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MOMENTS OF q-JACOBI POLYNOMIALS AND q-ZETA VALUES

FRÉDÉRIC CHAPOTON, CHRISTIAN KRATTENTHALER†, AND JIANG ZENG

Abstract. We explore some connections between moments of rescaled little q-Jacobi
polynomials, q-analogues of values at negative integers for some Dirichlet series, and the
q-Eulerian polynomials of wreath products of symmetric groups.

Introduction

This article is about a connection between three kinds of objects, namely

(A) q-analogues of Dirichlet series and their values at negative integers,
(B) basic hypergeometric polynomials and their sequences of moments,
(C) weighted enumeration of elements in coloured symmetric groups.

Let us give more details on these three points in order.
The point (A) is about a q-analogue of the Dirichlet series

L(s, c, r) =
∑

m≥1
m≡c (mod r)

1

ms
, (0.1)

where c, r are fixed integers. This is the Riemann zeta function when (c, r) = (1, 1). For
general c and r, the summands do not form a multiplicative sequence, so there is no Euler
product. One defines as in [3] a q-analogue of this Dirichlet series as an operator

Lq(s, c, r) =
∑

m≥1
m≡c (mod r)

1

[m]sq
Fm, (0.2)

where [m]q = (qm−1)/(q−1) is the usual q-integer and Fm is the formal Frobenius operator,
acting on formal power series in z with no constant term and coefficients in Q(q), defined
by

Fm(f)(q, z) = f(qm, zm).

Whenever the Dirichlet series L(s, c, r) factorizes as an Euler product, then so does the
operator Lq(s, c, r) as a product of commuting operators.

One then introduces some q-analogues of the values of L(s, c, r) at non-positive integers,
namely Lq(−n, c, r)(z) for n ≥ 0. As images of the formal power series f(z) = z, these are
formal power series in the variable z with coefficients in Q(q). As we will see, these are in
fact rational functions in q and z.
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The point (B) is about the little q-Jacobi polynomials, a system of orthogonal polyno-
mials in one variable. This is one of the families in the Askey–Wilson scheme of basic
hypergeometric orthogonal polynomials (cf. [7]). The little q-Jacobi polynomials, orthog-
onal with respect to the variable x, depend on the variable q and two further parameters.
For each choice of integers (c, r), by an appropriate choice of these parameters and some
affine change in the variable x, one obtains a system of orthogonal polynomials involving
the variables q and z. Their sequence of moments, which are evaluations of the associated
linear functional at the monomials xn, are therefore rational functions in q and z.

The point (C) is about the complex reflection groups G(r, n) defined as the wreath
product of a symmetric group Sn by a cyclic group Zr. The elements of these groups can
be seen as coloured permutation matrices, where non-zero entries contain a root of unity
of order dividing r. By using two combinatorial statistics on these elements, one can refine
the number rnn! of elements of G(r, n) into a polynomial in two variables q and z, with
positive integer coefficients. In this context, the parameter c is absent.

The aim of this article is to show that (A), (B) and (C) all give essentially the same
rational function in q and z. More precisely, the rational functions from (A) and (B) are
essentially the quotients of the polynomial from (C) by simple denominators. The part (C)
is involved only when the parameter c equals 1.

The relationship between (C) and (A) is merely a reformulation of the results by Biagioli
and the third author in [1]. The relationship between (A) and (B) is a (q, z)-analogue of
well-known results about Bernoulli numbers and Euler numbers, for which we refer to [6].

1. Preliminaries

1.1. Orthogonal polynomials. In this subsection we recall some fundamental results of
the theory of orthogonal polynomials [4, 10]. Let K be a field.

Definition 1.1. Let ϕ : K[x] → K be a linear functional. A sequence of polynomials

{pn(x)}n≥0 in K[x] is said to be orthogonal with respect to the linear functional ϕ if:

(i) pn(x) is of degree n, for n = 0, 1, . . . ;
(ii) ϕ(pn(x) pn′(x)) = Kn δn,n′, Kn 6= 0, for n = 0, 1, . . . .

The sequence {µn}n≥0 with µn = ϕ(xn) for n ≥ 0 is called the moment sequence associated
with ϕ.

Sometimes the polynomials {pn(x)} are also said to be orthogonal with respect to the
sequence of moments {µn}n≥0.

Let us write OPS as a shorthand for orthogonal polynomial system.

Theorem 1.1 (Favard’s theorem). A sequence of polynomials {pn(x)}n≥0 in K[x] is
a monic OPS if and only if there is a sequence {bn}n≥0 and a non-zero sequence {λn}n≥0

such that p0(x) = 1, p1(x) = x− b0 and

pn+1(x) = (x− bn)pn(x)− λnpn−1(x) for n ≥ 1. (1.1)
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Theorem 1.2. Let the polynomials (pn(x))n≥0 satisfy (1.1). Then, if we fix µ0 := λ0 6= 0,
the functional ϕ with respect to which this OPS is orthogonal is unique. Furthermore, for

Qn(x) = α−npn(αx+ β), α 6= 0, we have

Qn+1(x) =

(

x−
bn − β

α

)

Qn(x)−
λn

α2
Qn−1(x), for n ≥ 1, (1.2)

and, if (pn(x))n≥0 is the OPS with respect to the moments (µn), then (Qn(x)) is the OPS

with respect to the moments νn given by

νn = ϕ

((

x− β

α

)n)

= α−n

n
∑

j=0

(

n

j

)

(−β)n−jµj, for n ≥ 0. (1.3)

Theorem 1.3. The generating function of the moments {ϕ(xn)} has the continued fraction

expansion

∑

n≥0

ϕ(xn) tn =
λ0

1− b0t−
λ1t

2

1− b1t−
λ2t

2

. . .

. (1.4)

There is also an associated formula for Hankel determinants of the sequence of moments,
see [10, 8, 9]

1.2. Wreath product of a symmetric group by a cyclic group. Let r ≥ 1 and n ≥ 1
be integers. Let Sn be the symmetric group on {1, . . . , n}. A permutation σ ∈ Sn will be
denoted by σ = σ(1) · · ·σ(n). The wreath product Zr ≀ Sn of Zr by Sn is the set

G(r, n) := {(c1, . . . , cn; σ) | ci ∈ {0, . . . , r − 1}, σ ∈ Sn}. (1.5)

Using a fixed primitive r-th root of unity ξ, one can see the elements in this set as square
matrices, starting from the permutation matrix for σ and replacing the non-zero entry in
column i by ξci.

This group is therefore also called the group of r-coloured permutations. We will represent
its elements as

γ = [γ(1), . . . , γ(n)] = [σ(1)c1, . . . , σ(n)cn].

We denote by

col(γ) :=

n
∑

i=1

ci,

the colour weight of any γ ∈ G(r, n). For example, if γ = [41, 30, 24, 12] ∈ G(5, 4) then
col(γ) = 7.

We endow the set of possible values for the γ(i) with the following total order:

nr−1 < · · · < n1 < · · · < 1r−1 < · · · < 11 < 0 < 10 < · · · < n0.

The 0 is inserted here to separate the “positive” values i0 from the “negative” values ic

with c ≥ 1. It will also be used in the statistics that we are going to define now.
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The descent set of γ ∈ G(r, n) is defined by

DesG(γ) := {i ∈ {0, . . . , n− 1} | γ(i) > γ(i+ 1)}, (1.6)

where γ(0) := 0, and its cardinality is denoted by desG(γ).

The major index is defined to be the sum of descent positions:

maj(γ) =
∑

i∈DesG(γ)

i,

and the flag-major index is defined by

fmaj(γ) := r ·maj(γ) + col(γ).

For example, for γ = [41, 30, 24, 12] ∈ G(5, 4) we have DesG(γ) = {0, 2}, desG(γ) = 2,

maj(γ) = 2, and fmaj(γ) = 17.
Biagioli and the third author [1] defined the generating polynomials for G(r, n) with

respect to the bi-statistic (des, fmaj):

Gr,n(Z, q) =
∑

γ∈G(r,n)

ZdesG(γ)qfmaj(γ), (1.7)

and they proved the following identity. We refer the reader to Subsection 1.3 for the
meaning of the q-notations.

Theorem 1.2 (Carlitz–MacMahon identity for G(r, n)). Let r and n be positive

integers. Then

Gr,n(Z, q)

(Z; qr)n+1
=

∑

k≥0

Zk[rk + 1]nq . (1.8)

The above formula gives a nice generalization of identities of Carlitz [2] for the symmet-
ric group (corresponding to the case where r = 1), and of Chow and Gessel [5] for the
hyperoctahedral group (corresponding to the case where r = 2).

1.3. Little q-Jacobi polynomials. We use the standard q-notations from [7], among
which

[x]q =
1− qx

1− q
,

the q-Pochhammer symbol

(a; q)n = (1− a)(1− aq) . . . (1− aqn−1),

and the convenient shorthand

(a, b; q)n = (a; q)n (b; q)n.

We furthermore need the q-binomial theorem [7, p. 16]

1Φ0(a;−; q, z) =

∞
∑

k=0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

(1.9)
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and the q-Chu–Vandermonde formula [7, p. 17]

2Φ1(q
−n, b; c; q, q) =

∞
∑

k=0

(q−n; q)k (b; q)k
(c; q)k (q; q)k

qk =
(c/b; q)n
(c; q)n

bn. (1.10)

The little q-Jacobi polynomials [7, p. 482] have the explicit representation

pn(x; a, b | q) = 2Φ1

(

q−n, abqn+1

aq
; q, qx

)

=

∞
∑

k=0

(q−n; q)k (abq
n+1; q)k

(aq; q)k (q; q)k
(qx)k, (1.11)

and are orthogonal with respect to the inner product defined by
∫ 1

0

f(x)g(x)dqw(x) =
∞
∑

k=0

f(qk)g(qk)w(qk),

where

w(x) =
(aq, bq; q)∞
(abq2, q; q)∞

·
(qx; q)∞
(bqx; q)∞

xα+1

with a = qα.
Let pn(x) be the monic little q-Jacobi polynomials, i.e.,

pn(x; a, b | q) =
(−1)nq−(

n

2
)(abqn+1; q)n

(aq; q)n
pn(x).

Then the normalized recurrence relation [7, p. 483] reads

xpn(x) = pn+1(x) + (An + Cn)pn(x) + An−1Cnpn−1(x), (1.12)

where

An = qn
(1− aqn+1)(1− abqn+1)

(1− abq2n+1)(1− abq2n+2)
,

Cn = aqn
(1− qn)(1− bqn)

(1− abq2n)(1− abq2n+1)
.

By the q-binomial theorem (1.9), the nth moment is

µn =

∫ 1

0

xndqw(x) =
(aq; q)n
(abq2; q)n

, for n = 0, 1, 2, . . . . (1.13)

We can also verify (1.13) by using the explicit formula (1.11) and the q-Chu-Vandermonde
formula (1.10): namely, for n ≥ 1, we have

∫ 1

0

pn(x; a, b | q)dqw(x) = 0. (1.14)

We can now prove the connection between (B) and (A).
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Theorem 1.4. For integers r ≥ 1, the nth moment µn of the shifted little q-Jacobi poly-
nomials pn(q

−c(1 + (q − 1)x);Zq−r, 1 | qr) is

µn = (1− Z)
∑

k≥0

([rk + c]q)
nZk. (1.15)

For c = 1, we have

µn =
Gr,n(Z, q)

(Zqr; qr)n
. (1.16)

Proof. By (1.3), the nth moment of pn(q
−c(1 + (q − 1)x); a, b | qr) is

νn = qnc(q − 1)−n

n
∑

j=0

(

n

j

)

(−qc)j−n (aqr; qr)j
(abq2r; qr)j

.

Substituting a by Zq−r and b by 1, we get

νn = qnc(q − 1)−n

n
∑

j=0

(

n

j

)

(−qc)j−n 1− Z

1− Zqrj

= (1− Z)(q − 1)−n
∑

k≥0

Zk

n
∑

j=0

(

n

j

)

(−1)n−jq(rk+c)j

= (1− Z)
∑

k≥0

([rk + c]q)
nZk.

The last statement follows from (1.8). �

Theorem 1.5. The generating function for the moments µn in (1.15) has the continued

fraction expansion

∑

n≥0

µnt
n =

1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

. . .

. (1.17)

where the coefficients bn and λn are given by

λn =
Zq2r(n−1)+2c [rn]2q (1− Zqr(n−1))2

(1− Zq2rn)(1− Zqr(2n−1))2(1− Zqr(2n−2))
(1.18)

and

bn =
qc

q − 1

(

qrn(1− Zqrn)2

(1− Zq2rn)(1− Zqr(2n+1))
+

Zqr(n−1)(1− qrn)2

(1− Zqr(2n−1))(1− Zq2rn)
− q−c

)

. (1.19)

Proof. This follows by combining (1.12) and Theorems 1.4, 1.2 and 1.3 with α = (q−1)/qc

and β = q−c. �
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2. Zeta operators at negative integers

We define the q-difference operator on the formal power series f in z by

∆z(f) =
f(qz)− f(z)

q − 1
. (2.1)

Note that ∆z(z
m) = [m]qz

m. This implies that repeated application of the operator ∆z

creates the sequence of values at negative integers for the q-analogues of Dirichlet series.
Indeed, for n ≥ 0, we have

Lq(−n, c, r)(z) =
∑

m≥1
m≡ c(mod r)

[m]nq z
m. (2.2)

and therefore
∆z (Lq(−n, c, r)(z)) = Lq(−n− 1, c, r)(z). (2.3)

Computing the initial value for n = 0, one finds

Lq(0, c, r)(z) =
zc

1− zr
. (2.4)

By induction using (2.3), the expression Lq(−n, c, r)(z) is a rational function in q and z
with denominator (zr, qr)n+1.

The general relation between (A) and (B) is therefore, by comparison of (2.2) with
(1.15), using (2.4), that

Lq(−n, c, r)(z)/Lq(0, c, r)(z) = µn

∣

∣

Z=zr
. (2.5)

For c = 1, comparison with (1.8) reveals the combinatorial expression

Lq(−n, c, r)(z) = z
Gr,n(z

r, q)

(zr, qr)n+1

, (2.6)

which makes the precise connection between (A) and (C).
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