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Out-of-vocabulary (OOV) words can pose serious challenges for
machine translation (MT) tasks, and in particular, for low-resource
language (LRL) pairs, i.e., language pairs for which few or no par-
allel corpora exist. Our work adapts variants of seq2seq models to
perform transduction of such words from Hindi to Bhojpuri (an LRL
instance), learning from a set of cognate pairs built from a bilingual
dictionary of Hindi – Bhojpuri words. We demonstrate that our mod-
els can be effectively used for language pairs that have limited paral-
lel corpora; our models work at the character level to grasp phonetic
and orthographic similarities across multiple types of word adapta-
tions, whether synchronic or diachronic, loan words or cognates. We
describe the training aspects of several character level NMT systems
that we adapted to this task and characterize their typical errors. Our
method improves BLEU score by 6.3 on the Hindi-to-Bhojpuri trans-
lation task. Further, we show that such transductions can generalize
well to other languages by applying it successfully to Hindi – Bangla
cognate pairs. Our work can be seen as an important step in the pro-
cess of: (i) resolving the OOV words problem arising in MT tasks ; (ii)
creating effective parallel corpora for resource constrained languages
; and (iii) leveraging the enhanced semantic knowledge captured by
word-level embeddings to perform character-level tasks.
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1 Introduction

With recent advances in the field of machine translation (MT) – and
in neural machine translation (NMT) in particular – there has been
an increasing need to shift focus to out-of-vocabulary (OOV) words
(Wu et al. 2016; Sennrich et al. 2016). In the case of low resource
languages (LRLs), which lack linguistic resources such as parallel cor-
pora, most words are OOV words; this is problematic. Current data-
intensive translation systems work poorly with OOV words for such
languages, purely because of a severe lack of resources. Hence, for
such languages, it becomes necessary to deal with OOV words in spe-
cific ways, outside the ambit of general-purpose NMT systems. Even in
the case of resource-rich languages, methods to deal with OOV words
are still being actively researched (Pham et al. 2018; Luong and Man-
ning 2016).

Many approaches (as elaborated upon in Section 2) have been in-
vestigated to deal with the OOV problem. In this paper, we use the
method of ‘transduction’, learned from a dictionary of cognate word
pairs in Hindi and Bhojpuri. The fundamental guiding principle of our
approach is the fact that Bhojpuri and Hindi are closely related lan-
guages, and hence have a good amount of vocabulary overlap, while
sharing orthographic and phonetic traits. These two languages have
common ancestors, and both of them employ the orthographically
shallow alpha-syllabic Devanagari script. Tracing the origin of a con-
siderable portion of the modern Bhojpuri vocabulary could weakly
suggest that many of Hindi words got adapted to the local Bhojpuri
phonology with the passage of time. This is a well-known phenomenon
and it can be observed in other pairs of closely related languages
(Macedonian – Bulgarian; Spanish – Catalan; Turkish – Crimean Tatar;
Czech – Slovak; Irish – Scottish Gaelic) which share a close ancestor
within the language family they belong to.

The Indian linguistic space, as reported by Grierson (1928), has
179 independent languages and 544 dialects. Similarly, the survey of
Mahapatra et al. (1989) demonstrates that there are at least 50 In-
dian languages in which writing and publishing are done in substantial
quantity. However, a majority of these languages lack proper linguistic
resources. Hindi – being the lingua franca of the ‘Hindi belt’ (most parts
of the north) of India – is a commonly spoken language in more than
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10 states and has (according to one of the views1) seven major closely
related languages, often called ‘dialects’ or ‘sub-languages’, (namely,
Awadhi, Bagheli, Bhojpuri, Bundeli, Haryanvi, Kanauji and Khari Boli)
(Mishra and Bali 2011). Despite it having 33 million native speakers
in India and over 6 million native speakers outside India2, Bhojpuri
still suffers from the lack of language resources. So far, very little
work has been done towards developing language resources (Singh
and Jha 2015), resulting in scarcity of resources such as a Bhojpuri
lexical database or parallel corpus that could have made state-of-the-
art machine translation (MT) systems accessible to this language.

Due to the lack of such resources, traditional phrase based ma-
chine translation (PBMT) approach (Chiang 2005) or NMT (Bahdanau
et al. 2014) for Bhojpuri becomes infeasible as it requires massive par-
allel corpora. In their recent work, Sharma and Singh (2017) intro-
duce a ‘word transduction’ approach to deal with the presence of un-
known (or out of vocabulary) words for MT systems involving such
resource-scarce languages. The concept of word transduction is some-
what similar to Hajic (2000), where the authors suggest that the use of
word-for-word translation for very closely related languages provides
a good solution for MT of such language pairs.

Furthermore, for the task of language translation, it is necessary to
take into account the fact that not all languages possess the same mor-
phological features. For example, Finnish has more than 2000 possible
inflected noun forms(Ekman and J’́arvelin 2007); Hindi and Bhojpuri
have more than 40 inflectional forms (Singh and Sarma 2010), while
English has a mere 7 – 8 (these numbers indicate the different possi-
ble valid combinations of morphological tags that nouns can possess).
Therefore, a good MT system designed for such morphologically rich
languages must be intricate enough to deal with their diverse inflec-
tional morphology. In order to address this issue, we adapt character-
level NMT systems to our task in order to exploit morphological in-

1There is no consensus about the meaning of the word ‘Hindi’ and so differ-
ent scholars have different views. For example, some other sub-languages like
Rajasthani, Maithili and Magahi are also often included in the Hindi spectrum.
However, the usual meaning of the word ‘Hindi’ in literature refers to standard
Hindi, whose base is Khari Boli and which is an official language of India.

2http://www.censusindia.gov.in/Census_Data_2001/Census_Data_
Online/Language/data_on_language.aspx
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formation encoded in inter-character interactions and intra-word pat-
terns. As observed by Nakov and Tiedemann (2012): “character-level
models combine the generality of character-by-character transliter-
ation and lexical mappings of larger units that could possibly refer
to morphemes, words or phrases, as well as to various combinations
thereof” (Nakov and Tiedemann (2012)). We also introduce a novel
pre-trained character-level embedding (Bojanowski et al. 2017) for De-
vanagari alphabets derived from the 300 dimensional Hindi fastText
embeddings.3

As regards the phonetic considerations of transduction, we make
use of the fact that Hindi and Bhojpuri have a phonetic writing system,
meaning there is an almost one-to-one mapping between phonemes
(pronunciation) and graphemes (transcription). This is due to the fact
that they both derive from common ancestor languages such as Prakrit
and then Apabhramsha (Choudhury 2003). Hence, it suffices to work
in either one of the spaces – orthographic or phonetic, and we choose
the orthographic space since it does away with the need to convert
the graphemes of text to and from phonemes.

Although Bhojpuri phonology is close to that of Hindi, it is not the
same. There are notable differences between the two. While Hindi has
a symmetrical ten vowel system, Bhojpuri has six vowel phonemes and
ten vocoids. Similarly, Hindi has 37 consonants (including those in-
herited from earlier Indo-Aryan and those from loan words), whereas
Bhojpuri has 31 consonant phonemes and 34 contoids. As is usual with
any pair of languages, there are many phoneme sequences which are
allowed in Hindi, but not found in Bhojpuri and vice-versa. This will
be evident from the examples given in the paper later. More details
about the Bhojpuri phonology are available in the article by Trammell
(1971).
1.1 A note on Roman representations and English glosses of Hindi
Throughout this paper, we have used the WX notation (Gupta et al.
2010) to represent (in a transliteration-like fashion) Hindi and Bho-
jpuri characters in English, for the benefit of readers who are not fa-
miliar with the Devanagari script. A ready reference table of the WX

3https://github.com/facebookresearch/fastText/blob/master/
docs/pretrained-vectors.md
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notation can be found in its Wikipedia page.4 Every non-English word
used in this paper is followed by its WX notation in square brackets
([]) and its italicized English gloss, in parenthesis (()).
1.2 Transduction and translation
Our usage of the word ‘transduction’ distinguishes it from translation,
in that transduction is a task which is trained exclusively on cognates,
and in that sense, the dataset it uses is a subset of the dataset that a
translation system would use. Cognates are word pairs that not only
have similar meaning but are also phonetically (and, in our case, or-
thographically) similar. The underlying observation that guides the
usage of our proposed method of ‘transduction’ of OOV words as a
possible substitute for their translation is as follows:

As stated earlier, Bhojpuri is a language closely related to Hindi.
In the case of an OOV Hindi word (or any Hindi word for that mat-
ter), there is a good chance that the Bhojpuri translation of the word
is a cognate of the Hindi word adapted to the phonological and or-
thographic space of Bhojpuri due to the presence of borrowed words,
common origins, geographic proximity, socio-linguistic proximity, etc.
A phonemic study of Hindi and Bundeli (Acharya 2015), mainly focus-
ing on the prosodic features and the syllabic patterns of these two lan-
guages (unsurprisingly) concluded that the borrowing of words from
Hindi to Bundeli generally follows certain (phonological) rules. For
instance if a word in Hindi begins with the character य [ya], it is re-
placed by character ज [ja] in its Bundeli equivalent as यजमान [yaja-
maan] (host) becomes जजमान [jajamaan], यमुना [yamunaa (name of a
river)] becomes जमुना [jamunaa], etc. We observe that a similar pro-
cess happens for Hindi – Bhojpuri. This category of word pairs is our
main motivation behind the work described in this paper.

Our model is agnostic to what sort of words are considered to
be OOV (based on their unigram probabilities, their parts-of-speech
(POS), or whether named entities, etc.) because the above assumptions
hold uniformly across the language pair. Section 2 specifies some of
the metrics that are used to identify OOV words in related work.

Further, the above assumption (of transduction improving over-
all translation performance) has been demonstrated to be valid in the

4https://en.wikipedia.org/wiki/WX_notation
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case of many closely related language pairs, in a number of previous
works. For instance, Kondrak et al. (2003) extracted a parallel list of
cognate word pairs and re-appended them to the parallel list of all
word translations, thereby increasing the training weights of cognate
words. Giving added importance to these cognate words, “resulted in a
10% reduction of the word alignment error rate, from 17.6% to 15.8%,
and a corresponding improvement in both precision and recall.” (Kon-
drak et al. (2003)). Mann and Yarowsky (2001) used cognates to ex-
pand translation lexicons, Simard et al. (1993) to align sentences in a
parallel translation corpora, and Al-Onaizan et al. (1999) used cognate
information to improve statistical machine translation.

Finally, transduction induces less sparsity in the model as com-
pared to translation, because the hypothesis space is restricted to only
functions that map words to their possible cognates. For closely re-
lated languages, the added reduction in sparsity also comes from the
fact that there are consistent variations between how a source word
transduces to its cognate target word. Hence, transduction is a task
that performs better with a small training set than translation would
when using a similarly complex model. This reduced sparsity enables
transduction models to perform well on OOV words.

The ensuing section provides background about NMT systems and
the manner in which we have adapted them to our task.
1.3 Neural machine translation
Neural machine translation (NMT) has delivered promising results in
large-scale translation tasks such as Chinese-to-English (Tu et al. 2017)
and English-to-French (Chen and Wu 2017). Initially, NMTs were used
as a sub-component of the PBMT system such as for generating the
conditional probabilities of phrase pairs (Cho et al. (2014)), for gener-
ating [machine learning] features for the PBMT, or for re-ranking the
n-best hypotheses produced by the system (Kalchbrenner and Blunsom
(2013), Sutskever et al. (2014a)). Such combined systems produced
state-of-the-art results. One most appealing feature of NMTs is that
they are largely memory efficient. Unlike PBMT systems, an NMT sys-
tem does not require keeping track of phrase pairs or language mod-
els. Additionally, the work of Bentivogli et al. (2016) pointed out that
NMTs offer a range of other superior attributes including:
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Figure 1:
Encoder-decoder network
architecture transducing the Hindi
word डरना [darnA] (to be scared) to
Bhojpuri डरल [darala]

• generation of outputs that require considerably lower post-edit
efforts
• better translation quality in terms of BLEU score, Translation Edit
Rate, and good performance on longer sentences
• fewer and/or less-severe errors in terms of morphology and word
order
Most NMT systems today make use of the encoder-decoder based

approach (e.g. Forcada 1997; Cho et al. 2014; Kalchbrenner and Blun-
som 2013; Sutskever et al. 2014a), which consists of two recurrent
neural networks (or their variants). The first encodes a variable-length
source token x into a fixed length vector and the second decodes
the vector into a variable-length target token y. NMT approaches
were initially designed to work at the word-level and translate sen-
tences. However, noting the encouraging results of adapting NMTs
to character-level translation by Vilar et al. (2007), we adapt NMTs
to our character-level transduction. Figure 1 shows the architecture
of such an encoder-decoder based NMT system performing character-
level transduction. The model is trained over a parallel corpus to learn
the maximum conditional probability of y given x , i.e., ar gmax y p(y
| x). Once trained, the model can then be used to generate the corre-
sponding transduction for a given source word.

However, the performance of NMT degrades largely in the case
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of longer length sequences (words, in our case) due to the vanishing
gradient problem (Bengio et al. 1994) arising during the training of
the underlying RNN. So far, the use of an attention mechanism, as
stated by Bahdanau et al. (2014), Luong et al. (2015a), Vinyals et al.
(2015) and Yang et al. (2016) has been the most plausible solution to
the aforementioned problem for RNNs and its variants. The concept
of ‘attention’ takes into account the fact that in the task of translation,
different tokens in a sequence are differentially informative, with the
information carried by them being highly context dependent. Thus, for
predicting each corresponding token, the model looks at the current
context of the source token that is relevant to predicting the target
token.
1.4 Summary
We adapt NMT models to perform ‘transduction’ of a Hindi word to
a Bhojpuri word. These word-transduction models work with charac-
ters as the fundamental units. They are trained on Hindi – Bhojpuri
cognate pairs. This task is important because it helps to solve the OOV
problem in larger downstream tasks, the most prominent example of
which is machine translation for low resource languages. To improve
machine translation of Hindi to Bhojpuri, we first identify OOV words
in Hindi texts and then use our model to transduce them to their Bho-
jpuri counterparts. All other words are translated, and not transduced.
Using such separate treatment of OOVwords, we obtain improvements
upon BLEU score with respect to the originally translated texts. The
section on Related Work (Section 2) elaborates previous approaches
to transduction and the OOV problem.

2 Related work

A number of methods have been proposed to handle the OOV prob-
lems in machine translation of unknown or rare words. Luong et al.
(2015a) simply use a shortlist of 30,000 most frequent words and map
all other less frequent words to an UNK (unknown) token. Sutskever
et al. (2014b) use a vocabulary of 80,000 words and achieve better
performance. However, any UNK-based approach is problematic be-
cause in larger sentences, UNK tokens heavily degrade performance
(Cho et al. (2014)). Jean et al. (2015) make model specific improve-

[ 8 ]



NMT word transduction mechanisms for LRL

ments, using a smaller batch for normalization and including only fre-
quent words in the denominator of this normalization. They fall back
to other translation and alignment models to replace UNK tokens.

Other approaches to handle OOV words include using a back-off
dictionary look-up (Jean et al. (2015), Luong et al. (2015b)) but as
observed by Sennrich et al. (2016), these techniques make impracti-
cal assumptions. One such assumption is a one-to-one source – target
word correspondence, which is unwarranted. Further, some of these
methods assume the existence of a parallel corpus of source-target
word pairs, which is not always available in the case of low resource
languages. Sennrich et al. (2016), in turn use a Byte-Pair Encoding
for transduction, which is very similar to character-level encoding of
sequences as strings of characters.

We also borrow ideas from previous approaches that have used
cognates. Simard et al. (1993) use cognates to align sentences in a par-
allel corpus and report 97.6% accuracy on the alignments obtained,
when compared to reference alignments. Mann and Yarowsky (2001)
use cognates extracted based on edit distances for inducing transla-
tion lexicons based on transduction models. Scannell (2006) presents
a detailed study on translation of a closely related language pair, Irish-
Scottish Gaelic. They learn transfer rules based on alignment of cog-
nate pairs, and use these rules to generate transductions on newwords.
They use a fine-grained cognate extraction method, by first editing
Scottish words to ‘seem like’ Gaelic words, and then using edit string
similarity on the new word pairs and choosing only close words with
the additional constraint that both words in the pair should share a
common English translation. However since we use linguistic experts
to extract cognates from our dataset, we do not need to encode string
similarity measures explicitly to extract cognates.

We borrow insights from character-level machine transliteration
and translation models that have been proposed in the past, as trans-
duction can be viewed as a variation of transliteration (which is, in
turn, viewed as character-level translation in many works), working
within the same script. Alternatively, it can also be thought of simply
as a translation of ‘true friend’ cognates.

Vilar et al. (2007) work on transliteration at the character level
(and translation at the word level) to build a combined system that
shows increasing gains over just the word-level system, as the cor-
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pus size grows smaller. This is because the character-level translitera-
tion takes into account the added morphological information such as
base forms and affixes. Tiedemann experimented with different types
of alignment methods and learning models, and showed that in each
type of method, there exists at least one character-level model that
performs better than word-level models (in the case of closely related
language pairs). Denoual and Lepage (2006) also show merits of using
characters as appropriate translations, and highlight issues with mak-
ing assumptions about words being natural units for the task. Finch
and Sumita (2009) view transliteration as a character-level machine
translation, and use Phrase-Based SMT for bidirectionally encoding
source sequences. They observe the lack of necessity to model pho-
netics of source or target language, due to the use of direct transfor-
mations. One point of difference between some of the related work on
cognates and ours is that we do not perform context-sensitive trans-
duction simply due to lack of annotated data that is context-sensitive.

3 Methodology

We run experiments on four different benchmark encoder-decoder net-
works, namely:

• a simple sequence-to-sequence model (Cho et al. (2014)) – abbre-
viated as ‘seq2seq’.
• the alignment method (Bahdanau et al. 2014) incorporated with
the seq2seq model – abbreviated as ‘AM’.
• the Hierarchical Attention Network (Yang et al. 2016) incorpo-
rated with the seq2seq model – abbreviated as ‘HAN’.
• the Transformer Network (Vaswani et al. 2017) solely based on
attention – abbreviated as ‘TN’.

In the basic seq2seq RNN encoder – decoder model (Cho et al.
2014) we incorporate a ‘peek’ at the context vector at every time step.
However, the model performed poorly on this translation task, with
the validation accuracy plateauing out at a low value early on in the
training process. Section 3.1, Section 3.2 and Section 3.3 describe the
models - AM, HAN and TN - in detail, respectively.
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Figure 2:
Schematic of the alignment
model adapted from
Bahdanau et al. (2014)

3.1 Alignment model (AM)
As shown in Figure 2, the alignment model (AM) proposed by Bah-
danau et al. (2014) facilitates searching through the source sequence
during the decoding phase using a unique context vector for each to-
ken. Specifically, given a translation yi and the source sequence x,
the decoder decomposes the conditional probability over all the pre-
viously predicted tokens (y1, ..., yi−1) as:

p(yi |y1, ..., yi−1,x) = g(yi−1, si , ci) (1)

where si is the hidden state of the decoder model computed for time
i, ci is the distinct context vector for each target token yi and g is a
non-linear function that outputs the probability of yi being the correct
translation at time i.

In addition to the use of a unique context vector for each decoding
time step, all hidden states computed so far contribute to the context
vector ci with weight α.

ci =
Tx∑
j=1

αi jh j (2)

α thus serves as a normalized importance weight, measuring the
degree of importance of the context tokens around position j in pre-
dicting the translation of the current source token at the output posi-
tion i (see Bahdanau et al. (2014)). Figure 2 shows the architecture of
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Figure 3:

Encoder-decoder
network architecture
with HAN: n and

m denote the
number of characters
in input and output
words respectively

the encoder-decoder network incorporating the alignment-based at-
tention decoder.
3.2 Hierarchical attention network (HAN)
Proposed by Yang et al. (2016), Hierarchical Attention Networks
(HAN) exploit the hierarchical nature of documents (i.e., characters
form words, words form sentences and sentences form a document)
and are comprised of two levels of attention mechanisms (Bahdanau
et al. 2014; Lai et al. 2015)) – the first at the word level while the
other at the sentence level. In our case, the former attention can be
thought of being effective at the character level, while the latter at the
word level, thus allowing the model (Figures 3 and 4) to discover the
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Figure 4:
The HAN framework
adapted from
Yang et al. (2016)
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Figure 5:

The transformer
architecture

as described in
Vaswani et al. (2017)
and adapted from
Li et al. (2018)

amount of attention required to be paid to the individual characters
and words to form a character-level transduction.
3.3 Self-attentional transformer network (TN)
The Transformer Network (Vaswani et al. 2017) consists of an encoder
made up of a stack of six identical layers. Each layer further con-
sists of two sub-layers: a multi-head self-attention and a simple position-
wise fully connected feed-forward network (FFN). The decoder too has
a similar architecture except for an additional sub-layer performing
multi-head attention over the output of the encoder stack. Both the
encoder and the decoder unit employ a residual connection (He et al.
2016) in between their respective sub-layers, followed by layer nor-
malization (Ba et al. 2016).
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As shown in Figure 5, the positional embeddings serve to make the
representation at time step i independent from the other time steps.
The multi-head attention layer serves to replace recurrent dependen-
cies by repeatedly applying self-attention over the same inputs using
separate parameters (attention heads) followed by combining the re-
sults. This combination acts as an alternative to applying a single pass
of attention with more parameters so that the model can easily learn
to attend to different types of relevant information in parallel with
each head. In other words, the decoder can now use multiple encoder-
attention mechanisms in each of its layers resulting in a significantly
faster training than architectures based on recurrent or convolutional
layers. Inspired by the success of the Transformer in sequence genera-
tion tasks (such as achieving state-of-the-art results on both WMT2014
English-German andWMT2014 English-French translation tasks5), we
use the Transformer Network in our task.

4 Experiments

For the AM and HAN models, we consider various parameters while
training, such as LSTM/GRU as encoding/decoding units, sequence
chunking and batch sizes, optimization methods, regularization, and
we report that there is a huge variance in the transduction perfor-
mance depending on the combinations of the parameters used (for
details of these experiments, the interested reader may refer to the
Appendix section in the pre-print of this work6). As regards the TN
model, due to computational and implementation limitations, we
could not perform such an extensive hyperparameter search. Nev-
ertheless, we take care of the basic parameter settings (as suggested
in Popel and Bojar (2018)) by limiting our model to a single-GPU base,
setting batch size to 512, maximum sequence length to the length of
the longest token in the parallel corpus followed by a final averag-
ing of the last 6 training checkpoints while leaving the learning rate
and the number of warm up steps at their default values. Finally, the
extracted character embeddings are used to train the AM and HAN
models while the TN model is left void of these mainly because of its

5http://www.statmt.org/wmt14/
6https://arxiv.org/ftp/arxiv/papers/1811/1811.08816.pdf

[ 15 ]

http://www.statmt.org/wmt14/
https://arxiv.org/ftp/arxiv/papers/1811/1811.08816.pdf


Jha, Sudhakar, and Singh

inherent dependency on segmenting the training tokens into seman-
tically useful sub-tokens which are hard to be reproduced in varying
experiments (Popel and Bojar (2018)), and thus cannot be easily as-
signed such embeddings. We compare the results of the TN model
with the best results (among various hyperparameter settings) of the
AM and HAN models.

The implementation of the Alignment model (AM) and the Hi-
erarchical attention network (HAN) is based on Keras-2.0.6 (Chollet
et al. 2015) while that for the Transformer Network (TN) is based
on tensorflow-1.4.1 (Abadi et al. 2015) and tensor2tensor-1.4.3.7 We
carry out our experiments on x86_64 GNU/Linux with 8G memory,
using one NVIDIA GeForce 840M with CUDA V8.0.61, and Python
3.5.2+.
4.1 Dataset
In order to be able to compare our results with the state of the art
(SOTA) – described in Section 4.3 – we use the same dataset as
by SOTA Sharma and Singh (2017), which was the state-of-the-art
method at the time of writing. This dataset consists of 4220 Hindi
– Bhojpuri word cognate pairs chosen from a pre-compiled lexicon
of Hindi – Bhojpuri word translations. This dataset was compiled by
three linguistic experts (who are native speakers of both Bhojpuri
and Hindi) who came to consensus on the annotations. Cognate pairs
were identified from this set using domain expertise by linguistic ex-
perts. This method of cognate extraction is in contrast to possibly
sub-optimal rule-based and similarity-based approximations, such as
those used by Mann and Yarowsky (2001). In summary, the training
data has Hindi – Bhojpuri word pairs, each of which comprises a Hindi
and a Bhojpuri word that have the same meaning, as well as similar
pronunciations. We split the dataset into 3:1 ratio for training and
testing our models. A validation split of 0.1 was further made on the
train set comprising of 3165 word pairs. This test is held-out and is
used for reporting only the final results. All hyperparameter tuning
is done on the validation set. The validation set is not fixed and the
training is cross-validated, with a new random validation-set being
used at each iteration of tuning. Table 1 consolidates these statistics.

7https://github.com/tensorflow/tensor2tensor
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Training set Validation set Test set
Total number of words 2849 316 1055

% of words of full dataset 67.5% 7.5% 25%

Table 1:
Transduction
corpus statistics

We perform a random shuffle of the train and validation set prior to
each training epoch.
4.1.1 Semantic ambiguity when selecting cognates
It is worthwhile to mention that not all Hindi words in the train-
ing dataset have just one possible corresponding Bhojpuri cognate.
Around 3.85% of Hindi words in the Hindi – Bhojpuri cognate pairs
havemore than one corresponding Bhojpuri cognate. The same applies
the other way too, i.e., not all Bhojpuri words have just one possi-
ble corresponding Hindi cognate. Around 3.37% of Bhojpuri words in
the Hindi – Bhojpuri cognate pairs have more than one corresponding
Hindi cognate. When either a Hindi word or a Bhojpuri has multiple
corresponding cognates, only two possible cases arise:

1. The multiple possible cognates have the same semantic sense and
are different in only surface forms (spellings). For instance, the
Bhojpuri word हलुवा [haluVA] (a sweet dish) has two Hindi cog-
nates - हल्वा [halVA] and हलवा [halaVA], both meaning the same,
but differing in surface forms due to the presence of the diacritic
in one and absence in the other. The diacritic is a character ex-
plained in Section 6.1.1.

2. They are different inflected forms of the same root word. For in-
stance, the Bhojpuri word राखल [rAKala] (kept, or to keep) has two
Hindi cognates - रखा [raKA] (kept) and रखना [raKanA] (to keep),
both of which are different inflected forms of the root word रख
[raKa] (keep).

Since multi-cognate words together form only a small percentage of
the dataset, they are not accorded any special treatment, and the
model learns from the multiple forms.

We plan to work more on the deeper change in ambiguity from
source to target word in the case of ‘true friend’ cognates, particularly
for the Hindi – Bhojpuri language pair.
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4.2 Evaluation measures
We report the accuracy of each experiment using the BLEU score and
Levenshtein distance-based string similarity (SS) measure, as in Equa-
tion 3.8 After obtaining the optimum hyperparameter set for AM and
HAN, we compare the word accuracy (WA, Equation 4) report defined
by the percentage of correctly translated words for all the models in-
cluding the SOTA. SS, WA and BLEU score formulae for two arbitrary
strings ‘s1’ and ‘s2’ are given below. The averaged score across the
validation/test set are reported in the tables in ensuing sections. We
employ the character n-grams version of BLEU score (as used in De-
noual and Lepage (2005)) as our work is at the word-level, instead
of document-level. Using this metric also alleviates the comparison
with other state-of-art transduction methods since other popular met-
rics such as CHRF and TER correlate well with the character n-gram
version of BLEU score (as observed by Popović (2015)).

SS(s1, s2) = (1− Levenshtein Edi t Distance(s1, s2)
len(s1) + len(s2)

) ∗ 100 (3)

WA(s1, s2) = {1 i f s1 == s2 ; 0 otherwise} (4)
4.3 State of the art
We consider the results of Sharma and Singh (2017) to be state of the
art. To the best of our knowledge, their work is the only relevant one
on Hindi – Bhojpuri transduction or even any form of OOV word han-
dling technique for this language pair. While their work builds upon
traditional PBMT approaches, they first convert lexical word represen-
tations into phoneme strings followed by the alignment of phonemes
in these strings. The word is then segmented into phoneme chunks
which thus facilitates the extraction of weighted rewrite rules for these
chunks.

Since the work of Sharma and Singh (2017) extensively compares
and contrasts their own work to the related work in transduction, we
refrain from such an elaborate comparison, and suggest their work to
the reader for more comparisons to other techniques. To the best of
our knowledge, their work is the current state of the art, and we show
improvements in performance over their results.

8https://pypi.python.org/pypi/python-Levenshtein/0.12.0
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4.4 Common aspects across models
Our adaptations of each of the models (i.e., seq2seq, AM, HAN and
TN) use Bidirectional LSTMs (BLSTM) as encoder-decoder units unless
specified otherwise. A detailed analysis of hyperparameter tuning and
training aspect for each model can be found in the Appendix section
in the pre-print of this work.9 The analyses document the experiments
motivating our decisions on using LSTM vs GRU, sizes of encoding and
decoding layers, number of layers, batching, optimization methods,
regularization methods and pre-training embeddings for each of the
three models. We hope that these results may be useful for future work
in morphology-related tasks.
4.5 Character embeddings
Since the atomic token in our models is the character (and not the
word), we explore two pre-training strategies - ‘LM-LSTM-Embed’ and
‘fT-Avg-Embed’ - to represent characters as dense vector embeddings.
These embeddings are used only as pre-trainings, and the transduction
models are allowed to update these weights during training, i.e., they
are not frozen. The followings sections describe methods used to create
these embeddings.
4.5.1 Creating embeddings using LSTM
Taking cues from Sundermeyer et al. (2012), we use a simple one-
layered Bi-LSTM of hidden dimension 75 and a dropout of 0.5 to train
a character-level language model for Hindi. Working at the character-
level, we formulate the problem as a character prediction task – given
a sequence of 29 characters, predict the next one, i.e., the 30th char-
acter. We found 30 to be the optimum window size after varying win-
dow sizes from 5 to 40, keeping in mind memory requirements as
well as perplexity. We randomly sample 3000 Hindi Wikipedia arti-
cles as a train set (with a validation split of 0.2) and another random
600 articles as a held-out test set. With a train set size of over 19M
characters, a vocabulary of 397 distinct characters (including special
characters and code-mixed characters10), and having trained for 31
epochs monitored upon validation loss convergence with a patience

9https://arxiv.org/ftp/arxiv/papers/1811/1811.08816.pdf
10Characters borrowed from other languages.
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of 7 epochs, the model resulted in a perplexity score of 5.18 over the
test set. The weights of the character embedding layer were then ex-
tracted to be used as pre-trained yet trainable character embeddings
for our transduction models. We refer to this method of pre-training as
LM-LSTM-Embed. The embedding weights are allowed to be trained
along with the hyperparameters of the models as freezing these lead to
a decrease in performance – a plausible reason being the orthographic
and grammatical distinction of Hindi (on which the character embed-
dings are based) from Bhojpuri (the target language whose orthog-
raphy and grammar must be reflected by modifying the pre-trained
embedding weights).
4.5.2 Creating embeddings by averaging fastText embeddings
While using the LM-LSTM-Embed embeddings gives the best perfor-
mance, we also introduce a novel pre-trained character-level embed-
dings set for the Devanagari script; these are derived from the 300-D
Hindi fastText embeddings (Bojanowski et al. 2017). We choose the
fastText embeddings over other benchmark embeddings because of
their inherent sub-word information preserving property that arises
from representing each word as a bag of character n-grams11 and not
as an atomic token itself. As has been observed by (Bojanowski et al.
2017), such subword-level representation of words is highly useful in
capturing morphological structure of words. We start with the exist-
ing word embeddings for Hindi.12 These fastText embeddings have
been constructed for each word by averaging the embeddings of the
character n-grams that make up the word. We derive the pre-trained
embedding of a character by averaging over all word vectors of words
in which the character occurs, weighted by the number of times it
occurs in each word. We refer to this method of pre-training as fT-
Avg-Embed. We outline the reason to support this method.

For character n-grams, in the case when n=1 (and loosely extend-
ing for n>1), each existing word embedding would have been the av-

11Consequently, we observe that using the fastText derived embeddings pro-
vide highly consistent results in comparison to using GloVe (Pennington et al.
2014) or word2vec (Mikolov et al. 2013) character-adaptations over monolin-
gual Hindi corpora.

12https://github.com/facebookresearch/fastText/blob/master/
docs/pretrained-vectors.md
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erage of all its characters’ embeddings (or when n>1, groups of char-
acters’ embeddings). An approximation of ‘re-obtaining’ the character
embeddings from the word embeddings would then be to average over
all word vectors of words in which the character occurs. This linear
transformation would preserve the ‘component’ of the embedding of
the particular character, as the components of all the other characters
would cancel each other out. This justification also takes into account
the fact that the components of all characters that are not ‘close’ (in
the sense of co-occuring in the same context, i.e, word) to the partic-
ular character would cancel out each other since their vectors can be
thought of as being spatially randomly distributed with respect to the
vector of the character in question. This also implies that the resulting
character embedding will have contributions from the components of
characters that are ‘close’ to it. We propose this method of computing
character embeddings as:
(a) it allows us to circumvent the need for extensive lexical and com-
putational resources required for training character embeddings
on a large Hindi monolingual corpus from scratch (while making
small compromises on overall downstream accuracy);

(b) it uses pre-existing vectors that have been successfully tested upon
a range of tasks (Chaudhary et al. 2018), lending the method of
deriving character embeddings (from word embeddings) in this
manner to any pre-trained word vectors that have been them-
selves composed from sub-word representations; and

(c) it provides scope to study the notion of character embeddings,
vis-a-vis word embeddings, since the semantic notion of a word
and its embedding is well understood but the notion of a dense
representation of a character is not fully understood yet.
It is important to note that pre-training using the LM-LSTM-

Embed method results in the best transduction performance, and also
that using the fT-Avg-Embed pre-trainings does significantly better
than random initializations, while incurring lesser computation costs
than LM-LSTM-Embed. These differences are shown in Table 2 for
Hindi – Bhojpuri and in Table 3 for Hindi – Bangla (additional ex-
periments on this language pair will be described in Section 5.3). In
both these tables, we observe that the performance improvements
across the metrics alongside the increase in training epochs before
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Table 2:
Effect of

pre-trained
character

embeddings: ep
indicates the
number of
epochs until
convergence

Initialization methods AM HAN
BLEU SS ep BLEU SS ep

ft-Avg-Embed 87.32 85.56 59 83.14 80.89 21
LM-LSTM-Embed 89.71 88.03 22 85.94 84.05 17

Random 73.51 71.68 16 64.11 61.33 12
Zero 68.44 63.10 14 60.83 59.20 13

Table 3:
Effect of

pre-trained
character

embeddings for
Hindi - Bangla
cognate pairs

Initialization methods AM HAN
BLEU SS ep BLEU SS ep

ft-Avg-Embed 78.49 77.10 56 73.65 70.22 26
LM-LSTM-Embed 81.03 79.72 33 75.28 73.15 24

Random 72.66 72.25 19 60.07 58.46 10
Zero 70.39 69.88 19 59.21 55.33 12

Table 4:
Comparison of evaluation

metrics among
encoder-decoder models:
seq2seq; AM; HAN; TN;

and SOTA

Metric seq2seq AM HAN TN SOTA
BLEU 52.89 89.71 85.94 90.89 79.82
SS 57.22 88.03 84.05 90.23 –
WA 16.32% 67.22% 59.77% 75.71% 64.41%

convergence of the models remain consistent, i.e, LM-LSTM-Embed is
a better pre-training strategy than ft-Avg-Embed.

5 Results

5.1 Comparing our models to the state-of-the-art model
Table 4 compares the performances of the best AM and HAN models
(after the hyperparameter search) with those of the standard encoder-
decoder model, the TN model and the current state-of-the-art (SOTA)
model (Sharma and Singh 2017). The BLEU scores of AM, HAN and
TN are higher than that of the phoneme-chunk based model used by
Sharma and Singh (2017). While TN outperforms the SOTA model in
terms of word accuracy (WA), AM and HAN lag behind. The simple
seq2seq model performs the worst among all our models, and fails to
match up to SOTA.
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TN performs the best due to two main reasons:
1. Residual connections that connect the input character embed-
dings to the final decoder of the output word: The transduction
of a Hindi word can be thought of as making character level ed-
its upon the Hindi word, in the same orthographic space. The
residual connections, hence, help in learning these edits by con-
ditioning the final decoder not only on the attention-based repre-
sentation of the input word but also directly the input word itself.

2. The multi-head attention mechanism of TN helps to model the de-
pendencies of characters in the input and output words, regard-
less of their distances from each other. This would otherwise have
to be learnt from a restricted fixed-sized representation, which is
usually an LSTM.
The simple seq2seq model performs the poorest because, perhaps,

the generic architecture is not adapted to the task in any manner,
based on knowledge about the linguistic properties between cognate-
pairs. This simple architecture fails to capture long-range dependen-
cies for 1) longer words, and 2) words in which the dependencies be-
tween orthographic segments in the source and target word are not
very obviously aligned.

The performance improvements of HAN and AM could be at-
tributed to their attention mechanisms that facilitate better captur-
ing of the intricacies of phonetic and orthographic dependencies of
cognates. It is interesting to see that HAN performs worse than the
AM, and this might be because of the over-parametrization of HAN.
HAN is over-parameterized since it was originally proposed for build-
ing a hierarchy over documents where a layer of attention is effected
across words in sentences of the document, and another layer is ef-
fected across characters in words of sentences. In our case we only deal
with individual words, and not documents. This, combined with the
fact that we have a small training set, perhaps causes HAN to overfit to
the training data and perform poorly on the test set. Consequently, we
observe a common trend of recurring last character across the trans-
ductions generated by HAN and thus, employ a post-processing step to
remove all but the first recurring character appended to these words.
This step will be referred to in later sections as the ‘post-processing’
step.
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Table 5:

Comparison of evaluation
metrics between seq2seq,

AM, HAN, and TN for Hindi
- Bangla cognate pairs.

Metric seq2seq AM HAN TN
BLEU 41.88 78.49 73.65 83.76
SS 55.12 77.10 70.22 82.59

WA (%) 9.87 59.27 47.19 71.11

An elaborate account of errors made on different word-pair types
by each of these models is presented in Section 6. These differences in
errors occur due to the differences in the models as expounded above.
5.2 Gains over the state of the art
Table 4 depicts the performance of the aforementioned models us-
ing both the pre-trained character embeddings obtained using aver-
aging (AVG) and that built from the language model (LM). It is ev-
ident that TN performs best across all accuracy metrics. This is our
best model and using this model achieves gains over SOTA of 11.07
BLEU score points (a percentage gain of 13.9%) and a Word Accuracy
gain of 11.3% (a percentage gain of 17.5%). The SOTA paper did not
provide information of SS scores, and hence we have not made this
comparison.
5.3 Additional experiments on Hindi - Bangla cognate pairs
We extend our experiments to transducing from Hindi to Bangla by
training on a corpus of Hindi – Bangla cognate pairs comprised of
3220 word pairs. We carried out the same 3:1 split upon this corpus
to hold out the test set while making a further split of 0.1 upon the
train set (2415 word pairs) to obtain a validation set. The results of
the Hind – Bangla experiments are presented in Table 5.

The decline in the scores of all four models across the metrics in
Table 5 (compared to Table 4) could be boiled down to two major
reasons:
1. Word formation methods: Bangla has its roots from the Prakrit or
middle Indo-Aryan language, which in turn descended from San-
skrit or old Indo-Aryan language. Hindi also shares roots with
Sanskrit. Bangla is therefore, neither a dialect nor an immediate
sibling of Hindi. This is unlike Bhojpuri. This also means that
Bangla, which has its own Brahmi-derived script, namely, the
Bangla script, has possible word formation rules that are quite
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contrary to Hindi. One such instance is the Bangla consonant
clustering mechanism. For example, the noun Vishnu, written as
िवष्णु [viRNu] (an Indian name) in Hindi, has the consonant cluster
ṣa + ṇa [RN]. While the Hindi consonant cluster (ष + ण) can
easily be decomposed into its constituent letters, the Bangla clus-
ter can form a new letter in itself.

2. Smaller size of the training corpora: The training corpora for Hindi
– Bangla cognate pairs comprises 2415 word pairs, i.e., 1000 in-
stances less than that of Hindi – Bhojpuri train set. The aforemen-
tioned grammatical restrictions shared by Hindi and Bangla make
it very demanding to discover more such cognate pairs between
the two languages, thus constraining the training corpora for our
experiments.

6 Error analysis

We analyse the outputs of each model to study a pattern in the most
common errors made by each of them. We identify six types of ortho-
graphic and lexical errors, and four types of errors related to overall
translation quality for a word. While orthographic errors are moti-
vated with respect to the types of graphemes generated by character
patterns, quality-related errors focus on overall aspects of the trans-
duction being close to the correct translation. Further, we have been
able to make some preliminary correlations between the model archi-
tectures (AM, HAN, TN) and the errors they make. The main weakness
of the AM model is that since it is predominantly bidirectional LSTM-
based and only weakly attention-based as compared to HAN and TN, it
tends to bias character predictions towards either the early characters
or the later characters in the input sequence, sometimes giving poor
results towards the mid-sections. Since it processes input in a sequen-
tial manner, it also tends to lose out some orthographic information
in the process. The TN model’s weakness lies in the fact that it is in-
famously bad at performing copy mechanisms (Dehghani et al. 2018),
and hence it fails in places where characters / character-groups have
to be preserved in the transduction. The HAN model’s trade-off be-
tween the LSTM’s influence and the attention weights’ influence lies
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Table 6:

Handling halant
Hindi Bhojpuri (correct) AM HAN TN
पर्था परथा पररा परथा परथा

[praWA] [paraWA] [pararA] [paraWA] [paraWA]
(tradition)

पिवतर्ता पिवतर्ता पिवत्ा पिवतर्त पिवतर्ता
[paviwrawA] [paviwrawA] [paviwwA] [paviwraw] [paviwrawA]

(purity)
पतर्कारƁ पतर्कारन पत्कारनन पतर्ाा पतर्कारन

[pawrakAroM] [pawrakArana] [pawkAranana] [pawrA] [pawrakArana]
(journalists)

between the AM and the TN, and the behaviour it shows with respect
to errors it leads to, reflects this is in certain ways. However, these are
only approximate inferences that we make retrospectively, with the
actual behaviour varying on a case-by-case basis.
6.1 Orthographic and lexical errors
6.1.1 Halant
Halants refer to diacritics used to signify the lack of an inherent vowel
in written Devanagari scripts. In Devanagari, the halant is represented
by a diacritic below the consonant it applies on (e.g., द)्, while it is rep-
resented by not using any vowel after the consonant it applies on in the
WX notation (e.g., द् is represented as simply ‘x’). In most of the cases,
halants are preserved during translation of Hindi to Bhojpuri words,
except a few (e.g. पर्था [praWA] (tradition) becomes परथा [paraWA]).
We study the capability of each model to handle the translation of
halants (see Table 6). While HAN and TN perform reasonably well at
translating halants, AM tends to replace the character possessing ha-
lant with some ligature combinedwith a neighboring character, e.g. त्क
[wka] in पत्कारनन [pawkAranana] and त् [wwa] in पिवत्ा [paviwwA].
The possible reason for this could be the better attention capabilities of
the HAN and the TN, which helps these models force the halant to be
appended in the right place, thus ensuring that the immediate neigh-
boring character of the halant in Hindi is joined with the previous
character in the Bhojpuri transduction. The AM, having only limited
attention influence in comparison, skips the immediate neighboring
character and combines the halant with a later character as the LSTM
layer in the AM has seen the later character more recently.
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Hindi Bhojpuri (correct) AM HAN TN
आना आइला अयना आना अयन
[AnA] [AilA] [ayanA] [AnA] [ayana]

(to come)
घुमाना घुमावल घुहावल घुमावल घोमावल

[GumAnA] [GumaAvala] [GuhAvala] [GumaAvala] [GomaAvala]
(to stir)

मौसी मउसी मउसी मउसी मउसी
[mOsI] [mausI] [mausI] [mausI] [mausI]

(maternal aunt)

Table 7:
Handling vowels

6.1.2 Handling vowels
Vowels play an important role in the translation of Hindi words to
their closely related languages. Our investigations show that TN per-
forms the worst in recognising appropriate vowel translations for vow-
els used in Hindi words. While the outputs of HAN are the most rea-
sonable ones after the post-processing step (described in section 5.1)
of removing repeating characters at the end of the word, the AMmodel
performs moderately well in learning correct vowel translations. The
reason for this can be attributed to the fact that a Hindi word’s vowels
are mostly retained in its Bhojpuri cognate. The TN perhaps performs
the worst at retaining vowels as it is infamous for being bad at copy
mechanisms (Dehghani et al. 2018). These examples are shown in Ta-
ble 7.
6.1.3 Handling anusvāra
An anusvāra is a diacritic used in a variety of written Indic scripts to
denote a nasal sound, either a nasalized vowel or a nasal consonant
that is not followed by a vowel. Anusvāra is used often in Hindi, but is
absent in Bhojpuri writing. In Devanagari, the anusvāra is represented
by a dot (◌ं) above a character, while it is represented by the letter
‘M’ in the WX notation. The two general patterns for translation of
anusvāra are:
1. replacing them by adding an extra ‘न [na]’ in front of the conso-
nant, e.g. लेखƁ [leKoM] (writings)-> लेखन [leKana]

2. completely removing them, e.g. भेंट [BeMta] (offering)-> भेट
[Beta]

Our study shows that all three models get confused at choosing the
correct rule and generally end up choosing the former one. Table 8
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Table 8:
Handling
anusvāra

Hindi Bhojpuri (correct) AM HAN TN
किठनाइयƁ किठनाइयन किठनाइयन किठनाइयन किठनाइन

[kaTinAyioM] [kaTinAyiana] [kaTinAyiana] [kaTinAyiana] [kaTinAyiana]
(hardships)

लेखƁ लेखन लेखन लेखन लेखन
[leKoM] [leKana] [leKana] [leKana] [leKana]
(writings)

भेंट भेट भेन्ट भेन्◌् भेन्ट
[BeMta] [Beta] [Benta] [Ben] [Benta]
(offering)

Table 9:
Handling

conjuncts for
क्ष [kRa] and

ज्ञ [jFa]

Hindi Bhojpuri (correct) AM HAN TN
बरकै्षा बरइक्षा बरबक्धा बरइक्षा बरइक्षा

[barEkRA] [baraikRA] [barabakDa] [baraikRA] [baraikRA]
(village’s name)

अवजै्ञािनक अबजै्ञािनक अवजैज्◌ािनक अबजै्ि◌ािनक अवजै्ञािनक
[avEjFAnika] [abEjFAnika] [avEjajAnika] [abEjianika] [avEjFAnika]
(unscientific)

वृक्ष िबěरछ ब क्छ् िबक्षष िबěरछ
[vqkRa] [biriCa [bakC] [bikRiRa] [biriCa]
(plant)

shows a few examples of this. Comparatively, the AM based model
performs better than the other two.
6.1.4 Handling conjuncts for क्ष [kRa] and ज्ञ [jFa]
Conjuncts are formed when successive consonants, lacking a vowel
in between them, physically join together. The conjuncts for क्ष [kRa]
and ज्ञ [jFa] are special cases in that they are not clearly derived from
the letters making up their components, i.e., the conjunct for क्ष [kRa]
is क् [k] + ष [Ra] and for ज्ञ [jFa] it is ज् [j] + ञ [Fa]. The rules
for translation of such conjuncts from Hindi to Bhojpuri are difficult
to model (e.g. in the translation वृक्ष [vqkRa] (plant) to िबěरछ [biriCa],
क्ष [kRa] becomes छ [Ca], while it remains as क्ष [kRa] in other cases);
and therefore we explore the capability of the models in learning such
translations. Our study shows that while the translation for क्ष [kRa] is
easily learned by the models in most cases, the translation for ज्ञ [jFa]
often results in ambiguity. Overall, TN performs the best in learning
such translations while AM performs the worst. This, and many of the
other errors mentioned in this section, are due to the nature of the
writing system used. Table 9 shows a few examples of how different
models handle conjuncts.
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Hindi Bhojpuri (correct) AM HAN TN

अिहसंापूवर्क अिहन्सापूवर्क अिहन्सापूरन् अिहन्सपूरसक अिहन्सापर्वक
[ahiMsApUrvaka] [ahinsApUrvaka] [ahinsApUrvan] [ahinsApUrasaka] [ahinsApravaka]

(nonviolently)
नाचपाटीर् नाचपारटी नाचपाटर् नाचपारप नाचपारी

[nAcapArtI] [nAcpaAratI] [nAcapArta] [nAcapArapa] [nAcapArI]
(dance party)

फनीर्चर फरनीचर फ◌र्ीचर फि◌र् फरनीचर
[ParnIcara] [ParanIcara] [ParIcara] [Pari] [ParanIcara]
(furniture)

Table 10:
Handling the
ā-diacritic of
र [ra]

Hindi Bhojpuri (correct) AM HAN TN
िहम [hima] (snow) िहम [hima] िहम [hima] िहम [hima] हीम [hIma]

दसूरा [dUsrA] (second) दसुर [dusar] दसूर [dUsar] दसूर [dUsar] दोसर [dosar]
घी [GI] (ghee) घीव [GIva] घी [GI] घी [GI] िघ [GI]

Table 11:
Handling hrasva
and dirgh varna

6.1.5 Handling the ā-diacritic/‘reph’ of र [ra]: वर् [rva], वार् [rvA], स्पर् [rspa]
र [ra] has a special diacritic that takes the form of a curved upward
dash above the preceding consonants. While translating the Hindi
words containing such diacritics to their Bhojpuri counterparts, the
diacritic is either replaced completely by र or simply kept unchanged.
Our results show that, in most cases, the AM model learns to preserve
the diacritic as is, while the HAN and the TN models generally re-
place it by a complete र [ra]. Table 10 shows a few examples of how
different models handle these diacritics.
6.1.6 Handling hrasva and deergha varna (short and long vowels)
The Bhojpuri transliterations of most Hindi words show the same long
and short vowels appearing after the corresponding consonants (words
such as दसूरा [xUsarA] (second) can be treated as exceptions). We ob-
serve that for words preserving the nature of vowels (long or short),
the AM and HAN based models perform better than that of the TN
model while all the models fail to learn the cases where the nature
of vowels (long or short) is switched upon translation. Interestingly,
the TN model actually recognizes words in which the long vowel has
to be switched to the short vowel and vice versa (we deduce this be-
cause it does not preserve the long/short nature in these cases) but
it does not perform the switch correctly, and instead shows ambigu-
ous behaviour on predictions. Table 11 shows a few examples of how
different models handle short and long vowels.
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Table 12:

Performance on
long words

Hindi Bhojpuri (correct) AM HAN TN
िवŠाÙथर्यƁ िवŠारÙथयन िबŠाथर्यन िबŠारिÙसयन िबŠाěरयन

[vidyArWiyoM] [vidyAraWiyana] [vidyArWayana] [vidyArasiiyana] [vidyAriyana]
(students)
सुरक्षाकमीर्यƁ सोरक्षाकरिमयन सुरक्ञाकररनन सुरक्षाकि◌र्ीयन सुरक्षारन

[surakRAkarmIyoM] [sorakRAkaramiyana] [surakFAkararanana] [surakRAkairIyana] [surakRArana]
(guards)
हÙथयारबन्द हÙथयारबन्द हÙथयारबन्द हÙथयारबन्द हÙथयारब्द

[haWiyArabanda] [haWiyAraband] [haWiyArabanda] [haWiyArabanda] [haWiyArabda]
(armed)

Table 13:
Performance on

identical
translations

Hindi Bhojpuri (correct) AM HAN TN
मौलवी मौलवी मउ िब मउलवी मउलवी

[mOlavI] [mOlavI] [maubi] [maulavI] [maulavI](Muslim doctor)झट झट झछट झट झट
[Jata] [Jata] [JaCata] [Jatatatata], [Jata] [Jata](instant)

हÙथयारबन्द हÙथयारबन्द हÙथयारबन्द हÙथयारबन्द हÙथयारब्द
[haWiyArabanda] [haWiyArabanda] [haWiyArabanda] [haWiyArabanda] [haWiyArabda]

(armed)

6.2 Transduction-based properties
6.2.1 Performance on long words
We consider words exceeding six characters in length to be long words.
We found that while the translation quality of each model degrades as
word length increases, the AM based architecture is able to maintain
the most sensible outputs, followed by the TN and the HAN based
models. Table 12 shows examples of the behaviour of different models
when they encounter long words.
6.2.2 Identical transduction
For words in Hindi that are written identically in Bhojpuri, we observe
that the HAN based model gives the best results after post-processing
(described in section 5.1). The TN model fails in cases of longer words
while the performance of the AM based model deteriorates for shorter
words as well as vowels. Examples of behavior in cases of identical
transductions are presented in Table 13.
6.2.3 Sensible yet erroneous translations
We individually study the translations made by each model which
sound legitimate when compared to the translations of other similar
words but are actually wrong. For example, for diphthongs, while the
Bhojpuri translation for भयैा [BEyA] is भइया [BaiyA] (elder brother) (भै
[BE] replaced by भइ [Bai]), the translation for कैमरा [kEmarA] (cam-
era) does not follow such approach, whereby the character ‘कै [kE]’
remains preserved. We observe that each model has its own types of
erroneous translations due to such ambiguities as shown in Table 14.
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Model Hindi Bhojpuri (correct) Predicted

AM तन्मयता [wanmayawA] तन्मयता [wanmayawA] तनमयता [wanamayawA]
(concentration)

AM कैमेरा [kEmerA] कैमेरा [kEmerA] कइमरा [kaimerA]
(camera)

HAN तरबूजा [warabUjA] तरबूजा [warabUjA] तरबूज [warabUja]
(watermelon)

HAN यमुना [yamunA] यमुना [yamunA] जमुन [jamun]
(yamuna)

TN Ùखलाड़ी [KilAdI] खेलारी [KelAdI] खेलाड़ी [KelAdI]
(player)

TN उपकरण [upkaraNa] उपकरन [upakaraNa] ओपकरन [opkaraNa]
(equipment)

Table 14:
Some sensible
yet erroneous
translations

Model Hindi Bhojpuri (correct) Predicted
AM धमार्न्तरण धरमान्तरन धमार्न्ि◌

[XarmanwaraNa] [Xaramanwarana] [Xarmaani]
(religious conversion)

AM सुरक्षाकमीर्यƁ सोरक्षाकरिमयन सुरक्षाकि◌र्ीयन
[surakRAkarmIyoM] [surakRAkaramIyana] [surakRAkairIyana]

(security guards)
AM वÙजर्त वरÙजत बरििम

[varjiwa] (contraband) [varajiwa] [baraimi]
HAN कंुजी कुन्जी कंु◌ी

[kuMjI] (key) [kunjI] [kuMI]
HAN अवजै्ञािनक अबजै्ञािनक अवजैज्◌ािनक

[avEjFAnika] (unscientific) [abEjFAnika] [avEjajAnika]

Table 15:
Phonetically/
orthographically
invalid
translations: for
invalid
predictions, a
closest
approximation of
the WX notation
is given

6.2.4 Phonetically/orthographically invalid translations
These are predicted transductions which do not follow the necessary
phonetic rules in order to be pronounced. We study the type of such
words individually for each model. Our findings suggest that the TN
performs excellently in learning such rules since we did not notice any
such instance of unpronounceable words present in the outputs of TN.
Overall, HAN produced the most unpronounceable translations as can
be seen from Table 15.
6.3 Limitations of the method
While training the system on cognate pairs ensures that the model
does not require exhaustive resources such as a parallel corpora, the
fact remains that cognate-property is inherently confined to the case of
closely-related languages. As described in Section 1, Bhojpuri is closely
related to Hindi; it is a dialect/immediate sibling and shares the same
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script.13 By contrast, Bangla (section 5.3) is a direct descendant of
Sanskrit or Pali14 to Prakrit and Apabhramsha (Chatterji (1926); Bali
(2016)) but is only loosely related to Hindi: it is neither a dialect nor
an immediate sibling of Hindi; it has its own script; and it has word
formation rules that are sometimes contrary to Hindi. The effects of
such increased ‘language distance’ are apparent from Table 4 (Hindi
– Bhojpuri) and Table 5 (Hindi – Bangla) where Hindi – Bhojpuri cog-
nate pairs show far better transduction quality than Hindi – Bangla.

Further, with the increased distance between the source and the
target language in a language pair, it is safe to say that the set of
cognates shared by these dwindles (Beel and Felder 2014), since cog-
nates, by definition, are word pairs that not only have similar mean-
ing and phonetics but also reflect an allied linguistic derivation. We
observed this even in our own cognate datasets: the Hindi – Bangla
dataset had 25% fewer cognates than the Hindi – Bhojpuri dataset
(see Section 5.3). Having fewer real-world cognate pairs means that
even if a nominally complete dataset of all cognates were to be com-
piled, there would still be comparatively less data to train models on,
hence exhibiting another limitation in extending the method to lan-
guage pairs of arbitrary distance.

7 Improvements on Hindi - Bhojpuri machine translation

This section talks of the improvements we make on machine transla-
tion from Hindi to Bhojpuri. The authors would like to mention two
key points here. First, this section stands distinguished from the rest
of the paper in that the methods and results discussed thus far hold
for word-to-word transduction. In contrast, we now depict how such
transductions can be used to improve the accuracy of a machine trans-
lation system. Second, we must mention that to the best of our knowl-
edge, no prior machine translation systems have been trained on a

13Although Bhojpuri was historically written in Kaithi scripts, those have gone
obsolete with Devanagari replacing as the primary script.

14Hindi descended from Prakrit, Apabhramsha and Perso-Arabic while Bangla
and Bhojpuri inherited the regional dialects of Apabhramsha. Consequently,
Bangla and Bhojpuri, sharing several regional boundaries of Northern India,
Bangladesh and Nepal, can be thought of having similar ancestral languages to
Hindi.
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Hindi – Bhojpuri parallel corpus, simply because such a corpus does
not exist.

For our purposes, we build an artifical parallel corpus in the
following manner. We first scrape four Bhojpuri blogs for Bhojpuri
sentences : Anjoria15, TatkaKhabar16, Bhojpuri Manthan17 and Bho-
jpuri Sahitya Sarita18. From these, we collect a set of approximately
40 000 Bhojpuri sentences. We then follow a two-step process for ob-
taining Hindi translations of these sentences using the Google Trans-
late API. Since the API does not offer Bhojpuri as a source language, we
first use the Hindi-English API for translating the Bhojpuri sentences
to English (as an intermediate language). We then translate these En-
glish sentences to Hindi using the English-Hindi API. Although this
process gives us noisy translations between Bhojpuri and Hindi, this
method is based upon the hypotheses that:
1. this is the best available solution in the absence of Hindi – Bho-
jpuri parallel corpora, let alone a pre-trained Hindi – Bhojpuri
translation system; and

2. Bhojpuri is sufficiently similar to Hindi that its linguistic proper-
ties remain preserved satisfactorily throughout the intermediate
processing.

Also, the choice of English as an intermediate language is based on the
fact that it gives the best BLEU scores when Hindi is fixed as the other
language in the translation pair. At the time of writing this work, there
is no Bhojpuri-Hindi API (or publicly reported Hindi – Bhojpuri ma-
chine translation system), while trivially translating using the Hindi-
Hindi API does not seem to work as the API simply copies the inputs
to outputs. For reporting the machine translation results, we use the
standard document-level BLEU score as suggested by Papineni et al.
(2002).

For the held-out test set, we curated 1000 sentences for which
ground truth translations were manually obtained from experts, and
not artificially generated. Statistics on training and test sentences can
be found in Table 16.

15https://www.anjoria.com/
16http://khabar.anjoria.com/
17http://bhojpurimanthan.com/
18http://www.bhojpurisahityasarita.com/
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Table 16:

Machine translation corpus statistics
Training set Test set

Number of sentences 40 000 1000
Total number of tokens 812 070 19 689
Number of unique tokens 20 551 620

We train a Bi-LSTM based encoder-decoder network (500 units)
with Luong attention, as described in Luong et al. (2015a) (we use
OpenNMT’s global attention implementation) on the training set for
Hindi – Bhojpuri translation. The model thus trained resulted in a
BLEU score of around 7.1 on the test set, which is not surprising given
the method of training. With this as the baseline, we make correc-
tions to this model’s output. We first align each Hindi sentence and its
Bhojpuri translation, by aligning pairs of source-target words based on
their pairwise weights in the attention matrix. Following this, we iden-
tify OOV Hindi words using a simple dictionary-based approach as has
been suggested by Bahdanau et al. (2014). We use a shortlist of 15 000
most common words in Hindi, obtained from the Hindi Wikipedia
monolingual corpus, and treat all other words as OOV. We experi-
ment with 5 000, 10 000, 15 000, and 20 000 most common words,
and find the 15 000 word shortlist produced the best BLEU score im-
provements. We then replace the translation (as obtained by the align-
ments using the attention matrix) of each OOV word with its corre-
sponding transduction generated by our word transduction model. Re-
placing the translation of OOV words with that of their transductions
leads to an improvement of 6.3 points in the BLEU score, which is
substantial considering that we are translating to a low-resource lan-
guage. We obtain a BLEU score of 13.4 with such a basic translation
set-up followed by simple correction of OOV translations using trans-
ductions.

More importantly, the improvement in the MT BLEU score shows
that even though the task of transduction is a focused one, it gener-
alizes well to OOV Hindi words that are not part of a Hindi – Bho-
jpuri cognate pair. This stands as an important aspect of our work.
Our transduction model, despite being trained on a dataset that is
constrained to cognate pairs, lends reasonable improvements to the
highly generalized machine translation task by exploiting the close-
ness of Hindi and Bhojpuri.
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8 Discussion

We propose a character-level transduction of OOV words between
a pair of closely related languages, out of which at least one is a
low-resource language. Word transduction aims to predict the ortho-
graphic form of the word in the target language, given the word in the
source language. We restrict the training space to a set of cognates,
since in the case of closely-related languages, a cognate can be a good
approximation to a translation, if not the translation itself. We present
three different models for the same, each of which performs well on
handling certain types of grapheme transformations, while perform-
ing sub-optimally on others. While all our models19 outperform the
current state of art for Hindi – Bhojpuri transduction, the TN model
gives the overall best performance. We suggest a two-step procedure
to improve a low-resource NMT system by:
1. identifying the need to handle OOV words separately; and
2. transducing them to their target equivalents, instead of translat-
ing.

In the process, we also propose a primitive yet useful MTmethod using
Google Translate APIs for a pair of languages which has no known
MT system. In the future, we would like to test our models on more
closely related language pairs. Further, we would like to build a state-
of-art MT pipeline for low resource languages, which incorporates our
method to handle OOV words. We would also like to compare the
effect of transduction as a solution to the OOV problem faced by word-
level MT systems by comparing it to a character-level MT system.
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