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MOMENTS OF q-JACOBI POLYNOMIALS AND q-ZETA VALUES

We explore some connections between moments of rescaled little q-Jacobi polynomials, q-analogues of values at negative integers for some Dirichlet series, and the q-Eulerian polynomials of wreath products of symmetric groups.

Introduction

This article is about a connection between three kinds of objects, namely (A) q-analogues of Dirichlet series and their values at negative integers, (B) basic hypergeometric polynomials and their sequences of moments, (C) weighted enumeration of elements in coloured symmetric groups. Let us give more details on these three points in order. The point (A) is about a q-analogue of the Dirichlet series

L(s, c, r) = m≥1 m≡c (mod r) 1 m s , (0.1) 
where c, r are fixed integers. This is the Riemann zeta function when (c, r) = (1, 1). For general c and r, the summands do not form a multiplicative sequence, so there is no Euler product. One defines as in [START_REF] Chapoton | Fractions de Bernoulli-Carlitz et opérateurs q-zeta[END_REF] a q-analogue of this Dirichlet series as an operator

L q (s, c, r) = m≥1 m≡c (mod r) 1 [m] s q F m , (0.2) 
where [m] q = (q m -1)/(q-1) is the usual q-integer and F m is the formal Frobenius operator, acting on formal power series in z with no constant term and coefficients in Q(q), defined by F m (f )(q, z) = f (q m , z m ). Whenever the Dirichlet series L(s, c, r) factorizes as an Euler product, then so does the operator L q (s, c, r) as a product of commuting operators.

One then introduces some q-analogues of the values of L(s, c, r) at non-positive integers, namely L q (-n, c, r)(z) for n ≥ 0. As images of the formal power series f (z) = z, these are formal power series in the variable z with coefficients in Q(q). As we will see, these are in fact rational functions in q and z.

The point (B) is about the little q-Jacobi polynomials, a system of orthogonal polynomials in one variable. This is one of the families in the Askey-Wilson scheme of basic hypergeometric orthogonal polynomials (cf. [START_REF] Koekoek | Hypergeometric orthogonal polynomials and their q-analogues[END_REF]). The little q-Jacobi polynomials, orthogonal with respect to the variable x, depend on the variable q and two further parameters. For each choice of integers (c, r), by an appropriate choice of these parameters and some affine change in the variable x, one obtains a system of orthogonal polynomials involving the variables q and z. Their sequence of moments, which are evaluations of the associated linear functional at the monomials x n , are therefore rational functions in q and z.

The point (C) is about the complex reflection groups G(r, n) defined as the wreath product of a symmetric group S n by a cyclic group Z r . The elements of these groups can be seen as coloured permutation matrices, where non-zero entries contain a root of unity of order dividing r. By using two combinatorial statistics on these elements, one can refine the number r n n! of elements of G(r, n) into a polynomial in two variables q and z, with positive integer coefficients. In this context, the parameter c is absent.

The aim of this article is to show that (A), (B) and (C) all give essentially the same rational function in q and z. More precisely, the rational functions from (A) and (B) are essentially the quotients of the polynomial from (C) by simple denominators. The part (C) is involved only when the parameter c equals 1.

The relationship between (C) and (A) is merely a reformulation of the results by Biagioli and the third author in [START_REF] Biagioli | Enumerating wreath products via Garsia-Gessel bijections[END_REF]. The relationship between (A) and (B) is a (q, z)-analogue of well-known results about Bernoulli numbers and Euler numbers, for which we refer to [START_REF] Dilcher | Hankel determinants of sequences related to Bernoulli and Euler Polynomials[END_REF].

1. Preliminaries 1.1. Orthogonal polynomials. In this subsection we recall some fundamental results of the theory of orthogonal polynomials [START_REF] Seio | An introduction to orthogonal polynomials[END_REF]10]. Let K be a field.

Definition 1.1. Let ϕ : K[x] → K be a linear functional. A sequence of polynomials {p n (x)} n≥0 in K[x]
is said to be orthogonal with respect to the linear functional ϕ if:

(i) p n (x) is of degree n, for n = 0, 1, . . . ; (ii) ϕ(p n (x) p n ′ (x)) = K n δ n,n ′ , K n = 0, for n = 0, 1, . . . . The sequence {µ n } n≥0 with µ n = ϕ(x n ) for n ≥ 0 is called the moment sequence associated with ϕ.
Sometimes the polynomials {p n (x)} are also said to be orthogonal with respect to the sequence of moments {µ n } n≥0 .

Let us write OPS as a shorthand for orthogonal polynomial system.

Theorem 1.1 (Favard's theorem). A sequence of polynomials {p n (x)} n≥0 in K[x] is a monic OPS if and only if there is a sequence {b n } n≥0 and a non-zero sequence {λ n } n≥0 such that p 0 (x) = 1, p 1 (x) = x -b 0 and

p n+1 (x) = (x -b n )p n (x) -λ n p n-1 (x) for n ≥ 1. (1.1)
Theorem 1.2. Let the polynomials (p n (x)) n≥0 satisfy (1.1). Then, if we fix µ 0 := λ 0 = 0, the functional ϕ with respect to which this OPS is orthogonal is unique. Furthermore, for Q n (x) = α -n p n (αx + β), α = 0, we have

Q n+1 (x) = x - b n -β α Q n (x) - λ n α 2 Q n-1 (x), for n ≥ 1, (1.2) 
and, if (p n (x)) n≥0 is the OPS with respect to the moments (µ n ), then (Q n (x)) is the OPS with respect to the moments ν n given by

ν n = ϕ x -β α n = α -n n j=0 n j (-β) n-j µ j , for n ≥ 0. (1.3)
Theorem 1.3. The generating function of the moments {ϕ(x n )} has the continued fraction expansion

n≥0 ϕ(x n ) t n = λ 0 1 -b 0 t - λ 1 t 2 1 -b 1 t - λ 2 t 2 . . . . (1.4)
There is also an associated formula for Hankel determinants of the sequence of moments, see [10, 8, 9] 1.2. Wreath product of a symmetric group by a cyclic group. Let r ≥ 1 and n ≥ 1 be integers. Let S n be the symmetric group on {1, . . . , n}. A permutation σ ∈ S n will be denoted by σ = σ(1) • • • σ(n). The wreath product Z r ≀ S n of Z r by S n is the set

G(r, n) := {(c 1 , . . . , c n ; σ) | c i ∈ {0, . . . , r -1}, σ ∈ S n }.
(1.5)

Using a fixed primitive r-th root of unity ξ, one can see the elements in this set as square matrices, starting from the permutation matrix for σ and replacing the non-zero entry in column i by ξ c i . This group is therefore also called the group of r-coloured permutations. We will represent its elements as

γ = [γ(1), . . . , γ(n)] = [σ(1) c 1 , . . . , σ(n) cn ]. We denote by col(γ) := n i=1 c i , the colour weight of any γ ∈ G(r, n). For example, if γ = [4 1 , 3 0 , 2 4 , 1 2 ] ∈ G(5, 4) then col(γ) = 7.
We endow the set of possible values for the γ(i) with the following total order:

n r-1 < • • • < n 1 < • • • < 1 r-1 < • • • < 1 1 < 0 < 1 0 < • • • < n 0 .
The 0 is inserted here to separate the "positive" values i 0 from the "negative" values i c with c ≥ 1. It will also be used in the statistics that we are going to define now.

The descent set of γ ∈ G(r, n) is defined by

Des G (γ) := {i ∈ {0, . . . , n -1} | γ(i) > γ(i + 1)}, (1.6) 
where γ(0) := 0, and its cardinality is denoted by des G (γ).

The major index is defined to be the sum of descent positions:

maj(γ) = i∈Des G (γ) i,
and the flag-major index is defined by fmaj(γ) := r • maj(γ) + col(γ).

For example, for γ = [4 1 , 3 0 , 2 4 , 1 2 ] ∈ G(5, 4) we have Des G (γ) = {0, 2}, des G (γ) = 2, maj(γ) = 2, and fmaj(γ) = 17. Biagioli and the third author [START_REF] Biagioli | Enumerating wreath products via Garsia-Gessel bijections[END_REF] defined the generating polynomials for G(r, n) with respect to the bi-statistic (des, fmaj):

G r,n (Z, q) = γ∈G(r,n) Z des G (γ) q fmaj(γ) , (1.7) 
and they proved the following identity. We refer the reader to Subsection 1.3 for the meaning of the q-notations.

Theorem 1.2 (Carlitz-MacMahon identity for G(r, n)). Let r and n be positive integers. Then G r,n (Z, q)

(Z; q r ) n+1 = k≥0 Z k [rk + 1] n q .
(1.8)

The above formula gives a nice generalization of identities of Carlitz [START_REF] Carlitz | A combinatorial property of q-Eulerian numbers[END_REF] for the symmetric group (corresponding to the case where r = 1), and of Chow and Gessel [START_REF] Chow | On the descent numbers and major indices for the hyperoctahedral group[END_REF] for the hyperoctahedral group (corresponding to the case where r = 2). 1.3. Little q-Jacobi polynomials. We use the standard q-notations from [START_REF] Koekoek | Hypergeometric orthogonal polynomials and their q-analogues[END_REF], among which

[x] q = 1 -q x 1 -q , the q-Pochhammer symbol

(a; q) n = (1 -a)(1 -aq) . . . (1 -aq n-1 ),
and the convenient shorthand (a, b; q) n = (a; q) n (b; q) n .

We furthermore need the q-binomial theorem [7, p. 16]

1 Φ 0 (a; -; q, z) = ∞ k=0 (a; q) k (q; q) k z k = (az; q) ∞ (z; q) ∞ (1.9)
and the q-Chu-Vandermonde formula [7, p. 17]

2 Φ 1 (q -n , b; c; q, q) = ∞ k=0 (q -n ; q) k (b; q) k (c; q) k (q; q) k q k = (c/b; q) n (c; q) n b n .
(1.10)

The little q-Jacobi polynomials [7, p. 482] have the explicit representation

p n (x; a, b | q) = 2 Φ 1 q -n , abq n+1 aq ; q, qx = ∞ k=0 (q -n ; q) k (abq n+1 ; q) k (aq; q) k (q; q) k (qx) k , (1.11) 
and are orthogonal with respect to the inner product defined by

1 0 f (x)g(x)d q w(x) = ∞ k=0 f (q k )g(q k )w(q k ),
where

w(x) = (aq, bq; q) ∞ (abq 2 , q; q) ∞ • (qx; q) ∞ (bqx; q) ∞ x α+1
with a = q α . Let p n (x) be the monic little q-Jacobi polynomials, i.e.,

p n (x; a, b | q) = (-1) n q -( n 2 ) (abq n+1 ; q) n (aq; q) n p n (x).
Then the normalized recurrence relation [7, p. 483] reads

xp n (x) = p n+1 (x) + (A n + C n )p n (x) + A n-1 C n p n-1 (x), (1.12) 
where

A n = q n (1 -aq n+1 )(1 -abq n+1 ) (1 -abq 2n+1 )(1 -abq 2n+2 ) , C n = aq n (1 -q n )(1 -bq n ) (1 -abq 2n )(1 -abq 2n+1 )
.

By the q-binomial theorem (1.9), the nth moment is

µ n = 1 0
x n d q w(x) = (aq; q) n (abq 2 ; q) n , for n = 0, 1, 2, . . . . (1.13) We can also verify (1.13) by using the explicit formula (1.11) and the q-Chu-Vandermonde formula (1.10): namely, for n ≥ 1, we have We can now prove the connection between (B) and (A).

Theorem 1.4. For integers r ≥ 1, the nth moment µ n of the shifted little q-Jacobi polynomials p n (q -c (1 + (q -1)x); Zq -r , 1 | q r ) is

µ n = (1 -Z) k≥0 ([rk + c] q ) n Z k .
(1.15)

For c = 1, we have

µ n = G r,n (Z, q) (Zq r ; q r ) n .
(1.16)

Proof. By (1.3), the nth moment of p n (q -c (1 + (q -1)x); a, b | q r ) is

ν n = q nc (q -1) -n n j=0
n j (-q c ) j-n (aq r ; q r ) j (abq 2r ; q r ) j .

Substituting a by Zq -r and b by 1, we get

ν n = q nc (q -1) -n n j=0 n j (-q c ) j-n 1 -Z 1 -Zq rj = (1 -Z)(q -1) -n k≥0 Z k n j=0 n j (-1) n-j q (rk+c)j = (1 -Z) k≥0 ([rk + c] q ) n Z k .
The last statement follows from (1.8).

Theorem 1.5. The generating function for the moments µ n in (1.15) has the continued fraction expansion n≥0 .17) where the coefficients b n and λ n are given by

µ n t n = 1 1 -b 0 t - λ 1 t 2 1 -b 1 t - λ 2 t 2 . . . . ( 1 
λ n = Zq 2r(n-1)+2c [rn] 2 q (1 -Zq r(n-1) ) 2 (1 -Zq 2rn )(1 -Zq r(2n-1) ) 2 (1 -Zq r(2n-2) ) (1.18) and b n = q c q -1 q rn (1 -Zq rn ) 2 (1 -Zq 2rn )(1 -Zq r(2n+1) ) + Zq r(n-1) (1 -q rn ) 2 (1 -Zq r(2n-1) )(1 -Zq 2rn ) -q -c . (1.19)
Proof. This follows by combining (1.12) and Theorems 1.4, 1.2 and 1.3 with α = (q -1)/q c and β = q -c .

Zeta operators at negative integers

We define the q-difference operator on the formal power series f in z by ∆ z (f ) = f (qz) -f (z) q -1 .

(2.1)

Note that ∆ z (z m ) = [m] q z m . This implies that repeated application of the operator ∆ z creates the sequence of values at negative integers for the q-analogues of Dirichlet series. Indeed, for n ≥ 0, we have L q (-n, c, r)(z) = m≥1 m≡ c(mod r)

[m] n q z m .

(2.2) and therefore ∆ z (L q (-n, c, r)(z)) = L q (-n -1, c, r)(z).

(2.3) Computing the initial value for n = 0, one finds L q (0, c, r)(z) = z c 1 -z r .

(2.4)

By induction using (2.3), the expression L q (-n, c, r)(z) is a rational function in q and z with denominator (z r , q r ) n+1 .

The general relation between (A) and (B) is therefore, by comparison of (2.2) with (1.15), using (2.4), that L q (-n, c, r)(z)/L q (0, c, r)(z) = µ n Z=z r .

(2.5)

For c = 1, comparison with (1.8) reveals the combinatorial expression L q (-n, c, r)(z) = z G r,n (z r , q) (z r , q r ) n+1 ,

which makes the precise connection between (A) and (C).

1 0p

 1 n (x; a, b | q)d q w(x) = 0. (1.14)
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