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Jean-Yves Welschinger

December 2, 2020

Abstract

We recently introduced a notion of tilings of the geometric realization of a finite
simplicial complex and related those tilings to the discrete Morse theory of R. For-
man, especially when they have the property to be shellable, a property shared by
the classical shellable complexes. We now observe that every such tiling supports
a quiver which is acyclic precisely when the tiling is shellable and then that every
shelling induces two spectral sequences which converge to the (co)homology of the
complex. Their first pages are free modules over the critical tiles of the tiling.

Keywords : spectral sequence, simplicial complex, discrete Morse theory, shellable
complex, tilings.

Mathematics subject classification 2020: 55T99, 57Q70, 55U10, 52C22.

1 Introduction

We introduced in [6, 7] a notion of tilings of the geometric realization of a finite simplicial
complex K. It is a partition by tiles, where a tile is a maximal simplex of K deprived
of several of its codimension one faces together with possibly a unique face of higher
codimension, see §2. When the tiles can be totally ordered in a way defining a filtration
of K by subcomplexes, the tiling is said to be shellable, or rather Morse shellable, since
this notion extends the classical notion of shellability [1, 9] and is related to discrete Morse
theory [3, 7]. In particular, the boundary of any convex simplicial polytope is shellable by
[1], but every closed triangulated surface is Morse shellable as well [7] and any finite product
of closed manifolds of dimensions less than four carries Morse shellable triangulations [8].
Not all tilings are shellable though, for any product of a sphere and a torus of positive
dimension carries Morse tiled triangulations which cannot be shelled, see Theorem 1.1 of
[8].

We now observe that every Morse tiling supports a quiver which encodes the shellability
of the tiling, see §3.2 and Remark 4.4.

Theorem 1.1. A Morse tiling is shellable if and only if its quiver does not contain any
oriented cycle.
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We then observe that every such shelling recovers the homology and cohomology of the
complex, via two spectral sequences, see §4.

Theorem 1.2. Any Morse shelling on a finite simplicial complex induces two spectral
sequences which converge to its homology and cohomology respectively and whose first pages
are free graded modules over the critical tiles.

A critical Morse tile is a simplex which has been deprived of several facets together
with its face of maximal codimension, see §2. This terminology originates from its relation
to the discrete Morse theory of Robin Forman [3], for any Morse shelling encodes a class of
compatible discrete Morse functions whose critical points are in one-to-one correspondance
with the critical tiles of the shelling, preserving the index, see [7]. As in the case of discrete
Morse complexes, the chain and cochain complexes appearing in the spectral sequences
given by Theorem 1.2 have much lower ranks than the simplicial ones, see Remark 4.4.

Finally, the quiver of a Morse tiled simplicial complex K makes it possible to weaken
the shellabiity condition into some partial shellability up to the order q ≥ 0, see Definition
3.14. The latter implies Morse shellability of the q-skeleton of K, see Theorem 3.15, and
provides spectral sequences which converge to the (co)homology of K in degrees less than
q, see Theorem 4.1.

We compute in §2 the relative (co)homology of Morse tiles, showing that it does not
vanish only for critical tiles. We introduce in §3 the quivers of Morse tilings and prove
Theorem 1.1. We also define the notion of partial shellability and prove Theorem 3.15. We
finally prove Theorem 1.2 in §4.

Acknowledgement: This work was partially supported by the ANR project MI-
CROLOCAL (ANR-15CE40-0007-01).

2 Relative homology of a Morse tile

Let n be a non-negative integer. We recall that an n-simplex is the convex hull of n + 1
points affinely independent in some real affine space or rather, abstractly, just a set of
cardinality n+ 1 whose elements are vertices, see [5, 4]. A face of a simplex is the convex
hull of a subset of its vertices and its dimension is the dimension of the affine space it
spans. An open simplex (resp. face) is the relative interior of a simplex (resp. face) in its
supporting affine space. The following definition has been given in [7].

Definition 2.1 (Definition 2.4 of [7, 8]). A Morse tile T of dimension n and order k ∈
{0, . . . , n + 1} is an n-simplex T deprived of k of its codimension one faces together with,
if k ≥ 1, one possibly empty face µ of higher codimension. It is critical of index k iff
dimµ = k−1, while a closed simplex is critical of vanishing index. The simplex T is called
the underlying simplex while µ is called its Morse face.
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A tile with empty Morse face is said to be basic and a basic tile of order k > 0 contains
a unique open face of dimension k− 1 and none of lower dimension. Critical tiles are thus
the ones for with this peculiar face has been removed, see [7]. Note that critical tiles of
maximal index are open simplices. The tiles which are not critical are said to be regular.

Recall that a finite simplicial complex is a finite collection of simplices which contains
all faces of its elements and such that the intersection of any two of them is a common
face, possibly empty. Such a simplicial complex K inherits a topology whose homology and
cohomology can be computed out of the simplicial chain and cochain complexes C∗(K;Z) =
⊕σ∈KZσ and C∗(K;Z) = ⊕σ∈K hom(Zσ,Z). These complexes are graded by the dimension
of the simplices and for every σ ∈ K, Zσ denotes the infinite cyclic group whose generators
are the two orientations on σ, that is the kernel of the augmentation morphism aσ + bσ ∈
Zσ ⊕ Zσ 7→ a+ b ∈ Z, see [5].

Definition 2.2. The relative homology (resp. cohomology) of a Morse tile T with coef-
ficients in the Abelian group G is the homology H∗(T , T \ T ;G) (resp. H∗(T , T \ T ;G))
of the chain complex C∗(T ;Z) ⊗ G/C∗(T \ T ;Z) ⊗ G (resp. ker

(
hom(C∗(T ;Z), G) →

hom(C∗(T \ T ;Z), G)
)
).

Proposition 2.3. The relative homology and cohomology of regular Morse tiles vanish
while they are isomorphic to the coefficient group G and concentrated in degree k in the
case of critical tiles of index k.

Proof. Let T be a Morse tile of dimension n and order k, with underlying simplex T and
Morse face µ. Let σ be the union of the k facets that have been removed from T , so that
T = T \ (σ ∪ µ). Let θ be the convex hull of the k vertices that are not contained in those
facets, so that θ ⊂ µ. The tile T is then regular iff θ 6= µ.

If T is regular, then µ contains a vertex v that does not belong to θ, so that σ ∪ µ is a

cone with apex v. The inclusions v → σ ∪ µ i→ T then induce isomorphisms in homology
and cohomology, these being concentrated in degree zero, see [5]. The short exact sequences

0→ C∗(σ ∪ µ;G)
i∗→ C∗(T ;G)→ C∗(T , σ ∪ µ;G)→ 0 (1)

and
0→ C∗(T , σ ∪ µ;G)→ C∗(T ;G)

i∗→ C∗(σ ∪ µ;G)→ 0 (2)

induce long exact sequences in homology from which we deduce that H∗(T , σ ∪ µ;G) and
H∗(T , σ ∪ µ;G) vanish.

If T is critical, the result is well known for k ∈ {0, n}. When k = 0, the relative
(co)homology of T is the homology of a simplex while when k = n, it is the (co)homology
of a simplex relative to its boundary. Otherwise, we deduce by excision that the relative
(co)homology of the pair (σ ∪ µ, σ) is isomorphic to the (co)homology of µ relative to its
boundary, so that it is likewise isomorphic to the coefficient group G and concentrated in
degree k − 1. From the long exact sequence of this pair (σ ∪ µ, σ), we deduce that the

reduced homology and cohomology groups H̃∗(σ ∪ µ;G) and H̃∗(σ ∪ µ;G) get isomorphic
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to H∗(σ ∪µ, σ;G) and H∗(σ ∪µ, σ;G), so that they are isomorphic to G and concentrated
in degree k − 1 as well. The result then again follows from (1) and (2), for the reduced
homology and cohomology of T vanish.

3 Quiver and shellability of a tiling

3.1 Acyclic quivers

Definition 3.1. A quiver is a quadruple Q = (QV , QA, s, t), where QV , QA are finite sets
whose elements are vertices and arrows, and where s, t : QA → QV are maps called source
and target.

A quiver is thus a finite directed graph which may contain several arrows between two
vertices or even a loop arrow from a vertex to itself.

Example 3.2. Let (V,≤) be a finite partially ordered set. It supports a quiver having V
as set of vertices and containing an arrow for each pair (i, j) ∈ V 2 such that i ≤ j, where
j is the source and i the target.

Definition 3.3. Let Q = (QV , QA, s, t) be a quiver. A path of Q is a p-tuple of arrows
π = (a1, . . . , ap) ∈ Qp

A such that for every j ∈ {1, . . . , p − 1}, t(aj) = s(aj+1). Its source
(resp. target) s(π) (resp. t(π)) is s(a1) (resp. t(ap)) and its length is p.

Every vertex of a quiver also defines a path of length zero. An oriented cycle is then
a path of positive length with same source and target. A quiver is said to be acyclic iff it
contains no oriented cycle.

Lemma 3.4. A quiver Q without loop is acyclic iff the relation ”i ≤ j iff Q contains a
path from j to i” defines a partial order on its vertices.

Proof. The relation ≤ is reflexive thanks to the existence of paths of length zero and
transitive by concatenation of paths. Now, if i, j are vertices such that i ≤ j and j ≤ i,
we get by concatenation an oriented cycle containing i and j. This forces i = j under
the hypothesis that Q is acyclic. Conversely, since Q contains no loop by hypothesis, any
oriented cycle contains at least two vertices i 6= j. The latter satisfy i ≤ j and j ≤ i, which
contradicts the antisymmetry of the order.

Definition 3.5. A grading of a quiver Q = (QV , QA, s, t) is an injection gr : QV → Z such
that for every path π of positive length, gr ◦ s(π) > gr ◦ t(π). An arrow a ∈ QA gets then
graded by the difference gr ◦ s(a)− gr ◦ t(a).

Lemma 3.6. A quiver is gradable iff it is acyclic.

Proof. Let Q = (QV , QA, s, t) be a quiver. If it is gradable with grading gr : QV → Z, then
the relation ”i ≤ j iff gr(i) ≤ gr(j)” defines a total order on QV which strictly decreases
along paths of positive length, so that Q cannot contain any oriented cycle. Conversely, if
Q is acyclic, then the relation ”i ≤ j iff Q contains a path from j to i” defines a partial
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order on QV by Lemma 3.4. We then get a grading on Q by sending any minimal element
i0 of QV to zero and then by induction, for every j ≥ 0, by sending any minimal element
ij+1 of QV \ {i0, . . . , ij} to j + 1 ∈ Z.

Example 3.7. Let V be a finite subset of Z. Then, the quiver Q = (QV , QA, s, t) given
by Example 3.2, where QA contains exactly one arrow for each pair (i, j) ∈ Q2

V such that
i ≤ j, is graded by the inclusion V ↪→ Z.

3.2 Shellability of a Morse tiling

The following definition has been given in [7], see also [6, 8].

Definition 3.8 (Definition 2.8 of [7] and 2.5 of [8]). A subset S of the geometric realization
of a finite simplicial complex K is Morse tileable iff it admits a partition by Morse tiles
such that for every j ≥ 0, the union of tiles of dimension greater than j is closed in S.
Such a partition is called a Morse tiling and the collection of simplices underlying these
tiles, together with their faces, is the underlying simplicial complex S of S.

A special class of Morse tilings consists of the following shellable ones and our purpose
in this section is to characterize when a tiling is shellable, proving Theorems 1.1.

Definition 3.9 (Definition 2.14 of [7] and 2.10 of [8]). A Morse tiled set S is shellable iff
it admits a filtration ∅ = S0 ⊂ S1 ⊂ · · · ⊂ SN = S by closed subsets such that for every
j ∈ {1, . . . , N}, Sj \ Sj−1 consists of a single tile.

When the tiling uses only basic tiles, this notion of shelling recovers the classical one
[1, 9], see Theorem 2.15 and Remark 2.16 of [7].

Example 3.10. 1) The boundary of every convex simplicial polytope is shellable by [1], so
that it is Morse shellable, the shelling using only basic tiles.

2) By Theorem 1.3 of [7], every closed triangulated surface is Morse shellable.
3) By Theorem 1.2 of [8], any finite product of closed manifolds of dimensions ≤ 3

carries Morse shellable triangulations.

More examples of Morse shellings can be found in [8]. We now observe that a Morse
tiling supports a quiver which encodes the obstruction to shell it.

Definition 3.11. The quiver of a Morse tiled set S has the tiles of S as vertices and
contains an arrow T → T ′ iff T ∩ T ′ 6= ∅. The arrows are labelled by the dimension of the
face T ∩ T ′ and the vertices by the order of the corresponding tiles.

In particular, the label of the target of an arrow cannot exceed the label of the arrow
itself by more than one, see §2.

Example 3.12. 1) If S = T0t· · ·tTn+1 is the shelling of ∂∆n+1 using one n-dimensional
basic tile of each order, where ∆n+1 denotes the standard (n + 1)-simplex, then its quiver
is the graph with vertices T0, . . . , Tn+1 and arrows Tj → Ti for every 0 ≤ i ≤ j ≤ n+ 1, see
Corollary 4.2 of [6].
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2) If S = T1 t T1 t T1 is the non-shellable tiling of ∂∆2 using three basic tiles of order
and dimension one, then its quiver is the oriented boundary of a triangle, see Example 3.4
of [8].

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let us first assume that a Morse tiled set S is shelled and denote
by T1, . . . , TN the shelling order on the tiles of S. Let a : Tj → Ti be an arrow of its quiver,
so that T j ∩ Ti 6= ∅. Since by definition the union ∪k≤jTk is closed in S, this forces i ≤ j
so that the shelling order of S induces a grading of its quiver by Definition 3.5. We deduce
from Lemma 3.6 that the latter is acyclic.

Conversely, if the quiver of S is acyclic, it is gradable by Lemma 3.6 and any grading
provides a total order on the tiles of S. We may then label them T1, . . . , TN in increasing
order. Then, for every k ∈ {1, . . . , N} and every 1 ≤ i ≤ k < j ≤ N , T i ∩ Tj = ∅,
for otherwise the quiver of S would contain an arrow Ti → Tj by Definition 3.11 which
is impossible by Definition 3.5. We deduce that Sk = ∪i≤kTi is closed in S, so that the
filtration (Sk)k∈{1,...,N} is a Morse shelling of S.

Remark 3.13. 1) The acyclicity condition in Theorem 1.1 may be compared to the cri-
terium given in Theorem 9.3 of [3], up to which a discrete vector field on a simplicial
complex is the gradient vector field of a discrete Morse function iff it contains no non-
stationary closed path. Indeed, by Theorem 3.12 of [7], a Morse tiling on a finite simplicial
complex encodes a class of compatible discrete vector fields and in the case of a shellable
one, these are gradient vector fields of discrete Morse functions whose critical points are in
one-to-one correspondance with the critical tiles, preserving the indices, see Theorem 1.2
of [7].

2) By Theorem 1.2 of [8], every product of a sphere and a torus of positive dimension
carries Morse tiled triangulations using only basic tiles. These tilings cannot be shelled, so
that their quivers all contain oriented cycles, as in the second part of Example 3.12.

We also deduce from Theorem 1.1 criteria of partial shellability of a Morse tiling. In
particular.

Definition 3.14. A Morse tiled set is shellable up to the order q ≥ 0 iff its quiver does
not contain any oriented cycle whose arrows have labels ≤ q.

Theorem 3.15. The q-skeleton S(q) of a Morse tiled set S which is shellable up to the
order q ≥ 0 is itself Morse shellable and carries a filtration ∅ = S0 ⊂ S1 ∩ S(q) ⊂ · · · ⊂
SN ∩ S(q) = S(q) by closed subset such that for every j ∈ {1, . . . , N}, Sj \ Sj−1 consists of
a single tile of order ≤ q + 1 of S.

The q-skeleton of a Morse tiled set S is the intersection with S of the q-skeleton of its
underlying simplicial complex S. Any filtration given by theorem 3.15 is called a partial
shelling.
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Proof. Let S be a Morse tiled set which is shellable up to the order q ≥ 0 and let S̃ be the
union of tiles of order ≤ q+1 of S. Then, S̃ contains the q-skeleton of S since a tile of order
greater than q + 1 does not contain any open face of dimension ≤ q, see §2. By Definition
3.14, the quiver Q whose vertices are the tiles of S̃ and which contains an arrow T → T ′ iff
T ∩ T ′ is non-empty of dimension ≤ q, is acyclic. By Lemma 3.6, it is then gradable and
any grading provides a total order on the tiles of S̃, so that we may label them T1, . . . , TN
in increasing order. Then, for every 1 ≤ i ≤ k < j ≤ N , T i ∩ Tj ∩ S(q) = ∅, for otherwise
Q would contain an arrow Ti → Tj which is impossible by Definition 3.5. We deduce that

S̃
(q)
k =

(
∪i≤k Ti

)
∩ S(q) is closed in S(q), so that it provides the desired filtration by closed

subsets of S(q). Now, by Theorem 2.18 of [7], the q-skeleton of every Morse tile is Morse
shellable. Choosing such a Morse shelling on each Ti ∩ S(q), i ∈ {1, . . . , N}, we get the
result by concatenation of these shelling orders.

4 Spectral sequences

We finally observe that any Morse shelling on a finite simplicial complex provides a way
to compute its (co)homology via two spectral sequences.

Theorem 4.1. Let a Morse tiled simplicial complex be shellable up to the order q ≥ 0.
Then, any such partial shelling induces a spectral sequence which converges to the homology
(resp. cohomology) of its q-skeleton and whose first page in gradings less than q is the
relative homology (resp. cohomology) of its critical tiles.

By Proposition 2.3, only the critical tiles of indices less than q contribute to the spectral
sequences given by Theorem 4.1 in gradings less than q.

Remark 4.2. The inclusion i of the q-skeleton K(q) into its ambient simplicial complex
K induces an homomorphism i∗ : H∗(K

(q);G) → H∗(K;G) (resp. i∗ : H∗(K;G) →
H∗(K(q);G)) in homology (resp. cohomology) which is surjective (resp. injective) in degree
q and bijective in degrees less than q, see [5], so that the spectral sequences given by Theorem
4.1 converge to the (co)homology of the simplicial complex in degrees less than q.

Proof. Let K be a Morse tiled simplicial complex which is shellable up to the order q ≥ 0
and let G be any group of coefficients. By Theorem 3.15, the q-skeleton of K inherits from
any partial shelling a filtration ∅ = K0 ⊂ K1 ⊂ · · · ⊂ KN = K(q) by subcomplexes such
that for every p ∈ {1, . . . , N}, Kp \Kp−1 = Tp ∩K(q) where Tp is a tile of order ≤ q + 1
of K. This filtration induces a filtration 0 ⊂ C∗(K1, G) ⊂ · · · ⊂ C∗(KN , G) = C∗(K

(q), G)
of simplicial chain complexes and thus a spectral sequence which converges to the ho-
mology of K(q), see chapter XV of [2] for instance. The zero-th page of this spectral
sequence is by definition E0

p,∗−p = C∗(Kp, Kp−1), p ∈ {1, . . . , N}, where we omit from
now on to mention the group of coefficients G. Its first page is E1

p,∗−p = H∗(Kp, Kp−1),

p ∈ {1, . . . , N} and its limit term is the homology of K(q) under the form E∞p,∗−p =

H∗(K
(q))p/H∗(K

(q))p−1, p ∈ {1, . . . , N}, whereH∗(K
(q))p denotes the image of the inclusion

homomorphism H∗(Kp) → H∗(K
(q)). These images indeed provide the induced filtration
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0 ⊂ H∗(K
(q))1 ⊂ · · · ⊂ H∗(K

(q))N = H∗(K
(q)) of the total homology of the q-skeleton.

Moreover, the filtration being of finite length N , the spectral sequence degenerates at the
N -th page, so that E∞ = EN . Now, for every p ∈ {1, . . . , N}, we deduce by excision an
isomorphism H∗(Kp, Kp−1) ∼= H∗(T p ∩K(q), (T p \ Tp) ∩K(q)), see [5], and then by compo-
sition with the inclusion homomorphism, an isomorphism H∗(Kp, Kp−1) ∼= H∗(T p, T p \ Tp)
as long as ∗ < q, see Remark 4.2. The homology part of the statement then follows from
Proposition 2.3.

The proof of the cohomology part is similar and obtained from the filtration 0 ⊂
C∗(KN , KN−1, G) ⊂ · · · ⊂ C∗(KN , K0, G) = C∗(K(q), G) of cochain complexes. It induces
a spectral sequence which converges to the cohomology of K(q) and whose zero-th page is
by definition Ep,∗−p

0 = C∗(KN , Kp)/C
∗(KN , Kp+1) = C∗(Kp+1, Kp), p ∈ {0, . . . , N − 1},

where the last isomorphism is given by restriction of the cochains to Kp+1 and provides
the short exact sequence of the triad (KN , Kp+1, Kp), and where we again omit to men-
tion the coefficient group G from now on. Its first page is thus Ep,∗−p

1 = H∗(Kp+1, Kp),
p ∈ {0, . . . , N − 1} and its limit term is the cohomology of K(q) under the form Ep,∗−p

∞ =
H∗(K(q))p/H

∗(K(q))p+1, p ∈ {0, . . . , N − 1}, where H∗(K(q))p denotes the image of the
inclusion homomorphism H∗(K(q), Kp) → H∗(K(q)). Now as before, we deduce by ex-
cision and Remark 4.2, for every p ∈ {0, . . . , N − 1}, an isomorphism H∗(Kp+1, Kp) ∼=
H∗(T p+1, T p+1 \Tp+1) as long as ∗ < q, so that the result follows from Proposition 2.3.

We now deduce.

Proof of Theorem 1.2. Theorem 1.2 follows from Theorem 4.1 combined with Proposition
2.3.

Example 4.3. 1) Any shelling of the boundary of a convex simplicial polytope given by [1]
provides a Morse shelling which uses only basic tiles among which a single closed simplex
and a single open one. The spectral sequences given by Theorem 1.2 degenerate at the first
page and compute the (co)homology of a sphere.

2) The Morse shellings of any closed connected triangulated surface given by Theorem
1.3 of [7] can also be chosen to use a single closed simplex and a single open one by
construction. Then, the spectral sequences given by Theorem 1.2 again degenerate at the
first page and compute the (co)homology of the surface as the number of critical tiles of
each index it uses.

3) In the case of the Morse shelled octahedron depicted in Figure 1 -taken out from [8]-,
where the numbers appearing in Figure 1 indicate the shelling order, the spectral sequences
given by Theorem 1.2 degenerate at the second page. Indeed, the (co)homology classes of
the pair of critical tiles with shelling orders 6 and 7, which have consecutive indices one
and two, get killed already at this second page.

Remark 4.4. 1) It follows from Theorem 4.1 that the k-th Betti number of a Morse tiled
simplicial complex which is shellable up to the order q > k is bounded from above by the
number of critical tiles of index k of the tiling. In the case of a Morse shellable complex,
this recovers Corollary 1.5 of [7], which has been deduced from discrete Morse theory.
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Figure 1: A Morse shelling on the octahedron.

2) Theorem 1.2 provides a way to compute the (co)homology of a Morse shellable sim-
plicial complex using much smaller (co)chain complexes than the simplicial ones, as the
discrete Morse complexes introduced by R. Forman would do, see [3]. For instance, per-
forming a large number of barycentric subdivisions on such a simplicial complex increases
by a lot the dimensions of its simplicial (co)chain complexes, whereas by Theorem 1.1 of
[7], these inherit Morse shellings using a constant number of critical tiles.

3) In fact, the spectral sequences given by Theorem 1.2 can be computed using discrete
Morse theory in the following way. By Theorem 1.2 of [7], any Morse shelling of a finite
simplicial complex K encodes a class of compatible discrete Morse functions whose critical
points are in one-to-one correspondance with the critical tiles of the shelling, preserving
the index. Moreover, any discrete Morse function f induces a cellular decomposition of
K using one cell for each critical point of f , see §7 of [3]. Each page of the spectral
sequence can then be computed using this decomposition for a compatible discrete Morse
function. Indeed, each cell of the decomposition provides a (co)cycle representative of the
relative (co)homology of the corresponding critical tile and thus a representative of the
corresponding (co)homology class in the first page. It remains a (co)cycle representative
of this (co)homology class as long as the differential of the corresponding page maps it to
a shelling degree where the boundary of the cell contains a simplex, which must then be a
critical point of degree one less of the Morse function. The latter sits inside a critical tile
of the shelling. Then, whether or not this homology class survives to higher pages depends
on whether or not this boundary component can be annihilated by another cell, which is
encoded by the discrete Morse complex.

It is however not needed to choose a compatible discrete Morse function to compute the
spectral sequences, as the case of the octahedron given in Example 4.3 shows. They can be
computed directly from the shelling.

4) By Theorem 8.10 of [3], the differentials of the Morse complex of a discrete Morse
function can also be computed as a finite sum of gradient paths between critical points of
consecutive indices. If the Morse function is chosen to be compatible with a Morse shelling,
then any such gradient path provides an oriented path in the quiver of the shelling, whose
source and target are critical tiles of consecutive indices.

5) The term quiver has been chosen in Definition 3.11 rather than oriented graph, since
representations of the quiver of a Morse tiling on a simplicial complex seem to correspond
to some sheaves on the complex, a relation which might be of interest to investigate.
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