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players not in J are restricted to always continue), and it may further happen
that the players not in J obtain non-negative payoffs along this AP. In such
a case, all players are sequentially 0-perfect at π. Yet the rows of R(Γ) that
correspond to players not in J may be arbitrary, hence R(Γ) need not be a
Q-matrix.

We do not know whether the existence of a continuous equilibrium along which
all players quit with positive probability implies that R(Γ) is a Q-matrix.

2. We are not aware of a characterization of Q-matrices or of Q-matrices, yet we
can point at a family of matrices that are Q.

Recall that a matrix is P0 if all its principal minors are non-negative. One
family of matrices that are included in the set Q is the set of all P0-matrices
whose diagonal entries are 0. To see that this inclusion holds, we need to recall
the set of P -matrices, which are matrices R for which all principal minors are
positive. It is well known that for P -matrices R, the linear complementarity
problem LCP(R, q) has exactly one solution for every q ∈ Rn, see, e.g., Murty
(1988, Chapter 3). The set of P0-matrices is the closure of the set of P -matrices
(since if det(R) ≥ 0 then det(R+ εI) > 0 for every ε > 0, and therefore if R is
a P0-matrix, then R+ εI is a P -matrix), which implies that every P0-matrix is
a Q-matrix.

We note that there are Q-matrices that are not in P0, for example, the following
(3× 3)-matrix:  0 1 1

−1 0 1
−1 1 0

 .

3. The standard linear complementarity problem is the problem (12), where z is
not required to be in ∆({0, 1, . . . , n}), but rather to satisfy z0 = 1 and zi ≥ 0 for
every i ∈ {1, 2, . . . , n}. A matrix R is a Q-matrix according to Definition 5.1
if (a) for every q ∈ Rn the standard linear complementarity problem for R
and q has a solution, or (b) there is a convex combination Rz of the columns
R such that (Rz)i = 0 whenever zi > 0. A matrix R that satisfies (a) is a
Q-matrix w.r.t. the standard linear complementarity problem, and a matrix R
all of whose principal minors are Q-matrices w.r.t. the standard linear com-
plementarity problem is a completely-Q matrix w.r.t. the standard linear com-
plementarity problem. Such matrices have been studied by, e.g., Cottle (1980),
who proved that the family of completely-Q matrices coincide with the family of
strictly semi-monotone matrices.
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Proof of Theorem 5.4.
Step 1: Convex combinations in the non-negative orthant.

We will show here that for every nonempty subset J ⊆ I of players there is a
probability distribution z ∈ ∆(J) that satisfies∑

i∈J

zir
j(Qi, C−i) ≥ 0, ∀j ∈ J, (13)∑

i∈J

zir
j(Qi, C−i) = 0 for at least one j ∈ J. (14)

The assumption that R = R(Γ) is a Q-matrix is used only in this step of the proof.
Fix i0 ∈ J and let q̂ ∈ RJ be the vector that is defined by

q̂i0 := −1, q̂i := 0 ∀i ∈ J \ {i0}.

The matrix R̂ := (ri(Qj, C−j))i,j∈J is a principal minor of R. Therefore, the linear

complementarity problem LCP(R̂, q̂) has a solution (ŵ, ẑ). Since q̂i0 < 0, it cannot be
that ẑ0 = 1. If i0 is the only player i ∈ J such that ẑi > 0, then, since ri0(Qi0 , C−i0) =
0 and q̂i0 < 0, we have ẑi0 = 1. Otherwise, there is i1 ∈ J \ {i0} such that ẑi1 > 0,
and consequently ŵi1 = 0.

Define zi :=
ẑi

1−ẑ0
for each i ∈ J . Since ŵi ≥ 0 and q̂i ≤ 0 for every i ∈ J , and

since ŵ is a convex combination of q̂ and
∑

i∈J zir(Q
i, C−i), it follows that Eq. (13)

holds. If zi0 = 1, then Eq. (14) holds with j = i0. Otherwise, since ŵi1 = q̂i1 = 0, we
have

∑
i∈J zir

i1(Qi, C−i) = 0, and Eq. (14) holds with j = i1.

Step 2: Viability theory.
For every z ∈ ∆(I) denote z · R :=

∑
i∈I ziR

i, and let Y be the boundary of RI
+.

For every q ∈ Y , set

F (q) := {z ∈ ∆(I) : zi > 0 ⇒ qi = 0, (z ·R)i ≥ 0 whenever qi = 0}.

Note that F (q) depends only on the set {i ∈ I : qi = 0}. We will show that there
exist measurable functions z : [t0, 1] → ∆(I) and q : [t0, 1] → RI such that for every
t ∈ [t0, 1] we have (a) q(t) ∈ Y and (b) z(t) ∈ F (q(t)).

The set-valued function F is upper semi-continuous with convex values, and by
Step 1 it has nonempty values. For every q ∈ Y denote by TY (q) the tangent cone at
q:

TY (q) :=
{
d ∈ RI : q + δd ∈ Y for all δ > 0 small

}
.

A careful analysis of the tangent cone shows that δ
t
z · R + (1 − δ

t
)q ∈ Y for every z

satisfying Eqs. (13)–(14) and δ > 0 small enough, where J = {i ∈ I : qi = 0}.
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Fix (q0, t0) ∈ Y ×(0, 1). For every measurable function z : [t0, 1] → ∆(I), consider
the following controlled dynamic:{

q̇(t) = 1
t
(z(t) ·R− q(t)), ∀t ∈ [t0, 1],

q(t0) = q0.
(15)

The set Y is closed, and the set-valued function F is upper-semicontinuous with
nonempty, closed, and convex values. By the classical Viability Theorem (Aubin,
1991, Theorem 3.3.4) it follows that there exist measurable functions z : [t0, 1] → ∆(I)
and q : [t0, 1] → RI such that (a) and (b) above hold for every t ∈ [t0, 1].

Step 3: Constructing a continuous equilibrium.
Fix an arbitrary q0 ∈ Y . For every n ∈ N let (zn, qn) be a solution of Eq. (15)

with qn0 = q0 and t0 =
1
n
, such that qn(t) ∈ Y and zn(t) ∈ F (qn(t)) for every t ∈ [ 1

n
, 1].

Define πn ∈ A by

π̇n
t (Q

i, C−i) = zni (1− t), ∀t ∈ [0, 1− 1
n
), ∀i ∈ I, (16)

and an arbitrary continuous evolution on [1− 1
n
, 1]. By definition, πn is a continuous

AP. Eq. (15) implies that, for all 0 ≤ t ≤ 1− 1
n
,

(1− t)qn(1− t)− 1

n
q0 =

∫ 1−t

1
n

zn(s)ds ·R =

∫ 1− 1
n

t

zn(1− s)ds ·R.

In addition, for every t ∈ [0, 1− 1
n
],

γt(π
n) =

1

1− t

∫ 1

t

zn(1− s)ds ·R

=
1

1− t

∫ 1−1/n

t

zn(1− s)ds ·R +
1

1− t

∫ 1

1−1/n

zn(1− s)ds ·R

= qn(1− t)− q0
(1− t)n

+
1

1− t

∫ 1

1−1/n

zn(1− s)ds ·R.

It follows that

∥γt(πn)− qn(1− t)∥∞ ≤ 2∥R∥∞
(1− t)n

, ∀n ∈ N,∀t ∈ [0, 1− 1
n
].

Let π be an accumulation point of (πn), and assume w.l.o.g. that πn ⇒ π. We will
prove that π is a continuous equilibrium. Since πn is continuous, so is π. Consequently,
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for every t ∈ [0, 1) the limit limn→∞ qn(1 − t) exists and is equal to γt(π). Since
qn(1 − t) ∈ Y for every t ∈ [0, 1

n
], we deduce that γt(π) ∈ Y for every t ∈ [0, 1), and

therefore (SP.2.a) with ε = 0 holds for each i ∈ I.
We turn to prove that (SP.2.b) holds as well. Fix i ∈ I and let t ∈ [0, 1) be such

that π̇t(Q
i, C−i) > 0. Then there exists a sequence (tn)n∈N such that limn→∞ tn = t

and π̇n
tn(Q

i, C−i) > 0 for every n sufficiently large. This implies that for every n
sufficiently large we have zni (1− tn) > 0, and therefore qni (1− tn) = 0. By taking the
limit as n goes to infinity we deduce that γi

t(π) = 0, and (SP.2.b) indeed holds.
Since Condition (SP.2) of Definition 4.13 holds for π, and since i is arbitrary, π is

sequentially 0-perfect.

When π is a continuous equilibrium, we can assign to each t ∈ [0, 1) the set of
players who quit with positive rate at t. In the next two examples, [0, 1) is divided
into countably many intervals, and a single player quits with positive rate in each
interval. We therefore describe π by a totally ordered index set K, where each k ∈ K
corresponds to an interval, such that k < k′ if and only if the interval that corresponds
to k precedes the interval that corresponds to k′, and a list of pairs (ik, pk)k∈K, where
for each k ∈ K, ik is the player who quits with positive rate along the interval that
corresponds to k, and pk ∈ (0, 1] is the probability by which player ik quits, given
that the game did not terminate before. For instance, when K is well-ordered, as
happens in Examples 5.6 and 5.7 below, under π player i0 quits in the interval [0, p0),
player i1 quits in the interval [p0, p0+(1−p0)p1), and so on. In this case, it is w.l.o.g.
to assume that these intervals are maximal in the sense that no player quits in two
consecutive intervals, that is, ik ̸= ik+1 for each k ∈ K. Example 5.8 below illustrates
a case where K is not well-ordered. Finally, we note that since the play eventually
absorbs,

∑
k∈K pk = ∞.

Example 5.6 As in the example in Section 4.1, suppose that there are three players,
and

R(Γ) =

 0 −1 2
2 0 −1
−1 2 0

 .

The matrix R is a Q-matrix, hence a continuous equilibrium exists. One such equi-
librium is the one were the sequence (ik, pk)k is:

(1,
1

2
), (2,

1

2
), (3,

1

2
), (1,

1

2
), (2,

1

2
), (3,

1

2
), (1,

1

2
), (2,

1

2
), (3,

1

2
), . . . . (17)
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In fact, Flesch, Thuijsman, and Vrieze (1997) showed that all continuous equilibria
in this example can be obtained from the one in Eq. (17) by starting the period at any
t ∈ [0, 7

8
] (instead of at t = 0).

The following example shows that continuous equilibria, even when periodic, may
exhibit a wild behavior.

Example 5.7 Suppose that there are five players and

R(Γ) =


0 −1

2
2 −1 2

2 0 −1
2

−2 7
2

−1
2

2 0 −3 47
8

1 1 1 0 5
2

−1 −1 −1 10
7

0

 .

It is a bit tedious but not difficult to show that the corresponding matrix R(Γ) is a
Q-matrix, and therefore a continuous equilibrium exists.3

In this example there are many periodic continuous equilibria (ik, pk)k∈N. In fact,
for every l ∈ N there is such an equilibrium with period 3l + 2, where the sequence
(ik)k∈N is an infinite repetition of (1, 2, 3, 1, 2, 3, . . . , 1, 2, 3,︸ ︷︷ ︸

l cycles of length 3

4, 5). There is also a con-

tinuous equilibrium that has this structure for l = ∞; that is, the index set is K = N2

(with the lexicographic order) and (ik, pk)k∈K is an infinite repetition of

(1,
1

4
), (2,

1

6
), (3,

1

20
), (1,

1

76
), (2,

1

300
), (3,

1

598
), . . .︸ ︷︷ ︸

countably many cycles of length 3

, (4,
1

2
), (5,

1

2
),

where the total probability of absorption in each repetition is strictly less than 1. In
particular, the sequence (ik, pk)k∈K is well-ordered but not order-equivalent to the set
N. We do not know whether there exist games where there is a continuous equilibrium
but none that is periodic with a finite period.

Ashkenazi-Golan, Krasikov, Rainer, and Solan (2021) provide an algorithm for
calculating the union of the range of all payoff paths that correspond to continuous
equilibria with a well-ordered index set K, where a single player quits in each interval,
as well as a characterization of the set of such continuous equilibrium payoffs as a
limsup of a certain sequence of sets. The idea of the algorithm is as follows. If along an

3The reader may note that in this example, the (5× 5)-matrix R(Γ) is not a P0-matrix.
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AP π players quit only in continuous time, then the AP is uniquely defined by the list
of pairs (ik, pk)k∈K. When K is well-ordered, we call player ik+1 the successor of player
ik, for each k ∈ K. For a fixed i ∈ I, let E∗

i be the set of such continuous equilibrium
payoffs that can be attained when the play starts with player i. The collection of sets
(E∗

i )i∈I satisfies the following recursion: w ∈ E∗
i if and only if w ∈ RI

+ and there exists
p ∈ (0, 1], j ∈ I \ {i}, and v ∈ E∗

j such that

w = pRi(Γ) + (1− p)v, wi = 0, (18)

where w ∈ RI
+ captures (SP.2.a) and wi = 0 corresponds to (SP.2.b). In Eq. (18),

p corresponds to the length of the interval spent by player i quitting and, if v ∈ E∗
j ,

then j is the successor of i. When the payoffs are generic, if j is a successor of i then

Rji < 0 < Rij. (19)

Define a directed graph as follows: the set of vertices is I and there is a directed edge
between i and j if they satisfy Eq. (19). Under some weak assumptions we show that
the set of continuous equilibrium payoffs

⋃
i∈I E∗

i , is a fixed point of an operator that
follows the geometry of this directed graph. For instance, in Example 5.6, as shown
by Flesch, Thuijsman, and Vrieze (1997),

E∗
i = {w ∈ R3

+ : wi = 0, wi+1 ̸= 0, wi+1 + wi+2 = 1},

where the addition is modulo 3, so that the set of continuous equilibrium payoffs with
a well-ordered index set coincides with the boundary of the two-dimensional simplex.

We end this section by presenting a 0-AP for which the corresponding index set
is not well-ordered.

Example 5.8 Suppose that there are five players, and

R(Γ) =


0 1 −3 −1 2
−3 0 1 2 0
1 −3 0 −1 2
3 3 3 0 −1
−3 −3 −3 2 0

 .

The game admits a periodic continuous equilibrium (ik, pk)k∈K that is defined over
the index set K = N× (−N) (with the lexicographic order), and is given by an infinite
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repetition of

. . . , (3,
2

37 − 1
), (2,

2

36 − 1
), (1,

2

35 − 1
), (3,

2

34 − 1
), (2,

2

33 − 1
), (1,

2

32 − 1
)︸ ︷︷ ︸

countably many cycles of length 3

, (4,
1

2
), (5,

1

2
).

Under this equilibrium, denoted π, the total probability of absorption in each period
is 5

6
, and γ0(π) = γ5/6(π) = (0, 0, 0, 1, 0), γ1/3(π) = (0, 1, 0, 0, 1), and γ1/2(π) =

(1, 0, 1, 0, 0).

6 Discussion

The behavior of players in dynamic games in general, and quitting games in particular,
may be complex. It might be that in some stage, the players mix their actions,
knowing that the set of players who will terminate the game will be random. It might
also happen that some player wants to quit, but she wants to guarantee that no other
player knows when she quits, to avoid the outcome where she quits with someone else.
While in discrete time a player cannot guarantee that no other player will be able to
quit with her, in continuous time this can be done. Equilibrium behavior in quitting
games may exhibit both types of behavior: periods of discrete-time behavior, when
players quit with positive probability, and periods of continuous-time behavior, when
players quit at a given rate.

The concepts of discrete-time strategies and continuous-time strategies can cap-
ture only one of the two possible behaviors described above. The concept of AP allows
to describe both behaviors. Though it is not known whether all quitting games have
ε-equilibria, we showed that if an ε-equilibrium exists for every ε > 0, then there
exists a 0-AP. This result shows that the reason for having games that possess ε-
equilibria for every ε > 0 but no 0-equilibria, is that the nature of discrete time does
not allow players to completely hide the stage in which they quit, thereby allowing
other players to quit simultaneously with them (albeit with small probability) and
make a low profit.

The space of AP’s A is sequentially compact, and the function that assigns to ev-
ery AP its payoff path is continuous. It is not difficult to show that A is contractible.
We do not know whether these properties can be used to prove the existence of an
ε-equilibrium in some family of quitting games.
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